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The gravito-inertial waves propagating over a shellular baroclinic flow inside a rotating
spherical shell are analysed using the Boussinesq approximation. The wave properties
are examined by computing paths of characteristics in the non-dissipative limit, and
by solving the full dissipative eigenvalue problem using a high-resolution spectral
method. Gravito-inertial waves are found to obey a mixed-type second-order operator
and to be often focused around short-period attractors of characteristics or trapped in
a wedge formed by turning surfaces and boundaries. We also find eigenmodes that
show a weak dependence with respect to viscosity and heat diffusion just like truly
regular modes. Some axisymmetric modes are found unstable and likely destabilized
by baroclinic instabilities. Similarly, some non-axisymmetric modes that meet a critical
layer (or corotation resonance) can turn unstable at sufficiently low diffusivities. In
all cases, the instability is driven by the differential rotation. For many modes of the
spectrum, neat power laws are found for the dependence of the damping rates with
diffusion coefficients, but the theoretical explanation for the exponent values remains
elusive in general. The eigenvalue spectrum turns out to be very rich and complex,
which lets us suppose an even richer and more complex spectrum for rotating stars
or planets that own a differential rotation driven by baroclinicity.

Key words: geophysical and geological flows, internal waves, rotating flows

1. Introduction
Stars of mass above 2.5 solar masses (2.5M�), also known as early type stars,

are basically made of a central convective core (where nuclear reactions take place)
and a radiative envelope. When the star is rapidly rotating, as it is often the case
for this type of stars, the radiative envelope is differentially rotating as a result of
the baroclinic torque that comes from the stable stratification in the envelope (Zahn
1992; Rieutord 2006). Besides, the envelope is the seat of oscillations driven by the
so-called κ-mechanism (Zhevakin 1963; Unno et al. 1989). This mechanism is a
consequence of the variations of heat conductivity with temperature that make, in
some places, hotter material less conductive (see Gastine & Dintrans 2008). Heat
conduction in stars being due to the diffusion of photons, it is therefore controlled
by the opacity of the medium. Opacity varies rapidly with temperature in regions
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where some abundant element changes its ionization degree. Most frequently, regions
of the transition between ionization states of hydrogen or helium are the drivers
of the κ-mechanism. These κ-driven oscillations have been observed in many stars.
Astrophysicists have classified these stars into various families, such as δ Scuti stars,
slowly pulsating B-stars, β Cephei stars etc. This latter family are main sequence
(in-core hydrogen burning) stars of mass approximately 9 M�. They usually rotate
quickly but some of them are slow rotators. The analysis of the eigenmodes is much
easier for the slowly rotating β Cephei stars than for the fast rotating ones, and
astrophysicists have been able to identify the modes of oscillation (Dupret et al.
2004), which turn out to be gravity modes (where buoyancy is the restoring force).
However, the vast majority of β Cephei stars rotate rapidly and their oscillation
frequencies remain hardly interpreted because of a lack of tools to identify the
corresponding modes.

The foregoing problem comes from the fact that gravity modes are strongly
perturbed by the Coriolis acceleration. In fact they combine with inertial modes,
which are restored by the Coriolis force, and form a vast set of low-frequency modes,
usually called gravito-inertial modes, the properties of which are still poorly known.
Gravito-inertial modes deserve studies because they can inform us about the physical
conditions at the boundary between the convective core and the radiative envelope of
the stars, a location where mixing is important. Indeed, convective cores mix material
of the envelope through convective overshooting (e.g. Maeder 2009), a phenomenon
that crucially impacts the lifetime of this type of star. Hence, gravito-inertial modes
offer a precious window on the core of massive stars.

Beside the possibility of observing stellar interiors (e.g. Mathis, Neiner & Tran
Minh 2014), gravito-inertial modes are also thought to play an important role in
the dissipation and momentum transfer processes that are associated with the tidal
interaction between stars (Witte & Savonije 1999), between stars and planets (Ogilvie
2014) or between planets and their satellites (for the example of Saturn, see Lainey
et al. 2015). For instance, the fate of Jupiter-like planets on close-in orbits around
fast rotating early type stars is a main concern for our understanding of the evolution
of planetary systems. The tidal interaction between the star and the planet is strongly
influenced by the excitation of gravito-inertial modes. This interaction determines
the long-term evolution of a planet’s orbital elements (Ogilvie 2014), this evolution
and the associated time scales are still poorly known. Determining the oscillations’
properties may also help constrain models of the interior of the planet itself (Fuller
2014), by determining the presence and the location of stably stratified fluid layers,
for instance. Gravito-inertial modes are also thought to play a role in the generation
and evolution of vortices in stably stratified protoplanetary disks (Marcus et al. 2013,
2015).

As alluded to above, the propagation and dissipation properties of gravito-inertial
modes are still poorly understood. As shown by early work (Friedlander 1982, 1987),
these waves are controlled by a mixed-type operator: oscillatory solutions (i.e. modes)
may be supported in only part of the shell. Dintrans, Rieutord & Valdettaro (1999)
have shown that modes may be singular with an amplitude focused around an attractor
of characteristics. Indeed, Dintrans et al. (1999) have shown that characteristics of
the hyperbolic region, where waves propagate, often tend to be focused, either along
a periodic orbit or in a wedge formed by the boundaries and by the turning surfaces,
which separate the hyperbolic and elliptic domains. These so-called attractors (Maas
& Lam 1995) appear as shear layers when viscosity is taken into account. They
systematically shape pure inertial modes (Rieutord, Georgeot & Valdettaro 2001;
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Baruteau & Rieutord 2013). The role of these singularities in shaping the spectrum
of a stellar envelope is not clear. However, in the studies that have focused on
gravito-inertial modes, the background rotation has always been taken as solid
body. In stellar envelopes the situation is not so simple since, as mentioned above,
stellar envelopes are pervaded by baroclinic flows (the so-called thermal wind in
geophysics), that impose a differential rotation. As shown by Baruteau & Rieutord
(2013), differential rotation may profoundly change the nature of oscillations at low
frequencies. Instabilities may arise, for instance, from critical layers where the phase
velocity of the waves equals that of the fluid, or from the poorly known axisymmetric,
baroclinic diffusive (ABCD) instability (Spruit & Knobloch 1984).

In the present work we investigate the properties of gravito-inertial modes in the
context of baroclinic stellar envelopes, but with a simplified model. The radiative
envelope of the star is modelled by a stably stratified rotating incompressible fluid
contained in a spherical shell. Thus compressibility is ignored and the Boussinesq
approximation is used, as in Rieutord (2006). In this set-up baroclinic flows are
axisymmetric and are the superposition of a differential rotation and a weak
meridional circulation. Despite these simplifications the study of the properties of
disturbances propagating over such a flow remains quite tricky, even if we can
use the equatorial symmetry of the set-up. Fortunately, we can further simplify the
background by using a result of Hypolite & Rieutord (2014) who have shown that
the differential rotation loses its latitude dependence and becomes ‘shellular’ (i.e.
Ω ≡ Ω(r) with r being the radial spherical coordinate), when no-slip boundary
conditions are used and the inviscid limit is taken. Such boundary conditions are
of course not realistic, but are worth using: they reduce the complexity of the
eigenvalue problem, while they allow us to keep the connection between the strength
of the stratification and the strength of the differential rotation. However, as far
as the disturbances are concerned, we impose that they match stress-free boundary
conditions. This is more realistic, less demanding numerically and less dissipative,
thus easing the detection of unstable modes.

Hence, our model, though quite simplified compared to a real stellar envelope,
retains the essential features that affect gravito-inertial waves: stratification, rotation,
spherical geometry and the coupling between stratification and differential rotation.
In the next section we shall give the mathematical formulation of this problem and
then focus on the properties of the governing operator and associated waves in the
non-dissipative limit (§ 3). The role of viscosity and heat diffusion will be investigated
in § 4. Conclusions and outlook on the astrophysical questions end the paper.

2. Formulation
2.1. Physical model

We consider a thermally stratified, differentially rotating viscous fluid inside a
spherical shell. The shell is located between radii ηR and R, with 0 6 η < 1. The
flows are described using the Boussinesq approximation, and the fluid is of constant
kinematic viscosity ν and thermal diffusivity κ .

The Navier–Stokes equation in an inertial frame reads

ρ

(
∂v

∂t
+ v · ∇v

)
=−∇P+ ρν∇2v + ρg, (2.1)

where v is the fluid’s velocity, P the pressure and ρ the density. We decompose all
quantities as x= x0 + x1, where x0 is the unperturbed background quantity and x1 the
associated disturbance such that |x1| � |x0|.
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In spherical coordinates (r, θ, φ), the background fluid’s velocity reads v0 =
r sin θΩ0(r)eφ , where Ω0(r) is the fluid’s angular velocity. Incompressibility implies
that g=−g0r/R, where g0 is the surface gravity. From the Boussinesq approximation
we get ρ1g0 = ρ0αg0T1r/R where α is the dilation coefficient and T1 the temperature
perturbation (see Chandrasekhar 1961).

Keeping only the linear terms, the Navier–Stokes equation now reads

∂v1

∂t
+Ω∂v1

∂φ
+ 2Ω × v1 + r sin θ (v1 · ∇Ω) eφ =− 1

ρ0
∇P1 + ν∇2v1 + αg0T1r, (2.2)

and the continuity equation simply becomes

∇ · v1 = 0. (2.3)

The heat equation reads

∂T
∂t
+ v · ∇T = κ∇2T +Q. (2.4)

We assume that heat sinks Q are uniformly distributed throughout the shell, so as
to impose a stable temperature gradient ∇T0 = βr/R where β is a positive constant
(Dintrans et al. 1999). Equation (2.4) becomes, once linearised,

∂T1

∂t
+Ω0

∂T1

∂φ
+ β

R
v1 · r= κ∇2T1. (2.5)

As anticipated in the introduction, and as will be detailed in § 2.2, our stratification
model yields a radially varying angular velocity Ω0(r). It allows us to use Ωs=Ω0(R)
as a frequency scale. We further use R to rescale lengths and βR to rescale
temperatures, and define three dimensionless parameters to rewrite the set of
equations:

N2 = αβg0

Ω2
s

, P = ν
κ
, E= ν

ΩsR2
, (2.6a−c)

which are respectively the dimensionless Brunt–Väisälä frequency squared, the Prandtl
number and the Ekman number.

We seek solutions to equations (2.2), (2.3) and (2.5) proportional to exp(λt+ imφ).
We denote by ω the imaginary part of λ, it is the wave frequency in the inertial
frame. From now on, we make use of p= P1/ρ0, the dimensionless reduced pressure
perturbation. Dropping the 0 and 1 subscripts, our non-dimensional set of equations
finally reads

(λ+ imΩ)v + 2Ω × v + r sin θ (v · ∇Ω) eφ =−∇p+ E∇2v +N2Tr, (2.7)
∇ · v = 0, (2.8)

(λ+ imΩ)T + rvr = E
P
1T. (2.9)
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Stress-free conditions No-slip conditions

m= 4,N2 = 1.5 τ =−2.623× 10−3, ω=−2.67162 τ =−2.705× 10−3, ω=−2.67155
m= 0,N2 = 0.45 τ =−1.777× 10−3, ω= 1.75431 τ =−1.833× 10−3, ω= 1.75433
m= 0,N2 = 2.6 τ =−1.572× 10−3, ω= 0.80413 τ =−2.226× 10−3, ω= 0.80434
m= 0;N2 = 2.3 τ =−8.884× 10−4, ω= 0.30613 τ =−1.393× 10−3, ω= 0.30730

TABLE 1. Eigenvalues computed for two different sets of boundary conditions for
P = 10−2 and E= 10−9, except for the last one which uses E= 10−10.

2.2. Boundary conditions and stratification
We study the problem of gravito-inertial modes over a differentially rotating
background flow. We impose a rotation profile that depends on the radial coordinate
r only, i.e. a shellular differential rotation. Such a profile has been used in all
one-dimensional (spherically symmetric) stellar models (e.g. Morel 1997; Paxton
et al. 2011), and we shall now explain its origin.

Rieutord (2006) has shown that, in the Boussinesq approximation, for any
Brunt–Väisälä frequency N (r), the steady flow resulting from the combined effects
of rotation and stratification has the following differential rotation profile:

δΩ =
∫ 1

r

N 2(r′)
r′

dr′ + F(s), (2.10)

where the scalar function F(s) is determined by the viscous boundary conditions.
Using no-slip boundary conditions on both the internal and external boundaries of
the shell, the F(s)-term vanishes when the Ekman number vanishes. In this limit a
purely radial differential rotation is easily computed from the Brunt–Väisälä frequency
profile in the shell (Hypolite & Rieutord 2014).

For the sake of simplicity, we therefore invoke no-slip boundary conditions for
our base flow, which allow us to relate the differential rotation to the Brunt–
Väisälä frequency with the following equation

Ω(r)= 1+ N2

2
(1− r2), (2.11)

where we assume that the non-dimensional Brunt–Väisälä frequency grows linearly
with the radial distance N (r)= N × r (as a consequence of the uniform distribution
of heat sinks, see Dintrans et al. 1999).

We note that no-slip boundary conditions may be used in stars to mimic interfaces
with turbulent layers, for instance near the core, where strong gradients of mean
molecular weight may limit the wave propagation (Knobloch & Spruit 1983), or
near the surface where a turbulent layer may appear because of mass loss (Rieutord
& Beth 2014). Interfaces between convective and radiative zones may also act as
‘walls’ limiting the wave propagation domain. No-slip boundary conditions can also
be used in some Jovian and Saturnian moons, where it is thought that a liquid ocean
is trapped between a solid core and an outer ice layer (Carr et al. 1998).

On top of this base flow, oscillations should meet the same boundary conditions.
However, Fotheringham & Hollerbach (1998) have shown that the impact of boundary
conditions on inertial eigenmodes is small. We confirm this result in the case
of gravito-inertial modes, as shown in table 1. As one would expect, stress-free
conditions for the velocity are slightly less dissipative, hence more permissive
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of possible instabilities. As they are also less demanding numerically, we choose
them to complete equations (2.7)–(2.9) along with fixed temperature conditions, i.e.
T(η)= T(1)= 0.

2.3. Range of parameters
In rotating stars, viscous forces are small, so that the Ekman and Prandtl numbers lie
in the following range (Rieutord 2008; Rieutord & Espinosa Lara 2013).

P ∼ 10−5, E∼ 10−15–10−9. (2.12a,b)

However, as it gets harder to resolve shear layers at low diffusivities, the lowest values
of the Ekman number are presently out of reach. The fully dissipative solutions of the
equations have thus been computed for values in the following range

P ∼ 10−2 − 1, E∼ 10−10–10−6. (2.13a,b)

We also choose N2 < 9 so as to limit the shellular differential rotation between the
core and the surface to Ωcore/Ωsurface < 5, as actually expected in main sequence
stars (Espinosa Lara & Rieutord 2013).

2.4. Stability of the flow
In a differentially rotating stratified fluid, several instabilities can set in. The two
relevant kinds in the astrophysical context are the baroclinic instabilities and the shear
instabilities.

2.4.1. Baroclinic instabilities
These instabilities emerge from the misalignment of the isobaric and isothermal

surfaces. At a given location, these surfaces form a wedge. If a fluid parcel is
displaced inside the wedge, it ends up in a colder environment, and buoyancy
pushes the parcel farther away from its initial position and amplifies the motion. The
interested reader is referred to the review by Zahn (1993) for more details.

For axisymmetric perturbations, the possible baroclinic instabilities are the so-called
Goldreich–Schubert–Fricke (GSF) instability (Goldreich & Schubert 1967) and the
axisymmetric baroclinic diffusive (ABCD) instability (Knobloch & Spruit 1983). Both
of them yield the same local instability criterion when the fluid is stably stratified,
differentially rotating and chemically homogeneous, namely

− 1
4 As
(
A2

s + A2
z

)
>PN2, (2.14)

where As and Az are related to the partial derivatives of the specific angular momentum
s2Ω through

As = 2Ω
s
∂

∂s

(
s2Ω

)
, Az = 2Ω

s
∂

∂z

(
s2Ω

)
. (2.15a,b)

In our case, equation (2.14) amounts to a generalized Rayleigh criterion on the
distribution of angular momentum. To assess whether our base flow is stable or not
with respect to these instabilities, we consider the shellular rotation profile given by
(2.11). We obtain

As = 4Ω2 − 2ΩN2s2, Az =−2ΩN2sz. (2.16a,b)
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For an inviscid fluid, the criterion (2.14) simply becomes the classical Rayleigh
criterion for the centrifugal instability As < 0 (Drazin & Reid 1981) which becomes
N2 > 2/(1− η2) in our model. Viscosity contributes to stabilizing the flow. To assess
whether this baroclinic instability may destabilize the flow, we identify the range
of parameters (N2, ω) for which the criterion (2.14) is expected to be met in the
propagation region of the shell (see § 3.1). Outside of this range, either there is
no unstable domain in the shell, or the instability domain is entirely inside the
evanescent region, pointing to an a priori stable configuration. Axisymmetric modes
with a non-vanishing amplitude in the unstable domain delineated by (2.14) may
therefore have a positive growth rate, as § 4 will show (e.g. figure 9).

Non-axisymmetric baroclinic instabilities are well studied in geophysics (Zahn
1993), and the local non-dissipative criterion yields

cos2 θ
r
ρ

∂

∂r

(
Ω2

N2
ρr
∂Ω2

∂r

)
>Ω2, (2.17)

which simplifies, using the Boussinesq approximation and equation (2.11), into

z2 >
1

6N2
. (2.18)

A non-axisymmetric baroclinic instability is therefore possible for N2 > 1/6, and the
modes can be destabilized in a polar region of the shell delimited by a horizontal
line. Keep in mind that this criterion does not take into account viscosity or thermal
dissipation, which are expected to stabilize the flow, as is the case for the ABCD
instability.

It is also important to note that these instability criteria are local and do not take
boundary conditions into account. Indeed, not only can boundary conditions damp the
instability, but also the predicted unstable zones may lie in the evanescent region of
the shell, and therefore have no impact on the mode propagation.

2.4.2. Shear instabilities
Shear instabilities may create turbulence in stellar radiation zones. The buoyancy

has a stabilizing effect, and the local instability criterion is

Ri= N2

(dv/dr)2
<

1
4
, (2.19)

where Ri is the Richardson number which compares the buoyancy with the shear of
the background flow, and v the mean flow velocity (Drazin & Reid 1981).

In the presence of strong thermal dissipation, this criterion is generalized to (Zahn
1974; Lignières, Califano & Mangeney 1999):

RiPe= N2

(dv/dr)2
× v`
κ
<

1
4
, (2.20)

where Pe is the Péclet number and ` a characteristic scale of the flow. As
v = r sin θΩ(r), the criterion for instability becomes

P

E
ΩN2r3`

sin θ(Ω −N2r2)2
<

1
4
. (2.21)
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This criterion allows us to determine the typical size of the turbulent layers that
can emerge from shear instabilities. In a stellar radiative zone, the ratio P/E is of the
order of 104–1010 (see § 2.3), and the ratio ΩN2r3/(Ω −N2r2)2 is of the order of unity.
Thus, if `=O(1), the criterion is never met and the whole shell is stable. The criterion
is only met when `=O(E/P), implying that only layers of thickness `∼ 10−10–10−4

can be destabilized. This is clearly a very small scale that may only lead to small-scale
turbulence. These remarks show that shear instabilities cannot explain positive growth
rates obtained for some of the modes we show in § 4, but they can impact large-scale
modes propagating in actual stars through enhanced (possibly anisotropic) diffusion
coefficients.

3. Non-dissipative problem

To get a first insight into the full solutions of (2.7)–(2.9), we study the problem in
the non-dissipative limit, by setting ν = κ = 0. We use the dynamics of characteristics
as a proxy for the study of the propagation properties of gravito-inertial waves, as it
is known to play a major role in shaping the solutions of the full dissipative problem
(e.g. Dintrans et al. 1999). It allows us to perform a full exploration of the parameter
space.

3.1. Paths of characteristics
We rewrite (2.7)–(2.9) using the cylindrical coordinates (s, φ, z). We combine their
components in order to reduce the system to a partial differential equation for the
reduced pressure perturbation p. The detailed derivation is given in appendix A.
Focussing on the second-order terms in the pressure equation, we get

(ω̃2 −N2z2)
∂2p
∂s2
+ (2N2sz+ Az)

∂2p
∂s∂z
+ (ω̃2 − As −N2s2)

∂2p
∂z2
= 0, (3.1)

where As and Az are defined by (2.16), ω̃ = ω + mΩ is the mode’s Doppler-shifted
frequency, which is the mode’s frequency in the frame corotating with the fluid’s
surface angular frequency. N is the Brunt–Väisälä frequency at the surface of the shell.

Equation (3.1) is the generalization of the pressure perturbation equation of gravito-
inertial modes in solid-body rotation (Friedlander & Siegmann 1982b; Dintrans et al.
1999) and of inertial modes in a differentially rotating shell (Baruteau & Rieutord
2013). In the case of solid-body rotation (As= 4Ω2,Az= 0) and without stratification,
this equation reduces to the Poincaré equation. We therefore call the left-hand side of
(3.1) the generalized Poincaré operator.

From (3.1) we obtain the following ordinary differential equations for the paths of
characteristics

dz
ds
= N2sz+ Az/2±

√
∆

ω̃2 −N2z2
, (3.2)

ds
dz
= N2sz+ Az/2∓

√
∆

ω̃2 − As −N2s2
, (3.3)

with

∆= Az(Az/4+N2sz)− As(N2z2 − ω̃2)− ω̃2(ω̃2 −N2(s2 + z2)), (3.4)
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where we recall that ω̃=ω+mΩ . For symmetry reasons, these equations are solved
in only the northern meridian plane of the shell, delimited by the equator, the rotation
axis and the inner and outer boundaries of the shell. We integrate equation (3.2) or
(3.3) with a fifth-order Runge–Kutta integrator from an arbitrary initial location in
the propagation domain of the shell. When reaching a boundary, the characteristic is
reflected inside the shell by switching the ± sign in equation (3.2) or (3.3). Even
though both equations are equivalent, their denominator vanishes at different values of
s and z. We therefore toggle from one to the other, always using the smaller absolute
value of the derivative to compute the path of a characteristic. This procedure allows
us to avoid numerical integration errors that arise when the slope of characteristics is
too large.

3.2. Turning surfaces and mode classification
Equations (3.2) and (3.3) allow us to predict the propagation domain of gravito-inertial
waves within the shell. The quantity ∆, given in (3.4), may change sign in the shell,
hence dividing the shell into hyperbolic (∆ > 0) and elliptic (∆ < 0) domains.
Oscillatory solutions of (3.1) only exist in the hyperbolic domain, whereas solutions
are evanescent in the elliptic part of the shell. These two regions are separated
by a turning surface where characteristics bounce. This description is similar to
that of inertial modes in the presence of differential rotation (Baruteau & Rieutord
2013), gravito-inertial modes with solid-body rotation (Dintrans et al. 1999) or
magneto-inertial waves (Friedlander 1989).

We divide the modes into two categories, following the classification introduced by
Baruteau & Rieutord (2013):

(i) Modes with no turning surface inside the shell, which we name H modes (H for
hyperbolic domain). For these modes, gravito-inertial waves can propagate in the
whole shell (∆> 0 everywhere in the shell).

(ii) Modes exhibiting one or several turning surfaces (defined by ∆ = 0) inside the
shell, which we name HT modes (T for turning surfaces).

From equations (3.2) and (3.3) we see that, for a given azimuthal wavenumber m,
the parameter space is restricted to only two dimensionless parameters, namely the
surface Brunt–Väisälä frequency N, and the wave frequency ω. We determine the
regions occupied by H and HT modes in this parameter space by checking whether
the equation ∆= 0 has a solution in the shell at given N2 and ω. Recasting equation
∆= 0 in terms of the radius r and colatitude θ , using s= r sin θ and z= r cos θ , we
find

ω̃4 − (4Ω2 +N2r2)ω̃2 + 4Ω2N2r2 = 2ΩN2r2(2Ω − ω̃2) sin2 θ. (3.5)

This is an implicit nonlinear equation that gives the shape of the turning surfaces
projected on a meridian plane. The general solution is difficult to obtain but one can
get a rather detailed view of the various solutions by solving (3.5) at specific points of
the shell. We thus choose the poles and equator of the two bounding spheres, namely
fixing r= 1 or r= η, and θ = 0 or θ =π/2. Thus doing we find the following relation
between ω and N:

for sin2 θ(1)= 0 :ω=−m± 2 or ω=−m±N, (3.6)
for sin2 θ(η)= 0 :ω=−mΩ(η)±Nη or ω= (−m± 2) Ω(η), (3.7)
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for sin2 θ(1)= 1 :ω=−m±
√

4−N2, (3.8)

for sin2 θ(η)= 1 :ω=−mΩ(η)±
√

N2η2 (1− 2Ω(η))+ 4Ω(η)2. (3.9)

We now discuss these results according to the value of m.

3.2.1. Axisymmetric modes
Figure 1 shows the various regions of the parameter space, for axisymmetric modes

(m = 0), for an aspect ratio of the shell η = 0.35, which is the aspect ratio of the
liquid core of the Earth, but also that of the radiative region of a young massive star
of approximately 40 solar masses. The yellow domain contains all H modes. There
are no gravito-inertial modes in the black area (the elliptic domain covers the whole
shell). The white area is for HT modes. We notice that frequency domains accessible
to HT modes increase with N2 and the subsequent differential rotation. As there are
regions of the shell rotating faster than the average velocity, gravito-inertial modes
can exist with a higher frequency than in the solid-body rotation case. When N2 is
increased, the H-mode domain gets smaller, and there are no H modes at N2 > 2.

The various propagation domains for HT modes are shown in the miniatures. The
purple dashed curves mark the transition between the different geometries of the
modes, and are obtained by setting m= 0 in (3.6)–(3.9).

We therefore find eight possible HT modes geometries with distinct propagation
properties for the characteristics. Remarkably,

(i) geometries a and b are similar to the so-called H2 modes of Dintrans et al.
(1999), whereas geometries c and g are somewhat reminiscent of their E2
modes,

(ii) geometries d, e and f feature two turning surfaces in the shell,
(iii) geometries a, d and f feature an acute angle between a turning surface and a

boundary of the shell that may lead to the so-called wedge trapping of the modes
(Dintrans et al. 1999; Gerkema et al. 2008).

Domain h is not studied any further due to its small extent in the parameter space,
and due to the small extent of the corresponding propagation domain in the shell.
Note that, while the borders between the HT-mode geometries generally depend on
the shell’s aspect ratio η, the boundary of the H-mode region does not.

In figure 1, we have delimited the region of parameter space (located above the grey
solid curve), where the waves may be unstable according to criterion (2.14). However,
since this criterion is local, this condition is not sufficient.

Finally, we deduce that the frequency range accessible to axisymmetric modes
is [0, 2Ω(η)], which may be as wide as [0, (1/Ωs)(2Ω2

s + N2)] in our model
for the full sphere η = 0. This range is significantly larger than the predicted
range for gravito-inertial modes in a uniformly rotating stratified sphere, which
is [0,√4Ω2

s +N2] (Friedlander & Siegmann 1982a; Dintrans et al. 1999). Note that
our normalization differs from the one used by Friedlander & Siegmann (1982a) and
Dintrans et al. (1999) in solid-body rotation: the dimensionless numbers E and N2

differ by a factor of 2, and their Ω is constant throughout the shell.

3.2.2. Non-axisymmetric modes
For non-axisymmetric modes with positive m, the accessible frequencies are grouped

around ω=−m. The range is no longer symmetrical: the accessible frequency domain
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FIGURE 1. (Colour online) (a) Shows a map of the various classes of axisymmetric modes
in the (ω, N2) parameter space, for a shell aspect ratio η = 0.35. The yellow domain is
the H-mode domain (corresponding to modes propagating in the whole shell), whereas
the white areas show the HT-mode domains (corresponding to modes propagating in only
a part of the shell, and bounded by turning surfaces). The black area corresponds to
configurations where no modes exist. Above the solid grey curve, modes are potentially
destabilized by the ABCD instability for P = 10−5. The dashed purple curves correspond
to the apparition of a turning surface at r = η, r = 1 and sin2 θ = 0, 1 and delimit
the various HT-mode propagation regions. For each subdomain, a letter indicates the
geometry shown in (b), where the domain in which waves may propagate is in white
and the evanescent region is in black. The red line is the ∆= 0 turning surface on which
characteristics bounce.
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FIGURE 2. (Colour online) (a) Same as figure 1 but for m = 1. (b) Extent of the H-
mode domain (yellow) for m= 1 retrograde modes. The purple curves mark the expected
transition between H and HT modes (white). (c) Elliptic and hyperbolic domains across
the shell for a mode at m= 1, N2 = 1.9, ω =−2.42, indicated by a red tick on the left
plot.

extends to frequencies below −m, as H modes progressively become HT modes as
m increases. This can be seen by comparing the top panels of figures 2 and 3. From
m larger than two, the H-mode domain for ω > −m also becomes smaller as m
increases. We find that the frequency range accessible to HT modes with m > 2 is
[−(m+ 2)Ω(η) : −mΩs +max(2Ωs,N)]. As max(2Ωs,N) does not depend on m, we
note that the extent of the parameter space for prograde modes is constant while the
parameter space for retrograde modes increases with m.
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FIGURE 3. (Colour online) (a) Graph shows the occurrence of corotation resonances as a
function of ω (x-axis) and N2 (y-axis), for a shell of aspect ratio η= 0.35 and azimuthal
wavenumber m = 2. The yellow domain is the H-mode domain, whereas the white area
is the HT-mode domain. The black area corresponds to configurations where no modes
exist. Corotation resonances appear in the star for configurations between the two red solid
lines. The dashed line separates modes where the critical layer is wholly included in the
elliptic part of the shell (subdomain a) and modes where the critical layer cuts through
the hyperbolical domain (subdomain b). (b) Shows how the corotation resonance (marked
by the solid blue line) may cross the hyperbolic domain (white area). The black area is
the elliptic domain and the red lines the turning surfaces.

3.2.3. Other turning surfaces
The foregoing results show that the turning surfaces are not simple, leading to

numerous configurations for the hyperbolic domain. As warned above, our method for
solving equation (3.5) captures only part of the whole set of solutions. Some turning
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surfaces cannot be calculated from the set of equations (3.6)–(3.9). For our rotation
profile, we note that elliptic domains can show up around part of the rotation axis with
the pole and the core still in the hyperbolic domain. This is illustrated in figure 2(b,c),
which show the distribution of H and HT modes for m= 1 retrograde modes at low
stratification. The small white area enclosed between the H-mode domain (yellow
area) and its expected boundaries (purple curves) actually corresponds to HT modes.
For these specific HT modes, the turning surface does not encompass one of the
‘corners’ of the shell but appears on the rotation axis. Figure 2(c) illustrates this case.
Even though only a small part of the parameter space is concerned, it indicates that
the boundaries between H and HT modes may not be determined analytically for
more complex rotation profiles.

3.2.4. Corotation resonances
For some non-axisymmetric modes, corotation resonances appear where the Doppler-

shifted frequency vanishes, i.e. where ω̃ = ω + mΩ(r) = 0. This resonance is also
called a critical layer.

From equation (2.11), the domain of the parameter space (ω,N2) where a corotation
resonance exists in the shell is such that

−m
(

1+ N2

2
(1− η2)

)
6ω6−m. (3.10)

We note from (3.10) that the range of frequencies at which corotation resonances exist
gets larger as m increases. It also increases with N2 at a given m.

For configurations where corotation resonances exist, the corotation radius rc is
given by

rc =
√

1+ 2
N2

(
1+ ω

m

)
. (3.11)

We need to determine whether the corotation radius intersects the hyperbolic domain,
that is, if ∆(rc) > 0. Setting r= rc and ω̃= 0 in (3.4), we find that ∆(rc) is positive
if and only if Nrc > 2, that is, using (2.11), if

ω>m
(

1− N2

2

)
. (3.12)

Figure 3 shows the parameter range in the (ω,N2) plane where corotation resonances
exist in the shell for m = 2. The domain where critical layers exist in the shell is
enclosed between the two solid lines. We note that corotation resonances only exist for
HT modes, as ω̃= 0 implies ∆= 0 at the equator in (3.5). We find that the parameter
domain for modes exhibiting corotation resonances gets larger when m increases, and
most of the modes in the ω<−m domain exhibit corotation resonances.

We distinguish two possibilities, depending on whether (3.12) is satisfied or not. If
ω satisfies (3.10) but not (3.12), the corotation radius is inside the elliptic domain, in
which modes do not propagate, and the interaction between the corotation resonance
and the modes is likely small. Since ω̃= 0 and z= 0 in (3.4) implies ∆= 0, we find
that the turning surface and the corotation radius intersect each other in the equatorial
plane only. In figure 3(a), this happens in the subdomain a below the dashed line. A
meridional cut of a mode in subdomain a is shown in the first plot of figure 3(b),
where the critical layer is denoted by a blue line.
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Conversely, if (3.10) and (3.12) are both satisfied, the corotation resonance goes
through the hyperbolic domain and is expected to influence the propagation of the
waves and the associated characteristics either by introducing nonlinear effects or by
limiting the propagation domain. This corresponds to subdomain b in figure 3(a),
from the dashed line upwards. The corresponding second plot in figure 3(b) shows an
example of such a mode where the critical layer (blue line) crosses the hyperbolical
domain (white area). For this case, the calculation leading to (3.12) also shows that
the intersection between the hyperbolic domain and the corotation surface is located
at latitudes ϑ satisfying

sin ϑ <
2

Nrc
. (3.13)

As we expect the critical layer to have an effect on the damping or excitation of the
mode (e.g. Rieutord et al. 2012), the ability of the wave to cross this layer needs to
be investigated. This is done by computing the phase and group velocities (see below),
and by solving the fully dissipative problem (§ 4).

3.3. Dispersion relation, phase and group velocities
Further insight into the propagation properties of gravito-inertial waves over a shellular
differential rotation may be obtained through the dispersion relation of the waves.

To determine the interplay between paths of characteristics and corotation
resonances, we derive from (3.1) the following dispersion relation

ω̃2 = B2

k2
with B = [N2(ksz− kzs)2 + k2

z As − kskzAz]1/2, (3.14)

where k= kses + kzez is the wavevector, k= ‖k‖ =√k2
s + k2

z . Equation (3.14) reduces
to (A.7) of Baruteau & Rieutord (2013) in the case with no stratification (N2 = 0).

This equation yields the phase and group velocities in the corotating frame, vp and
vg respectively,

vp =±Bk
k3
, (3.15)

and

vg =± 1
k3

[(
k2 dB

dks
− ksB

)
es +

(
k2 dB

dkz
− kzB

)
ez

]
. (3.16)

The dispersion relation indicates the behaviour of a wave near the corotation radius.
Upon approaching the corotation resonance, ω̃→ 0 which implies that either k→∞
or B→ 0.

(i) If k→∞ at finite kz, then vp = 0 and vg = 0, the gravito-inertial waves do not
cross the corotation radius. If corotation is in the elliptic domain but touches
the turning surface on the equator z = 0, then the characteristics become more
and more vertical (namely parallel to the rotation axis) as they approach the
corotation, but the corotation is never reached. The wave is likely dissipated
there.
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(ii) If B→ 0, then vp→ 0 and vg 6= 0 in the general case. In this situation, the waves
can go through the corotation resonance in the hyperbolic domain, but nonlinear
effects are expected (Barker & Ogilvie 2010).

We only see the occurrence of this second possibility in our simulations (§ 4): as
shown in figure 11, the eigenmodes we compute are able to cross the corotation
radius.

3.4. Critical latitudes
Critical latitudes are another type of singularity that may affect waves in a spherical
shell (e.g. Rieutord et al. 2001). As with all singularities, they generate dissipative
structures, and are thus important to understanding the dynamics of tidally interacting
bodies (Goodman & Lackner 2009; Ogilvie 2009; Rieutord & Valdettaro 2010; Favier
et al. 2014).

A critical latitude is a latitude ϑ on the bounding spheres where the characteristics
are tangent to the boundary. They appear when |ω̃(r)|6 2Ω(r), that is

sin ϑ = ω̃(r)
2Ω(r)

, with r= η or r= 1. (3.17)

The inner and outer critical latitudes, θi and θo, are given by

sin ϑo = ω+m
2

, sin ϑi = ω

2Ω(η)
+ m

2
. (3.18a,b)

There is a critical latitude on the inner boundary if 0< sin ϑi < 1, that is when

−mΩ(η) < ω < (−m+ 2)Ω(η), (3.19)

and similarly, there is a critical latitude on the outer boundary if

−m<ω<−m+ 2. (3.20)

In the frequency ranges where critical latitudes exist, some modes may be associated
with shear layers emitted at these latitudes (Rieutord & Valdettaro 2010). While it
is not necessarily the case for free modes of oscillations, tidally forced flows in a
spherical shell seem to always excite the shear layers associated with the inner critical
latitudes when they exist (as shown by Goodman & Lackner 2009; Ogilvie 2009).
For other geometries, concave critical latitudes may be excited (see, e.g. Swart et al.
2010).

3.5. Lyapunov exponents
The paths of characteristics computed using equations (3.2)–(3.3) often tend towards
a short-period limit cycle, known as an attractor. When such a structure exists, the
kinetic energy of an eigenmode is generally concentrated around the attractor. These
modes are expected to be strongly damped due to the singular nature of the attractor
at vanishing viscosities. It is therefore of interest to assess the presence and the
strength of the focusing towards attractors, and for this we compute the Lyapunov
exponent of the characteristic trajectories. It quantifies whether characteristics get
closer to each other after multiple reflections onto the boundaries of the hyperbolic
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FIGURE 4. (Colour online) Lyapunov exponent for H modes for η= 0.35. The dark ridges
are modes focused on a short-period attractor.

domain. Since our problem can be studied in a meridional quarter-plane of the shell,
we can conveniently use the rebounds on the rotational and equatorial axes. From the
distance between two consecutive rebounds on the rotation axis, or on the equatorial
plane, δsk or δzk respectively, we derive the two following Lyapunov exponents, Λs

or Λz respectively:

Λs = lim
Ns→∞

1
Ns

Ns∑
k=1

ln
∣∣∣∣δsk+1

δsk

∣∣∣∣ and Λz = lim
Nz→∞

1
Nz

Nz∑
k=1

ln
∣∣∣∣δzk+1

δzk

∣∣∣∣ . (3.21a,b)

There are some instances where an attractor may feature more than one rebound on
a given axis where the Lyapunov exponent is computed. When that happens, our
numerical procedure finds the coordinate of each convergence point and computes the
exponent selecting the rebounds that tend towards that convergence point.

Formally, Lyapunov exponents on both axes should have the same value. We
compute the Lyapunov exponents with several pairs of characteristics starting in
various parts of the shell. Since this calculation is sometimes difficult numerically,
we use the average value of Λs and Λz to derive the Lyapunov exponent.

A negative Lyapunov exponent means that the two characteristics get closer to each
other, and end up converging towards an attractor. The more negative the exponent, the
faster the convergence.

In figure 4, we show the Lyapunov exponent in the (ω,N2) plane, for axisymmetric
H modes. We see ridges where the Lyapunov exponent is very negative, which implies
the presence of a strong attractor in the shell. Each ridge of negative Lyapunov
exponent consists of the same attractor progressively distorted by the differential
rotation: as N2 and the subsequent differential rotation increase, the frequency varies
but the overall shape of the attractor is conserved, as will be illustrated in figure 5.
We note that the strength of the focussing for a given attractor is constant: the
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FIGURE 5. (Colour online) Meridional slices of kinetic energy (normalised to its
maximum value, in logarithmic scale) obtained by solving the dissipative linearised
hydrodynamics equations, with attractors (green) and turning surfaces (red) overplotted.
The pink ticks at the inner and outer borders denote the critical latitudes. From (a–d), the
Brunt–Väisälä frequency is increased for the same mode (η = 0.35, E = 10−7,P = 10−2,
starting from ω = 1.67, N2 = 0). The mode is distorted until the structure is suddenly
changed when the shear layer crosses the critical latitude (see main text).

Lyapunov exponent is constant along a ridge of negative value. These modes are
expected to be strongly damped by dissipative processes. However, most of the
(ω, N2) plane corresponds to long-period attractors compatible with low dissipation,
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and these modes are therefore more prone to yield observable stellar pulsations. We
note that by taking a horizontal slice in figure 4 at N2= 0, we retrieve the Lyapunov
exponents computed for inertial modes in a solid-body rotating shell by Rieutord,
Georgeot & Valdettaro (2000), Rieutord et al. (2001).

For non-negative values of the Lyapunov exponent, there is no convergence towards
a limit cycle. Because the sums in equation (3.21a,b) could not necessarily be carried
out with as many iterations as formally required, they do not cancel out. For some
values (white regions inside the graph), the computation has not converged, but the
Lyapunov exponents are likely very small in absolute value.

As will be shown in § 4, the kinetic energy of eigenmodes is not necessarily
distributed along the predicted attractor: other kinds of singularities like the critical
latitude singularity or corotation resonances may also affect the kinetic energy
distribution. Due to turning surfaces, computing the Lyapunov exponents of HT
modes (whether they are focused on a short-period attractor or in a wedge) is much
more difficult, and no significant map could be computed.

4. Dissipative problem

After the foregoing study of the properties of the eigenmodes in the non-dissipative
limit, we now investigate the role of dissipative processes on the structure and
damping (or growth) rates of gravito-inertial modes. In this section we describe
the numerical method we used, show representative examples of axisymmetric and
non-axisymmetric modes and discuss the physical implication of the results.

4.1. Numerical method
In order to study the full dissipative eigenvalue problem, that consists of equations
(2.7) to (2.9) with related boundary conditions, we now solve the problem numerically
using a spectral method similar to that used in Baruteau & Rieutord (2013). Equations
are projected onto spherical harmonics (see Rieutord 1987), expanding the velocity
and temperature perturbations as

v(r, θ, φ)=
∞∑
`=0

`∑
m=−`

u`m(r)R
m
` + v`m(r)Sm

` +w`
m(r)T

m
` , T =

∞∑
`=0

`∑
m=−`

t`mYm
` ,

(4.1a,b)

where Rm
` = Ym

` (θ, φ)er, Sm
` = ∇Ym

` (θ, φ), Tm
` = ∇ × Ym

` (θ, φ) and where Ym
` denotes

the normalized spherical harmonics. In the radial direction, equations are discretised
on the Gauss–Lobatto grid associated with Chebyshev polynomials. The equations
are truncated at order L in the spherical harmonics expansion and at order Nr on
the Chebyshev grid. Appropriate values of Nr, L depend on the mode properties
and the Ekman and Prandtl numbers. We use the Arnoldi–Chebyshev algorithm to
compute eigenvalues ω and their associated eigenvectors. This method allows us
to find the frequencies corresponding to the least-damped modes around a given
initial guess. By changing slightly the guess, we can test for round-off errors (for
more details on the numerical method, see Valdettaro et al. 2007). All modes
are computed assuming symmetry with respect to the equatorial plane, and using
stress-free boundary conditions at both the inner and outer radial boundaries of the
shell.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

38
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.382


232 G. M. Mirouh, C. Baruteau, M. Rieutord and J. Ballot

Projecting the momentum equation (2.7) on Rm
` and Tm

` and the heat equation (2.9)
on Ym

` we obtain

E∆`w`
m +

[
2imΩ
`(`+ 1)

− iω̃
]

w`
m

=−2Ω[A(`,m)r`−1∂r(r−`+2u`−1
m )+ A(`+ 1,m)r−`−2∂r(r`+3u`+1

m )]
+ r∂rΩ[−(`+ 1)A(`+ 1,m)u`+1

m + `A(`,m)u`−1
m ], (4.2)

E∆`∆`(ru`m)+
[

2imΩ
`(`+ 1)

− iω̃
]
∆`(ru`m)=−2im∂rΩ

(
u`m + v`m

)− imr∂2
rrΩu`m

+ 2Ω
[
B(`,m)r`−1∂r

(
r1−`w`−1

m

)+ B(`+ 1,m)r−`−2∂r(r`+2w`+1
m )
]

+ 2∂rΩ
[
B(`,m)w`−1

m + B(`+ 1,m)w`+1
m

]−N2`(`+ 1)t`m, (4.3)

iω̃t`m − ru`m =
E
P
∆`t`m, (4.4)

where we defined

∆` = d2

dr2
+ 2

r
d
dr
− `(`+ 1)

r2
, (4.5)

A(`,m)= 1
`2

(
`2 −m2

4`2 − 1

)1/2

, B(`,m)= `2(`2 − 1)A(`,m). (4.6a,b)

In equations (4.2)–(4.3), we used mass conservation (2.8) which yields

v`m =
1

`(`+ 1)r
∂r2u`m
∂r

. (4.7)

Setting to zero the stratification and the subsequent differential rotation, these
equations reduce to equations (2.2) of Rieutord & Valdettaro (1997) for inertial
modes in solid-body rotation. Removing only stratification, these equations reduce to
equations (4.2) of Baruteau & Rieutord (2013). Finally, taking only stratification into
account without differential rotation, this set of equations reduces to equations (2.5)
of Dintrans et al. (1999) for gravito-inertial modes.

4.2. Axisymmetric modes: illustrative cases
Let us first describe a few axisymmetric (m = 0) modes obtained for various
stratifications and associated differential rotations. We illustrate the various geometries
for H and HT modes by comparing the solutions to the fully dissipative equations
with their non-dissipative counterparts. For all the modes that we have calculated, we
show a meridional slice of kinetic energy, normalized at its maximum value, in a
quarter-plane. We recall that all computed modes are symmetric with respect to the
equatorial plane.

As a first illustration of the impact of the stratification and the associated differential
rotation, we follow a pure inertial mode while increasing the Brunt–Väisälä frequency.
To do so, we increase N2 by small increments using the eigenfrequency obtained for a
given mode as an initial guess for the next computed mode. Figure 5 shows the kinetic
energy in a meridional plane for increasing values of the Brunt–Väisälä frequency
at the surface of the shell. We recall that as the surface Brunt–Väisälä frequency
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increases, so do the linear Brunt–Väisälä frequency gradient and the rate of shellular
differential rotation. In (a–d), we find a singular shear layer that closely follows an
attractor of characteristics (in green).

The (a) is for N2 = 0 and thus solid-body rotation. The characteristics and the
shear layers then follow straight lines in the shell. The (b) (N2 = 0.45) shows the
distortion induced by the stratification and the consequent differential rotation: the
characteristics are now curved, even though the overall shape of the attractor is
conserved. By increasing the stratification further ((c), N2= 0.75), the critical latitude
singularity at the inner core gets excited. Owing to the fluid’s viscosity, part of the
energy is then focused on the shear layer tangent to the core. The mode has now
changed to a HT mode, as a turning surface appears near the equator (shown by a red
curve in the panels). As shown in (d), when increasing the stratification even further
(N2 = 0.79), the shear layer emitted at the critical latitude singularity dominates the
kinetic energy distribution inside the shell.

Figure 6 illustrates the diversity of the H and HT modes predicted in our model.
Two H modes are shown in (a,b). The mode displayed in (a) is obtained by a
follow-up of the mode displayed in figure 5(b) by lowering the Ekman number. The
energy is neatly focused on a shear layer whose location is well described by the
associated attractor. The mode in (b) is associated with a quasi-periodic trajectory
of characteristics. The kinetic energy is distributed nearly uniformly over the whole
shell. The mode in figure 6(c) is a HT mode, which belongs to subdomain b in
figure 1. The predicted turning surface (red curve) nicely delimits the propagation
domain, even though the kinetic energy penetrates somehow in the evanescent region.
The extent of the eigenfunction in the elliptic domain is directly related to the
diffusion coefficients ν and κ . Attractors matching the shear layers (green curves)
are obtained from characteristics spanning the propagation domain and bouncing on
the turning surface. This mode simultaneously focusses most of its energy on an
attractor and excites the critical latitude singularity, letting a small fraction of its
energy propagating towards the rotation axis. The turning surface may also introduce
singularities, such as the so-called wedge trapping, which is displayed in figure 9 and
discussed in the next section.

4.3. Axisymmetric modes: dissipative properties
We examine in this section the dissipative properties of axisymmetric modes with
shellular rotation resulting from the stratification. Because of the very small values of
the Ekman and Prandtl numbers in stars or planets, we are interested in the asymptotic
behaviour of the modes and their eigenfrequency when E and P vanish (but verifying
the constraint E�P). As astrophysical parameters are beyond reach, we first try to
infer asymptotic scaling laws of damping rates for various modes.

Figure 7 shows the damping rate |τ | as a function of the Ekman number for two
H modes at two different Prandtl numbers. In (a,b), E decreases from 10−7 to 10−9

for P = 1 and P = 10−2. Figure 7(a) corresponds to the H mode in figure 6(a),
which is focused around a short-period attractor. We find that the decrease of |τ |
is well reproduced by E0.36. This dependency on the Ekman number is reminiscent
of the scaling laws obtained by Rieutord et al. (2001) for inertial modes focussed
on short-period attractors. For these modes, the expected scalings are |τ | ∝ Eα when
E→ 0, with α ∈ [1/3, 1/2]. Figure 7(b) corresponds to the quasiperiodic H-mode in
figure 6(b). We find the scaling of |τ | ∝ E0.9 for both Prandtl numbers.

Figure 8 shows the same follow-up calculation for an HT mode with two turning
surfaces and a short-period attractor. Figure 8(b) shows the evolution of the damping
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FIGURE 6. (Colour online) Meridional slices of kinetic energy for a sample of modes
(relative to maximum, in log scale). Attractors (green), turning surfaces (red) and critical
latitudes (pink ticks) overplotted. The various geometries are discussed in the main text.

rate |τ | when decreasing the Ekman number from 10−6 to 10−9, at P = 10−2 and 1.
We find that |τ | approximately scales with E0.47 at low E and constant P . Similarly,
we follow this mode decreasing P from 1 to 10−3 at E = 10−7 (not shown here),
and find |τ | ∝P−0.5 at low P at constant E. We also measure the width of the
shear layer while decreasing E, and find that the width of the shear layer scales
with E0.22 at fixed P . This is illustrated in figure 8(c), where the kinetic energy
profiles in the shear layer at various Ekman number values, once rescaled by E0.22,
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FIGURE 7. (Colour online) Damping rate as a function of the Ekman number for the H
modes displayed in figure 6(a,b). (a) Corresponds to the mode focused on a short-period
attractor and (b) to the quasi-periodical mode. The data points are obtained by following
a given mode with decreasing the Ekman number, for two different values of the Prandtl
number: 10−2 (filled circles) and 1 (crosses), while the solid line is the best fit trend at
E→ 0.

0

0.2

 0.4

0.6

 0.8

1.0

0.2 0.4 0.6 0.8 1.0

–1–2–3–4–5–6 0

z

s

(a)

E

10–4

10–1

10–2

10–3

 0.5

 0

1.0

10–610–710–9 10–8

0–0.05 0.05 0.10 0.15

(b)

(c)

FIGURE 8. (Colour online) (a) Kinetic energy for a HT mode featuring two turning
surfaces, at ω= 1.39, η= 0.35, E= 10−9,P = 1 and N2= 3 (relative to maximum, in log
scale). (b) Damping rate as a function of the Ekman number. The data points are obtained
by following the mode with decreasing the Ekman number, for two different values of the
Prandtl number: 10−2 (filled circles) and 1 (triangles), while the solid line is the best fit
trend at E→ 0. (c) Width of the shear layer over four decades in the Ekman number,
rescaled by the best fit obtained.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

38
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.382


236 G. M. Mirouh, C. Baruteau, M. Rieutord and J. Ballot

 0

0.2

 0.4

0.6

 0.8

1.0

0.2 0.4 0.6 0.8 1.0

–1–2–3–4–5–6 0

 0

0.05

 –0.05

 –0.10

 –0.15

 –0.20

z

s

(a) (b)

10–710–9 10–810–10

E

FIGURE 9. (Colour online) (a) Kinetic energy for a HT mode in which a wedge trapping
occurs, at ω= 0.33, η= 0.35,E= 10−10,P = 10−2 and N2= 6.7 (relative to maximum, in
log scale). The turning surfaces are shown in red and the characteristics in green, while
the area outside the yellow curve is ABCD-unstable (see § 2.4). (b) Damping rate as a
function of the Ekman number. The data points are obtained by following a mode with
decreasing the Ekman number, the solid line is the best fit trend at E→ 0.

overlap neatly (this plot is similar to that of figure 13(b) in Dintrans et al. 1999). The
obtained scaling is reminiscent of the E1/4−scaling derived for the shear layer width
by Dintrans et al. (1999).

Figure 9(a) shows a HT mode with two turning surfaces bounding the hyperbolic
domain, corresponding to the subdomain d of figure 1. As alluded to at the end of
§ 4.2, the turning surfaces and the outer surface of the shell form an acute angle in
which the kinetic energy is focused. This focussing, known as wedge trapping, is also
described by the characteristics which show that rays should converge towards the
intersection between the shell’s surface and the higher-latitude turning surface. Our
calculation confirms that most of the modes kinetic energy is indeed confined in that
location. Wedge trapping is possible in subdomains a, d and f of figure 1. Figure 9(b)
shows that, when decreasing the Ekman number, this mode becomes unstable and
its growth rate becomes independent of E. The critical Ekman number below which
instability sets in is Ec ∼ 7 × 10−9. Most probably, this destabilization is due to the
ABCD instability. Indeed, the part of the shell where the local ABCD instability
criterion (2.14) is satisfied corresponds to the place occupied by the eigenfunction
(see figure 9). The border of the ABCD-unstable domain is only slightly changed
around the equator when considering astrophysically relevant Prandtl numbers such
as P = 10−5. To be complete, the other possible driving of the instability, namely
the shear instability (see criterion (2.21)) is only satisfied along the inner boundary
(at θ > 40◦, r < 0.45) and can thus be eliminated. We give further insight on the
driving of the instability in § 4.5.

In figure 10, we show another mode in which a wedge is formed at the inner
boundary. We notice that the kinetic energy is not focused in the wedge. This is due
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FIGURE 10. (Colour online) Kinetic energy for a HT mode at ω = 0.25, η = 0.35,
E = 10−10,P = 10−2 and N2 = 1.5 (relative to maximum, in log scale). For this mode,
a wedge trapping is possible, but does not occur (see main text). The turning surface (red
curve), the path of characteristic (green curve) and the critical latitudes (pink ticks) are
overplotted.

to the presence of the critical latitude singularity: characteristics hitting the core at
latitudes θ > θc converge towards the wedge in a singular point, while characteristics
hitting the core at θ <θc form a periodic limit cycle. When this dichotomy appears, the
kinetic energy seems to be always focussed on the periodic attractor, and the presence
of a wedge does not impact the shape of the eigenmode.

4.4. Non-axisymmetric modes: illustrative cases
To complete the foregoing picture given by axisymmetric modes, we now focus
on non-axisymmetric ones, emphasizing the differences introduced by a non-zero
azimuthal wavenumber m. As explained in § 3.2, the main feature of non-axisymmetric
modes is the presence of corotation resonances, where the Doppler-shifted frequency
vanishes, that is places where ω+mΩ(r)= 0.

4.4.1. Corotation resonances
We have seen in § 3.2.4 the conditions for a corotation resonance (or a critical layer)

to occur in the spherical shell, its location is given by (3.11). Either the corotation
resonance threads the hyperbolic domain, in which case we expect the resonance to
have a significant impact on the dissipation properties of the mode, or it stays in the
elliptic domain, in which case its impact on the modes dissipation should be marginal.

An example of the former case is shown in figure 11(a). We see that the energy is
mostly focused on a structure tangent to the corotation layer (blue radius), between
the three turning surfaces (red curves). To avoid round-off errors, we had to use a
moderate resolution. To reach spectral convergence with this resolution (as shown in
(b,c)), we also had to use a relatively high Ekman number. Many of these modes
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FIGURE 11. (Colour online) (a) Kinetic energy for a HT mode exhibiting a corotation
resonance in the hyperbolical domain, at ω = −3.86, m = 3, η = 0.35, E = 10−7, P = 1
and N2 = 6 (relative to maximum, in log scale). This mode belongs to subdomain b in
figure 3. (b,c) Spectral decomposition on the Chebyshev (b) and the spherical harmonics
(c) bases.

appear to be unstable, though we were not able to follow any of these modes in
a wide range of parameters E and P , owing to constraints from spatial resolution.
The mode shown in figure 11 is unstable. Its positive growth rate can be explained
either by the baroclinic instability or by a shear instability, but this latter possibility
can actually be excluded: the local instability criterion (2.21) is only met in two
small areas around the inner shell (θ > 40◦, r < 0.45) and on the equator (θ > 65◦,
r> 0.97). The non-axisymmetric baroclinic instability criterion (2.18) is met in most
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of the shell (z > 1/6), and is likely at the origin of the positive growth rate. As
mentioned in § 3.2.4, these corotations are expected to trigger non-linear effects
(see Maslowe 1986).

When the corotation resonance is wholly included in the elliptic part of the shell,
we were not able to compute any mode: a satisfactory trade-off between spectral
convergence and round-off errors could not be reached (because a high resolution,
needed to describe this type of modes accurately, increases dramatically the condition
number of the matrices, and therefore the round-off errors).

4.4.2. Regular modes
The eigenvalue problem that we solve is also expected to have some regular or

quasi-regular solutions, as found for instance by Dintrans et al. (1999) for solid-body
rotation. Such modes are not focused towards any singular shear layer, and are
therefore significantly less damped than modes featuring an attractor. Regular modes
have a kinetic energy distribution in the shell that is almost independent of the
dissipative parameters E and P . They may then exist at vanishing viscosity and
thermal diffusivity, and are expected to be only weakly damped. As our numerical
method can compute the least-damped modes around a given initial frequency guess
(see § 4.1), regular modes are expected to be easily found where they exist. Such kind
of modes are only found when m 6= 0, letting us think that regular or quasi-regular
axisymmetric modes do not exist in our set-up.

Figure 12 illustrates the properties of such a mode. Here, the spectral convergence is
easily reached compared to the previous modes. As (d,e) show, we assess the scaling
laws of the damping rate |τ | with the Ekman number at fixed Prandtl number (that is,
while varying viscosity and thermal diffusivity at the same rate) and with P at fixed
E (that is, varying the thermal diffusivity while keeping the viscosity constant). We
find |τ | ∝ E at constant P and low E, and |τ | ∝P−0.9 at constant E and low P .

4.5. Interpretation of scaling laws
In the previous section we inspected numerically the behaviour of gravito-inertial
modes as the dissipation parameters are varied. Clearly, the damping rates often
show a scaling law with either the Ekman number or the Prandtl number, when
these parameters tend to small values. We now attempt to interpret these behaviours,
however without a detailed boundary layer analysis, which is beyond the scope of
this first exploration. We rather resort to the integral expression of the damping rate,
which reads

τ =−Dv −Dt +Dr, (4.8)

that is, the sum of the viscous and thermal dissipations, and the differential rotation
driving. The aforementioned terms of equation (4.8) are given by

Dv = 1
E

E
2

∫
V

s2
ij dV, Dt = 1

E
N2 E

P

∫
V
|∇T|2 dV, Dr = 1

E

∫
V

sR{vr∂rΩv
?
φ} dV,

(4.9a−c)

where

E =
∫

V
v2 dV +N2

∫
V
|T|2 dV (4.9d)
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FIGURE 12. (Colour online) Regular mode, at ω = −2.67, m = 4, η = 0.35, E = 10−9,
P = 10−2 and N2= 1.5. (a) Meridional slice of the viscous dissipation (left quarter-panel)
and the kinetic energy (right). Both are normalised by their maximum value, and plotted
in logarithmic scale. (b,c) Spectral decomposition on the Chebyshev (b) and the spherical
harmonics (c) bases. (d,e) Damping rate as a function of the Ekman number for P= 10−2

and 1 (d), and as a function of the Prandtl number for E= 10−7 (e).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

38
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.382


Gravito-inertial waves in a differentially rotating spherical shell 241

10010–110–2 10–610–8 10–710–9

10–4

10–5

10–6

10–1

10–2

10–3

10–4

10–2

10–3

E

(a) (b)

FIGURE 13. (Colour online) (a) Variation of the damping rate as a function of the Prandtl
number for the H mode displayed in figure 6(b). (b) Variation of the damping rate |τ |
and its components Dt,Dv and Dr, as a function of the Ekman number for the HT mode
displayed in figure 8.

and sij is the stress tensor, while R{z} and z? designate the real part and the complex
conjugate of z, respectively. We follow the method detailed in appendix B of Dintrans
et al. (1999) to derive equations (4.8) and (4.9). It is clear that Dr is the only term
that can contribute positively to the growth rate, and explain unstable gravito-inertial
modes.

We compute the expected damping rates from the velocity and temperature
fields obtained in our simulations, through (4.8). Provided the mode computation
is accurately converged, the expected damping rate matches the computed eigenvalue.
We present our results for some axisymmetric modes shown earlier.

Figure 13 shows the damping rate and its three contributions for two axisymmetric
modes: the H mode in figure 6(b), and the HT mode of figure 8. We note that the
impact of differential rotation is marginal for both of these modes. Indeed, as shown
in the left panel, the thermal dissipation Dt dominates at low Prandtl numbers, while
the viscous dissipation Dv dominates at higher values. The thermal dissipation roughly
scales as the expected P−1, and both the viscous and differential rotation dissipations
do not scale with P . Interestingly, we see that the sign of the term arising from
differential rotation changes sign upon varying P . However, since its magnitude is
much smaller than the viscous and thermal dissipation terms, it has a negligible impact
on the net damping rate.

For the mode followed on figure 13(b), we see that the viscous dissipation
dominates (as P = 1). The thermal and viscous dissipation terms follow the same
scaling Dv,Dt ∼ E1/2. This is expected from Dintrans et al. (1999): as the width of
the shear layers around the attractor scales with E1/4, we expect the terms Dt and
Dv to scale with E1/2. Expanding the velocity and temperature perturbations in a
series of powers of the square root of the Ekman number, it appears that vφ = ivr

at first order (Rieutord et al. 2001). This phase relation implies that the differential
rotation integral Dr vanishes at first order. Actually, the way Dr scales with E or P
is different from the other terms and cannot be described without a precise boundary
layer analysis.

Figure 14 shows the contributions to the damping/growth rate of the wedge-trapped
mode shown in figure 9. We find that the contribution of the differential rotation term
to the net damping/growth rate is by far the largest, and changes sign in this specific
case.
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FIGURE 14. (Colour online) Growth rate τ and dissipation terms as a function of the
Ekman number, for the unstable wedge-trapped mode displayed in figure 9.

For a regular mode, such as the one presented in figure 12 where the kinetic energy
very slightly depends on the Ekman and Prandtl numbers, equation (4.8) predicts that
the damping rate should be a linear combination of the viscosity ν and the thermal
dissipation κ . The scalings we find are in overall agreement with this expectation and
seem to confirm the regular nature of the modes in the range of parameters that we
have explored; it is likely that this property extends to actual astrophysical values.

5. Concluding remarks and astrophysical perspectives
In this paper, we have studied the properties of gravito-inertial modes in a

differentially rotating spherical shell. Our simplified model unveiled a very rich
dynamics that we investigated in two different ways: (i) by studying the linearised
oscillation problem in the non-dissipative limit, and (ii) by solving numerically the
fully dissipative eigenproblem with a spectral solver. This study emphasises the need
to account for stratification, rotation and shear, as they all have a significant impact
on the modes’ propagation properties and dissipations.

In the non-dissipative limit, the fluid equations can be recast as a second-order
partial differential equation of mixed type. From the paths of characteristics associated
with this equation, we found two kinds of gravito-inertial modes: H modes that
can propagate in the whole shell, and HT modes that can propagate in a part of
the shell bounded by turning surfaces and the shell’s boundaries. Scanning the
(N2, ω) parameter space (N2 being the squared surface Brunt–Väisälä frequency,
and ω the wave’s frequency in the inertial frame), we determined the occurrence
of both H and HT modes. We found that the frequency domain reachable for HT
modes with differential rotation is wider compared to gravito-inertial modes with
solid-body rotation, or inertial modes with comparable differential rotation. We have
also described the various geometries of HT modes. For both H and HT modes,
we computed the paths of characteristics, which often converge towards so-called
attractors. We have assessed the presence of attractors and determined the strength
of the associated focussing by estimating their Lyapunov exponent. When turning
surfaces form an acute angle with one of the boundaries of the domain, we found that
the attractors tend towards the singular wedge. Another singularity we have seen is the
presence of critical latitudes, where characteristics are tangent to the inner or outer
shell boundaries. Non-axisymmetric HT modes also exhibit corotation resonances
where the Doppler-shifted frequency vanishes. We determined the corotating radius,
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which may be inside the propagation region of the shell or be fully inside the elliptic
region. We have determined the associated range of parameters in both cases. We
have shown that the waves can cross the corotation resonance when the latter is
inside the propagation domain. For both axisymmetric and non-axisymmetric modes,
we also discussed the baroclinic and shear instabilities expected to appear in our
set-up and assessed their probable occurrence.

High-resolution numerical solutions were carried out to explore the waves’
propagation properties in the fully dissipative case. These simulations confirm many
predictions of our analytic study of the non-dissipative limit. We computed the
kinetic energy distribution in the shell, confirming the expected propagation domain
geometries. Our calculations have highlighted a broad variety of gravito-inertial
modes: (i) modes with thin shear layers distributed over attractors of characteristics,
(ii) wedge-trapped modes potentially amplified by the ABCD instability at low
dissipation, (iii) modes that feature a strong shear layer emitted at the critical latitude
tangent to the inner core, (iv) modes with corotation resonances inside the propagation
domain which are sometimes found to be linearly unstable and (v) quasi-regular
modes whose kinetic energy is almost independent of the dissipative parameters in
the studied range.

Studying the damping rates of the various categories of modes and their dependence
with the Ekman and Prandtl numbers, we often found power laws, some of which
could be related to the thickness of the shear layers shaping the mode. In the case of
a positive growth rate, we obtain clear evidence of the dominant role of the differential
rotation in the rise of the instability.

One of the interesting results of the foregoing study is that unstable modes are not
so common regarding the list of instabilities that are possibly present in this set-up.
Most probably, the criteria deciding of the existence of such instabilities, which are
based on a local analysis, are too loose for the set of modes we have considered.
Likely, at higher m, with lower Ekman or Prandtl numbers unstable modes are more
frequent, but this needs to be confirmed by future work.

In the astrophysics perspective, the results of the present work are interesting in
two respects. First, the results show that even with a very simplified set-up, the low-
frequency spectrum of a rotating, stably stratified spherical layer is quite complex,
collecting many different types of modes, shaped both by turning surfaces and various
attractors of characteristics. It leaves a daunting perspective when we have to consider
more realistic configurations including two-dimensional differential rotation Ω(r, θ),
compressibility effects and magnetic fields.

The good news however, is that some large-scale modes may be unstable and
oscillatory. As we showed, the associated instability is directly related to the
differential rotation either for axisymmetric modes or non-axisymmetric ones. The
determination of the true nature of the instability needs a specific study. Indeed, in
such a set-up, large-scale modes could destabilize and destroy the background flow.
This is however unlikely: the shear of baroclinic flow is expected to feed small-scale
turbulence (e.g. Zahn 1992, or our § 2.4.2), resulting in a turbulent viscosity that may
prevent large-scale mode growth, or ease their saturation. If such unstable oscillations
do not disappear into a turbulent flow, and saturate in some way (by mode coupling
for instance, e.g. Gastine & Dintrans 2008), the stellar oscillation spectrum will be
enriched with modes that are specifically dependent on the differential rotation and
thus open a window on the internal dynamics of the stars.
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In another perspective, the properties of the oscillation spectrum of a star also
impact the response of the star or a planet to a tidal excitation. The modes shaped by
attractors of characteristics are known to be effective at dissipating energy (Rieutord
& Valdettaro 2010), but the existence of dynamically unstable modes may change
somehow the response of the star. However, as for the free oscillations discussed
above, this new kind of modes demands fully nonlinear calculations to determine the
actual consequences of the instability on the global dynamics of the star. We leave
this study to future work.
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Appendix A. Derivation of the generalized Poincaré operator

In this appendix, we give the full derivation of the generalized Poincaré operator
defined in § 3.1.

The equation of motion, with no thermal diffusion and no viscosity, reads

∂tu+Ω∂φu+ 2Ω × u+ s(u · ∇Ω)eφ =− 1
ρ0
∇P+N2Tr. (A 1)

We replace time derivatives using ∂t= iω and define ω̃=ω+mΩ . The heat equation
then gives

T =−rur

iω̃
. (A 2)

Projecting (A 1) on the vector basis (es, eφ, ez), using er = sin θes + cos θez, and
r cos θ = z, r sin θ = s, we get

iω̃us − 2Ωuφ =−∂sp− N2

iω̃
(s2us + szuz), (A 3)

iω̃uφ + 2Ωus + s∂sΩus + s∂zΩuz =− imp
s
, (A 4)

iω̃uz =−∂zp− N2

iω̃
(szus + z2uz). (A 5)

Combining (A 3) and (A 5), we get

uz = iω̃∂zp+N2szus

ω̃2 −N2z2
, (A 6)

uφ = 1
2Ω

[
iω̃(ω̃2 −N2r2)

ω̃2 −N2z2
us + N2sz

ω̃2 −N2z2
∂zp+ ∂sp

]
. (A 7)
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We replace uz and uφ in (A 4) to obtain

us = − iω̃(ω̃2 −N2z2)

As(ω̃2 −N2z2)− ω̃2(ω̃2 −N2r2)+ AzN2sz

×
[

N2sz+ Az

ω̃2 −N2z2
∂zp+ ∂sp− 2imΩ

iω̃s
p
]
, (A 8)

with

As = 2Ω
s
∂

∂s
(s2Ω) and Az = 2Ω

s
∂

∂z
(s2Ω). (A 9a,b)

Using these expressions in the mass conservation equation, keeping only the second-
order terms, we finally get (3.1):

(N2z2 − ω̃2)
∂2p
∂s2
− (2N2sz+ Az)

∂2p
∂s∂z
+ (As +N2s2 − ω̃2)

∂2p
∂z2
= 0. (A 10)
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