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Abstract

In large storage systems, files are often coded across several servers to improve reliability
and retrieval speed. We study load balancing under the batch sampling routeing scheme
for a network of n servers storing a set of files using the maximum distance separable
(MDS) code (cf. Li (2016)). Specifically, each file is stored in equally sized pieces across
L servers such that any k pieces can reconstruct the original file. When a request for
a file is received, the dispatcher routes the job into the k-shortest queues among the
L for which the corresponding server contains a piece of the file being requested. We
establish a law of large numbers and a central limit theorem as the system becomes large
(i.e. n → ∞), for the setting where all interarrival and service times are exponentially
distributed. For the central limit theorem, the limit process take values in �2, the space
of square summable sequences. Due to the large size of such systems, a direct analysis
of the n-server system is frequently intractable. The law of large numbers and diffusion
approximations established in this work provide practical tools with which to perform
such analysis. The power-of-d routeing scheme, also known as the supermarket model,
is a special case of the model considered here.
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1. Introduction

In the world of cloud-based computing, large data centers are often used for file storage. In
these data centers, large networks of servers are used to store even larger sets of files. In order
to improve reliability and retrieval speed, these files are often ‘coded’. By coded, we mean that
the file is broken down into smaller pieces which are stored on multiple servers. Consider the
situation in which there are four servers and one file. One can store the entire file on one server,
but in such a configuration the file would be inaccessible if that server were to fail. In order to
improve reliability, one can replicate the file across all four servers, but such a method would
require much more memory. Suppose instead that we split the file into halves, A and B, and then
store A, B, A + B, A − B in each of the four servers, respectively. Then the original file can
be constructed from any two pieces. One can extend this idea to the case where equally sized
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pieces of a file are stored across L servers and any k pieces can reconstruct the original file.
This can be accomplished using the maximum distance separable (MDS) code with parameters
(L, k) [29]. The MDS code greatly improves reliability since L − k + 1 servers must fail before
the file becomes irretrievable, while only requiring enough total memory to store L/k files.
Given a coding scheme, one can consider load balancing mechanisms to improve file retrieval
speed. In [28], two routeing schemes, called batch sampling (BS) and redundant request with
killing (RRK), were considered. In BS routeing, incoming jobs are routed to the k-shortest
queues containing the file being requested, while in RRK routeing jobs are routed to all servers
containing the requested file and then removed from the queue (killed) once k pieces of the
file have been returned. Li [28] formally calculated the steady state (T → ∞) queue length
distribution in the large system limit (n → ∞) and gave simulation results for different values
of L and k in both routeing schemes.

In this work we are interested in developing a rigorous limit theory for such load balancing
schemes for systems with MDS coding as n becomes large. Specifically, we establish law of
large numbers and diffusion approximations for such systems under an appropriate scaling, as
n → ∞. Such limit theorems provide useful model simplifications that can then be employed
for approximate simulation of the large and complex n-server systems (see Section 6 for some
numerical results). These limit theorems are also the first steps towards making rigorous the
program initiated in [28] of developing steady state approximations for such systems, with
provable convergence properties as n becomes large.

We will focus in this work only on BS routeing and leave analysis of the RRK scheme for
future work. Specifically, we consider a system with n servers on which I(n) files are stored
using MDS coding with parameters (L, k). A key assumption to our analysis is that the files are
stored such that each combination of L servers has exactly c files. We further assume that jobs
arrive in the system according to a Poisson process with rate nλ and request a file uniformly at
random. This is another simplifying assumption on our model that roughly says that all files are
in equal demand. These structural assumptions imply a convenient exchangeability property of
the system which allows for the use of certain mean-field approximation techniques. A single
file request spawns k jobs which are then routed into the k-shortest queues within the set of L
servers containing the file being requested. Each server processes the jobs in their queue with
exponential service rate k according to the first-in–first-out (FIFO) discipline and processing
times are mutually independent. Regarding each server as a ‘particle’, the above formulation
describes an interacting particle system with simultaneous jumps. Note that the symmetry
structure introduced above implies that every time a file request arrives, it leads to a selection
of L servers uniformly at random (from which the k servers with shortest queues are chosen).
In particular, this says that the well-studied ‘power-of-d’ routeing scheme (also known as the
‘supermarket model’) is a special case of the scheme considered here on taking L = d and
k = 1. Direct analysis of such large and complex n-server systems is challenging even by
simulation methods as frequently the servers in networks of interest number in the hundreds of
thousands with arrival rates of file requests of similar order. The goal of this work is to develop
suitable approximate approaches to such systems.

The starting point of our analysis is to consider, as the state descriptor, the empirical
measure of the n queue lengths rather than the individual values of the queue lengths. Thus,
the state space for our system will be the space Pn(N0) of probability measures on N0
that assign weights in N0/n to sets in N0 rather than the space R

n+. With this formulation,
the state processes for all n-server systems can be regarded as taking values in a common
space S :=P(N0) (the space of probability measures on N0). It follows from our symmetry
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Diffusion approximations for cloud storage systems 43

assumptions that the state evolution of the n-server system describes a pure-jump Markov
process with values in P(N0) and thus one can bring to bear the theory of weak convergence of
Markov processes to study the scaling limits as n becomes large. In particular, in Theorem 1 we
prove a law of large numbers for the empirical measure process (πn(t))0≤t≤T as n → ∞. We
show that πn converges to a deterministic function π in D([0, T] : S), where D([0, T] : S) is the
space of functions from [0, T] to S that are right continuous and have left limits, equipped with
the usual Skorokhod topology. Next we consider the fluctuation process Xn := √

n(πn − π ).
This process can be regarded as taking values in the space of signed measures on N0; however,
for an asymptotics analysis, it is convenient to view it as taking values in the Hilbert space of
square summable real sequences, �2. The study of the asymptotics of these fluctuations is the
subject of Theorem 2, which shows that Xn := √

n(πn − π ) converges in D([0, T] : �2) to an
�2-valued diffusion process.

Limit theorems of the form studied in this work can be used for model simplification and for
computing approximations for performance measures, e.g. through simulation methods. Direct
simulation of the underlying n-server system would in general be prohibitively expensive
for large n since the jumps in the system occur at a rate proportional to n. The asymptotic
approximations given in this work allow a system manager to simulate performance metrics
for the system at a coarser scale via numerical ordinary differential equation (ODE) solvers
or Euler discretizations for stochastic differential equations (SDEs) (see Section 6 for an
example). Although the systems considered here are required to satisfy certain symmetry
conditions (all files are equally sized and all jobs are in equal demand), the simplified models
given by the limiting ODE and SDE give useful qualitative insights into the behavior of large
storage networks employing these types of coding schemes. The results obtained here are
useful in analyzing the long-time behavior of such systems as well, e.g. providing information
on the rate at which the queue lengths decay in steady state and how such a decay is impacted
by different values of L and k [15]. Furthermore, techniques developed in this work can also be
used for models satisfying weaker symmetry conditions (e.g. for multitype populations with
a fixed finite number of types). The poisson representations used in the proofs of Theorems 1
and 2 crucially rely on the fact that interarrival and service times are exponentially distributed.
Different methods will need to be used in order to treat the case of general distributions. We
refer the reader to [6] and Section 6 of [35] for work in this direction.

Load balancing mechanisms similar to the type considered here have been studied in
many works. Specifically, the join-the-shortest-queue (JSQ), join-the-idle-queue (JIQ), and
power-of-d routeing schemes have garnered quite a bit of attention (see [6], [13], [16], [31],
[32], [35], [37], and the references therein). Mitzenmacher [31] and Vvedenskaya et al. [37]
first analyzed the power-of-d routeing scheme, showing that in steady state the fraction of
queues with lengths exceeding m decay super exponentially in m, a large improvement over
the exponential rate for the setting where jobs are routed to servers uniformly at random.
Graham [16] established a functional law of large numbers for πn on D([0, T] : S) in the
power-of-d routeing scheme using characterization results for nonlinear martingale problems.
In [13], the authors derived a diffusion approximation for the JSQ routeing policy in the large-
system limit under heavy-traffic scaling. It was shown that the limit can be characterized
through a two-dimensional diffusion. In [32], it was shown that the JIQ routeing scheme
yields the same diffusion approximation as the JSQ routeing scheme. In both these works,
the diffusion approximations were derived under the same scaling regime as considered here.
However, unlike for the JSQ and JIQ routeing regimes where the diffusion approximations
can be described through two-dimensional processes, in the current work the limit is an
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infinite-dimensional diffusion described as an �2-valued process driven by a cylindrical
Brownian motion. We refer the reader to [1], [12], [23], and [33] for other queueing network
systems where infinite-dimensional diffusions arise as approximate models. As noted earlier,
the power-of-d scheme is a special case of our results, and, thus, Theorems 1 and 2 also
provide law of large numbers and diffusion approximations for this classical load balancing
scheme (see Corollaries 1 and 2). In particular, Corollary 1 recovers the law of large numbers
established in [16]. Limit theorems giving fluctuation results for power-of-d schemes have not
been studied previously.

Diffusion approximation methods have been used extensively in stochastic network theory.
In particular, they have been very useful in the study of critically loaded stochastic processing
networks (see [4], [5], [8], [9], [11], [17], [27], [38], and the references therein). For such
systems, the key mathematical tool is the functional central limit theorem for renewal processes
which provides Brownian motion approximations for a finite collection of centered renewal
processes with rates approaching ∞. The scaling regime and mathematical tools that are
relevant for the analysis in the current context are quite different from those used in the
above works. In particular, here the number of nodes approach ∞ and the tools for proving
convergence come from martingale problems and Markov process theory. A similar scaling
regime was considered in [7] for certain systems motivated by ad-hoc wireless network models
introduced in [3]. A key simplifying feature there is that the state space of an individual queue is
a finite set. Consequently, the limit diffusion in [7] is finite dimensional and, thus, for diffusion
approximations, classical convergence theorems from [20] and [24] can be invoked. In contrast,
the queue length processes in this work are unbounded, taking values in N0, and thus one needs
to study diffusion approximations in an infinite-dimensional state space, namely the Hilbert
space �2. The proofs employ appropriate criteria for tightness and characterization results for
Hilbert space-valued stochastic processes.

A basic assumption in our analysis of the fluctuations around the law of large number limit
(see statement of Theorem 2) is a uniform (in n) bound on the second moment of the empirical
measure at time 0. This condition is not very stringent and allows for many types of initial
configurations, e.g. one where no queue contains more than k jobs (where k is independent
of n). We argue that these integrability properties at time 0 propagate through to any finite
future time T . Tightness of the scaled fluctuation processes Xn which is shown by establishing,
uniform in n, second moment bounds (on Xn) and by employing criteria for tightness of Hilbert
space-valued semimartingales (cf. [20] and [30]), relies on these integrability properties.
Another ingredient in the proof of tightness is a suitable Lipschitz property of the map F
introduced in (5) that enables the use of a Gronwall argument. For this argument, one needs
a Lipschitz estimate in the �2 norm; however, it is not clear that F, as a map from �2 to �2, is
Lipschitz. We instead restrict attention to a smaller space

VM :=
{

r ∈ �2 : ri ≥ 0,

∞∑
i=0

ri = 1,

∞∑
i=0

iri ≤ M

}
,

and argue that, for each M, the map F is Lipschitz from VM to �2. This ‘local’ Lipschitz
property plays an important role in the proof of Proposition 4.

For characterization of limit points in the proof of the central limit theorem, one needs to
argue that the associated SDE in �2 (see (11)) has a unique weak solution in an appropriate class
of processes. It turns out that arguing this uniqueness among adapted processes with paths in
C([0, T] : �2) (the space of continuous functions from [0, T] to �2) is not straightforward due
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to a lack of suitable regularity of the function G introduced in (16). In particular, once more,
the Lipschitz property of the map x 	→ G(x, π ) (for a fixed π ∈P(N0)) from �2 to itself is not
immediate. The key observation here is that this map is Lipschitz when restricted to the space

�̃2:=
{

x ∈ �2 :
∞∑

j=0

j2x2
j < ∞,

∞∑
j=0

xj = 0

}
.

This observation, together with the property that the limit points X of Xn = √
n(πn − π ) satisfy

X(t) ∈ �̃2 for all t ≥ 0 almost surely, is key to the characterization of the limit points as the
unique solution of SDE (11) in a suitable class (see Proposition 2).

The paper is organized as follows. In Section 2 we give a precise mathematical formulation
of our model and a statement of our main results. Specifically, Theorem 1 provides the
convergence in probability of the empirical measure process in D([0, T] : S) to the unique
solution of the ODE defined in (7). In Theorem 2 we present the main diffusion approximation
result. This result says that the sequence of centered and scaled processes Xn, defined
in (10), converges to the unique solution (in a suitable class) of the �2-valued SDE, driven
by a cylindrical Brownian motion, given in (11). In Section 2.1 we record the corollaries
of these results for the special setting of power-of-d schemes. We then proceed to the
proofs of Theorems 1 and 2. In Section 3 we give a convenient representation of the state
processes through a countable number of time-changed unit-rate Poisson processes. Such
Poisson representations have been used extensively (cf. [2], [22], and [25]) in the study of
diffusion approximations for pure-jump processes. Using this, we obtain a semimartingale
decomposition (see (20)) that is central to our analysis. Section 4 is devoted to the proof of
Theorem 1. In Section 4.1 we prove tightness of the sequence of state processes {πn}n∈N
(see Proposition 3) and the proof of Theorem 1 is completed in Section 4.2. In Section 5 we
prove Theorem 2. In Section 5.1 we prove the propagation of integrability properties that was
discussed earlier, and in Section 5.2 (see Proposition 4) we prove the key tightness property for
the sequence of processes {Xn}n∈N which relies on the Lipschitz property of F, in the �2 norm,
on VM (Lemma 4). Theorem 2 is then proved in Section 5.3. Finally, in Section 6 we present
some numerical results. In particular, we use our results to give numerical confidence intervals
for several performance measures of interest and compare the results to those obtained from a
direct simulation of the corresponding n-server systems.

1.1. Notation

The following notation will be used. Fix T < ∞. All stochastic processes will be considered
over the time horizon [0, T]. We will use the notation (Xt)0≤t≤T and (X(t))0≤t≤T interchange-
ably for stochastic processes. The space of probability measures on a Polish space S, equipped
with the topology of weak convergence, will be denoted by P(S). When S=N0, we will
metrize P(S) with the metric d0 defined as

d0(μ, ν) :=
∞∑

j=0

|μ(j) − ν(j)|
2j

, μ, ν ∈P(N0).

For S-valued random variables X, Xn, n ≥ 1, convergence in distribution of Xn to X as n → ∞
will be denoted as Xn ⇒ X. The space of functions that are right continuous with left limits
(RCLL) from [0, T] to S will be denoted as D([0, T] : S) and equipped with the usual
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Skorokhod topology. Similarly C([0, T] : S) will be the space of continuous functions from
[0, T] to S, equipped with the uniform topology. We will usually denote by κ, κ1, κ2, . . . the
constants that appear in various estimates within a proof. The values of these constants may
change from one proof to another and, unless stated otherwise, will take values in the set
(0, ∞). Let �2 = {(aj)∞j=0 | ∑∞

j=0 a2
j < ∞} be the space of square summable real sequences.

This space is a Hilbert space with inner product

〈x, y〉2 =
∞∑

j=0

xjyj.

We denote the corresponding norm as ‖ · ‖2. Similarly, �1 = {
(aj)∞j=0

∣∣∑∞
j=0 |aj| < ∞}

and
‖ · ‖1 is the norm on this Banach space. The Hilbert–Schmidt norm of a Hilbert–Schmidt
operator A on �2 will be denoted by ‖A‖HS (cf. Appendix A.3). We denote by I the identity
operator. For a Hilbert Space H, M2

T (H) will denote the space of all H-valued continuous,
square-integrable martingales M, such that M(0) = 0. For a real number a, (a)+ will denote the
positive part of a.

2. Model description and main result

We consider a system with n servers each with its own infinite capacity queue. In all, there
are I(n) equally sized files stored over the n servers. Each file is stored in equally sized pieces
at L servers such that any k pieces can reconstruct the original file. The files are distributed
such that each combination of L servers has exactly c files. This, in particular, implies that
I(n) = c

(n
L

)
. Jobs arrive from outside according to a Poisson process with rate nλ and request

one of the I(n) files uniformly at random. Such a request corresponds to selection of one of the(n
L

)
sets of L servers, uniformly at random, which is the set of servers containing the pieces of

the requested file. The job is then routed to the k-shortest queues among this set of L servers.
Each server processes queued jobs according to the FIFO discipline. Processing times at each
server are mutually independent and exponentially distributed with mean k−1.

Let Qn(t) = {Qn
i (t)}n

i=1, where Qn
i (t) represents the length of the ith queue at time t, and let

πn(t) = {πn
i (t)}i∈N0 , where πn

i (t) represents the proportion of queues with length exactly i at
time t. This can explicitly be written as

πn
i (t) = 1

n

n∑
j=1

1{Qn
j (t)=i}. (1)

We will assume for simplicity that Qn(0) = qn is nonrandom and, thus, πn(0) = (1/n)
∑n

j=1
1{qn

j =i} is nonrandom as well. We identify P(N0) with the infinite-dimensional simplex S =
{s ∈R

∞+ |∑∞
i=0 si=1}, and let Sn =N

∞
0 /n ∩ S . It follows that πn(t) ∈ Sn for all t ∈ [0, T].

Let � = {� = (�i)L
i=1 ∈N

L
0 | �1 ≤ �2 ≤ · · · ≤ �L} and, for � ∈ �, define ρi(�) := ∑L

j=1
1{�j=i}, i ∈N0. Roughly speaking, � will represent the set of possible states for L selected
queues arranged by nondecreasing queue length. Note that each file will be stored at L
servers and that at any given time t the queue lengths of these L servers (up to a reordering)
will correspond to an element in �. We will refer to the elements of � as ‘queue length
configurations’. Given a configuration � ∈ �, ρi(�) gives the number of queues of length
i (among the L selected). From the above description of the system, it follows that the

https://doi.org/10.1017/apr.2019.3 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.3


Diffusion approximations for cloud storage systems 47

empirical measure process, πn(t), is a continuous-time Markov chain with state space Sn

and generator

Lnf (r) = nλ(n
L

) ∑
�∈�

( ∞∏
i=0

(
nri

ρi(�)

))[
f
(

r + 1

n
Δ�

)
− f (r)

]

+ k
∞∑

i=1

nri

[
f
(

r + 1

n
(ei−1 − ei)

)
− f (r)

]
(2)

for f : Sn →R, where

Δ� :=
k∑

i=1

e�i+1 −
k∑

i=1

e�i (3)

and, for y ∈N0, ey ∈ �2, is a vector with 1 at the yth coordinate and 0 elsewhere. Here we use
the standard conventions that 00 = (0

0

) = 0! = 1, and
(a

b

) = 0 when a < b. The above generator
can be understood as follows. A typical term in the second expression corresponds to a jump as
a result of a server, with exactly i jobs queued, completing a job. The term in the square brackets
gives the change in value of f as a result of such a jump and the prefactor knri corresponds to
the fact that servers process jobs at rate k and there are in all nri queues (prior to the jump) with
exactly i jobs. The first expression in (2) corresponds to a jump resulting from an arrival of a
job to the system. Typically, such an arrival makes a request for L servers with queue length
configuration �1 ≤ �2 ≤ · · · ≤ �L and results in the jump Δ�/n. The sum in (3) only goes up to
k (instead of L) since only the smallest k queues are affected by such a jump. Since, prior to the
jump, there are nri queues with exactly i jobs, the overall rate associated with the configuration
� = {�1 ≤ �2 ≤ · · · ≤ �L} ∈ � equals

nλ(n
L

)
( ∞∏

i=0

(
nri

ρi(�)

))
.

In our setting the first entry in an element of �2 will typically correspond to the number of
empty queues, and, thus, we refer to it as the ‘0th’ coordinate and any r ∈ �2 will correspond
to a vector of the form (r0, r1, . . . ). For notational convenience, for r ∈ �2, we set r−1 := 0.

The main results in this work provide scaling limits for πn. We first present the law of large
numbers which describes the nominal state of the system for large n. Define, for r ∈ �1,

ζ̄ δ(j, r) := ζ̄ (j − 1, r) − ζ̄ (j, r),

where, adopting the convention that
∑a

i=b xi = 0 for a < b,

L!ζ̄ (j, r) :=
k−1∑
i1=0

L−i1∑
i2=1

L!

i1! i2! (L − i1 − i2)!

( j−1∑
m=0

rm

)i1

(rj)
i2

( ∞∑
m=j+1

rm

)L−i1−i2

[i2 ∧ (k − i1)]. (4)

This allows us to define, for r ∈ �1,

F(r) := λL!
∞∑

j=0

ζ̄ δ(j, r)ej + k
∞∑

j=0

[rj+1 − rj]ej + kr0e0. (5)

For j ≥ 0, the quantities k[rj+1 − rj] in (5) roughly represent the rate at which the jth coordinate
of the state changes (in the limit) as a result of job completions. The final term in the display
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cancels the extra term in the second summation for the boundary case j = 0. The quantity
λL! (ζ̄ (j − 1, r) − ζ̄ (j, r)) represents a similar quantity as a result of job arrivals. The various
terms in (4) can be interpreted as follows. An arrival to a queue with j jobs implies that a queue
length configuration vector � = {�1 ≤ �2 ≤ · · · ≤ �L} was selected which has the property that
at least one of the k smallest �i equals j, or, equivalently, exactly i1 (i1 = 0, 1, . . . , k − 1) of the
smallest L selected are less than j, i2 (i2 = 1, . . . , L − i1) of these are equal to j, and L − i1 − i2
are greater than j. The three ratios in (4) are contributions from these three types of queues. The
term [i2 ∧ (k − i1)] arises from the fact that only the smallest k of the L queues are affected.

Also observe that, for some cζ ∈ (0, ∞),

ζ̄ (j, r) ≤ cζ rj for all j ∈N0 and r = (rj)
∞
j=0 ∈ S . (6)

Thus, the infinite sum in (5) is well defined since
∑∞

j=0 rj = 1, and, consequently, F is a
well-defined map from S to �1. A similar estimate shows that F is a well-defined map from �1
to �1 and

∑∞
j=0 Fj(r) = 0 for all r ∈ �1.

Consider the system of ODEs

π̇ (t) = F(π (t)), π (0) = π0, (7)

where F is defined in (5) and π0 ∈ S . The solution of the equation is a continuous map
π : [0, T] → S such that

π (t) = π0 +
∫ t

0
F(π (s)) ds, t ∈ [0, T], (8)

where the integral on the right-hand side is the classical Bochner integral which is well defined
since, from (5) and (6),

sup
0≤s≤T

‖F(π (s))‖1 ≤ sup
r∈S

‖F(r)‖1 < ∞. (9)

Equation (7) will characterize the law of large number limit of πn.
The following result on the well posedness of (7) will be shown in Section 4.2.

Proposition 1. Let π0 ∈ S . Then there exists a π ∈C([0, T] : S) that solves (7). Furthermore,
if π and π̃ are two elements of C([0, T] : S) solving (7) with π (0) = π̃ (0) = π0, then π = π̃ .

The next theorem gives a law of large numbers for the sequence {πn}n∈N. Recall that we
take πn(0) to be nonrandom.

Theorem 1. Suppose that πn(0) → π0 in S as n → ∞. Then πn → π in probability in
D([0, T] : S), where π is the unique solution of (7) in C([0, T] : S).

The proof of Theorem 1 will be given in Section 4.2.

Remark 1. The occupancy process πn satisfies a natural monotonicity property. Let γ n
i (t) :=∑∞

j=i π
n
j (t), starting from some initial state γ n,0 and let γ̃ n be the corresponding process

starting from an initial state γ̃ n,0. Suppose that γ̃
n,0
i ≥ γ

n,0
i for every i. Then γ n(t) is

componentwise stochastically dominated by γ̃ n(t) for every t ≥ 0. A deterministic analogue
of this property will hold for the limiting trajectories π . Such a monotonicity can be used to
deduce various qualitative properties of πn and the limit path π . Indeed, Friedlander [15] used
this monotonicity behavior crucially in order to study the long-time behaviors of πn and π.
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Our second main result studies the fluctuations of πn from its law of large number limit.
Consider

Xn(t) = √
n[πn(t) − π (t)], t ∈ [0, T], (10)

where πn is the state process introduced in (1) and π is the unique solution of (7) in
C([0, T] : S).

We will show that, under conditions, Xn converges in distribution in D([0, T] : �2) to a
stochastic process that can be characterized as the solution of an SDE of the form

dX(t) = G(X(t), π (t)) dt + a(t) dW(t), X(0) = x0. (11)

The equation is again interpreted in the integrated form

X(t) = x0 +
∫ t

0
G(X(s), π (s)) ds +

∫ t

0
a(s) dW(s), t ∈ [0, T]. (12)

In the above equations, a is a measurable map from [0, T] to the space of Hilbert–Schmidt
operators from �2 to �2 such that

∫ T
0 ‖a(t)‖2

HS dt < ∞, where ‖ · ‖HS denotes the Hilbert–Schmidt
norm (see Appendix A.3), and W is an �2-cylindrical Brownian motion. Precise definitions are
given in Appendix A.4, but roughly speaking, W can be identified with an independent and
identically distributed sequence {βi}i∈N0 of standard real Brownian motions over [0, T] and
the stochastic integral

∫ t
0 a(s) dW(s) represents an �2-valued Gaussian martingale M(t) given

as

Mi(t) =
∞∑

j=0

∫ t

0
Aij(s) dβj(s), t ∈ [0, T], i ∈N0, (13)

where Aij(s) = 〈ei, a(s)ej〉2, s ∈ [0, T], i, j ∈N0. We refer the reader to Chapter 4 of [10]
for construction and properties of the stochastic integral in (12). The Hilbert–Schmidt norm
and integrability property of a ensure that the infinite sum in (13) converges. The operator a(t)
is determined from the system parameters and the law of large number limit π in Theorem 1
as the symmetric square root of the following nonnegative trace class operator:

�(t) := λL!
∑
�∈�

Δ�Δ
T
�

∞∏
i=0

πi(t)ρi(�)

ρi(�)!
+ k

∞∑
i=1

(ei−1 − ei)(ei−1 − ei)
Tπi(t). (14)

The trace class property of �(t) and the integrability of the squared Hilbert–Schmidt norm of
a(t) are shown in Lemma 7. Define the space �̃2 ⊂ �2 as

�̃2 :=
{

x ∈ �2 :
∞∑

j=0

j2x2
j < ∞,

∞∑
j=0

xj = 0

}
. (15)

In (11) G is a map from �̃2 × S to �2 defined as

Gi(x, r) := ∂

∂u
Fi(r + ux)

∣∣∣
u=0

, i ∈N0, u ∈R. (16)

One of the difficulties in the analysis is that G as a map from �2 × S to �2 is not well behaved
and we need to restrict attention to the smaller space �̃2 × S in order to get unique solvability of
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(11). Note that, under the condition that
∑∞

j=0j2x2
j < ∞, the series

∑∞
j=0|xj| < ∞, and thus the

series
∑∞

j=0xj, is convergent. Additionally, the right-hand side of (16) is well defined for every
x ∈ �̃2 and r ∈ S , since, for each j ∈N0 and r ∈ �1 with

∑∞
i=0ri = 1, r 	→ Fj(r) is a polynomial

in (r0, r1, . . . , rj+1) given as

Fj(r) = λL! [ζ̄ (j − 1, r) − ζ̄ (j, r)] + k(rj+1 − rj),

where

ζ̄ (j, r) =
k−1∑
i1=0

(
∑j−1

m=0 rm)i1

i1!

L−i1∑
i2=1

[i2 ∧ (k − i1)]
(rj)i2

i2!

(1 − ∑j
m=0 rm)L−i1−i2

(L − i1 − i2)!
.

Also, from (4) and (5), it is easily checked that there is a c ∈ (0, ∞) such that, for all x ∈ �̃2 and
r ∈ S ,

|Gi(x, r)| ≤ c

[
|xi−1| + |xi| + |xi+1| + (ri−1 + ri)

∞∑
m=0

|xm|
]

.

This in particular implies that G(x, r) := (Gi(x, r))i∈N0 ∈ �1 ⊂ �2 for all (x, r) ∈ �̃2 × S .
The following result shows the well posedness of (12). The definition of an �2-cylindrical

Brownian motion is given in Section A.4.

Proposition 2. There exists a filtered probability space (�,F , P, {Ft}) on which is given an
�2-cylindrical Brownian motion W and a continuous {Ft}-adapted process (X(t))0≤t≤T with
sample paths in C([0, T] : �2) that satisfies the integral equation (12) and is such that X(t) ∈
�̃2 ⊂ �2 for all t ∈ [0, T] almost surely. Furthermore, if {X̃t}0≤t≤T is another such process then
X̃t = Xt for all t ∈ [0, T] almost surely.

The above result establishes weak existence and pathwise uniqueness of (12). By a standard
argument (cf. [18, Section IV.1]), it follows that (12) has a unique weak solution. We can
now present our main result on the fluctuations of πn. Recall that Xn(0) = √

n(πn(0) − π0) is
deterministic.

Theorem 2. Suppose that supn∈N
∑∞

j=0 j2πn
j (0) < ∞ and πn(0) → π0 in S as n → ∞. Let π

be the unique solution of (7) and, with Xn defined as in (10), Xn(0) → x0 in �2. In addition,
suppose that

sup
n∈N

∞∑
j=0

j2(Xn
j (0))2 < ∞. (17)

Then Xn ⇒ X in D([0, T] : �2), where X is the unique weak solution to (11) given by
Proposition 2.

Proposition 2 and Theorem 2 will be proved in Section 5. In Section 6 we will describe how
Theorems 1 and 2 can be used for numerical computation of various performance measures
using simulation of diffusion processes.

2.1. Supermarket model

Consider a system of n servers, each with its own queue. Jobs arrive in the system according
to a Poisson process with rate nλ. When a job enters the system, d servers are chosen uniformly
at random and the job is routed to the shortest of the d selected queues. All servers process jobs
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according to the FIFO discipline. Service times are mutually independent and exponentially
distributed with mean 1. This model has been well studied and is known as power-of-d routeing
or the ‘supermarket model’ (see [16], [31], and [37]). The model is a special case of the system
considered in the current work, corresponding to L = d and k = 1. Theorems 1 and 2 then
provide, as corollaries, the following law of large numbers and central limit theorem for the
power-of-d routeing scheme.

Define by πn
d the empirical measure process of queue lengths in the power-of-d system. For

r ∈ �1, define

Fd(r) := λ

[ d∑
i=1

(
d

i

)
ri

j−1

( ∞∑
m=j

rm

)d−i

−
d∑

i=1

(
d

i

)
ri

j

( ∞∑
m=j+1

rm

)d−i]
ej +

∞∑
j=0

[rj+1 − rj]ej.

The following is a direct corollary of Theorem 1.

Corollary 1. Suppose that πn
d (0) → πd(0) in S as n → ∞. Then πn

d → πd in probability in
D([0, T] : S), where πd is the unique solution in C([0, T] : S) to the ODE

π̇d(t) = Fd(πd(t)), πd(0) = π0.

Remark 2. This result has been established in [16] (see Theorem 3.4 therein). In particular, it
is easy to verify that vm(t) := ∑∞

j=m (πd(t))j is the same function as in Equation (3.9) of [16]
(see also [37]).

Our second corollary studies the fluctuations of πn
d from its law of large number limit.

Consider

Xn
d(t) = √

n[πn
d (t) − πd(t)], t ∈ [0, T].

Analogous to a(t) introduced in (11), let ad(t) be the symmetric square root of the nonnegative
operator

�d(t) := λ

∞∑
j=0

(ej+1 − ej)(ej+1 − ej)
T
( d∑

i=1

(
d

i

)
[(πd)j(t)]

i
( ∞∑

m=j+1

(πd)m(t)

)d−i)

+
∞∑

j=1

(ej−1 − ej)(ej−1 − ej)
T (πd)j(t). (18)

Analogous to G in (16), let Gd be a map from �̃2 × S to �2, where �̃2 is as in (15), defined as

(Gd)i(x, r) := ∂

∂u
(Fd)i(r + ux)

∣∣∣
u=0

, i ∈N0, u ∈R. (19)

In the special case that d = 2, this function simply reduces to

(G2)i(x, r) = 2λ

∞∑
m=i

[xi−1rm + ri−1xm − xirm+1 − rixm+1] + (xi+1 − xi).

The following result is immediate from Theorem 2.
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Corollary 2. Suppose that supn∈N
∑∞

j=0 j2(πn
d )j(0) < ∞ and πn

d (0) → π0 in S as n → ∞.
Also, suppose that Xn

d(0) = √
n[πn

d (0) − π0] → x0 in probability in �2 and that

sup
n∈N

∞∑
j=0

j2((Xn
d)j(0))2 < ∞.

Then Xn
d ⇒ Xd in D([0, T] : �2), where Xd is the unique weak solution to (11) with values in

�̃2, with G replaced by Gd defined by (19) and a(t) replaced by ad(t) which is given as the
symmetric square root of the operator �d(t) in (18).

3. Semimartingale representation

In this section we write the state processes using compensated time-changed Poisson
processes to give a semimartingale representation for the system. Let {N�, � ∈ �} and {Di, i ∈
N0} be collections of mutually independent unit-rate Poisson processes. The process N� will
be used to represent the stream of jobs requesting files which are stored at servers with queue
length configuration (immediately before the time of arrival of the request) � = (�1, . . . , �L).
Similarly, Di will represent the stream of jobs completed by servers whose queue length
(immediately before the time of completion) is equal to i. From the form of the generator
in (2) we see that the state process πn can be expressed as

πn(t) = πn(0) + 1

n

∑
�∈�

Δ�N�

(∫ t

0

nλ(n
L

)
∞∏

i=0

(
nπn

i (s)

ρi(�)

)
ds

)

+ 1

n

∞∑
i=1

(ei−1 − ei)Di

(
k
∫ t

0
nπn

i (s) ds
)

.

By adding and subtracting the compensators of the Poisson processes we can write the state
process as a semimartingale. Namely,

πn(t) = πn(0) + An(t) + Mn(t), (20)

where

An(t) :=
∑
�∈�

Δ�

∫ t

0

λ(n
L

)
∞∏

i=0

(
nπn

i (s)

ρi(�)

)
ds + k

∞∑
i=1

(ei−1 − ei)
∫ t

0
πn

i (s) ds (21)

and

Mn(t) :=
∑
�∈�

1

n
Δ�N�

(
nλ(n
L

)
∫ t

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds

)
−

∑
�∈�

Δ�

λ(n
L

)
∫ t

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds

+
∞∑

i=1

1

n
(ei−1 − ei)Di

(
k
∫ t

0
nπn

i (s) ds

)
− k

∞∑
i=1

(ei−1 − ei)
∫ t

0
πn

i (s) ds. (22)

It will follow from (45) and (54) that both Mn(t) and An(t) take values in �2. Specifically, (45)
and (54) imply that, for some cζ ∈ (0, ∞),

An
j (t) ≤

∫ t

0

(
λ(n
L

)cζ nL[πn
j−1(s) + πn

j (s)] + k[πn
j+1(s) + πn

j (s)]

)
ds
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for all t ∈ [0, T], n ∈N, and j ∈N0. Thus, there exists a κ ∈ (0, ∞) such that
∞∑

j=0

An
j (t)2 ≤ κ

∞∑
j=0

∫ t

0
[πn

j−1(s)2 + πn
j+1(s)2 + πn

j (s)2] ds ≤ 3κt

for all t ∈ [0, T]. A similar argument shows that An(t) in fact takes values in �1. In the next
section we establish tightness of {Mn} as a sequence of �2-valued processes.

Similarly, using (20) and (8) for π (t), we can express Xn as a semimartingale through the
equation

Xn(t) = Xn(0) + An,c(t) + Mn,c(t), (23)

where

An,c(t) = √
n
[
An(t) −

∫ t

0
F(π (s)) ds

]
(24)

and Mn,c(t) = √
nMn(t). We note that there is a natural filtration {Fn

t }0≤t≤T on the probability
space where the processes N�, Di, and πn are defined such that An, Mn, πn, Xn, Mn,c, and An,c

are RCLL processes adapted to the filtration, and Mn and Mn,c are {Fn
t }-local martingales.

4. Law of large numbers

In this section we present the proof of Theorem 1. First, in Section 4.1 we use the semi-
martingale representation from Section 3 to prove a key tightness property (see Proposition 3).
Then, in Section 4.2 we prove the unique solvability of (7) and complete the proof of
Theorem 1 by proving convergence of πn to the unique solution of (7) in C([0, T] : S).

4.1. Tightness

In this section we prove tightness of {(πn, Mn)}n∈N. We first recall the notion of C-tightness.
From [14, Theorem 3.10.2], it can be seen that the definition presented below is equivalent to
the more standard definition of C-tightness (see [19, Definition VI.3.25]).

Definition 1. Let (Z, dZ ) be a Polish space. For z ∈D([0, T] : Z), let

jT (z) := sup
0≤t≤T

dZ (z(t), z(t − )).

A sequence {Zn}n∈N of D([0, T] : Z)-valued random variables is said to be C-tight if it is tight
in D([0, T] : Z) and jT (Zn) ⇒ 0.

If Zn and Z are D([0, T] : Z)-valued random variables and Zn ⇒ Z then P(Z ∈
C([0, T] : Z)) = 1 if and only if {Zn}n∈N is C-tight [14]. The following proposition proves
the C-tightness of {πn}n∈N and convergence of Mn to the zero process.

Proposition 3. Suppose that πn(0) → π0 in S as n → ∞. Then {(πn, Mn)}n∈N is a C-tight se-
quence of D([0, T] : S × �2)-valued random variables. Furthermore, Mn ⇒ 0 in D([0, T] : �2).

Proof. We first prove the second statement by arguing that E sup0≤s≤T ‖Mn(s)‖2
2 → 0 as

n → ∞. For this, from Doob’s inequality, it suffices to show that E|〈Mn〉(T)| → 0 as n → ∞,
where

〈Mn〉(s) :=
∞∑

j=0

〈Mn
j 〉(s), s ∈ [0, T].
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Note that 〈ei, ekeT
j em〉2 = δikδjm for all i, j, k, l ∈N0, where δxy is 1 if x = y and 0 otherwise. It

then follows that

∞∑
i=1

〈ej, (ei−1 − ei)(ei−1 − ei)
Tej〉2π

n
i (s) =

∞∑
i=1

〈ej, (ei−1eT
i−1 + eie

T
i )ej〉2π

n
i (s)

= πn
j+1(s) + πn

j (s). (25)

Since {N�, Di � ∈ �, i ∈N0} are mutually independent Poisson processes, we now have, from
(22),

〈Mn
j 〉(t) = λ

n
(n

L

)
∫ t

0
Z(j, nπn(s)) ds + k

n

∫ t

0
[πn

j+1(s) + πn
j (s)] ds, (26)

where

Z(j, nπn(s)) =
∑
�∈�

〈ej, Δ�Δ
T
� ej〉2

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
. (27)

The �th term in the sum on the right-hand side of (27) is the contribution from jobs that request
servers with queue length configuration �. A fixed � ∈ � will make a nonzero contribution to
〈ej, Δ�Δ

T
� ej〉2 if j or j − 1 is one of the k-smallest coordinates in �. Thus, for a fixed � ∈ �,

the �th term in (27) is nonzero only if j or j − 1 is a member of the set (�1, . . . , �k). The
contribution from all such � in the sum (27) can be counted as follows. Suppose that 0 ≤ i1 ≤
k − 1 servers are selected among those with queue length less than j − 1. This corresponds to(

n
∑j−2

m=0 πn
m(s)

i1

)
different choices of servers. In addition, suppose that i2 ≤ L − i1 and i3 ≤ L −

i1 − i2 servers are selected among those with queue length equal to j − 1 and j, respectively.

This corresponds to
(

nπn
j−1(s)
i2

)
and

(
nπn

j (s)
i3

)
choices, respectively. It follows that L − i1 −

i2 − i3 servers must be selected which have queue length larger than j, which corresponds to(
n

∑∞
m=j+1 πn

m(s)
L−i1−i2−i3

)
possible choices. Since jobs are only routed to the k-shortest servers, we have,

with

�j(i1, i2, i3) :=
{
� ∈ �

∣∣∣∣
j−2∑
i=1

ρi(�) = i1, ρj−1(�) = i2, ρj(�) = i3

}
, (28)

for � ∈ �j(i1, i2, i3),

〈ej, Δ�Δ
T
� ej〉2 = [i2 ∧ (k − i1) − i3 ∧ (k − i1 − i2)+]2, (29)

and, thus, for x ∈ nSn,

Z(j, x) =
k−1∑
i1=0

(∑j−2
m=0 xm

i1

) L−i1∑
i2=0

(
xj−1

i2

)

×
L−i1−i2∑

i3=0

[i2 ∧ (k − i1) − i3 ∧ (k − i1 − i2)+]2
(

xj

i3

)( ∑∞
m=j+1 xm

L − i1 − i2 − i3

)
, (30)

recalling that we adopt the convention that, for a < b,
∑a

i=b xi = 0.
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Note that, for nonnegative integers a, b, a ≥ b,

(
a

b

)
≤ ab

b!
. (31)

This fact, combined with (30) and recalling the fact that πn(s) ∈ S for s ∈ [0, T], gives the
following bound on Z(j, nπn(s)):

Z(j, nπn(s)) ≤
k−1∑
i1=0

(n
∑j−2

m=0 πn
m(s))i1

i1!

L−i1∑
i2=0

(nπn
j−1(s))i2

i2!

×
L−i1−i2∑

i3=0

k21{i2∨i3>0}
(nπn

j (s))i3

i3!

(n
∑∞

m=j+1 πn
m(s))L−i1−i2−i3

(L − i1 − i2 − i3)!

≤ nL
k−1∑
i1=0

L−i1∑
i2=0

L−i1−i2∑
i3=0

k21{i2∨i3>0}(πn
j−1(s))i2 (πn

j (s))i3

≤ cZnL(πn
j−1(s) + πn

j (s)) (32)

for some cZ ∈ (0, ∞). Using (32) in (26) gives

E|〈Mn〉(t)| ≤E

∣∣∣∣ 2λ(n − L)! L! cZnL

n × n!

∫ t

0

∞∑
j=0

πn
j (s) ds

∣∣∣∣ +E

∣∣∣∣ 2k

n

∫ t

0

∞∑
j=0

πn
j (s) ds

∣∣∣∣

≤
∣∣∣∣2λ(n − L)! L! cZnL

n × n!
t

∣∣∣∣ +
∣∣∣∣2k

n
t

∣∣∣∣ . (33)

Thus, E|〈Mn〉T | → 0 and, consequently, E sup0≤s≤T ‖Mn(s)‖2
2 → 0 as n → ∞. It follows that

Mn ⇒ 0 in D([0, T] : �2), which completes the proof of the second statement.
Tightness of {πn}n∈N in D([0, T] : S) follows as in the proof of Theorem 3.4 of [16].

Namely, it suffices to show tightness of {Qn
1}n∈N in D([0, T] : N) (cf. [36]). However, this

tightness is an immediate consequence of the fact that the jumps of Qn
1 can be embedded in a

Poisson process with rate λL + k.
Finally, in order to show that {πn}n∈N is C-tight, it suffices to show that

jT (πn) := sup
0≤t≤T

d0(πn(t), πn(t − )) → 0 as n → ∞.

Note that the arrivals to the nth system occur according to a Poisson process with rate nλ.
When a job arrives in the system, the dispatcher assigns it to k different servers, causing the
queue length of each of the k chosen servers to increase by one. The n servers in the system
process jobs according to Poisson processes with rate 1/k. Any completion of job processing
results in the corresponding queue length dropping by 1. These n + 1 Poisson processes are
mutually independent from the construction in Section 3, which ensures that the compensated
processes,

N�

( ∫ t

0

nλ(n
L

)
∞∏

i=0

(
nπn

i (s)

ρi(�)

)
ds

)
−

∫ t

0

nλ(n
L

)
∞∏

i=0

(
nπn

i (s)

ρi(�)

)
ds
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and

Di

(
k
∫ t

0
nπn

i (s) ds

)
− k

∫ t

0
nπn

i (s) ds,

are martingales with respect to a common filtration. Therefore, these Poisson processes do not
have simultaneous jumps. Each arrival creates a jump for the vector πn(t) with

d0(πn(t), πn(t − )) ≤ 2k

n
,

and each service completion event produces a jump for the vector πn(t) with

d0(πn(t), πn(t − )) ≤ 2

n
.

Thus, almost surely, at any instant the jump size d0(πn(t), πn(t − )) is at most 2k/n. Therefore,

jT (πn) ≤ 2k

n
→ 0,

which completes the proof. �

4.2. Convergence

In this section we provide the proof of Theorem 1. Since we have already proved tightness
of {πn}n∈N in Section 4.1, all that remains is to prove uniqueness of the solutions of (7) in
an appropriate class and to characterize the limit of any weakly convergent subsequence as the
unique solution to (7). We first present the following Lipschitz property for the map F : S → �1,
defined in (5), that will give uniqueness of the solutions to (7). We note that in the proof of
Theorem 2 we will need a stronger Lipschitz property of F in the �2 norm. This Lipschitz
property is not immediate on the space S , but, as shown in Lemma 4, is satisfied on a smaller
class VM .

Lemma 1. The map F is a Lipschitz function from S to �1. Namely, there exists a C1 ∈ (0, ∞)
such that, for any r, r̃ ∈ S ,

‖F(r) − F(r̃)‖1 ≤ C1‖r − r̃‖1. (34)

Proof. Let r, r̃ ∈ S and, for i1 ∈N0 and j, i2 ∈N, define Rj,i1,i2 (r, r̃) as

Rj,i1,i2 (r, r̃) :=
( j−1∑

m=0

rm

)i1( ∞∑
m=j+1

rm

)L−i1−i2
ri2

j −
( j−1∑

m=0

r̃m

)i1( ∞∑
m=j+1

r̃m

)L−i1−i2
r̃i2

j . (35)

Note that, for any a, b, c, ã, b̃, c̃ ∈R+,

abc − ãb̃c̃ = ab(c − c̃) + a(b − b̃)c̃ + (a − ã)b̃c̃. (36)

Combining (35), (36), and the fact that r, r̃ ∈ S , we have

|Rj,i1,i2 (r, r̃)| ≤ |ri2
j − r̃i2

j | + r̃i2
j

∣∣∣∣
( ∞∑

m=j+1

rm

)L−i1−i2
−

( ∞∑
m=j+1

r̃m

)L−i1−i2
∣∣∣∣

+ r̃i2
j

∣∣∣∣
( j−1∑

m=0

rm

)i1
−

( j−1∑
m=0

r̃m

)i1
∣∣∣∣. (37)
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For any a, b ∈R and i ∈N, (ai−bi) = (a−b)
∑i

j=1ai−jbj−1. Thus, if a, b ∈ [0, 1] and i ≤ L,
|ai − bi| ≤ |a − b|L. This inequality along with (37) implies that there exist κ1, κ ′

1 > 0 such
that, for all i1, i2 ≤ L, i2 > 0,

|Rj,i1,i2 (r, r̃)| ≤ κ ′
1

(
|rj − r̃j| + r̃i2

j

∞∑
m=j+1

|rm − r̃m| + r̃i2
j

j−1∑
m=0

|rm − r̃m|
)

≤ κ1(|rj − r̃j| + r̃j‖r − r̃‖1). (38)

The definition of F (see (5)) and the triangle inequality imply that

‖F(r) − F(r̃)‖1 ≤ λL!
∞∑

j=0

|ζ̄ δ(j, r) − ζ̄ δ(j, r̃)| + k
∞∑

j=0

|(r − r̃)j+1 − (r − r̃)j|. (39)

Noting that

ζ̄ δ(j, r) − ζ̄ δ(j, r̃) = [ζ̄ (j − 1, r) − ζ̄ (j − 1, r̃)] − [ζ̄ (j, r) − ζ̄ (j, r̃)],

it follows that

∞∑
j=0

|ζ̄ δ(j, r) − ζ̄ δ(j, r̃)| ≤ 2
∞∑

j=0

|ζ̄ (j, r) − ζ̄ (j, r̃)| ≤ κ2

∞∑
j=0

k−1∑
i1=0

L−i1∑
i2=1

|Rj,i1,i2 (r, r̃)|, (40)

where the second inequality follows from the the definitions of ζ̄ and R. Combining (40) with
(39) and applying (38) yields, for some κ3 > 0,

‖F(r) − F(r̃)‖1 ≤ κ2λL!
∞∑

j=0

k−1∑
i1=0

L−i1∑
i2=1

|Rj,i1,i2 (r, r̃)| + 2k
∞∑

j=0

|rj − r̃j|

≤ κ3

∞∑
j=0

[|rj − r̃j| + r̃j‖r − r̃‖1] + 2k‖r − r̃‖1,

and, thus, with C1 := 2(κ3 + k), (34) is satisfied for all r, r̃ ∈ S , which proves the result. �
Using the above Lipschitz property of F, we can now complete the proof of Proposition 1.

Proof of Proposition 1. Existence of a π ∈C([0, T] : S) that solves (7) will be shown below
in the proof of Theorem 1. We now argue uniqueness. Suppose that π and π̃ are two elements
of C([0, T] : S) satisfying (7) with π (0) = π̃ (0) = π0. The Lipschitz property of F proved in
Lemma 1 implies that, for all t ∈ [0, T],

‖π (t) − π̃ (t)‖1 =
∥∥∥∥

∫ t

0
[F(π (s)) − F(π̃(s))] ds

∥∥∥∥
1

≤
∫ t

0
‖F(π (s)) − F(π̃ (s))‖1 ds

≤ C1

∫ t

0
‖π (s) − π̃ (s)‖1 ds.

The result follows. �
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We now proceed to the proof of Theorem 1.

Proof of Theorem 1. From Proposition 3, {πn}n∈N is a C-tight sequence of D([0, T] : S)-
valued random variables.

Note from (20) that, for all j ∈N0,

πn(t) = πn(0) + Vn(t) + Mn(t) +
∫ t

0
F(πn(s)) ds, (41)

where

Vn(t) := An(t) −
∫ t

0
F(πn(s)) ds.

From the definition of An in (21) we see that

An
j (t) =

∫ t

0

( ∑
�∈�

〈Δ�, ej〉2
λ(n
L

)
∞∏

i=0

(
nπn

i (s)

ρi(�)

)
+ k[πn

j+1(s) − πn
j (s)]

)
ds. (42)

By a similar argument (see the comments given below (44)) used to obtain the representation
in (30),

∑
�∈�

〈Δ�, ej〉2

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
= [ζ (j − 1, nπn(s)) − ζ (j, nπn(s))], (43)

where, for x ∈ nSn,

ζ (j, x) :=
k−1∑
i1=0

(∑j−1
m=0 xm

i1

) L−i1∑
i2=1

[i2 ∧ (k − i1)]

(
xj

i2

)(∑∞
m=j+1 xm

L − i1 − i2

)
. (44)

One can interpret ζ (j, x) as the rate at which jobs are being routed into queues of length j
when the system is in state x. Recall that any incoming job corresponds to the selection of
L queues. The term on the right-hand side of (44) then sums over all possible queue length
configurations of this selection. In particular, i1 represents the number of queues with lengths
less than j, i2 corresponds to the queues of length equal to j, and L − i1 − i2 are the queues
of length greater than j. Since we are routeing jobs to the k-shortest queues, the rate must be
multiplied by the factor [i2 ∧ (k − i1)] rather than i2. From our convention that x−1 = 0, we
see that ζ ( − 1, x) = 0. In addition, recalling the conventions that, for a < b,

∑a
i=b xi = 0 and(0

0

) = 1, we see that ζ (0, x) is well defined. Combining (42), (43), and (44) gives the following
representation for An

j :

An
j (t) = λ(n

L

)
∫ t

0
[ζ (j − 1, nπn(s)) − ζ (j, nπn(s))] ds + k

∫ t

0
[πn

j+1(s) − πn
j (s)] ds. (45)

For each fixed j, i1 ∈N0 and i2 ∈N with i1, i2 ≤ L, we have
(

n
∑j−1

m=0 πn
m(s)

i1

)
[i2 ∧ (k − i1)]

(
nπn

j (s)

i2

)(
n

∑∞
m=j+1 πn

m(s)

L − i1 − i2

)

= nL (
∑j−1

m=0 πn
m(s))i1

i1!
[i2 ∧ (k − i1)]

(πn
j (s))i2

i2!

(
∑∞

m=j+1 πn
m(s))L−i1−i2

(L − i1 − i2)!

+ R̂n(j, i1, i2, s), (46)
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where

sup
i1,i2≤L

|R̂n(j, i1, i2, s)| ≤ κ1nL−1πn
j (s),

and, thus, from the definitions of ζ and ζ̄ in (44) and (4),∣∣∣∣ζ (j, nπn(s)) − n!

(n − L)!
ζ̄ (j, πn(s))

∣∣∣∣ ≤ κ2nL−1πn
j (s) for all s ∈ [0, T]. (47)

Furthermore, using the definitions of An in (45) and F in (5), (47) implies that

sup
0≤t≤T

‖Vn(t)‖2 = sup
0≤t≤T

∥∥∥∥An(t) −
∫ t

0
F(πn(s)) ds

∥∥∥∥
2
≤ κ3

n
. (48)

Also, from Proposition 3, Mn ⇒ 0 in D([0, T] : �2). Combining these observations with tight-
ness of πn, we have subsequential convergence of (πn, Mn, Vn) to (π, 0, 0), in distribution,
in D([0, T] : S × �2 × �2) for some C([0, T] : S)-valued π . By appealing to the Skorokhod
representation theorem we can assume that this convergence holds almost surely. Noting that
r 	→ Fj(r) is a continuous map from S to R for each j ∈N0, we have Fj(πn(s)) → Fj(π (s)) as
n → ∞ for all j ∈N0 and s ∈ [0, T]. Thus, upon sending n → ∞ in (41), (9) and the dominated
convergence theorem imply that, almost surely,

πj(t) = (π0)j +
∫ t

0
Fj(π (s)) ds for all t ∈ [0, T], j ∈N0.

This shows that π satisfies (7). The result now follows from the uniqueness property shown in
Proposition 1. �

5. Diffusion approximation

In this section we prove Theorem 2. Section 5.1 presents some moment estimates on πn

which will be used in the proof of Theorem 2. Section 5.2 then proves tightness of the sequence
of centered and scaled state processes {Xn}n∈N. Section 5.3 completes the proof of Theorem 2
by proving unique solvability of the SDE (11) (Theorem 2) and characterizing limit points of
Xn as this unique solution.

5.1. Moment bounds

The following elementary lemma will be useful in the proof of Lemma 3.

Lemma 2. For all t ≥ 0, k ∈N, and n ∈N, limm→∞ Emk sup0≤s≤t πn
m(s) = 0.

Proof. Fix n ∈N. Note that file requests arrive at rate nλ. Let N be a Poisson process
representing the total flow of such file requests. Also, let m∗ = sup{m : πn

m(0) > 0} be the length
of the largest queue at time 0. Note that, since the system consists of n queues, m∗ must be finite
for any fixed n. Then, for m > m∗,

Emk sup
0≤s≤t

πn
m(s) =E sup

0≤s≤t
1{N(t)≥m−m∗}mkπn

m(s) +E sup
0≤s≤t

1{N(t)<m−m∗}mkπn
m(s)

≤ mk
P(N(t) ≥ m − m∗).

Thus, from Markov’s inequality, for m > m∗,

Emk sup
0≤s≤t

πn
m(s) ≤ mke−(m−m∗)enλt(e−1).

The result follows. �
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In the next lemma we will we establish two key moment bounds that will be needed in the
tightness proof (see proof of Proposition 4).

Lemma 3. Suppose that supn∈N
∑∞

j=0 j2πn
j (0) =: cπ (0) < ∞. Then

sup
n∈N

E sup
0≤t≤T

( ∞∑
j=0

jπn
j (t)

)2

< ∞ (49)

and

sup
n∈N

E

∫ T

0

∞∑
j=0

j2πn
j (t) dt < ∞. (50)

Proof. Since πn(t) = πn(0) + An(t) + Mn(t), we can write, for fixed K ∈N,

E sup
0≤t≤T

∣∣∣∣
K∑

j=0

jπn
j (t)

∣∣∣∣
2

≤ 3

∣∣∣∣
K∑

j=0

jπn
j (0)

∣∣∣∣
2

+ 3E sup
0≤t≤T

∣∣∣∣
K∑

j=0

jAn
j (t)

∣∣∣∣
2

+ 3E sup
0≤t≤T

∣∣∣∣
K∑

j=0

jMn
j (t)

∣∣∣∣
2

.

(51)

Using (43), for K ∈N, we can write

K∑
j=0

j
∑
�∈�

〈Δ�, ej〉2

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
=

K∑
j=1

j[ζ (j − 1, nπn(s)) − ζ (j, nπn(s))]

=
K−1∑
j=0

ζ (j, nπn(s)) − Kζ (K, nπn(s)) (52)

and

k
K∑

j=0

j[πn
j+1(s) − πn

j (s)] = −k

( K∑
j=1

πn
j (s) − Kπn

K+1(s)

)
. (53)

Using similar bounds as in (32), for some cζ ∈ (0, ∞),

ζ (j, nπn(s)) ≤ cζ nLπn
j (s). (54)

The above bound implies that, for some κ1 ∈ (0, ∞) and all n, K ∈N,

E sup
0≤t≤T

[
λ(n
L

)
∫ t

0

K∑
j=1

ζ (j − 1, nπn(s)) + k
∫ t

0

K∑
j=0

πn
j (s) ds

]2

≤E

[(
cζ nL λ(n

L

) + k

)
T

]2

≤ κ1.

Combined with (45), (52), and (53), the above estimate gives, for all n, K ∈N,

E sup
0≤t≤T

∣∣∣∣
K∑

j=0

jAn
j (t)

∣∣∣∣
2

≤ κ2

(
1 + KE

[
sup

0≤t≤T
(πn

K(t) + πn
K+1(t))

])
. (55)
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We now consider E sup0≤t≤T | ∑K
j=0 jMn

j (t)|2. Since
∑K

j=0 jMn
j (t) is a martingale, Doob’s

inequality implies that

E sup
0≤t≤T

∣∣∣∣
K∑

j=0

jMn
j (t)

∣∣∣∣
2

≤ 4E

〈 K∑
j=0

jMn
j

〉
(T) = 4E

K∑
j1=0

K∑
j2=0

j1j2〈Mn
j1 , Mn

j2〉(T). (56)

The diagonal terms (j1 = j2) in the above sum are given by (26). We now consider the
off-diagonal terms. Fix 0 ≤ j1 < j2 ≤ K, and note that in order to compute 〈Mn

j1
, Mn

j2
〉(T), we

must expand

Z(j1, j2, nπn(s)) :=
∑
�∈�

〈ej1 , Δ�Δ
T
� ej2〉2

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
. (57)

Similar to (27), the �th term in (57) is the contribution from jobs that request servers with queue
length configuration �. A fixed � ∈ � will make a nonzero contribution to 〈ej1 , Δ�Δ

T
� ej2〉2 if

(j1 or j1 − 1) and (j2 or j2 − 1) are among the k-smallest coordinates in �. That is, for a fixed
� ∈ �, the �th term is nonzero only if (j1 or j1 − 1) is a member of the set (�1, . . . , �k) and (j2
or j2 − 1) is also a member. The contribution from all such � in the sum (57) can be counted in
a method analogous to that used to obtain (30). Namely, we count the numbers of choices of
servers with queue length less than j1 − 1, equal to j1 − 1, equal to j1, between j1 and j2 − 1,
equal to j2 − 1, equal to j2, and larger than j2. One must be careful in the cases j2 − 1 = j1 and
j2 − 1 = j1 + 1. In both cases there are no servers with length between j1 and j2 − 1. In the first
case above (j2 − 1 = j1), we must also be careful not to double count. To ensure this, we include
an indicator function 1{j2>j1+1} in the upper index of the binomial coefficient corresponding to
the selection of servers with queue length equal to j2 − 1. Combining these observations we
see that, for x ∈ nSn,

Z(j1, j2, x) =
∑
�∈�

〈ej1 , Δ�Δ
T
� ej2〉2

∞∏
i=0

(
xi

ρi(�)

)

=
k−2∑
i1=0

(∑j1−2
m=0 xm

i1

) k−i1−1∑
i2=0

(
xj1−1

i2

) k−i1−i2−1∑
i3=0

[i2 − i3]

(
xj1

i3

)

×
k−i1−i2−i3−1∑

i4=0

(∑j2−2
m=j1+1 xm

i4

) L−∑4
n=1 in∑

i5=0

(
xj2−11{j2>j1+1}

i5

)

×
L−∑5

n=1 in∑
i6=0

[
(1{j2=j1+1}(i3 − i5) + i5) ∧

(
k −

4∑
n=1

in

)
+

− i6 ∧
(

k −
5∑

n=1

in

)
+

]

×
(

xj2

i6

)(∑∞
m=j2+1 xm

L − ∑6
n=1 in

)
. (58)

For j1 > j2, we define Z(j1, j2, x) := Z(j2, j1, x). The contribution to 〈Mn
j1
, Mn

j2
〉(T) for j1 �= j2

from completed jobs is given by the term

∞∑
i=1

〈ej1 , (ei−1 − ei)(ei−1 − ei)
Tej2〉2πn

i (s) = −1{j1=j2−1}πn
j2 (s) − 1{j1−1=j2}πn

j1 (s). (59)
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This follows on noting that if a job is completed from a queue of length j then its queue length
becomes j − 1. This implies that the contribution is zero unless j1 = j2 − 1 or j1 − 1 = j2, which
results in the above expression. Combining (58) and (59) gives, for j1, j2 ∈N0,

〈Mn
j1 , Mn

j2〉(T) = λ

n
(n

L

)
∫ T

0
Z(j1, j2, nπn(s)) ds

+ k

n

∫ T

0
[1{j1=j2}[πn

j1 (s) + πn
j1+1] − 1{j1=j2−1}πn

j2 (s)

− 1{j1−1=j2}πn
j1 (s)] ds, (60)

where, by convention, Z(j, j, x) := Z(j, x). Referring to the definition of Z in (58), note that, for
j2 > j1 + 1, Z(j1, j2, x) = 0 unless (i2 or i3) is greater than 0 and (i5 or i6) is greater than 0. In
the case that j2 = j1 + 1, Z(j1, j2, x) = 0 unless (i2 or i3) is greater than 0 and (i3 or i6) is greater
than 0. Therefore, (31) implies there exists a c̃Z ∈ (0, ∞) such that, for r ∈ Sn and j1 < j2,

Z(j1, j2, nr) ≤ c̃ZnL[rj1rj2 + rj1−1rj2 + rj1rj2−1 + rj1−1rj2−1 + 1{j2=j1+1}rj1 ]. (61)

Combining this with (32) and (60), we have, for some κ ′
3, κ3 ∈ (0, ∞) and all n, K ∈N,

K∑
j1=0

K∑
j2=0

j1j2〈Mn
j1 , Mn

j2〉(T)

≤ κ ′
3

n

[ ∫ T

0

K∑
j1=0

K∑
j2=0

(j1 + 1)(j2 + 1)πn
j1 (t)πn

j2 (t) dt +
∫ T

0

K+1∑
j=1

j(j + 1)πn
j (t) dt

]

≤ κ3

n

[ ∫ T

0

( K∑
j=0

j2πn
j (t) + (K + 1)2πn

K+1(t)

)
dt + 1

]
. (62)

Recalling that πn(t) = πn(0) + An(t) + Mn(t), we have, for all K, n ∈N,

E

∫ T

0

K∑
j=0

j2πn
j (t) dt =

∫ T

0

K∑
j=0

j2πn
j (0) dt +E

∫ T

0

K∑
j=0

j2An
j (t) dt +

∫ T

0
E

K∑
j=0

j2Mn
j (t) dt

≤E

∫ T

0

K∑
j=0

j2An
j (t) dt + κ4,

where κ4 = cπ (0)T and the last inequality follows on using the fact that Mn
j (t) is a martingale.

Thus, from (45), for some κ5 ∈ (0, ∞) and all K, n ∈N,

E

∫ T

0

K∑
j=0

j2πn
j (t) dt ≤ κ5

nL
E

∫ T

0

K∑
j=1

j2
∫ t

0
[ζ (j − 1, nπn(s)) − ζ (j, nπn(s))] ds dt

+ κ5E

∫ T

0

K∑
j=1

j2
∫ t

0
[πn

j+1(s) − πn
j (s)] ds dt + κ5. (63)
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Using the facts that, for any a0, . . . , aK ∈R,

K∑
j=1

j2[aj−1 − aj] =
K∑

j=1

[(j − 1)2aj−1 − j2aj + (2j − 1)aj−1]

= −K2aK +
K∑

j=1

(2j − 1)aj−1

and

K∑
j=0

j2[aj+1 − aj] =
K∑

j=0

[(j + 1)2aj+1 − j2aj − (2j + 1)aj+1]

= (K + 1)2aK+1 −
K∑

j=0

(2j + 1)aj+1

in (63) we have, for some κ6 ∈ (0, ∞) and all K, n ∈N,

E

∫ T

0

K∑
j=0

j2πn
j (t) dt ≤ κ5

nL
E

∫ T

0

∫ t

0

K∑
j=0

(2j − 1)ζ (j − 1, nπn(s)) ds dt

+ κ5E

∫ T

0

∫ t

0
(K + 1)2πn

K+1(s) ds dt + κ5

≤ κ6E

∫ T

0

[
K2 sup

0≤s≤t
πn

K+1(s) + sup
0≤s≤t

K∑
j=0

jπn
j (s)

]
dt + κ6, (64)

where the second inequality follows from (54). Thus, it follows from (56) and (62) that, for
some κ7 ∈ (0, ∞),

E sup
0≤t≤T

∣∣∣∣
K∑

j=0

jMn(t)

∣∣∣∣
2

≤ κ3

n

[ ∫ T

0
E

K∑
j=0

j2πn
j (t) dt + γ n

KT + 1

]

≤ κ7

n

[
1 + γ n

K +
∫ T

0
E sup

0≤u≤s

∣∣∣∣
K∑

j=0

jπn
j (u)

∣∣∣∣
2

ds

]
, (65)

where γ n
K =E(K2 sup0≤s≤T πn

K+1(s)). Combining (51), (55), and (65), and using the fact that∣∣ ∑∞
j=0 jπn

j (0)
∣∣ ≤ cπ (0),

E sup
0≤t≤T

∣∣∣∣
K∑

j=0

jπn
j (t)

∣∣∣∣
2

≤ κ8

(
1 +E sup

0≤t≤T

∣∣∣∣
K∑

j=0

jAn
j (t)

∣∣∣∣
2

+E sup
0≤t≤T

∣∣∣∣
K∑

j=0

jMn
j (t)

∣∣∣∣
2 )

≤ κ9

(
1 + γ n

K + 1

n

∫ T

0
E sup

0≤s≤t

∣∣∣∣
K∑

j=0

jπn
j (s)

∣∣∣∣
2

ds

)
.
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By Gronwall’s lemma (since the above inequality also holds for all T1 ≤ T), there is a κ10 ∈
(0, ∞) such that, for all n, K ∈N,

E sup
0≤t≤T

∣∣∣∣
K∑

j=0

jπn
j (t)

∣∣∣∣
2

≤ κ10(1 + γ n
K).

Sending K → ∞ and recalling from Lemma 2 that, for each fixed n, as K → ∞, γ n
K → 0 we

have, for all n,

E sup
0≤t≤T

∣∣∣∣
∞∑

j=0

jπn
j (t)

∣∣∣∣
2

≤ κ10,

where κ10 is independent of n. This proves (49). Finally, (50) follows from (49) upon sending
K → ∞ in (64). �

5.2. Tightness

We now proceed with the proof of the tightness of {(Xn, Mn,c)}n∈N. Let, for M ∈R+,

VM :=
{

r ∈ S
∣∣∣∣

∞∑
i=0

iri ≤ M

}
,

where VM is equipped with the topology inherited from �2. We begin by establishing the
following Lipschitz property for F on VM .

Lemma 4. The map F is a Lipschitz function from VM to �2 for each M ∈R+. Namely, there
exists an C(M) ∈ (0, ∞) such that, for any r, r̃ ∈ VM,

‖F(r) − F(r̃)‖2 ≤ C(M)‖r − r̃‖2. (66)

Proof. Fix M ∈R+. Let r, r̃ ∈ VM and, for i1 ∈N0 and j, i2 ∈N, recall Rj,i1,i2 (r, r̃)
from (35). Using (36) and the fact that r, r̃ ∈ S , we have

(Rj,i1,i2 (r, r̃))2 ≤ 3[ri2
j − r̃i2

j ]2 + 3r̃2i2
j

[( ∞∑
m=j+1

rm

)L−i1−i2
−

( ∞∑
m=j+1

r̃m

)L−i1−i2]2

+ 3r̃2i2
j

[( j−1∑
m=0

rm

)i1
−

( j−1∑
m=0

r̃m

)i1]2

.

By an argument similar to that used to derive (38) and an application of the Cauchy–Schwarz
inequality we have the following inequality for all i1, i2 ≤ L, i2 > 0:

(Rj,i1,i2 (r, r̃))2 ≤ κ1([rj − r̃j]
2 + (j + 1)r̃j‖r − r̃‖2

2). (67)
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Using arguments analogous to those used in the proof of Lemma 1, we have

‖F(r) − F(r̃)‖2 ≤ κ2λL!

( ∞∑
j=0

k−1∑
i1=0

L−i1∑
i2=1

[Rj,i1,i2 (r, r̃)]2
)1/2

+ 2k

( ∞∑
j=0

(r − r̃)2
j

)1/2

≤ κ3

( ∞∑
j=0

[[rj − r̃j]
2 + (j + 1)r̃j‖r − r̃‖2

2]

)1/2

+ 2k‖r − r̃‖2

≤ κ4‖r − r̃‖2

(
1 +

∞∑
j=0

jr̃j

)1/2

+ 2k‖r − r̃‖2. (68)

Since r, r̃ ∈ VM , (68) gives

‖F(r) − F(r̃)‖2 ≤ κ4(M + 1)1/2‖r − r̃‖2 + 2k‖r − r̃‖2,

and, thus, with C(M) := κ4(M + 1)1/2 + 2k, (66) is satisfied for all r, r̃ ∈ VM , which proves the
result. �

Recall the process Xn introduced in (10) and Mn,c defined below (24). The following
proposition gives tightness of {(Xn, Mn,c)}n∈N.

Proposition 4. Suppose that {πn}n∈N is as in the statement of Theorem 1 with
supn∈N

∑∞
j=0 j2πn

j (0) < ∞. Let Xn(0) = √
n(πn(0) − π0) and suppose that (17) is satisfied.

Then {(Xn, Mn,c)}n∈N is a C-tight sequence of D([0, T] : (�2)2)-valued random variables.

Proof. We will make use of Theorem 4 in Appendix A.2. We first prove that {Mn,c}n∈N is
tight. In order to show that condition (A) in Theorem 4 is satisfied for {Mn,c}n∈N it suffices
(cf. Theorem 2.3.2 of [20]) to show that the condition is satisfied for the real-valued process
〈Mn,c〉(t) := ∑∞

j=0〈Mn,c
j 〉(t). Fix ε ∈ (0, T] and T0 ∈ [0, T − ε]. Let τn ≤ T0 be a sequence of

{Fn
t }-stopping times. Then, (43) and (54) imply that, for θ ∈ [0, ε],

|〈Mn,c(τn + θ )〉 − 〈Mn,c(τn)〉|

=
∣∣∣∣

∞∑
j=0

[∫ τn+θ

τn

∑
�∈�

〈Δ�, ej〉2
λ

I(n)

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
+ k

∫ τn+θ

τn

[πn
j+1(s) − πn

j (s)] ds

] ∣∣∣∣

≤ κ1

∞∑
j=0

∫ τn+θ

τn

[πn
j (s) + πn

j−1(s) + πn
j+1(s)] ds

≤ κ1ε.

The proof of (A) is now immediate.
We next show that {Mn,c}n∈N satisfies condition (T1) of Theorem 4. For this, we will apply

Theorem 3. We first verify that {Mn,c(t)}n∈N satisfies Theorem 3(a) for all t ∈ [0, T]. It follows
from (33) that

sup
n∈N

E〈Mn,c〉(T) = sup
n∈N

nE〈Mn〉(T) ≤ κ2. (69)
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This, combined with Doob’s inequality, implies that, for each n0 ∈N,

sup
n∈N

n0∑
i=0

E sup
0≤t≤T

∣∣Mn,c
i (t)

∣∣ ≤ n0 + sup
n∈N

n0∑
i=0

E

(
sup

0≤t≤T
Mn,c

i (t)
)2 ≤ n0 + κ3.

Using Markov’s inequality, Theorem 3(a) follows.
We now verify Theorem 3(b) for {Mn,c(t)}n∈N for each fixed t ∈ [0, T]. Note that 〈Mn,c

j 〉(t) =
n〈Mn

j 〉(t) and, thus, from (26) and (32),

〈Mn,c
j 〉(t) ≤ κ4

∫ t

0
(πn

j−1(s) + πn
j (s) + πn

j+1(s)) ds. (70)

It follows from (70) and the Cauchy–Schwarz inequality that

∞∑
j=n0

E(Mn,c
j (t))2 =

∞∑
j=n0

E〈Mn,c
j (t)〉

≤ κ5E

∫ t

0

∞∑
j=n0−1

πn
j (s) ds

≤ κ5

( ∞∑
j=n0−1

1

j2

)1/2 ∫ t

0
E

( ∞∑
j=n0−1

j2(πn
j (s))2

)1/2

ds. (71)

From (50),

sup
n∈N

E

∫ T

0

∞∑
j=0

j2(πn
j (s))2 ds ≤ sup

n∈N
E

∫ T

0

∞∑
j=0

j2πn
j (s) ds =: κ6 < ∞. (72)

Using this observation in (71), we have

∞∑
j=n0

E(Mn,c
j (t))2 ≤ κ7

( ∞∑
j=n0−1

1

j2

)1/2 ∫ t

0
E

( ∞∑
j=n0−1

j2πn
j (s)

)1/2

ds

≤ κ8

( ∞∑
j=n0−1

1

j2

)1/2

.

From Markov’s inequality we now see that, for any δ > 0,

lim
n0→∞ sup

n∈N
P

( ∞∑
j=n0

(Mn,c
j (t))2 > δ

)
= 0,

which verifies Theorem 3(b). Thus, we have shown that {Mn,c(t)}n∈N is a tight sequence of
�2-valued random variables for all t ∈ [0, T]. From Theorem 4, it now follows that {Mn,c}n∈N
is a tight sequence of D([0, T] : �2)-valued random variables.

We will now argue that {Xn}n∈N is a tight sequence of D([0, T] : �2)-valued random
variables. Again, via Theorem 4, it suffices to show that {Xn(t)}n∈N is tight for every t ∈ [0, T]
(which will follow from verifying conditions (a) and (b) of Theorem 3) and that {Xn}n∈N
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satisfies condition (A) of Theorem 4. We first show that, for all t ∈ [0, T], Theorem 3(a) holds
for {Xn(t)}n∈N. Namely, we show that, for each n0 ∈N and t ∈ [0, T],

lim
A→∞ sup

n∈N
P

( n0∑
j=0

|Xn
j (t)| > A

)
= 0. (73)

Fix ε > 0. From Lemma 3, there is a M ∈ (0, ∞) such that

sup
n∈N

E

(
sup

0≤t≤T

∞∑
j=0

jπn
j (t)

)
≤ Mε

2
. (74)

Let Bn
M := {sup0≤t≤T

∑∞
j=0 jπn

j (t) ≤ M}. Then, for t ∈ [0, T] and n0 ∈N,

P

( n0∑
j=0

|Xn
j (t)| > A

)
≤ P

(
sup

0≤t≤T

∞∑
j=0

jπn
j (t) > M

)
+ P

( n0∑
j=0

|Xn
j (t)| > A, Bn

M

)

≤ ε

2
+ P

( n0∑
j=0

|Xn
j (t)| > A, Bn

M

)
. (75)

The Cauchy–Schwarz inequality yields

n0∑
i=0

|Xn
j (t)| ≤ √

n0

( n0∑
j=0

|Xn
j (t)|2

)1/2

≤ √
n0‖Xn(t)‖2. (76)

Furthermore, from (20) and the triangle inequality,

‖Xn(t)‖2 ≤ ‖Xn(0)‖2 + ‖An,c(t)‖2 + ‖Mn,c(t)‖2. (77)

The definition of An,c in (24) gives

‖An,c(t)‖2 = √
n

∥∥∥∥An(t) −
∫ t

0
F(π (s)) ds

∥∥∥∥
2

.

The moment bound (49) proved in Lemma 3 implies that

sup
n∈N

E sup
0≤t≤T

∣∣∣∣
∞∑

j=0

jπn
j (t)

∣∣∣∣
2

=: κ7 < ∞, (78)

and, thus, for some κ8 ∈ (0, ∞),

sup
0≤t≤T

∣∣∣∣
∞∑

j=0

jπj(t)

∣∣∣∣
2

≤ κ8 (79)
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as well. From (48) and the Lipschitz property proved in Lemma 4, with M ≥ κ7 ∨ κ8 on the
set Bn

M ,

‖An,c(t)‖2 ≤ √
n

∫ t

0
‖F(πn(s)) − F(π (s))‖2 ds + κ9√

n
≤ C(M)

∫ t

0
‖Xn(s)‖2 ds + κ9√

n
.

Thus, from (77) and Gronwall’s lemma, on the set Bn
M , for all n ≥ 1,

sup
0≤t≤T

‖Xn(t)‖2 ≤ κ10

(
1√
n

+ ‖Xn(0)‖2 + sup
0≤t≤T

‖Mn,c(t)‖2

)
eC(M)T . (80)

From (69) and Doob’s inequality,

sup
n∈N

E sup
0≤t≤T

‖Mn,c(t)‖2
2 < ∞. (81)

Also, by assumption, Xn(0) → x0 in �2. Thus, for the given ε > 0, we can find α0 such that, for
all α ≥ α0,

P

(
sup

0≤t≤T
‖Xn(t)‖2 ≥ α√

n0
, Bn

M

)
≤ ε

2
.

Therefore, from (75) and (76) we have, for all A ≥ α0/
√

n0,

sup
n∈N

P

( n0∑
j=0

|Xn
j (t)| > A

)
≤ ε

2
+ ε

2
= ε.

Since ε > 0 is arbitrary we get (73). Thus, we have verified Theorem 3(a) for {Xn(t)}n∈N for
each t ∈ [0, T].

We now consider Theorem 3(b). Namely, we show that, for every δ > 0 and t ∈ [0, T],

lim
n0→∞ sup

n∈N
P

( ∞∑
j=n0

(Xn
j (t))2 > δ

)
= 0.

For this, it suffices to show that

sup
n∈N

E sup
0≤t≤T

∞∑
j=0

j2(Xn
j (t))2 < ∞. (82)

Recalling that Xn
j (t) = Xn

j (0) + An,c
j (t) + Mn,c

j (t) for each j ∈N, it follows that

E sup
0≤t≤T

∞∑
j=0

j2(Xn
j (t))2 ≤ 3 sup

n∈N

∞∑
j=0

j2(Xn
j (0))2 + 3 sup

n∈N
E sup

0≤t≤T

∞∑
j=0

j2(An,c
j (t))2

+ 3 sup
n∈N

E sup
0≤t≤T

∞∑
j=0

j2(Mn,c
j (t))2. (83)
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Using the definitions of An,c, An, and F in (24), (45), and (5), respectively, we can write

(An,c
j (t))2 ≤ κ11

{∫ t

0
n
[ (n − L)!

n!
ζ (j, nπn(s)) − ζ̄ (j, π (s))

]2
ds

+
∫ t

0
n
[ (n − L)!

n!
ζ (j − 1, nπn(s)) − ζ̄ (j − 1, π (s))

]2
ds

+
∫ t

0
n[πn

j (s) − πj(s)]2 ds +
∫ t

0
n[πn

j+1(s) − πj+1(s)]2 ds

}
. (84)

From (47) and in a similar manner as in (40) we have

n
[ (n − L)!

n!
ζ (j, nπn(s)) − ζ̄ (j, π (s))

]2 ≤ κ12{(πn
j (s))2 + n[ζ̄ (j, πn(s)) − ζ̄ (j, π (s))]2}

≤ κ13

{
(πn

j (s))2 + n
k−1∑
i1=0

L−i1∑
i2=1

Rj,i1,i2 (πn(s), π (s))2
}
,

where Rj,i1,i2 is as in (35). By (67) and the Cauchy–Schwarz inequality we now have

nRj,i1,i2 (πn(s), π (s))2 ≤ κ14

[
(Xn

j (s))2 + πj(s)

( ∞∑
m=0

|Xn
m(s)|

)2]

≤ κ14

[
(Xn

j (s))2 + πj(s)

( ∞∑
m=0

1

m2

) ∞∑
m=0

m2(Xn
m(s))2

]
.

Therefore,

n
[ (n − L)!

n!
ζ (j, nπn(s)) − ζ̄ (j, π (s))

]2≤ κ15

{
(πn

j (s))2 + (Xn
j (s))2 + πj(s)

∞∑
m=0

m2(Xn
m(s))2

}
.

Combining this estimate with (72) and (84) yields

E

∞∑
j=0

j2(An,c
j (t))2 ≤ κ16E

{ ∫ t

0

∞∑
j=1

j2
[

(Xn
j−1(s))2 + (Xn

j (s))2 + (Xn
j+1(s))2

+ (πj(s) + πj−1(s))
∞∑

m=0

m2(Xn
m(s))2

]
ds

}
+ κ16

≤ κ17E

∫ t

0

(
1 +

∞∑
j=1

j2πj(s)

)( ∞∑
j=1

j2(Xn
j (s))2

)
ds + κ17. (85)

Additionally, it follows from (70) and (50) that

E sup
0≤t≤T

∞∑
j=0

j2Mn,c
j (t)2 ≤ κ ′

18E

∞∑
j=0

j2〈Mn,c
j 〉T ≤ κ18

∫ T

0

[
1 +E

∞∑
j=0

j2πn
j (s)

]
ds ≤ κ19.
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Therefore, from (17), (83), and (85), for all t ∈ [0, T],

E sup
0≤t≤T

∞∑
j=0

j2(Xn
j (t))2 ≤ κ20 + κ20

∫ T

0

(
1 +

∞∑
j=1

j2πj(t)

)
E sup

0≤s≤t

( ∞∑
j=1

j2(Xn
j (s))2

)
dt.

From (50) and Fatou’s lemma,
∫ T

0

∑∞
j=1 j2πj(s) ds < ∞, and, thus, by Gronwall’s lemma,

sup
n∈N

E sup
0≤t≤T

∞∑
j=0

j2(Xn
j (t))2 ≤ κ19 exp

[
κ20

∫ T

0

(
1 +

∞∑
j=1

j2πj(s)

)
ds

]
< ∞.

This proves (82) and verifies Theorem 3(b) for {Xn(t)}n∈N for each t ∈ [0, T]. Thus, {Xn(t)}n∈N
is a tight sequence of �2-valued random variables for every t ∈ [0, T].

We now show that condition (A) of Theorem 4 holds for {Xn}n∈N. Since Xn(t) = Xn(0) +
An,c(t) + Mn,c(t) and we have shown the condition is satisfied by {Mn,c}n∈N, it suffices to
show that the condition holds for {An,c}n∈N. Let T0, η, ε, θ > 0, T0 ≤ T − θ, and suppose that
{τn}n∈N is a family of stopping times such that τn ≤ T0. From the definition of An,c (cf. (24))
and (48), we have

‖An,c(τn + θ ) − An,c(τn)‖2 ≤
∫ τn+θ

τn

√
n‖F(πn(t)) − F(π (t))‖2 dt + κ21√

n
, (86)

where κ21 is independent of the choices of τn and T0. Fix n0 ∈N such that η − κ21/
√

n0 > 0
and let η′ = η − κ21/

√
n0. Recall κ7 and κ8 introduced in (78) and (79), and Bn

M introduced
below (74). Select M ∈ (0, ∞) large enough that M > κ7 ∨ κ8 and (74) holds. Then, for all
n ≥ n0,

P

{∥∥∥∥
∫ τn+θ

τn

√
n[F(πn(t)) − F(π (t))] dt

∥∥∥∥
2
> η′

}

≤ P

{∥∥∥∥
∫ τn+θ

τn

√
n[F(πn(t)) − F(π (t))] dt

∥∥∥∥
2
> η′, Bn

M

}
+ P

{
sup

0≤t≤T

∞∑
j=0

jπn
j (t) > M

}

≤ P

{∥∥∥∥
∫ τn+θ

τn

√
n[F(πn(t)) − F(π (t))] dt

∥∥∥∥
2
> η′, Bn

M

}
+ ε

2
. (87)

It follows from the Lipschitz property of F proved in Lemma 4 that

P

{ ∫ τn+θ

τn

√
n‖F(πn(t)) − F(π (t))]‖2 dt > η′, Bn

M

}

≤ P

{
C(M)

∫ τn+θ

τn

‖Xn(t)‖2 dt > η′, Bn
M

}
. (88)

Recall from (80) that, for some C̃(M) ∈ (0, ∞) on the set Bn
M ,

C(M) sup
0≤t≤T

‖Xn(t)‖2 ≤ C̃(M)

(
1 + sup

0≤t≤T
‖Mn,c(t)‖2

)
.
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Thus, from (88), Markov’s inequality, and (81), we have

P

{∫ τn+θ

τn

√
n‖F(πn(t)) − F(π (t))]‖2 dt > η′, Bn

M

}

≤ P

{
θ C̃(M)

(
1 + sup

0≤t≤T
‖Mn,c(t)‖2

)
> η′}

≤ θ C̃(M)(1 +E sup0≤t≤T ‖Mn,c(t)‖2)

η′

≤ θ C̃(M)κ22. (89)

Combining (87) and (89) gives, whenever θ ≤ δ,

sup
0≤θ≤δ

P

{∥∥∥∥
∫ τn+θ

τn

√
n[F(πn(t)) − F(π (t))] dt

∥∥∥∥
2
> η′

}
≤ C(M)κ22δ + ε

2
.

Selecting δ small enough that the first term on the right-hand side is less than ε/2 we have

sup
0≤θ≤δ

P

{∥∥∥∥
∫ τn+θ

τn

√
n[F(πn(t)) − F(π (t))] dt

∥∥∥∥
2
> η′

}
≤ ε

2
+ ε

2
= ε. (90)

Therefore, combining (86) and (90) gives

sup
n≥n0

sup
0≤θ≤δ

P{‖An,c(τn + θ ) − An,c(τn)‖2 > η} ≤ ε

which shows that condition (A) of Theorem 4 is satisfied for {An,c}n∈N. Therefore, as discussed
earlier, {Xn}n∈N is a tight sequence of D([0, T] : �2)-valued random variables and, thus,
{(Xn, Mn,c)}n∈N is a tight sequence of D([0, t] : (�2)2)-valued random variables.

Finally, the C-tightness of {(Xn, Mn,c)}n∈N is immediate from the estimate

jT (Xn) = jT (Mn,c) ≤ 2 + 2k√
n

, n ∈N,

and the fact that there are almost surely no simultaneous jumps, which follows as in the proof
of Proposition 3. �

5.3. Convergence

In this section we give the proofs of Proposition 2 and Theorem 2. Since we have shown
tightness of {(Xn, Mn,c)}n∈N in Section 5.2, all that remains in order to complete the proof of
Theorem 2 is to characterize the weak limit points of this sequence of processes. This will be
argued by showing that the limit point of any weakly convergent subsequence of {Xn}n∈N will
be a solution to SDE (11) and that uniqueness holds for (11) in an appropriate class, which
will also prove Proposition 2. We begin by establishing a uniform integrability property for the
sequence {Mn,c}n∈N.

Lemma 5. Suppose that {πn}n∈N satisfies the conditions of Proposition 4. Then the sequence
{sup0≤t≤T

∑∞
j=0 |Mn,c

j (t)|2}n∈N is uniformly integrable.
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Proof. It follows from the Cauchy–Schwarz and Burkholder–Davis–Gundy inequalities
that

sup
n∈N

E sup
0≤t≤T

( ∞∑
j=0

|Mn,c
j (t)|2

)2

≤ sup
n∈N

( ∞∑
m=0

1

m2

) ∞∑
j=0

E sup
0≤t≤T

j2|Mn,c
j (t)|4

≤ κ1 sup
n∈N

∞∑
j=0

j2E[Mn,c
j ](T)2. (91)

Recalling the definition of Mn from (22), for each j, E[Mn,c
j ](T)2 can be written as

E[Mn,c
j ](T)2 =E

{∑
�∈�

1

n
〈ej, Δ�Δ

T
� ej〉2N�

(
nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds

)

+ 1

n

[
Dj

(
k
∫ T

0
nπn

j (s) ds

)
+ Dj+1

(
k
∫ T

0
nπn

j+1(s) ds

)]}2

.

We now consider the first term in the expectation on the right-hand side of the above equation
corresponding to the stream of incoming jobs assigned to queues of length j,

E

( ∑
�∈�

1

n
〈ej, Δ�Δ

T
� ej〉2N�

(
nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds

))2

.

First, consider the diagonal terms in the above sum. It follows from Fubini’s theorem that

E

∑
�∈�

1

n2
〈ej, Δ�Δ

T
� ej〉2

2N�

(
nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds

)2

≤E

∑
�∈�

1

n2
〈ej, Δ�Δ

T
� ej〉2

2

((
nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds

)2

+ nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds

)
. (92)

The fact that πn
i (s) ∈ [0, 1] and (31) imply that, for all i ∈N0,

λ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds ≤ λnL(n

L

)
∫ T

0

∞∏
i=0

πn
i (s)ρi(�)

ρi(�)!
ds ≤ λnL(n

L

) T ≤ κ3. (93)
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Combining (93), (92), (27), and (32) yields

E

∑
�∈�

1

n2
〈ej, Δ�Δ

T
� ej〉2

2N�

(
nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds

)2

≤ λ(κ3 + 1)(n
L

) E

∫ T

0
Z(j, nπn(s)) ds

≤ λ(κ3 + 1)cZnL(n
L

) E

∫ T

0
(πn

j−1(s) + πn
j (s)) ds

≤ κ4E

∫ T

0
(πn

j−1(s) + πn
j (s)) ds. (94)

We now analyze the cross terms from the sum. It follows from the independence of N� and N�′
that

E

∑
�,�′∈�

� �=�′

1

n2
〈ej, Δ�Δ

T
� ej〉2〈ej, Δ�′ΔT

�′ej〉2N�

(
nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds

)

× N�′
(

nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�′)

)
ds

)

=E

∑
�,�′∈�

� �=�′

1

n2
〈ej, Δ�Δ

T
� ej〉2〈ej, Δ�′ΔT

�′ej〉2

(
nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds

)

×
(

nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�′)

)
ds

)
. (95)

Combining (95), (27), and (32) yields

E

∑
�,�′∈�

� �=�′

1

n2
〈ej, Δ�Δ

T
� ej〉2〈ej, Δ�′ΔT

�′ej〉2N�

(
nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�)

)
ds

)

× N�′
(

nλ(n
L

)
∫ T

0

∞∏
i=0

(
nπn

i (s)

ρi(�′)

)
ds

)

≤E
λ2

((n
L

))2

∫ T

0
Z(j, nπn(s))2 ds

≤E
λ2n2L

((n
L

))2

∫ T

0
(πn

j−1(s) + πn
j (s))2 ds

≤ κ5E

∫ T

0
(πn

j−1(s) + πn
j (s)) ds. (96)
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Similarly,

E

(
1

n

[
Dj

(
k
∫ T

0
nπn

j (s) ds

)
+ Dj+1

(
k
∫ T

0
nπn

j+1(s) ds

)])2

≤ κ6E

∫ T

0
[πn

j (s) + πn
j+1(s)] ds.

Combining this estimate with (94), (96), and (50) gives

sup
n∈N

∞∑
j=0

j2E[Mn,c
j ](T)2 ≤ κ7 sup

n∈N
E

∫ T

0

∞∑
j=1

j2(πn
j−1(s) + πn

j (s) + πn
j+1(s)) ds < ∞,

which, in view of (91), gives the desired uniform integrability. �
The following lemma together with (82) shows that any weak limit point X of {Xn}n∈N

satisfies X(t) ∈ �̃2 for all t ∈ [0, T] almost surely.

Lemma 6. Let zn and z be D([0, T] : �2)-valued random variables such that

sup
0≤t≤T

‖zn(t) − z(t)‖2 → 0 in probability as n → ∞.

Suppose that supn∈N E sup0≤t≤T
∑∞

j=0 j2(zn
j (t))2 < ∞. Then sup0≤t≤T

∑∞
j=0 j2(zj(t))2 <

∞ almost surely and sup0≤t≤T | ∑∞
j=0 zn

j (t) − ∑∞
j=0 zj(t)| → 0 in probability.

Proof. Let κ = supn∈N E sup0≤t≤T
∑∞

j=0 j2[zn
j (t)]2. Note that

sup
n∈N

E sup
0≤t≤T

∞∑
j=0

|zn
j (t)| ≤

( ∞∑
j=1

1

j2

)1/2√
κ < ∞.

Also, by Fatou’s lemma, E sup0≤t≤T
∑∞

j=0 j2(zj(t))2 ≤ κ and so we have sup0≤t≤T
∑∞

j=0|zj(t)| < ∞ almost surely as well. Now

E

[
sup

0≤t≤T

∣∣∣∣
∞∑

j=0

zn
j (t) −

∞∑
j=0

zj(t)

∣∣∣∣ ∧1

]

≤E

[
sup

0≤t≤T

∣∣∣∣
m∑

j=0

zn
j (t) −

m∑
j=0

zj(t)

∣∣∣∣ ∧1

]
+E

[
sup

0≤t≤T

∣∣∣∣
∞∑

j=m+1

zn
j (t)

∣∣∣∣ ∧1

]

+E

[
sup

0≤t≤T

∣∣∣∣
∞∑

j=m+1

zj(t)

∣∣∣∣ ∧1

]

≡ Tm
1 (n) + Tm

2 (n) + Tm
3 (n).

Then, for κ1 ∈ (0, ∞),

(Tm
2 (n))2 ≤

( ∞∑
j=m+1

1

j2

)
κ1 and (Tm

3 (n))2 ≤
( ∞∑

j=m+1

1

j2

)
κ1.

The result now follows on first sending n → ∞ and then m → ∞. �
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The following result that shows that �(t) is a trace class operator will be useful in
characterizing the martingale term in the limiting diffusion. Note that, from definition (14),
�(t) is a nonnegative operator.

Lemma 7. For each t ∈ [0, T], �(t) is a nonnegative trace class operator. Denote by a(t) the
nonnegative square root of �(t). Then

∫ T
0 ‖a(s)‖2

HS ds < ∞.

Proof. We first show that �(t) is a trace class operator. Since �(t) is nonnegative (and hence
self-adjoint), it suffices to show that

∞∑
j=0

〈ej, �(s)ej〉2 < ∞.

Using an argument similar to that used in the derivation of (30), we can write 〈ej, �(s)ej〉2 as

〈ej, �(s)ej〉2 = λL! Z̄(j, π (s)) + k(πj(s) + πj+1(s)), (97)

where the definition of Z̄ is analogous to Z, given as

Z̄(j, π (s))

:=
k−2∑
i1=0

(
∑j−1

m=0 πm(s))i1

i1!

L−i1∑
i2=0

πj−1(s)i2

i2!

L−i1−i2∑
i3=0

[i2 ∧ (k − i1)+ − i3 ∧ (k − i1 − i2)+]2

× πj(s)i3

i3!

(
∑∞

m=j+1 πm(s))L−i1−i2−i3

(L − i1 − i2 − i3)!
. (98)

For completeness, the proof of (97) is provided in Appendix A.5. Using similar arguments as
in (32) and (61), it is easy to see that there exists cZ̄ ∈ (0, ∞) such that, for all j ∈N0,

Z̄(j, π (s)) ≤ cZ̄(πj−1(s) + πj(s)). (99)

Once again, details on this step are given in Appendix A.5. From (97) and (99), it follows that
there exists a κ1 ∈ (0, M) such that

∞∑
j=0

〈ej, �(t)ej〉2 ≤ κ2

∞∑
j=0

[πj−1(t) + πj(t) + πj+1(t)] ≤ 3κ1.

Therefore, �(t) is a trace class operator. Finally, note that

∫ T

0
‖a(s)‖2

HS ds =
∫ T

0

∞∑
j=0

〈a(s)ej, a(s)ej〉2 ds =
∫ T

0

∞∑
j=0

〈ej, �(s)ej〉2 ds ≤ 3κ1T,

which completes the proof. �
We now proceed with the proofs of Proposition 2 and Theorem 2.

Proof of Proposition 2. The existence of an (X(t))0≤t≤T as in the statement of Proposition 2
will be proved as part of Theorem 2. We now consider the second statement in Proposition 2,
and let (X(t))0≤t≤T and (X̃(t))0≤t≤T be two {Ft}-adapted processes solving (12) with sample
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paths in C([0, T] : �2) such that X(t) ∈ �̃2 and X̃(t) ∈ �̃2 for all t almost surely. In order to
show that X(t) = X̃(t) for all t ∈ [0, T] almost surely, it suffices to show the following Lipschitz
property on G. There exists a C ∈ (0, ∞) such that, for all x, x̃ ∈ �̃2,

sup
0≤t≤T

‖G(x, π (t)) − G(x̃, π (t))‖2 ≤ C‖x − x̃‖2. (100)

Note that from (4), (5), and (16), for j ∈N0 and (x, r) ∈ �̃2 × S ,

Gj(x, r) = λL! [ξ1
j−1(x, r) − ξ1

j (x, r) + ξ2
j−1(x, r) − ξ2

j (x, r) + ξ3
j−1(x, r) − ξ3

j (x, r)] + kξ4
j (x),

(101)

where

ξ1
j (x, r) :=

k−1∑
i1=0

i1
(
∑j−1

m=0 rm)i1−1

i1!

L−i1∑
i2=1

[i2 ∧ (k − i1)]
(rj)i2

i2!

(
∑∞

m=j+1 rm)L−i1−i2

(L − i1 − i2)!

j−1∑
m=0

xm,

ξ2
j (x, r) :=

k−1∑
i1=0

(
∑j−1

m=0 rm)i1

i1!

L−i1∑
i2=1

i2[i2 ∧ (k − i1)]
(rj)i2−1

i2!

(
∑∞

m=j+1 rm)L−i1−i2

(L − i1 − i2)!
xj,

ξ3
j (x, r) :=

k−1∑
i1=0

(
∑j−1

m=0 rm)i1

i1!

L−i1∑
i2=1

(L − i1 − i2)[i2 ∧ (k − i1)]
(rj)i2

i2!

(∑∞
m=j+1 rm

)L−i1−i2−1

(L − i1 − i2)!

×
∞∑

m=j+1

xm,

and

ξ4
j (x) = [xj+1 − xj].

Also, let ξ i := (ξ i
j )∞j=0 for i = 1, 2, 3, 4. Using the triangle inequality, it suffices to show that

(100) holds with G replaced with ξ i, i = 1, 2, 3, 4. Since π (t) ∈ S for all t ∈ [0, T],

sup
0≤t≤T

‖ξ1(x, π (t)) − ξ1(x̃, π (t))‖2
2 ≤ κ ′

1 sup
0≤t≤T

∞∑
j=0

πj(t)
2
[ j−1∑

m=0

xm −
j−1∑
m=0

x̃m

]2

≤ κ ′
1 sup

0≤t≤T

∞∑
j=0

jπj(t)‖x − x̃‖2
2

≤ κ1‖x − x̃‖2
2, (102)

where the last inequality is from (79). Also,

sup
0≤t≤T

‖ξ2(x, π (t)) − ξ2(x̃, π (t))‖2
2 ≤ κ2

∞∑
j=0

[xj − x̃j]
2 = κ2‖x − x̃‖2

2.
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Using the fact that
∑∞

m=0 xm = ∑∞
m=0 x̃m = 0 and the calculation in (102),

sup
0≤t≤T

‖ξ3(x, π (t)) − ξ3(x̃, π (t))‖2
2 ≤ κ ′

3 sup
0≤t≤T

∞∑
j=0

πj(t)
2
[ ∞∑

m=j+1

xm −
∞∑

m=j+1

x̃m

]2

= κ ′
3 sup

0≤t≤T

∞∑
j=0

πj(t)
2
[ j∑

m=0

x̃m −
j∑

m=0

xm

]2

≤ κ3‖x − x̃‖2
2.

Finally,

‖ξ4(x) − ξ4(x̃)‖2
2 ≤

∞∑
j=0

[xj − x̃j]
2 +

∞∑
j=0

[xj+1 − x̃j+1]2 ≤ 2‖x − x̃‖2
2.

Combining the above Lipschitz estimates for ξ i, i = 1, 2, 3, 4, we have (100) and the result
follows. �

We now proceed to the proof of Theorem 2.

Proof of Theorem 2. From Proposition 4, {(Xn, Mn,c)}n∈N is C-tight in D([0, T] : (�2)2).
Suppose that (X, Mc) is a weak limit of a subsequence of {(Xn, Mn,c)}n∈N (also indexed
by {n}) given on some probability space (�,F , P). Let m ∈N, and let H : (�2 × �2)m →R

be a bounded and continuous function. For s ≤ t ≤ T and 0 ≤ t1 ≤ · · · ≤ tm ≤ s, we let ξn
i =

(Xn(ti), Mn,c(ti)) and ξi = (X(ti), Mc(ti)). Then, for all j ∈N0,

EH(ξ1, . . . , ξm)[Mc
j (t) − Mc

j (s)] = lim
n→∞ EH(ξn

1 , . . . , ξn
m)[Mn,c

j (t) − Mn,c
j (s)] = 0,

where the first equality follows from the uniform integrability property proved in Lemma 5 and
the second equality follows from the fact that Mn,c is a martingale for each n ∈N. It follows
that Mc is an {Ft}-martingale, where Ft = σ {X(s), Mc(s), s ≤ t}.

As was shown in (60),

〈Mn,c
i , Mn,c

j 〉(t) = n〈Mn
i , Mn

j 〉(t)

= λ(n
L

)
∫ t

0
Z(i, j, nπn(s)) ds − k

∫ t

0
1{i=j+1}πn

i (s) ds

− k
∫ t

0
1{i+1=j}πn

j (s) ds + k
∫ t

0
1{i=j}(πn

j (s) + πn
j+1(s)) ds (103)

(see (30) and (58) for the definition of Z). Using similar arguments as in (58), we have the
estimate

〈ei, �(s)ej〉2 = λL! Z̄(i, j, π(s)) − k1{i+1=j}πj(s) − k1{i=j+1}πi(s) + k1{i=j}(πj(s) + πj+1(s)),
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where, for i < j,

Z̄(i, j, π (s)) :=
k−2∑
i1=0

(
∑i−2

m=0 πm(s))i1

i1!

k−i1−1∑
i2=0

πi−1(s)i2

i2!

k−i1−i2−1∑
i3=0

[i2 − i3]
πi(s)i3

i3!

×
k−i1−i2−i3−1∑

i4=0

(
∑j−2

m=i+1 πm(s))i4

i4!

L−∑4
n=1 in∑

i5=0

πj−1(s)i51{j>i+1}
i5!

×
L−∑5

n=1 in∑
i6=0

[
(1{j=i+1}(i3 − i5) + i5) ∧

(
k −

4∑
n=1

in

)
+
− i6 ∧

(
k −

5∑
n=1

in

)
+

]

× πj(s)i6

i6!

(
∑∞

m=j+1 πm(s))L−∑6
n=1 in

(L − ∑6
n=1 in)!

for i > j, Z̄(i, j, π (s)) := Z̄(j, i, π (s)), and, for i = j, Z̄(j, j, π (s)) := Z̄(j, π (s)), where Z̄(j, r) is
defined in (98). Using arguments similar to those used in (46) and (47), we can write

∣∣∣∣Z(i, j, nπn(s)) − n!

(n − L)!
Z̄(i, j, πn(s))

∣∣∣∣ ≤ κ1nL−1.

From this, (97), (103), and the fact that πn → π in probability, it follows that

sup
0≤t≤T

∣∣∣∣〈Mn,c
i (t), Mn,c

j (t)〉 −
∫ t

0
〈ei, �(s)ej〉2 ds

∣∣∣∣ → 0

in probability. A similar argument as in Lemma 5 shows that {〈Mn,c
i , Mn,c

j 〉t}n∈N is uniformly
integrable for each t ∈ [0, T] and i, j ∈N0. Applying the above convergence and uniform
integrability properties,

EH(ξ1, . . . , ξm)[〈Mc
i , Mc

j 〉t − 〈Mc
i , Mc

j 〉s −
∫ t

s
〈ei, �(u)ej〉2 du]

= lim
n→∞ EH(ξn

1 , . . . , ξn
m)

[
〈Mn,c

i , Mn,c
j 〉t − 〈Mn,c

i , Mn,c
j 〉s −

∫ t

s
〈ei, �(u)ej〉2 du

]

= 0.

Also, from Lemma 5 and Fatou’s lemma, E sup0≤t≤T
∑∞

j=0 |Mc
j (t)|2 < ∞. Thus,

Mc := (Mc
j )j∈N0 is a collection of square-integrable {Ft}-martingales with

〈Mc
i , Mc

j 〉(t) =
∫ t

0
〈ei, �(s)ej〉2 ds, t ∈ [0, T].

From Theorem 8.2 of [10], it now follows that there is an �2-cylindrical Brownian motion
{(Wt(h))0≤t≤T : h ∈ �2} on some extension (�̄, F̄ , P̄, {F̄t}) of the filtered probability space
(�,F , P, {Ft}) such that

Mc(t) =
∫ t

0
a(s) dW(s). (104)

https://doi.org/10.1017/apr.2019.3 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.3


Diffusion approximations for cloud storage systems 79

Recall the representation of Xn in terms of An,c and Mn,c from (23). We now argue
that, together with Xn and Mn,c, An,c( · ) converges to

∫ ·
0 G(X(s), π (s)) ds in D([0, T] : �2) in

distribution as n → ∞ (along the chosen subsequence). The definition of An,c in (24) and the
estimate in (48) imply that

sup
0≤t≤T

∥∥∥∥An,c(t) −
∫ t

0

√
n[F(πn(s)) − F(π (s))] ds

∥∥∥∥
2
≤ κ2√

n
. (105)

For r, r̃ ∈ S such that (r − r̃) ∈ �̃2, the ith component of F(r) − F(r̃) can be written as

[F(r) − F(r̃)]i =
∫ 1

0

∂

∂u
Fi(ru + (1 − u)r̃) du

=
∫ 1

0
Gi((r − r̃), ru + (1 − u)r̃) du

= Gi(r − r̃, r̃) +
∫ 1

0
[Gi((r − r̃, ru + (1 − u)r̃) − Gi(r − r̃, r̃)] du.

Therefore, observing that cGi(x, r) = Gi(cx, r) for c ∈R and (x, r) ∈ �̃2 × S, and noting from
(82) that Xn(s) ∈ �̃2 for every s ∈ [0, T] almost surely, we can write

√
n[F(πn(s)) − F(π (s))]i = Gi(X

n(s), π (s)) + Rn
i (s), (106)

where

Rn
i (s) =

∫ 1

0
[Gi(X

n(s), πn(s)u + (1 − u)π (s)) − Gi(X
n(s), π (s))] du.

Thus,

√
n[F(πn(s)) − F(π (s))] = G(Xn(s), π (s)) + Rn(s),

where Rn(s) := (Rn
i (s))i∈N0 . We now show that

∫ T
0 ‖Rn(s)‖2 ds → 0 in probability as n → ∞.

Since
∑j

m=0Xn
m(s) = −∑∞

m=j+1Xn
m(s), it follows from (36) that, for r, r̃ ∈ S ,

‖ξ i(Xn(s), r) − ξ i(Xn(s), r̃)‖2
2

≤ κ ′
3

∞∑
j=0

( j∑
m=0

|Xn
m(s)|

)2[
[r − r̃]2

j + r̃j

( j−1∑
i=0

[r − r̃]i

)2

+ r̃j

( ∞∑
i=j+1

[r − r̃]i

)2]

≤ κ3

( ∞∑
j=0

j2|Xn
j (s)|2

) ∞∑
j=0

[jr̃j‖r − r̃‖2
2 + [r − r̃]2

j ]

for i = 1, 2, 3. The triangle inequality, (101), and the observation that sup0≤s≤T
∑∞

j=0
jπj(s) < ∞ (see (79)) then imply that

‖G(Xn(s), πn(s)u + (1 − u)π (s)) − G(Xn(s), π(s))‖2
2 ≤ κ3

( ∞∑
j=0

j2|Xn
j (s)|2

)
‖πn(s) − π(s)‖2

2.
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Since sup0≤s≤T ‖πn(s) − π (s)‖2 → 0 in probability and, from (82), supn∈N E sup0≤s≤T∑∞
j=0 j2|Xn

j (s)|2 < ∞, it follows that

sup
0≤u≤1

sup
0≤s≤T

‖G(Xn(s), πn(s)u + (1 − u)π (s)) − G(Xn(s), π (s))‖2 → 0

in probability as n → ∞, and, thus,

∫ T

0
‖Rn(s)‖2 ds → 0 in probability. (107)

In view of (105), (106), and (107), it now suffices to show that, along the subsequence,

(
Xn, Mn,c,

∫ ·

0
G(Xn(s), π (s)) ds

)
⇒

(
X, M̄,

∫ ·

0
G(X(s), π (s)) ds

)

in D([0, T] : (�2)3). By appealing to the Skorokhod representation theorem we can assume
without loss of generality that (Xn, Mn,c) converges almost surely in D([0, T] : (�2)2) to (X, M̄).
From (82) and Fatou’s lemma we also have

sup
0≤t≤T

∞∑
j=0

j2(Xj(t))
2 < ∞ almost surely.

Also, since
∑∞

j=0Xn
j (t) = 0 for all t ∈ [0, T] and n ∈N, by Lemma 6 and (82), we have∑∞

j=0Xj(t) = 0 for all t ∈ [0, T] almost surely as well. It then follows that Xn(t), X(t) ∈ �̃2 for
all t ∈ [0, T] almost surely for all n ∈N. From the Lipschitz property in (100), it now follows
that, as n → ∞,

∫ T

0
‖G(Xn(s), π (s)) − G(X(s), π (s))‖2 ds ≤ C

∫ T

0
‖Xn(s) − X(s)‖2 ds → 0,

which proves the desired convergence. Together with (23) and representation (104), it follows
that the limit point (X, Mc) satisfies

X(t) = x0 +
∫ t

0
G(X(s), π (s)) ds +

∫ t

0
a(s) dW(s)

almost surely for all t ∈ [0, T]. Since X(t) ∈ �̃2 for all t ∈ [0, T] almost surely, this in particular
proves the existence part of Proposition 2. Finally, the uniqueness part of Proposition 2 (which
was established earlier in this section) now says that Xn converges in distribution along the full
sequence to the unique weak solution of (11) with values in �̃2. The result follows. �

6. Numerical results

In this section we present some simulation results comparing the prelimit n-server system
with results of the corresponding law of large number and central limit approximations. We
consider a system with n = 10 000 servers. For all combinations of L and k in the set {(L, k) ∈
N×N : 2 ≤ L ≤ 5, k < L}, we simulate 1000 realizations of both the n-server system and the
diffusion approximation given in Theorem 2 using parameters T = 10, λ = 0.9, and c = 1.
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TABLE 1: Empty queue coverage rate.

k
L (%)

2 3 4 5

1 95.1 96.3 97.7 95.9
2 – 96.5 95.3 95.6
3 – – 96.8 97.5
4 – – – 97.1

TABLE 2: Large queue coverage rate.

L (%)
k

2 3 4 5

1 97.1 100 100 100
2 94.9 95.6 100
3 – – 96.7 96.4
4 – – – 95.0

TABLE 3: Mean queue length coverage rate.

L (%)
k

2 3 4 5

1 95.2 94.8 94.8 95.4
2 94.7 92.9 94.9
3 – – 96.8 95.1
4 – – – 94.8

Note that, since the limiting processes are infinite-dimensional, we must truncate to a finite-
dimensional approximation in order to perform simulations. In our numerical approximations,
we truncate to the first 20 coordinates. All computations were performed in MATLAB R©.
A numerical ODE solver (ode45) was used to compute the ODE corresponding to the law
of large number limit. The limit diffusion was simulated using Euler’s method with step sizes
of 0.1. The realizations of the diffusion were used to create 95% confidence intervals for the
following metrics at time T; the number of empty queues, the number of ‘large’ queues (queues
with more than 5 jobs), and the mean queue length. The coverage rates (i.e. the proportion of
the n-server system simulations which fall within the 95% confidence interval estimated by the
diffusion approximation) can be found in Tables 1, 2, and 3. The diffusion approximation based
confidence intervals for the first and third cases contain approximately 95% of the n-server
simulated observations, as desired. However, the results given in Table 2 appear to be less
satisfactory. This is not surprising since the events corresponding to large queues are rare, and,
thus, their probabilities are harder to estimate.
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TABLE 4: Average simulation times for (a) the finite system and (b) the limit diffusion.

L
k

2 3 4 5

1 22.6 23.8 25.4 19.2
2 – 39.1 38.0 33.1
3 – – 44.5 45.5
4 – – – 57.4

(a)

L
k

2 3 4 5

1 0.29 0.50 0.79 0.79
2 – 2.4 3.7 4.6
3 – – 6.0 10.0
4 – – – 16.3

(b)

(a) Large queues (i.e. length at least 5)

95% confidence interval for large queues
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FIGURE 1: Empirical 95% confidence intervals obtained from the diffusion approximation, effectively
capturing the fluctuations around the LLN ODE

In Figure 1 we present two graphs showing that the diffusion approximation captures the
fluctuations of the underlying processes around the limiting ODE given via the LLN. We
consider the supermarket model, i.e. (L, k) = (2, 1) with λ = 0.9, T = 50, c = 1, and n = 10 000
servers. Figures 1(a) and 1(b) present the results for large queues (i.e. queues of length at least
5) and empty queues, respectively. In each, the solid line represents the numerical solution to
the limiting ODE, the dashed line represents the a single simulation of the underlying system,
and the dotted lines represent empirical 95% confidence intervals obtained from the diffusion
approximation. Namely, 1000 realizations of the diffusion were computed and the 2.5 and 97.5
percentiles were taken at each time point. The figures show that both the LLN and diffusion
approximation are doing a good job of approximating the dynamics of the finite system over
time.

The goal of this paper was to develop reliable approximations of the n-server system that
are much quicker to simulate. In Table 4 we present the average time (in seconds) required to
simulate one trial of the finite system and diffusion approximation. As is seen from these tables,
the time required to simulate the diffusion approximations is substantially smaller than for
the underlying n-server jump-Markov process. In addition, increasing n will further increase
the amount of time required to simulate the n-server system. Indeed, n = 10 000 is a small
number compared to the size of typical data centers and server farms that have machines
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which number in the hundreds of thousands. The point at which it becomes quicker to use
the diffusion approximation will depend heavily on the system parameters. Indeed, simulation
results indicate that this point occurs in the mid-hundreds for (L, k) = (2, 1) while it is in
the mid-thousands for (L, k) = (5, 4). A further caveat is that this number will depend on the
efficiency of implementations of both the numerical approximation and the simulation scheme.

Appendix A. Auxiliary results

A.1. Criterion for tightness of Hilbert-valued random variables

The following theorem gives sufficient conditions for tightness of a sequence of random
variables taking values in a (possibly infinite-dimensional) Hilbert space. For a proof see
Corollary 2.3.1 of [21].

Theorem 3. Let H be a separable Hilbert space with inner product 〈·, ·〉 and complete
orthonormal system {ei}∞i=1. Suppose that {Yn}n∈N is a sequence of H-valued random variables
satisfying the following conditions:

(a) for each n0 ∈N, limA→∞ supn∈N P(max1≤i≤n0〈Yn, ei〉2 > A) = 0;

(b) for every δ > 0, limn0→∞ supn∈N P(
∑∞

j=n0
〈Yn, ej〉2 > δ) = 0.

Then {Yn}n∈N is a tight sequence of H-valued random variables.

A.2. Criterion for tightness of RCLL processes

The following theorem gives a criterion for tightness of a sequence of RCLL processes with
values in a Polish space; see [26].

Theorem 4. Let S be a Polish space and let {Yn}n∈N be a sequence of D([0, T] : S)-valued
{Fn

t }-semimartingales satisfying the following conditions:

(T1) {Yn(t)}n∈N is tight for every t in a dense subset of [0, T];

(A) for each ε > 0, η > 0, and T0 ∈ [0, T − ε], there exists a δ > 0 and n0 with the property
that, for every collection of stopping times (τn)n∈N (τn being an Fn

t := σ {Yn(s) : s ≤
t}-stopping time) with τn ≤ T0,

sup
n≥n0

sup
0≤θ≤δ

P{d(Yn(τn + θ ), Yn(τn)) ≥ η} ≤ ε,

where d(·, ·) is the distance on S.

Then {Yn}n∈N is tight in D([0, T] : S).

A.3. Hilbert–Schmidt and trace class operators

Here we collect some elementary facts about trace class and Hilbert–Schmidt operators. We
refer the reader to [34] for details. For a separable Hilbert space H (with inner product 〈·, ·〉
and norm ‖ · ‖), let L(H) be the collection of all bounded linear operators on H. An operator
A ∈L(H) is called nonnegative if 〈u, Au〉 ≥ 0 for all u ∈H. Such an operator is called trace
class if, for a complete orthonormal system (CONS) {ei} in H,

∑
i〈Aei, ei〉 < ∞ in which case

the quantity is finite (and is the same) for every CONS {ei}. An operator A ∈L(H) is called
Hilbert–Schmidt if there exists a CONS {ei} in H such that

∑
j〈Aej, Aej〉 = ∑

j ‖Aej‖2 < ∞. In
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that case, this quantity is the same for all CONS {ei} and its square root is called the Hilbert–
Schmidt norm of A, denoted as ‖A‖HS. For a nonnegative operator A ∈L(H), there is a unique
nonnegative B ∈L(H) referred to as the nonnegative square root of A such that B2 = A. If A is
a trace class operator then B is a Hilbert–Schmidt operator.

A.4. Cylindrical Brownian motion

A collection of continuous real stochastic processes {(Wt(h))0≤t≤T : h ∈ �2} given on a
filtered probability space (�,F , P, {Ft}) is called a �2-cylindrical Brownian motion if, for
every h ∈ �2, (Wt(h))0≤t≤T is a {Ft}-Brownian motion with variance ‖h‖2

2 and, for h, k ∈ �2,

〈W(h), W(k)〉t = 〈h, k〉2t, 0 ≤ t ≤ T .

For a measurable map a from [0, T] to the space of Hilbert–Schmidt operators from �2 to �2

such that
∫ T

0 ‖a(s)‖2
HS ds < ∞, we denote by

∫ t
0 a(s) dW(s) the �2-valued martingale defined as

the limit of

n∑
i=1

n∑
j=1

φi

∫ t

0
〈φi, a(s)φj〉2 dWs(φj) as n → ∞,

where {φi}i∈N is a CONS in �2. We refer the reader to Chapter 4 of [10] regarding the fact that
the limit exists and is independent of the choice of the CONS.

A.5. Proofs of (97) and (99)

Recalling the definition of �(s) in (14) we can write

〈ej, �(s)ej〉2 = λL!
∑
�∈�

〈ej, Δ�Δ
T
� ej〉2

∞∏
i=0

πi(t)ρi(�)

ρi(�)!

+ k
∞∑

i=1

〈ej, (ei−1 − ei)(ei−1 − ei)
Tej〉2πi(t). (A.1)

Recalling from (28) that, for � ∈ �j(i1, i2, i3), (29) holds, we have from the decomposition,

� =
k−2⋃
i1=0

L−i1⋃
i2=0

L−i1−i2⋃
i3=0

�j(i1, i2, i3),

and

λL!
∑
�∈�

〈ej, Δ�Δ
T
� ej〉2

∞∏
i=0

πi(t)ρi(�)

ρi(�)!

= λ

k−2∑
i1=0

L−i1∑
i2=0

L−i1−i2∑
i3=0

∑
�∈�j(i1,i2,i3)

〈ej, Δ�Δ
T
� ej〉2

(
L

i1, i2, i3, L − i1 − i2 − i3

)

×
(

i1
ρ1(�), . . . , ρj−2(�)

)(
L − i1 − i2 − i3

ρj+1(�), ρj+2(�), . . .

) ∞∏
i=0

πi(t)
ρi(�).
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= λ

k−2∑
i1=0

L−i1∑
i2=0

L−i1−i2∑
i3=0

(
L

i1, i2, i3, L − i1 − i2 − i3

)

×
( j−2∑

m=0

πm(s)

)i1
πj−1(s)i2πj(s)i3

( ∞∑
m=j+1

πm(s)

)L−i1−i2−i3

× [i2 ∧ (k − i1)+ − i3 ∧ (k − i1 − i2)+]2

= Z̄(j, π (s)),

where the second equality follows from the multinomial theorem. Futhermore, from (25), the
second sum in (A.1) is

k
∞∑

i=1

〈ej, (ei−1 − ei)(ei−1 − ei)
Tej〉2πi(t) = k(πj(t) + πj+1(t)).

Combining the last two equations with (A.1) gives (97).
For (99), note that

Z̄(j, π (s)) ≤
k−1∑
i1=0

(
∑j−2

m=0 πm(s))i1

i1!

L−i1∑
i2=0

(πj−1(s))i2

i2!

×
L−i1−i2∑

i3=0

k21{i2∨i3>0}
(πj(s))i3

i3!

(
∑∞

m=j+1 πm(s))L−i1−i2−i3

(L − i1 − i2 − i3)!

≤
k−1∑
i1=0

L−i1∑
i2=0

L−i1−i2∑
i3=0

k21{i2∨i3>0}(πj−1(s))i2 (πj(s))i3

≤ cZ̄(πj−1(s) + πj(s))

for some cZ̄ ∈ (0, ∞), where the second inequality follows from the fact that all factorials are
greater than 1 and π is a probability measure. This proves (99).
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