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We introduce a new variant to prove the regularity of solutions to transport
equations of the Vlasov type. Our approach is mainly based on the proof of
propagation of velocity moments, as in a previous paper by Lions and Perthame. We
combine it with moment lemmas which assert that, locally in space, velocity
moments can be gained from the kinetic equation itself. We apply our theory to two
cases. First, to the Vlasov{Poisson system, and we solve a long-standing conjecture,
namely the propagation of any moment larger than two. Next, to the Vlasov{Stokes
system, where we prove the same result for fairly singular kernels.

1. Introduction

We consider the regularity of solutions to Vlasov systems. These are nonlinear trans-
port equations arising as the mean ¯eld limits of many-particle systems and are
classical models arising, for instance, in plasma physics, astrophysics, ®uid dynam-
ics, etc. Due to the nonlinearity, which arises because the force ­ eld acting on the
particles depends on the density repartition of the particles themselves, these mod-
els exhibit a rather complex behaviour. A particular example of this complexity is
the di¯ culty to prove the regularity of solutions with smooth initial data.

We will describe our method on two examples of such systems. The ­ rst example
is the famous Vlasov{Poisson (VP) system. It describes the evolution of a density
f (x; v; t) of particles which, at time t > 0 and position x 2 R3, move with velocity
v 2 R3 and interact through self-consistent Coulombic or Newtonian forces. It reads

@

@t
f + v ¢ rxf + divv(Ff ) = 0;

f (x; v; 0) = f0(x; v) > 0;

9
=

; (1.1)

with the force ­ eld

F (t; x) = § x

jxj3 ? » (t; x); (1.2)
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and, as usual, from the microscopic density f , we compute the macroscopic density
» and the current j with the formulae

» (x; t) =

Z

R3

f (x; v; t) dv; j(x; t) =

Z

R3

vf (x; v; t) dv: (1.3)

The second example is the Vlasov{Stokes (VS) system, which describes the evo-
lution of particles interacting through a ®uid described by a Stokes ®ow (see [10]
for another VS system and [14] for the derivation of the system below from an
interacting system of particles),

@

@t
f + v ¢ rxf + divv [(F v)f ] = 0;

f (x; v; 0) = f0(x; v) > 0;

9
=

; (1.4)

F (x; t) = A(x) ? j(x; t): (1.5)

Here, the matrix A 2 C 1 (R3 n 0) is assumed to satisfy two properties. The ­ rst
property gives a limitation on the possible singularity at the origin and the second
expresses the dissipation of the kinetic energy of the system (a natural condition
since it is realized for the particle system)

jA(x)j 6 C

jxj­ ; 0 < ­ < 2; (1.6)

Z

R3

j(x) ¢ A(x) ? j(x) dx 6 0 8 j 2 (D(R3))3: (1.7)

For these two models, we are interested in the propagation of v-moments

Mk(t) = sup
06s6t

Z

R6

jvjkf (x; v; s) dv dx: (1.8)

Classical energy bounds (see [8, 13]) show that the second moment is a priori
bounded,

M2(t) 6 C(kf 0k 1 ; M2(0)); (1.9)

where we denote by ku(¢)kp the Lp norm of the function u in its arguments x or
(x; v), depending on the context.

Here, we prove the propagation of v-moments for k larger than two. As it is
well known, this is a de­ nitive step towards regularity of solutions because of the
classical interpolation inequalities

k» (¢; t)k(k + 3)=3 6 Ckf(¢; ¢; t)kk=(3+ k)
1 Mk(t)3=(3+ k);

kj(¢; t)k(k + 3)=4 6 Ckf(¢; ¢; t)k(k 1)=(3+ k)
1 Mk(t)4=(3+ k):

)

(1.10)

https://doi.org/10.1017/S0308210500000676 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000676


Regularity in Vlasov systems 1261

These inequalities, combined with the Young (or generalized Young) inequalities,
furnish regularity for the force ­ elds F ,

®®®®
x

jxj3 ? »

®®®®
r

6 Ckf (t)kk=(k + 3)
1 Mk(t)3=(3+ k); r = 3

³
3 + k

6 k

´
;

kA ? jkr 6 Ckf (t)k(k 1)=(k + 3)
1 Mk(t)4=(3+ k);

1

r
= 1

3 ­ +
1 k

k + 3
:

9
>>=

>>;
(1.11)

For k large enough (k > 6 for the VP case, k > 3(­ + 1)=(3 ­ ) for the VS case), a
control of Mk therefore yields an L 1 bound on F and thus allows us to prove the
propagation of the (x; v) support of f , or of its derivatives, and thus to deduce its
regularity.

Let us recall that the issue of the regularity of large solutions to nonlinear trans-
port equations is a classical question still unresolved for several three-dimensional
models (e.g. Vlasov{Maxwell, Boltzmann). Several theories have been proposed
for understanding the mechanisms that provide regularity. For the VP system,
a method based on directly proving regularity through characteristics has been
proposed by Pfa¬elmoser [20], Batt [1{3], Batt and Rein [6], Schae¬er [21] and
Horst [11,12]. The case of two-dimensional (or two dimensions and a half) Vlasov{
Maxwell systems is treated in [9]. For the BGK model of the Boltzmann equa-
tion, existence of smooth solutions follows from the control of propagation of the
L 1 (R6) norms of jvjf (¢; ¢; t) (see [19]). For the Vlasov{Poisson Fokker{Planck sys-
tem, still another theory has been developed by Bouchut [4,5].

Here, we will follow an approach based on proving the propagation of the velocity
moments Mk, as in a previous paper by Lions and Perthame [15]. We combine it
with moment lemmas which assert that, locally in space, velocity moments can
be gained from the kinetic equation itself (see [7,16,17] or lemma 2.2 below). This
induces a di¯ culty in getting back global regularity in space despite the local aspect
of the moment lemmas. We solve it using, indirectly, the propagation of x-moments
of f . This method allows us to simplify the method of [15] and to improve the results
in the sense that we can prove the propagation of lower moments, since we show
it on the VP system, and also to handle stronger singularities in the nonlinearity,
since we illustrate it on the VS system. Namely, for the VP system, we prove the
following result.

Theorem 1.1 (VP system). We assume that f 0 2 L 1 (R6) and that, for some
k0 > 2, we have

Z

R6

(1 + jvjk0 + jxj1=3+ 0)f0(x; v) dv dx < +1; (1.12)

» 0(x; t) :=

Z

R3

f 0(x vt; v) dv 2 L1
loc(0; +1; L3(k0 + 3)=(k0 + 6)(R3)): (1.13)

Then there exists a weak solution to (1.1) which satis¯es, for all t; T > 0,

f (x; v; t) > 0; kf (¢; ¢; t)k 1 6 kf 0(¢; ¢)k 1 ; (1.14)
Z

R6

(1 + jvjk0 + jxj1=3+ 0)f (x; v; t) dv dx 2 L 1 (0; T ); (1.15)
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F 2 L1(0; T ; Lk0 + 4 0(R3)); (1.16)

» 2 L 1 (0; T ; L(k0 + 3)=3(R3)): (1.17)

Remark 1.2.

(1) Throughout this paper, when we use notation like u 2 Lp+ 0 we mean that
there exists an " > 0 such that u 2 Lp+ ".

(2) Notice that in the above theorem, we solve a question asked in [15]. Namely,
to prove the propagation of a v-moment of order larger than two, while in [15]
it is fundamental to control initially moments larger than three.

(3) Also, the regularity of the force ­ eld can be completed as follows

F 2 L 1 (0; T ; Lr(R3));

r = 3

³
k + 3

6 k

´
for 2 < k < 6; r = 1 for k > 6:

(4) An improvement is still possible. A careful application of the same proof shows
that the assumption f 0 2 L 1 can be relaxed to some Lp.

Turning now to the VS system, we prove the following result. It is the ­ rst regu-
larity result for this system. The di¯ culty here comes from the lower Lp regularity
available on j compared to » , and thus on the corresponding force F .

Theorem 1.3 (VS system). We assume that 0 < ­ < 8
5 , f 0 2 L 1 (R6) and that,

for some k0 > 2, we have

Z

R6

(1 + jvjk0 + jxj2)f 0(x; v) dv dx < +1; (1.18)

J0(x; t) :=

Z

R3

jvjf 0(x vt; v) dv 2 L1
loc(0; +1; Lp(R3));

1

p
6 k0 + 5

k0 + 4
1
3 ­ :

(1.19)

Then there exists a weak solution to (1.4) which satis¯es, for all t; T > 0,

f(x; v; t) > 0; kf (¢; ¢; t)k 1 6 e3tkf 0(¢; ¢)k 1 ; (1.20)
Z

R6

(1 + jvjk0 + jxj2)f (x; v; t) dv dx 2 L 1 (0; T ); (1.21)

F 2 L1(0; T ; Lk0 + 4 0(R3)); (1.22)

j 2 L 1 (0; T ; L(k0 + 3)=4(R3)): (1.23)

Remark 1.4.

(1) Improving the possible singularity of the matrix A, i.e. the upper value of ­ ,
is an open question.
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(2) Again, the regularity of the force ­ eld can be completed as follows

F 2 L 1 (0; T ; Lr(R3));

8
>><

>>:

1

r
= 1

3 ­ +
1 k

k + 3
for 2 < k < 3

³
­ + 1

3 ­

´
;

r = 1 for k > 3

³
­ + 1

3 ­

´
:

(1.24)

The end of this paper explains the proof of these results. In a second section,
we give the main lemmas and show the strategy of proof. The most fundamental
estimate is speci­ c to each case and its proof is detailed in separate sections.

2. Proofs of the main theorems

In this section we are concerned with the proofs of the main theorems 1.1 and 1.3.
Before going to the new ingredients, we recall the general method and some neces-
sary preliminary lemmas valid for both the VP and VS systems.

First of all, as is usual to prove these theorems, we consider a sequence of classical
solutions to a regularized system (with regularized positive convolution operators
which de­ ne the forces, this is possible in truncating for high frequencies), with reg-
ularized and compactly supported initial data. It is enough to prove the estimates
of the theorems for these solutions and then to pass to the limit on the regular-
ization. Secondly, for such solutions, the positivity and L 1 bounds stated in the
theorems are true thanks to the maximum principle, as well as the kinetic energy
bounds (see [8] or [13]), which can be kept by appropriate regularizations of the
force kernel. The only di¯ cult point is then to prove the propagation of moments
higher than two. This proof follows the same lines for the two systems. But the form
of the VS system makes it longer due to the friction term which, however, does not
add any speci­ c di¯ culty. Therefore, we restrict our proof to the simpli­ ed system
where we neglect the friction term, i.e. we only consider (1.1) with the two cases of
forces F .

In the following, we set

K 1 = kf 0k 1 ; (2.1)

and we recall some technical lemmas.

2.1. Preliminary lemmas

The ­ rst lemma concerns the propagation of moments for solutions to (1.1).

Lemma 2.1. Let k > 0. Then, for 0 6 t 6 T , the moments Mk(t) de¯ned in (1.8)
satisfy

Mk(t) 6 C(T; K 1 )

³
Mk(0) +

³Z t

0

kF (s)kk + 3 ds
ḱ + 3´

: (2.2)
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This lemma is well known and can be proven easily using, explicitly, the Vlasov
equation and the inequality

Z

R3

jvjk 1f (x; v; t) dv 6 C(K 1 )

³Z

R3

jvjkf (x; v; t) dv
(́k + 2)=(k + 3)

; (2.3)

which generalizes (1.10).
The second result is a so-called moment lemma about the gain of velocity

moments by integration in time. It was ­ rst used in [17] to solve the BGK model.
A more direct and systematic approach was devised in [16]. The possibility to use
it in order to control macroscopic quantities was proved in [7].

Lemma 2.2. Let ¬ > 0, k > 1 and t > 0 and let f be a smooth solution to the
Vlasov equations (1.1), kF (¢)kk + 3 2 L1(0; T ) and Mk(t) < 1. Then the inequality

Z t

0

Z

R6

jvjk + 1

1 + jxj1+ ¬
f (x; v; s) dx dv ds

6 C(K 1 )

µ
Mk(t) +

Z t

0

kF (s)kk + 3 ds Mk(t)(k + 2)=(k + 3)

¶
(2.4)

holds for some constant which also depends upon t, k and ¬ .

Proof. We multiply the Vlasov equation by

jvjk 1 x ¢ v

(1 + jxj ¬ )1=¬
; ¬ > 0; k > 1; (2.5)

and integrate over R3
x £ R3

v £ (0; t). After integration by parts and using (2.3), this
yields

Z t

0

Z

R6

jvjk + 1

(1 + jxj¬ )1=¬

³
1

jxj ¬ 2(x ¢ v)2

(1 + jxj¬ )jvj2

´
f (x; v; s) dx dv ds

6
Z

R6

jvjk(f(x; v; t) + f(x; v; 0)) dv dx

+ k

Z t

0

Z

R3
x

jF (x; s)j
³Z

R3
v

jvjk 1f (x; v; s) dv

´
dx ds

6 2

³
Mk(t) + C(K 1 ; k)

Z t

0

kF (s)kk + 3 ds Mk(t)(k + 2)=(k + 3)

´
: (2.6)

Finally, we remark that

Z t

0

Z

R6

jvjk + 1

1 + jxj1+ ¬
f (x; v; s) dx dv ds

6 C( ¬ )

Z t

0

Z

R6

jvjk + 1

(1 + jxj ¬ )1=¬

³
1

jxj ¬ 2(x ¢ v)2

(1 + jxj¬ )jvj2

´
f (x; v; s) dx dv ds;

which concludes the proof.
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2.2. Another formula for the force ¯elds

The following result is the main new ingredient in the proofs of the theorems. It
improves the method introduced in the analysis of the VP system by [15] in order
to use the moment lemma 2.2. Since the exponents coming in for the two systems
are quite di¬erent, we state the result separately.

Lemma 2.3 (VP system). Smooth solutions to the regularized VP system (1.1) (see
above) satisfy

Z T

0

kF (t)kr dt 6 C(T )

Z T

0

k » 0(t)kp dt

+ C1

³Z T

0

Z

R6

jvjk + 1

1 + jxj1+ 0
f (x; v; t) dx dv dt

1́=r

(2.7)

for all 3 < r < k + 4 and with 1=r = 1=p 1
3 and where C1 also depends on the

parameters k, r and K 1 , the initial energy M2(0) and
R

R6 jxj1=3+ 0f 0(x; v) dx dv:

Lemma 2.4 (VS system). Smooth solutions to the regularized VS system (1.4) (see
above) satisfy

Z T

0

kF (t)kr dt 6 C(T )

Z T

0

kJ0(t)kp dt

+ C2

Z T

0

Z

R6

³
jvjk + 1

1 + jxj1+ 0
f (x; v; t) dx dv dt

1́=r

(2.8)

for all r such that
1

k + 1
+ 1

3
(­ 2) <

1

r
< 1

3
(­ 1)

and with 1=r > 1=p + 1
3(­ 3). Here, C2 also depends on the parameters ­ , p, k,

r and K 1 , the initial kinetic energy M2(0) and
Z

R6

jxj2f0(x; v) dx dv:

The proofs of these lemmas are given in the next section. With these three types
of lemmas, we are now able to prove our main theorem.

2.3. Concluding the proofs of the main theorems

2.3.1. The Vlasov{Poisson case

We combine lemmas 2.3 and 2.2 so as to get

Z T

0

kF (t)kr dt 6 C

Z T

0

k » 0(t)kp dt

+ C

³
Mk(T ) + Mk(t)(k + 2)=(k + 3)

Z T

0

kF (t)kk + 3 dt
1́=r

; (2.9)

with 3 < r < k + 4 and 1=r = 1=p 1
3 .
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The assumption on » 0 in theorem 1.1 allows us to control the integral of k » 0kp for
all corresponding r between 3 and k0+3 included. We already know that the kinetic
energy M2 is bounded in time and thus we can apply the result (2.9) for k = 2
(recall we already control F in L1

t Lp
x for all p < 5 thanks to (2.7)), thus obtaining

that the integral in time of the Lr norm of F is bounded for any 3 < r < 6.
As a consequence, using lemma 2.1, we immediately propagate every moment

2 < k < 3, thus concluding the theorem for k0 < 3. Then, for k0 > 3, we repeat
the above argument using any k < 3, which allows, with (2.9), to reach r < 7 and
therefore, using lemma 2.1 again, to propagate any moments up to k < 4, thus
concluding the theorem for k0 < 4. One can easily see that each repetition of these
two steps allows to gain one unit on k for the propagation of moments, and we are
thus able to reach any value k0.

2.3.2. The Vlasov{Stokes case

The proof for VS system follows the same lines. We use lemmas 2.4 and 2.2 to
obtain

Z T

0

kF (t)kr dt 6 C

Z T

0

kJ0kp dt

+ C

³
Mk(T ) + Mk(t)(k + 2)=(k + 3)

Z T

0

kF (t)kk + 3 dt
1́=r

; (2.10)

with
3

­ 1
< r <

³
1

k + 1
1
3(2 ­ )

´ 1

and
1

p
<

1

r
+ 1

3 (3 ­ ):

As with the VP case, the assumption on J0 in the theorem is enough to upper
bound the J0 term in (2.10), and this for all for 3=(­ 1) < r 6 k0 + 3. First,
we use, from the energy, that M2 is bounded, and from (2.8), we deduce that F is
bounded in L1

t Lp
x for all p < 5. And thus, from the inequality (2.10), we get that

F belongs to L1
t Lr

x, r being given by the above formula, and, using lemma 2.1, we
propagate every moment of order k0 less than r 3, i.e.

1

k0 + 3
>

1

k + 1
1
3
(2 ­ ): (2.11)

For k = 2, this allows us to control moments with k0 > 2 (this explains the
limitation ­ < 8

5 ). Moreover, iterating the argument, for k > 2, k0 can be chosen
strictly larger (with a uniform gap) than k because the Lk + 3

x bound on F is then
automatic. And we can repeat this procedure until we propagate all the desired
moments thus concluding the proof.

3. Estimates on the force ¯elds

In this section, we prove the fundamental lemmas 2.3 and 2.4 stated in the previous
section, which allow us to obtain a better Lr estimate on the force ­ eld, working
in L1 in time rather than L 1 , and using some kind of localization in space. The
exponents arising in the proof depend on the speci­ c form of the force ­ elds and
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therefore di¬er somewhat in the two cases of Poisson and Stokes ®ows. The proofs
are thus presented in two subsections.

They both use the following common expression for the Vlasov equation (recall
that we neglect the friction term in the Stokes case to simplify the proofs)

@

@t
f + v ¢ rxf + divv(FL f ) = divv(FS f ); (3.1)

where the long-range part of the force is given by FL = F S + F and the short-range
part of the force is de­ ned for the VP system as FS := § » ? ( À Rx=jxj3) and for the
VS system as F S := j ? ( À RA), where À R is a smooth cut-o¬ function of the ball of
radius R, which vanishes for jxj > 2R, and such that À R(x) = 1 for jxj 6 R. We
also use a representation of the solution related to the well-de­ ned characteristics

d

dt
X(t) = V (t); X(0) = x;

d

dt
V (t) = FL (t; X(t)); V (0) = v:

9
>=

>;
(3.2)

We now choose the truncation parameter R large enough compared to the ­ nal time
T , so that these characteristics and their partial Jacobians behave like X(t) = x vt,
V (t) = v, which are obtained for FL = 0, i.e. the limit as R ! 1. For the sake of
simplicity, the proofs below are written for these limiting characteristics, but the
arguments hold for those given by (3.2) as it was checked in [15], the numerous
changes of variables only require to control Jacobians of @X=@x, @X=@v, etc.

With this simpli­ cation, we have

f (x; v; t) = f 0(x vt; v) +

Z t

0

(divv FS f )(x vs; v; t s) ds

= f 0(x vt; v) +

Z t

0

divv(FS )f (x vs; v; t s) ds

+

Z t

0

divx(F S )f(x vs; v; t s)s ds: (3.3)

3.1. The Vlasov{Poisson system

Now we restrict our attention to the VP case. From the above formula, we deduce

» (x; t) =

Z

R3

f0(x vt; v) dv +

Z t

0

Z

R3

divx(F S f )(x vs; v; t s)s ds dv:

Using the fact that F wins a full derivative compared to » in Lp norms, we deduce,
from the Calderon{Zygmung theory (see [22]), with 1=r = 1=p 1

3 and recalling
the de­ nition of » 0 in theorem 1.1,

kF (¢; t)kr 6 k» 0(¢; t)kp +

Z t

0

®®®®
Z

R3

(F S f )(x vs; v; t s) dv

®®®®
r

s ds: (3.4)
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We now treat the second Lr(R3
x) norm term in a new way. We write, x being ­ xed,

using Holder’s inequality in dv,

­­­­
Z

(F S f )(x vs; v; t s) dv

­­­­

6 kFS (x vs; t s)j(1 + jx vsj1=3+ 0)k3=2+ 0

£ kf (x vs; v; t s)(1 + jx vsj1=3+ 0) 1k3 0

6 K2=3 0
1

1

s2 0
kF S (¢; t s)j(1 + j ¢ j1=3+ 0)k3=2+ 0

£
³Z

R3

f (x vs; v; t s) £ (1 + jx vsj1+ 0) 1 dv
1́=3 0

6 K2=3+ (k + 1)=(k + 4) 0
1

1

s2 0
kF S (¢; t s)(1 + j ¢ j1=3+ 0)k3=2+ 0

£
³Z

R3

jvjk + 1f (x vs; v; t s) £ (1 + jx vsj1+ 0) 1 dv
1́=4+ k 0

:

Here, we have used a variant of the general interpolation inequality (2.3). We now
conclude, using r = 4 + k 0, that

kF (¢; t)kr 6 k » 0(¢; t)kp + C(K 1 )

Z t

0

kF S (¢; t s)(1 + j ¢ j1=3+ 0)k3=2+ 0

£
³Z

R6

jvjk + 1f (x vs; v; t s)(1 + jx vsj1+ 0) 1 dv dx
1́=r

ds

s1 0
:

(3.5)

After integrating in time and changing the variable dx = d(x vs), we obtain
lemma 2.3. Indeed, the mass and energy propagations imply that

jFS (x; ¼ )j(1 + jxj¬ )j 6 C

Z

jx yj6R

» (y; ¼ )

jx yj2 (1 + jx yj ¬ + jyj¬ )

6 C» ?
1

jxj2 + C» ?
1

jxj2 ¬
+ C

³
jxj¬ » ?

1

jxj2

´
:

For 0 6 ¬ < 2, each of these terms is bounded in L1 \ Ls for some s > 3
2 thanks to

the a priori estimates » 2 L 1 (0; 1; L1) (mass conservation), » 2 L 1 (0; 1; L5=3)
(energy conservation and (1.10)), and jxj ¬ » 2 L 1 (0; 1; L1 \ Ls) (propagation of
x-moments of order less than two and interpolation with » 2 L 1 (0; 1; L5=3)).

3.2. The Vlasov{Stokes system

The proof of lemma 2.4 for the VS system follows the same ideas as for the
VP system. First of all, in place of (3.2) we use the characteristics de­ ned by the
regular force term, which is the sum of the friction term and the long-range part of
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the force F (t; x), to ­ nd the estimate (see the beginning of x 3 for notation)

Z T

0

kF (¢; t)kr dt 6
Z T

0

kJ0(t)kp dt +

Z T

0

®®®®
Z t

0

Z

R3

FS f (x vs; v; t s) dv ds

®®®®
a

dt

+

Z T

0

®®®®
Z t

0

s

Z

R3

jvjjFS jf (x vs; v; t s) dv ds

®®®®
b

dt; (3.6)

with the relations

1

r
=

1

a
+ 1

3
­ 1 =

1

b
+ 1

3
(­ 2): (3.7)

We denote

I =

Z T

0

®®®®
Z t

0

Z

R3

F S f (x vs; v; t s) dv ds

®®®®
a

dt;

II =

Z T

0

®®®®
Z t

0

s

Z

R3

jvjjF S jf (x vs; v; t s) dv ds

®®®®
b

dt:

9
>>>=

>>>;
(3.8)

In the next two subsections, we explain how we can upper bound these two terms.

3.2.1. Bound on the term I in the inequality (3.6)

We write

I 6
Z T

0

®®®®
Z t

0

kF S (¢¢)kLc
v

£ kf(¢¢)kLc?
v

ds

®®®®
La

x

dt; (3.9)

where c? is the conjugate exponent of c and with

kF S (x vs; t s)kLc
v

= s 3=ckF S (¢; t s)kLc
x

6 Cs 3=c for c > 3: (3.10)

Indeed, we have that the conservation of the kinetic energy implies that j belongs
to L1 \ L5=4(R3) and hence we already know that F S belongs to L3=­ \ L15=(5­ 3).
For 1 6 ­ < 8

5
, we have 15

8
< 3=­ 6 3 and 3 < 15=(5­ 3) 6 15

2
. Therefore, the

force term F S always belongs to L 1 ([0; T ]; Lc(R3)) for some c > 3.
Next we recall that

Z

R3

f (x vs; v; t s) dv 6 CK 1

³Z
jvj ¯ f (x vs; v; t s) dv

3́=(3+ ¯ )

: (3.11)

Combining the last two inequalities, for any 3
2 < a < 5

2 ,

I 6 C

Z T

0

®®®®
Z t

0

s 3=ckf (x vs; v; t s)kLc?
v

ds

®®®®
La

x

dt

6 C

Z T

0

Z t

0

s 3=c

®®®®
³Z

f (x vs; v; t s) dv
1́=c? ®®®®

La
x

ds dt

6 C

Z T

0

Z t

0

s 3=c

³Z
jvj ¯ f dv dx

1́=a

ds dt

6 C; (3.12)
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since we have 1
3
(3 + ¯ ) = a=c, and so ¯ is less than two, for a is less than 5

2
and c?

is less than 3
2 but as close to 3

2 as we want.
Since the system conserves mass and kinetic energy, it also conserves all the

moments between zero and two in velocity. Eventually, we have proved that
Z T

0

k
Z t

0

Z

R3

jFS jf (x vs; v; t s) dv dska dt

is bounded for all a between 3
2 and 5

2 included. Using relation (3.7), this can be
used for any r between 3=(­ 1) and +1, since ­ is less than 9

5 (we work with ­
less than 8

5).

3.2.2. Bound on the term II in the estimate (3.6)

First, we perform the same manipulation as in the previous section,

II 6
Z T

0

®®®®
Z t

0

®®®® (1 + jx vsj)F S (x vs; t s)kLd
v

£
®®®®

vf (x vs; v; t s)

1 + jx vsj

®®®®
Ld?

v

ds

®®®®
Lb

x

dt: (3.13)

We choose for d a number slightly larger than 3
2 and we bound the term with FS

by s 3=dk(1 + jxj)FS (x; t s)kd and decompose this last term as

j(1 + jxj)F S (x; t s)j

6
Z

(1 + jxj) À R(x y)

jx yj­ jj(y)j dy

6
Z

À R(x y)

jx yj­ j(y) dy + C

Z
À R(x y)

jx yj­ 1
j(y) dy + C

Z
À R(x y)

jx yj­ jyjj(y) dy:

(3.14)

For ­ < 2, the ­ rst two terms on the right-hand side are obviously in Ld for some
d larger than 3

2 but as close as we wish. To bound the last term in Ld, we need an
L1 estimate on jyjj(y), which is given by the following lemma.

Lemma 3.1. If the kinetic energy is bounded, then (1.4) conserves all the moments
in Z

jxj ¯ » (x; t) dx

for ¯ between zero and two.

Proof. This lemma is a straightforward consequence of the simple relation

d

dt

Z

R3

(1 + jxj) ¯ » (x; t) dx =

Z

R6

¯ (1 + jxj) ¯ 1 x

jxj ¢ vf (x; v; t) dx dv: (3.15)

Thanks to this lemma, we know that
Z

jxj2 » (x; t) dx
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belongs to L 1 ([0; T ]) and thus

Z
jxj ¢ jj(x; t)j dx

also because of the inequality
Z

R3

jxj ¢ jj(x; t)j dx 6 1

2

Z

R6

jvj2f dx dv +
1

2

Z

R3

jxj2 » (x; t) dx: (3.16)

As a consequence, for any d greater than 3
2

but close enough, we have

k(1 + jx vsj)F S (¢¢)kLd
v

2 L 1 ([0; T ] £ R3): (3.17)

We immediately deduce that

II 6 C

Z T

0

Z t

0

s1 3=d

®®®®
vf (x vs; v; t s)

1 + jx vsj

®®®®
Lb

x(Ld?
v )

ds dt

6 C

Z T

0

Z t

0

s1 3=d

®®®®
³Z

jvjd?

f (x vs; v; t s)

(1 + jx vsj)d? dv
1́=d? ®®®®

b

ds dt; (3.18)

using the inequality

Z

R3

jvj¬ f (x vs; v; t s)

(1 + jx vsj) ¯
dv 6 C

³Z

R3

jvj ® f (¢¢)
(1 + jx vsj) ¯

dv
(́3+ ¬ )=(3+ ® )

: (3.19)

Then recalling that d = 3
2 + 0, if b is greater than d?, we ­ nd

II 6 C

Z T

0

Z t

0

s1 3=d

³Z

R6

jv j̄ f (x vs; v; t s)

(1 + jx vsj)d? dv dx
1́=b

ds dt

6 C

Z T

0

Z t

0

s1 3=d

³Z

R6

jv j̄ f (x; v; t s)

(1 + jxj)d? dv dx
1́=b

ds dt

6 C

Z T

0

Z T

s

s1 3=d

³Z

R6

jvj ¯ f (x; v; t s)

(1 + jxj)d? dv dx
1́=b

dt ds

6 ~C

Z T

0

³Z

R6

jv j̄ f(x; v; t)

(1 + jxj)d? dv dx
1́=b

dt

6 C0
³Z T

0

Z

R6

jvj ¯ f (x; v; t)

(1 + jxj)d? dv dx dt
1́=b

; (3.20)

with the relation d?=b = (3 + d?)=(3 + ¯ ). Since d? = 3 0, if we denote k = ¯ 1,
this implies

k = b 1 + 0: (3.21)

We can now conclude the proof. The result from x 3.2.1 is valid for r between
3=(­ 1) and +1, and the result from x 3.2.2 for b larger than 3 0, which means
r larger than 3=(­ 1) thanks to relation (3.7). Hence for r larger than 3=(­ 1),
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we can put together these two results and get

Z T

0

kF (¢; t)kr dt 6
Z T

0

kJ0kp dt + C

³
1 +

³Z T

0

Z

R6

jvjk + 1f(x; v; t)

(1 + jxj)d? dv dx dt
1́=b´

;

(3.22)

with

1

b
=

1

r
+ 1

3
(2 ­ ); k = b 1 + 0; (3.23)

which is exactly lemma 2.4.
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