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Finding a hidden partition in a random environment is a general and important problem which
contains as subproblems many important questions, such as finding a hidden clique, finding a
hidden colouring, finding a hidden bipartition, etc.

In this paper we provide a simple SVD algorithm for this purpose, addressing a question of
McSherry. This algorithm is easy to implement and works for sparse graphs under optimal density
assumptions. We also consider an approximating algorithm, which on one hand works under very
mild assumptions, but on other hand can sometimes be upgraded to give the exact solution.
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1. The problem and a new algorithm

The Hidden Partition problem is the following. Let X be a set of n vertices with a partition
X = ∪k

i=1Xi; for all 1 � i � j � k and any x ∈ Xi,y ∈ Xj, put a random edge between x and y with
probability pi j. Given one such random graph, one has to recover the sets Xi. This problem is of
importance in computer science and statistics, and contains as special cases several well-studied
problems such as Hidden Clique, Hidden Bisection, Hidden Colouring, Clustering, etc. (see e.g.
[1, 2, 3, 6, 7, 8, 11, 13, 14, 15, 16, 18, 21, 23, 24] and the references therein). In what follows,
we refer to Xi as clusters.

In an influential paper [27], McSherry provided a (randomized) polynomial-time algorithm
that solves the general Hidden Partition problem for a large range of parameters. As corollary,
he derived several earlier results obtained for special cases. We refer the reader to this paper for
a detailed discussion of results prior to [27].

The general idea of [27] (and many earlier works on clustering) is to find a good geometric
representation of the vertices. We say that a representation is perfect if there is a number r > 0
such that:

• vertices in the same cluster have distance at most r from each other,
• vertices from different clusters have distance at least 4r from each other.
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Once a perfect representation is obtained, it is easy to find the clusters. If r is known, then the
solution is obvious. If r is not known, then there are several simple algorithms. For instance, one
can create a minimal spanning tree (with respect to the distances) on the vertices and then remove
the largest k− 1 edges. In what follows, we put all these simple algorithms under a subroutine
called Clustering by Distances and the reader can choose his/her favourite to implement.

In the rest of the paper, su := |Xi| if u ∈ Xi and s := minu∈X su = mini |Xi|. We assume that n is
sufficiently large, whenever needed. Asymptotic notation is used under the assumption n → ∞.
All explicit constants (such as the 4 above) are ad hoc and we make no attempt to optimize them.

A popular way to find a perfect representation is to project the points of X (seen as vectors in
R

n) onto a properly chosen low-dimensional subspace. The main technical part of McSherry’s
algorithm is a subroutine called CProj (Combinatorial Projection), which creates this projection
in a combinatorial way. The inputs in this subroutine are a matrix Â, parameters k,s, and a
properly chosen threshold τ . For a matrix M, PM denotes the orthogonal projection onto the
column space of M, and Mv is the column indexed by v.

Algorithm 1: Combinatorial Projection (CProj)

(1) While there are at least s/2 unclassified nodes, choose an unclassified node vi randomly
and define Ti := {u|‖P

ÂT (ÂT
vi
− ÂT

u )‖ � τ}, where u ranges over the set of unclassified
nodes. Mark each u ∈ Ti as classified.

(2) Assign each remaining node to the Ti with the closest projected vi.
(3) Let ĉi be the characteristic vector of Ti.
(4) Return Pĉ, the orthogonal projection matrix onto the span of the ĉi.

Algorithm 2: McSherry’s algorithm

(1) Randomly partition the set {1, . . . ,n} into two parts A and B. Let Â, B̂ be the submatrices
of the adjacency matrix formed by columns from A and B. (One next uses these two
matrices to produce two projections using CProj, thinking of their columns as nodes.)

(2) Let P1 = CProj(B̂),P2 = CProj(Â) and compute Ĥ = [P1(Â)|P2(B̂)].
(3) Run Clustering by Distances on the projected points.

For more details about this algorithm (such as how the parameters are chosen) we refer the
reader to [27].

Let P be the probability matrix (pi j)1�i, j�k. For a vertex u ∈ X , u denotes the corresponding
column in P. Define

Δ := min‖u−v‖2,

where the minimum is taken over all pairs u,v belonging to different clusters. Furthermore, define

σ 2 := max
i, j

pi j(1− pi j).

McSherry proved the following theorem [27].
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Theorem 1.1. There is a constant C > 0 such that if σ 2 � log6 n/n and

Δ � Cσk1/2

(√
n
s

+
√

log
n
ε

)
, (1.1)

the above algorithm (with a proper choice of the threshold τ) recovers the partition with prob-
ability 1−ε with respect to the random graph and k−1 with respect to the auxiliary random bits.

In this paper, we present a new spectral algorithm for the problem. The key features of this
algorithm are as follows.

• It works under an optimal density assumption and a different condition on Δ.
• Both the algorithm and the analysis are simple (the proof is only a few pages).
• The algorithm is easy to implement. Its main operation is to compute the leading few eigen-

vectors of a matrix, a task for which many software packages are available.
• It addresses a question raised by McSherry [27] about the possibility of avoiding the com-

binatorial subroutine CProj.

We pushed the bound σ 2 � log6 n/n to σ 2 � logn/n, which is optimal. In fact, in certain
settings, one can go below this density; see the discussion below and also [9], where the ideas
introduced here are further developed to deal with very sparse graphs. The key technical in-
gredient in our analysis is Lemma 2.1, concerning the magnitude of the orthogonal projection
of a random vector onto a deterministic subspace. This lemma seems to have a wide range of
potential applications.

As we focus on complete recovery, the density bound logn/n is necessary. If one’s goal is to
obtain an approximate recovery, then there are many earlier works considering density as small
as c/n, which we are going to discuss in the paper. We are going to discuss approximate recovery
in Theorem 1.3 below.

Let us mention an essential point that for approximation we can work with assumptions much
weaker than those needed for full recovery (in both McSherry’s algorithm and our algorithm).
Furthermore, in certain settings, one can upgrade an approximate solution to an exact one using
an extra (fast) subroutine. Thus, in these cases, we obtain a new algorithm for full recovery under
weaker assumptions.

To this end, Mk denotes the subspace spanned by the first k left singular vectors of a matrix M.
Let P̂ be our input, namely the adjacency matrix of a random graph generated by P. Arguably,
the most natural choice for H, the subspace we would like to project on, is P̂k (SVD), which leads
to Algorithm 3.

Algorithm 3: SVD I

(1) Project the columns of P̂ onto P̂k.
(2) Run Clustering by Distances on the projected points.

While SVD I could well win the contest for being the simplest algorithm, and perhaps the
first one that most practitioners of the spectral method would think of, it is hard to analyse
in the general case. In what follows, we analyse a slightly more technical alternative, SVD II
(Algorithm 4), which is a variant of an algorithm proposed in [27, Section 1].
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Algorithm 4: SVD II
(0) Randomly partition X into two subsets Y and Z. Let B be the adjacency matrix of the

bipartite graph between Y and Z. Let Y1 be a random subset of Y obtained by selecting each
element with probability 1/2 independently, and let Â be the submatrix of B formed by the
columns indexed by Y1.

(1) Project the columns of B indexed by Y2 := Y\Y1 on Âk.
(2) Run Clustering by Distances on the projected points.

Compared to SVD I, the extra steps in SVD II are the random partitions in step (0), done in
order to reduce correlation. This is not entirely unexpected. A careful reading of [27] reveals that
one also needs an extra partition in Algorithm 2 to make the analysis go through; in particular,
the proof of [27, Theorem 12] needs a further refinement to be complete, since Â and B̂ are not
independent.

For simplicity, we assume that P has rank k. If the rank is k′ < k, then in step (1) we project
onto Âk′ ; the analysis remains the same.

Notice that SVD II gives a partition of Y2, not X . There are many ways to extend it to a partition
of X . For instance, we can run the algorithm l times (for some small l) and find partitions of
Y 1

2 , . . . ,Y l
2 , where Y i

2 are random subsets of X with density 1/4 (the input graph is the same, only
the random partitions are different). If a cluster C in Y i

2 and a cluster C′ in Y i′
2 intersect, then they

must belong to the same cluster in X and we can merge them. If we choose l = 3logn, say, then
with probability 1−o(n−1), all vertices of X must belong to some Y i

2, and we recover the clusters
X1, . . . ,Xk at the end. We omit the details of this merging part.

Let us now analyse SVD II. Let λ1(P) � · · ·� λk(P) := λ be the non-trivial singular values of
P. In particular λ := λk(P) is the least singular value of P.

Theorem 1.2. There is a constant C > 0 such that the following holds. Assume that σ 2 �
C logn/n and s � C logn,k = o((n/ logn)1/2). Then SVD II clusters Y2 correctly with probability
1−o(n−1) if one of the following two conditions is satisfied.

• Condition 1:

Δ � C

(
σ

√
n
s

+
√

logn

)
.

• Condition 2:

Δ � C

(
σ

√
n
s

+
√

k

(
σ

√
logn+

logn√
s

+
σ
√

n logn
λ

))
.

If we omit the assumption s � C logn, the statement still holds but with probability

1−o(n−1)− c
k

∑
i=1

e−|Xi|/c

for some constant c.
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The conditions on Δ in Theorems 1.1 and 1.2 are incomparable (see also Theorem 1.5 below
for a comparison). The lower bound σ 2 � C logn/n is optimal, up to the value of C. If σ 2 <

(1− ε) logn/n, then with high probability there are many isolated points which can be assigned
to any cluster. On the other hand, if one’s goal is to find an optimal solution (regardless of whether
it comes from the hidden structures), then one can go below logn/n; see for instance [1, 10]. We
can reduce the failure probability o(n−1) to o(n−K) for any constant K at the cost of increasing
the constant C.

In practice, one is often satisfied with an approximate solution. We say that a partition X =
∪k

i=1X ′
i is ε-correct if |Xi\X ′

i | � ε|Xi|. Similarly, we say that a geometric representation of X is
ε-perfect if there are points x1, . . . ,xk with distance at least 8r from each other, so that at least
(1− ε)|Xi| points from Xi has distance at most r to xi.

Theorem 1.3. Given ε > 0, there is a constant C > 0 such that the following holds. If σ 2 �
C logn/n,s � C logn and

Δ � Cσ
√

n
s
,

then with probability at least 1− ε the projection in SVD II produces an (1− ε)-perfect repres-
entation of the points in Y2.

We say that X1, . . . ,Xk are γ-balanced if |Xi| � (1+ γ)s where s = min j |Xj|.

Lemma 1.4. For arbitrary positive constants ε,γ,k, let δ := ε/(k +(k−1)(1+ γ)). Given an
δ -perfect representation of γ-balanced sets X1, . . . ,Xk, we can find an ε-correct partition by a
fast randomized algorithm which succeeds with probability 1−o(n−1).

For the description of the algorithm and the proof of Lemma 1.4, see Appendix B. In what
follows, we refer to this algorithm as Approximate Clustering. Combining Theorem 1.3 and
Lemma 1.4, we obtain Algorithm 5 and Theorem 1.5.

Algorithm 5: SVD III
(0) Randomly partition X into two subsets Y and Z. Let B be the adjacency matrix of the

bipartite graph between Y and Z. Let Y1 be a random subset of Y by selecting each element
with probability 1/2 independently and let Â be the submatrix of B formed by the columns
indexed by Y1.

(1) Project the columns of B indexed by Y2 := Y\Y1 on Âk.
(2) Run Approximate Clustering on the projected points.

Theorem 1.5. Given constants ε,γ,k > 0, there is a constant C > 0 such that the following
holds for any hidden γ balanced partition X = ∪k

i=1Xi. If σ 2 � C logn/n,s � C logn and

Δ � Cσ
√

n
s
,

then with probability at least 1− ε SVD III finds an ε-correct partition of Y2.
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The advantage of Theorem 1.5 is that its assumption on Δ is both simpler and stronger than
that of Theorems 1.1 and 1.2. Of course, the partition it outputs is only ε-correct. There is an
interesting point here: It turns out that in many cases one can easily upgrade an ε-correct partition
to an exact one. We will discuss this idea in the Hidden Bipartition problem below.

An important result that overlaps ours is that of Coja-Oghlan [10, Theorem 1.1], which also
improves upon Theorem 1.1, using an adaptive algorithm. The setting of [10, Theorem 1.1]
is more general than ours, allowing both very small and very large densities. Its purpose is to
recover an approximate partition, under certain assumptions. Assumption R1 in this theorem
requires the maximum expected degree to be at least log2(n/s); we do not have this assumption.
Assumption R2 requires s � log30 n; we require s � C logn (in fact, s � C is sufficient if we are
satisfied with success probability 0.99 instead of 1−o(n−1)). The main assumption R3 is a lower
bound on Δ of the form

Δ � Ck3/2σ
√

n
s

+C log

(
D+

n
s

)
max

1�i�k

k

∑
j=1

pi j(1− pi j).

This assumption and the corresponding assumption in Theorem 1.2 are incomparable. In the
case when the first term is dominating, our assumption does not require the k3/2 factor. If one
aims for approximate recovery, the assumption on Δ in Theorem 1.5 is the weakest. The proofs
in [10] also used spectral techniques, but seem more delicate and longer than ours; see [10] for
more details.

Let us now consider the performance of SVD II and SVD III on a few subproblems. We allow
the value of C to be flexible in order to omit smaller order terms for convenience.

Hidden Clique. In this problem, k = 2, s is the size of the clique, and Δ = (1− p)
√

s, where p
is the density of the random graph, which is assume to be bounded away from 1 (p < 0.99, say).
Condition 1 becomes

(1− p)s1/2 � C

(
p1/2

√
n
s

+
√

logn

)

which is satisfied if s � C(
√

np+ logn).

Corollary 1.6. There is a constant C such that, for any 0.99 > p � C logn/n and s � C(
√

np+
logn), SVD II finds the hidden clique of size s with probability 1−o(1).

This result is comparable to [27, Corollary 3]. The first polynomial-time algorithm for hidden
cliques of size C

√
n, for a large constant C, was provided by Alon, Krivelevich and Sudakov

[2]. In fact, they showed that one can reduce C to any constant ε > 0, at the cost of pushing the
running time to n f (ε), where f (ε) tends to infinity as ε tends to zero. The constants C in all these
works are often large (and implicit). If one needs a really fast algorithm, then the best current C
is e−1, obtained by Deshpande and Montanary in a recent paper [14].

Hidden Bipartition. Let the two densities be 0.99 � p > q > 0. We have k = 2, Δ = |p−q|n1/2,
s = n/2, σ 2 = Θ(p). The two singular values of P are (p + q)n and (p− q)n. Condition 2 of
Theorem 1.2 requires (p−q)/p1/4 � C

√
logn/n.
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Corollary 1.7. There is a constant C such that the following holds. Let 0.99 > p > q �C logn/n
be edge densities such that (p−q)/p1/4 � C

√
logn/n. Then SVD II finds the hidden bipartition

with probability 1−o(n−1).

The best known condition on Δ is (p−q)/
√

p � C
√

logn/n, under stronger density assump-
tions; see [7, 11, 27]. We can obtain this bound on Δ with Theorem 1.5 and an extra idea. Let us
first apply Theorem 1.5. The condition on Δ has become (p−q)/

√
p � C

√
logn/n. Thus, we

have the following result.

Corollary 1.8. For any ε > 0 there is a constant C such that the following holds. Let 0.99 >

p > q � C logn/n be edge densities such that (p−q)/
√

p � C
√

logn/n. Then SVD III finds an
ε-correct partition with probability at least 1− ε .

We next upgrade an ε-correct partition to an exact one using the following general idea. At
the beginning we randomly split the input graph into two parts, Red and Blue, by colouring
each edge Red or Blue with probability 1/2, independently (see Algorithm 6). First use the Red
part as input to recover an ε-correct partition for some small ε (say ε = 0.1). Next, reveal the
Blue graph and use information about edge distribution of this graph to correct the misclassified
vertices.

Algorithm 6: Hidden Bipartition

(0) Randomly colour the edges of the input graph Red and Blue with probability 1/2 each.
(1) Use SVD III on the Red graph to produce an 0.1-correct partition X ′

1 ∪X ′
2.

(2) Reveal of Blue graph. For u ∈ X ′
i , label it misclassified if the number of Blue neighbours

(of u) in X ′
i is less than the number of Blue neighbours (of u) in X ′

3−i. Otherwise u is
well-classified.

(3) Output Xi as the union of well-classified vertices in X ′
i and misclassified vertices in X ′

3−i.

Corollary 1.9. For any ε > 0 there is a constant C such that the following holds. Let 0.99 >

p > q � C logn/n be edge densities such that (p−q)/
√

p � C
√

logn/n. Then algorithm Hidden
Bipartition solves the Hidden Bipartition problem with probability at least 1− ε .

We prove Corollary 1.9 in Section 4. This corollary is comparable with [27, Corollary 1],
but with a better (optimal) density assumption. The first result on Hidden Bipartition was ob-
tained by Bui, Chaudhuri, Leighton and Sipser [8] and Dyer and Frieze [15] under the condition
q < (1 − c)p. For a related problem of finding the optimal bisection (which may not come
from the hidden one), Boppana [7] presents a spectral algorithm which succeeds for a large
range of parameters, using convex optimization. Condon and Karp [11] analysed a linear-time
combinatorial algorithm for partitioning which nearly achieves the same range of parameters as
[7]. For works concerning densities as small as c/n, we refer to Coja-Oghlan [10] and a recent
paper by Chin, Rao and Vu [9]. In Section 4 we will also discuss an analogue of Corollary 1.9
for the Hidden Colouring problem.
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The rest of the paper is organized as follows. In the next section we present a few technical
lemmas, including Lemma 2.1 mentioned above. Then we prove Theorem 1.2 in Section 3. In
Section 4 we prove Theorem 1.3 and Corollary 1.9 and discuss related results. The proofs of
Lemma 2.1 and Lemma 1.4 will be presented in the Appendix.

2. Technical lemmas

Lemma 2.1 (projection of a random vector). There are constants C1,C2 such that the follow-
ing holds. Let X = (ξ1, . . . ,ξn) be a random vector in R

n whose coordinates ξi are independent
random variables with mean 0 and variance at most σ 2 � 1. Assume furthermore that the ξi are,
with probability 1, bounded by 1 in absolute value. Let H be a subspace of dimension d and let
ΠHξ be the length of the orthogonal projection of ξ onto H. Then

P(ΠHX � σ
√

d +C1

√
logn) � n−3.

Furthermore, if H has an orthonormal basis v1, . . . ,vd such that max1�i�d ‖vi‖∞ � α , then

P(ΠHX � C2

√
d(σ

√
logn+α logn)) � n−3.

We prove Lemma 2.1 in the Appendix.

Lemma 2.2 (norm of a random matrix). There is a constant C0 > 0 such that the following
holds. Let E be a symmetric matrix whose upper diagonal entries ei j are independent random
variables where ei j = 1− pi j or −pi j with probabilities pi j and 1− pi j, respectively, where 0 �
pi j � 1. Let σ 2 := maxi j pi j(1− pi j). If σ 2 � C0 logn/n, then

P(‖E‖ � C0σn1/2) � n−3.

If σ 2 � log4 n/n, the statement is a corollary of [30, Theorem 1.4]. For smaller σ , one can
prove this lemma using the ε-net approach by Kahn and Szemerédi [22]. We omit the details,
which are very similar to the proof of Feige and Ofek for [17, Theorem 1.1].

Lemma 2.3 (perturbation bound). Let M,N be matrices and δ := λk(M)− λk+1(M) > 0.
Then

sin∠(Mk,(M +N)k) � δ−1‖N‖.

This lemma is a well-known result in numerical linear algebra, known as the Davis–Kahan–
Wedin theorem; see [5, 12, 20, 32].

3. Proof of Theorem 1.2

Recall that in the first step of the algorithm, we randomly partition the vertex set X into two
subsets Y and Z. Let B be the adjacency matrix of the bipartite graph between Y and Z. Let Y1 be
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a random subset of Y by selecting each element with probability 1/2 independently and let Â be
the submatrix of B formed by the columns indexed by Y1.

Let A be the probability matrix pi j corresponding to Â. As A is a large random submatrix of
P, it is not hard to show that λk(A) � 1

8 λk(P) with high probability (we provide a verification of
this fact at the end of the proof).

We view the adjacency matrix Â (between Y1 and Z) as a random perturbation of A, Â := A+E,
where the entries ei j of E are independent and ei j = 1 − pi j with probability pi j and −pi j

with probability 1 − pi j. We let û,u,eu denote the columns corresponding to a vertex u in

Â,A,E, respectively. All matrices are of size approximately n/2×n/4 by the definitions of Y,Z
and Y1,Y2.

Our leading idea is that the random perturbation E does not change Ak too much, thus hopefully
the projections onto Âk and Ak differ by only a small amount. The heart of the matter, of course,
is to bound this error term. While tempting, a straightforward application of Lemma 2.3 is
too crude in the general case (it does lead to some simple solution for some subproblems in
certain range of parameters). We will still make use of this lemma, but for a quite different
purpose.

For simplicity, we assume in the rest of the proof that s �C logn. For a sufficiently large C, this
implies that with probability 1− o(n−1), each cluster Xi intersects Z in at least |Xi|/3 elements.
Thus, the distance between two columns (belonging to different clusters) in A is at least Δ/3. We
aim to show that with high probability ‖P

Âk
û−u‖ < Δ/30 for all u ∈ Y2. It is easy to check that

this provides a perfect geometric representation with r = Δ/15. If there is no lower bound on s,
then the probability that the random partition has this property is at least 1− c∑k

i=1 e−|Xi|/c for
some constant c > 0.

For a fixed u, by the triangle inequality,

‖P
Âk

û−u‖ � ‖P
Âk

(û−u)‖+‖(P
Âk
− I)u‖ = ‖P

Âk
eu‖+‖(P

Âk
− I)u‖.

To bound the second term, we follow an argument from [27] and consider

(P
Âk
− I)A = (P

Âk
− I)Â− (P

Âk
− I)E.

The spectral norm of the first term is λk+1(Âk), which is at most λk+1(A) + ‖E‖ by Weyl’s
inequality. On the other hand, λk+1(A) + ‖E‖ = ‖E‖, as A has rank at most k. The spectral
norm of the second term is also at most ‖E‖, by the basic fact that ‖MN‖ � ‖M‖‖N‖. Thus, by
Lemma 2.2, with probability at least 1−n−3,

‖(P
Âk
− I)A‖ � 2‖E‖ � C0σn1/2,

for some constant C0. (In what follows, we allow ourselves to adjust the value of C0 slightly in
order to absorb negligible terms.)

Let χu be the vector s−1/2
u Iu, where Iu is the indicator vector for the cluster containing u. As

χu has unit length, for any matrix M we have ‖M‖ � ‖Mχu‖; thus

‖(P
Âk
− I)A‖ � ‖(P

Âk
− I)Aχu‖ = s1/2

u ‖(P
Âk
− I)u‖.
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Combining the last two inequalities, we conclude that with probability at least 1−n−3

‖(P
Âk
− I)u‖ � C0σ

√
n
su

,

for all u ∈ X .
Now we take care of the first term, whose analysis is more involved. By the first part of

Lemma 2.1,

‖ P
Âk

eu‖ � σk1/2 +C1

√
logn

with probability 1− o(n−2), for a properly chosen constant C1. As sk � n, the term σk1/2 is at
most σ

√
n/s and can be omitted. This yields that if

Δ � C0σ
√

n/s+C1

√
logn

then the algorithm succeeds with probability at least 1−o(n−1). This proves the first part of the
theorem concerning Condition 1.

To prove the second part (Condition 2), we find a different way to bound the distance P
Âk

eu.

Rewrite Â = A+E and let v be a column vector of A, normalized to have unit length. Recall that
|Xi ∩Z| � 1

3 |Xi| = si/3 for all i. It follows that each coordinate in v is repeated at least s/3 times.
The sets where the coordinates are repeated are the same for different vectors v. It follows for
any vector w in Span(A) that each coordinates of w is repeated at least s/3 times. Consequently,
‖w‖∞ � 2s−1/2. Furthermore, by Lemma 2.3 and Lemma 2.2, we have with probability 1−o(n−2)
that

sin(Ak, Âk) � C0
σ
√

n
λ

,

which implies that, for any unit vector v ∈ Âk,

‖v‖∞ � 2s−1/2 +C0
σ
√

n
λ

:= α.

Using the second part of Lemma 2.1, we conclude that with probability 1−o(n−2)

‖P
Âk

eu‖ � C
√

k(σ
√

logn+α logn) = C
√

k

(
σ

√
logn+

logn√
s

+
σ
√

n logn
λ

)
,

for all u and some properly chosen constant C, concluding the proof.
Let us now show that with high probability, λk(A) � 1

8 λk(P). We first compare the singular
values of P with the singular values of P̃, the probability matrix of the bipartite graph spanned
by Y and X . Using Chernoff’s bound, one can easily show that with probability at least 1−n−2

||Xi ∩Y |− |Xi|/2| � 5
√

|Xi| logn, (3.1)

for all 1 � i � k.
We use the fact that for any matrix M of rank k λk(M) = infrank(M′)=k−1 ‖M − M′‖F . For

simplicity, let us assume for a moment that |Xi ∩Y | = |Xi|/2. Let P̃′ be the matrix that defines
λk(P̃). We define P′, a rank (k−1) approximation of P, by extending P̃′ as follows. For the block
indexed by Xi\Y , simply copy the block of P̃′ corresponding to Xi∩Y . It is trivial that P′ has rank
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k−1 and

‖P−P′‖2
F = 2‖P̃− P̃′‖2

F ,

which implies λk �
√

2λk(P̃). With the same argument, we can compare λk(P̃) with λk(B) and
the latter with λk(A), each time losing a factor of

√
2. At the end it would give λk(P) � 23/2λk(A).

To make the argument precise, we need to remove the assumption |Xi ∩Y | = |Xi|/2. Using
(3.1) instead of this assumption, we can create a matrix P′ such that

‖P−P′‖2
F � 2‖P̃− P̃′‖2

F +5
k

∑
i=1

√
|Xi| lognσ 4.

On the other hand, the extra term 5∑k
i=1

√
|Xi| lognσ 4 is less than 1

4 λk(P)2 by the assumption
of the theorem. Thus, we can use the above estimate to get a slightly weaker bound λk(P) �
2λk(P̃), which leads to λk(P) � 8λk(A), as desired.

4. Approximate solutions and upgrading

4.1. Proof of Theorem 1.3
We follow the proof of Theorem 1.2. The key is to bound ‖P

Âk
eu‖. Recall that

E‖P
Âk

eu‖2 � σ 2k.

By Markov’s inequality, it follows that P(‖P
Âk

eu‖� Kσk1/2) � K−2. We call a vertex u good if

‖P
Âk

eu‖� Kσk1/2. For a sufficiently large C (depending on K), all good vertices will be clustered

correctly. Moreover, choosing K � 2ε−1/2, the probability for u being good is at least 1− ε/4,
thus the expectation of the number of good elements in Xi is at least |Xi|(1− ε/4). As the good
events are independent, an easy application of Chernoff’s bound yields that with probability
1−n−2, at least |Xi|(1− ε) points from Xi are good. This completes the proof.

4.2. Hidden Bipartition: Proof of Corollary 1.9
We can assume, without generality, that 1/100 > p > q > 0. (To obtain the upper bound on p, one
can randomly sparsify the input graph if necessary.) Notice that the densities in the Red graph
are p/2 and q/2. By Theorem 1.5, we obtain an 0.1-correct partition with probability at least
1− ε/2, provided that

p/2−q/2√
p/2

� C

√
logn

n

for some sufficiently large constant C. By Chernoff’s bound, one can prove that with probability
1−o(n−1), all degrees in the Red graph are at most n/50 = 0.02n. In what follows, we condition
on this event.

Consider the Blue graph. Intuitively, this graph is also random with densities p/2 and q/2.
We have to be a bit careful, however, since the Blue graph is not entirely independent from the
Red graph.

• If e is an edge in the Red graph, then it cannot be an edge in the Blue graph.
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• If e is not an edge in the Red graph and both end points are in X1 (or X2), then e is an edge in
the Blue graph with probability p1 := (p/2)/(1− p/2).

• If e is not an edge in the Red graph and one end point in X1 and the other in X2, then e is an
edge in the Blue graph with probability q1 := (q/2)/(1−q/2).

• Conditioned on the Red graph, the events of non-edges in the Red graph becoming edges in
the Blue graph are mutually independent.

Let X ′
1 ∪X ′

2 be the 0.1-correct partition obtained by SVD III with the Red graph as input. Let
X ′

i := Ai ∪Bi, where Ai := Xi ∩X ′
i and Bi := X ′

i ∩X3−i. By the definition of ε-correctness (in our
case ε = 0.1), Ai have size at least 1

2 (1− ε)n = 0.45n, for i = 1,2. It follows that 0.55n � |X ′
i | �

0.45n and |Bi| � 0.1n.
Consider u ∈ X ′

1. Let NR(u) be the set of neighbours of u in the Red graph and let di(u) be the
number of neighbours of u in X ′

i in the Blue graph.
If u ∈ X1 (i.e. u is well-classified), then

d1(u) := D1 = ∑
x∈A1\NR(u)

χ(x)+ ∑
y∈B1\NR(u)

μ(y),

where χ(x) are i.i.d. indicator variables with mean p1, and μ(y) are i.i.d. indicator variables with
mean q1. Furthermore,

d2(u) := D2 = ∑
x∈B1\NR(u)

χ(x)+ ∑
y∈A1\NR(u)

μ(y).

We have

D := D1 −D2 = ∑
x∈A1\NR(u)

(χ(x)−μ(x))− ∑
y∈B1\NR(u)

(χ(y)−μ(y)).

As NR(u) � 0.02n and |Ai| � 0.45n, Bi| � 0.1n, it follows that

ED � (p1 −q1)(|A1\NR(u)|− |B1\NR(u)|),

where the left-hand side is at least

(p1 −q1)(0.45n−0.02n−0.1n) � 0.3n(p1 −q1) � 0.15n(p−q) � 5logn,

provided that the constant C in Corollary 1.9 is sufficiently large. Applying Chernoff’s bound, it
is easy to show that with probability at least 1−n−3, D > 0 or d1(u) > d2(u). A similar argument
shows that if u ∈ X2 (misclassified), then d1(u) < d2(u). By the union bound, we conclude that
the algorithm Hidden Bipartition succeeds with probability at least

1− ε/2−o(n−1)−n×n−3 � 1− ε,

concluding the proof.

4.3. Hidden Colouring
We can obtain the following analogue of Corollary 1.9.

Corollary 4.1. For any constant ε > 0 there is a constant C such that the following holds. Let
0.99 > p � C logn/n. Then algorithm Hidden Colouring (see Algorithm 7) solves the Hidden
Colouring problem with probability 1− ε .
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Algorithm 7: Hidden Colouring

(0) Randomly colour the edges of the input graph Red, Blue, Green with probability 1/3 each.
(1) Use SVD III on the Red graph to produce an 0.1/k-correct partition X ′

1 ∪X ′
2 · · ·∪X ′

k.
(2) Reveal the Blue graph. For u ∈ X ′

i , label u misclassified if the number of neighbours of u in
X ′

i is at least 0.5/(k−1) its total degree. Let Yi be the set obtained from X ′
i by deleting the

misclassified vertices.
(3) Output Xi as the set of all vertices with no neighbour in Yi in the Green graph.

Many researchers have worked on the problem of colouring random graphs which have k-
colourings. Kučera [24], Turner [29] and Dyer and Frieze [12] have presented effective al-
gorithms for dense graphs. Prior to McSherry’s paper [27], Blum and Spencer [4] and Alon
and Kahale [1] demonstrated algorithms that colour random sparse graphs properly with high
probability. Corollary 4.1 is comparable to [27, Corollary 2], with a better (optimal) density
bound. If we aim for an approximate recovery (or an optimal colouring which may not come from
the hidden one), then there are algorithms which work for lower density Ω(1/n); see [1, 10], in
particular the discussion in [10, Section 2.1].

The proof for the misclassified part follows the same idea as in the previous section; we omit
the details. After step (2), we receive sets Yi which are big subsets of Xi. (One can easily show
that |Yi| � |Xi|/2 with high probability.) It is easy to see (again by Chernoff’s bound) that the
only vertices which have no neighbours in Yi (in the Green graph) are the vertices of Xi. This
concludes the proof.

Using the same idea, one can handle a common generalization of Hidden Bipartition and
Hidden Colouring. Let X1, . . . ,Xk be sets of size n/k. Draw edges within each Xi with probability
p and between Xi and Xj with probability q.

Corollary 4.2. For any ε > 0 there is a constant C such that the following holds. Let 0.99 >

p,q � C logn/n be edge densities such that |p−q|/√p � C
√

logn/n. Then one can recover the
partition with probability at least 1− ε by an efficient algorithm.

This corollary is a variant of [27, Corollary 1], again with a superior density bound; we omit
the details.

Appendix A: Proof of Lemma 2.1

Notice that the function ΠH(X) is 1-Lipschitz and convex; thus by Talagrand’s inequality [28],
for any t > 0,

P(ΠHX � μ + t) � 2exp(−t2/4)

where μ is the median of ΠH(X). We do not know μ ; however, we can bound from above.
Slightly abusing the notation, let Π := (πi j) denote the projection matrix onto H; then, by
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independence,

E|ΠHX |2 = EXT ΠX =
n

∑
i=1

πiiEξ 2
i � σ 2

n

∑
i=1

πii = dσ 2.

Combining this with the concentration inequality, it is not hard to show that μ � σd1/2 +O(1),
concluding the proof of the first part of the lemma. The reader can also check [31] for a detailed
discussion of inequalities of this type.

To prove the second part, notice that if v1, . . . ,vd form an orthonormal basis of H, then

‖ΠHX‖2 =
d

∑
i=1

|X · vi|2.

Thus, our statement is a direct consequence of the following claim.

Claim A.1. Let (a1, . . . ,an) be real numbers such that ∑i a
2
i = 1 and |ai| � α for all i. Let ξi

be independent random variables with mean 0 and E|ξi|k � σ 2 for all k � 2. Let S := ∑n
i=1 aiξi.

Then

P(|S| � 4(σ
√

logn+α logn)) � 2n−3.

To prove Claim A.1, notice that for any 0 < t � α−1 we have

Eexp(tS) = ∏
i

Eexp(taiξi) � ∏
i

(
1+

σ 2a2
i t2

2!
+

t3a3
i Eξ 3

i

6!
+ · · ·

)
.

(We have inequality here as σ 2 is an upper bound on the variance.) Since Eξ k
i � σ 2 for all

k � 2 and t|ai| � 1, the rightmost formula is

� ∏
i

(1+σ 2t2a2
i ) � exp(σ 2t2).

Markov’s inequality yields

P(S � T ) � exp(−tT + t2σ 2).

To optimize the right-hand side, let us consider two cases

Case 1. σ � α
√

logn. Take T = 4σ
√

logn and t =
√

logn/σ � α−1. With this setting −tT +
t2σ 2 = −3logn.

Case 2. σ < α
√

logn. Take T = 4α logn and t = α−1. In this setting, −tT + t2σ 2 � −4logn+
logn = −3logn.

One can bound P(−S � T ) the same way.

Appendix B: Approximate Clustering

To analyse Algorithm 8, let us first consider the case that the clusters Xi have the same size. In
this case s = n/k and γ = 0.
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Algorithm 8: Approximate Clustering

The input is a δ -perfect set X .

(0) Set S0 := X .
(1) For i = 0, . . . ,k−1, choose a random point w from Si. Find a set X̃i+1 of (1−δ )s points of

distance at most 2r to w. Set Si+1 = Si\X̃i+1.
(2) Partition Sk into k parts X̃ ′

i ,1 � i � k, of size |Xi|− (1−δ )s, respectively. Output
X ′

i := X̃i ∪ X̃ ′
i ; i = 1, . . . ,k.

(3) If in (1) one cannot find Xi+1 for some i, go back to (0) and repeat the cycle.

Let W be a δ -perfect representation of a set of size N. Call a point w∈W good if it has distance
at most r to one of the centres x1, . . . ,xk. If a point w is of distance at most r to x j, then the ball
of radius 2r around w contains at least (1−δ )s points from Xj and at most (k−1)δ s points from
other Xl . Thus, if we take any set X̃ j of (1−δ )s points in this ball, then at least (1−δk)s of them
belongs to Xj. For δ := ε/k, X ′

i s satisfies |Xi\X ′
i | � εs and we obtain an ε-perfect partition.

The probability that step (1) goes through successfully is the probability that we can choose k
consecutive good points. Notice that in Si the number of good points is at least

(1−δ )n− (1−δ )is = (1−δ )ks− (1−δ )is = (1−δ )(k− i)s.

On the other hand,

|Si| = n− (1−δ )is = ks− (1−δ )is = (k− (1−δ )i)s.

So the chance that we pick up a good point in Si is at least

(1−δ )(k− i)
k− (1−δ )i

:= pi.

The probability that step (1) goes through is at least

ρ :=
k−1

∏
i=0

pi.

The analysis for the case when the Xi is γ-balanced (|Xi| � (1 + γ)s) is similar. If a point w is
of distance at most r to x j, then the ball of radius 2r around w contains at least (1− δ )s points
from Xj and at most (k−1)δ (1+γ)s points from other Xl . Thus, if we take any set X̃ j of (1−δ )s
points in this ball, then at least

(1−δ )s− (k−1)δ (1+ γ)s = (1− kδ − (k−1)δ (1+ γ))s

of them belong to Xj. So for δ := ε/(k +(k−1)(1+ γ)), X ′
js satisfies |Xj\X ′

j|� εs and we obtain
an ε-perfect partition.

The values of pi and ρ change slightly compared to the case γ = 0. The size of Si now is

|Si| = n− (1−δ )is � (1+ γ)ks− (1−δ )is = ((1+ γ)k− (1−δ )i)s.

Thus

pi :=
(1−δ )(k− i)

(1+ γ)k− (1−δ )i
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and

ρ :=
k−1

∏
i=0

pi �
k−1

∏
i=0

(1−δ )(k− i)
k(1+ γ)

= k!

(
1−δ

k(1+ γ)

)k

�
(

1−δ
e(1+ γ)

)k

.

As a consequence, we obtain the following lemma, which implies Lemma 1.4.

Lemma B.1. With probability at least 1−n−2, Approximate Clustering produces an ε-correct
partition after at most

3ρ−1 logn � 3

(
e(1+ γ)

1−δ

)k

logn

cycles, given δ = ε/(k +(k−1)(1+ γ)).
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