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SUMMARY
In this paper, an alternate passive leg structure is proposed
for the Tricept machine tool to form a modified Tricept
machine tool. The global stiffness of the modified Tricept
machine tool is derived and compared with that of the
Tricept machine tool. First, the configurations of the Tricept
machine tool and the modified Tricept machine tool are
introduced, respectively. Then, the global velocity equations
are derived and the stiffness models of the two configurations
are presented and analyzed. Finally, the advantages and
disadvantages of the two types of passive leg structure
are analyzed and discussed and stiffness simulations are
conducted.

KEYWORDS: Triceps machine tool; Stiffness improvement;
Passive leg structure

1. INTRODUCTION
Parallel Kinematic Machines (PKM) are machines based
on parallel mechanisms. As parallel mechanism has the
potential advantages of high stiffness, high speed, high
dexterity, low inertia and large payload capacity, research
in parallel mechanisms has been growing since the 1960s.
The first Hexapod machine was designed by Gough1

as a tire testing machine and then by Stewart2 for use
in an aircraft simulator. Over the past decades, parallel
mechanisms have received more and more attention from
researchers and industries. They can be found in several
practical applications, such as aircraft simulators,3 adjustable
articulated trusses,4 mining machines,5 pointing devices6

and micro-positioning devices.7 More recently, they have
been developed as high precision machine tools8–12 by
many companies such as Giddings & Lewis, Ingersoll, SMT
Tricept, Geodetic and Toyoda, etc. Among them the Tricept
machine tools13,14 are one of the successful applications.

Since most machining operations only require a maximum
of 5 axes (degrees of freedom), new configurations with
less than six axes (degrees of freedom) would be more
appropriate. Tripod is one type of a parallel kinematic
machine with three degrees of freedom, and it can realize
the three axes machining, therefore, the Tripod is targeted
as the main configuration for PKMs development. Examples
include ABB Delta robot, Tricept,15 Gerog V,16 Triaglide17

and Z3 head.18 Tripod can be combined with two axis
systems, such as x-y table, to form five axis machines.

In this paper, an alternate passive link structure for Tricept
is proposed. The configurations of the Tricepts with different
passive links are described first. Then the kinematics,
including the Jacobian matrix and velocity equation, are
derived, and the stiffness models for the two types of Tricept
with rigid links and with flexible links are presented and
discussed. Finally, the comparison of the two configurations
of Tricept with/without the consideration of flexible links is
conducted and conclusions are given.

2. GEOMETRIC MODELING

2.1. Tricept machine tool
As shown in Figure 1, the Tricept machine tools family
are developed by SMT Tricept. It is designed as a vertical
machining center. The range of application includes HSC-
milling of aluminum, steel, structural parts, composites and
riveting for the aerospace as well as large model making,
plastic and foam machining for automation, all types of laser
cutting, water jet and welding applications.

The schematic representation of the Tricept machine tool
and the geometry of the joint distribution both on the base
and platform are shown in Figures 2 and 3. This mechanism
consists of four kinematic chains, including three variable
length legs with identical topology and one passive leg,
connecting the fixed base to the moving platform. In this
3-dof parallel mechanism, the kinematic chains associated
with the three identical legs consist, from base to platform,
of a fixed U-joint, a moving link, an actuated prismatic joint,
a moving link and a spherical joint attached to the platform.
The fourth chain connecting the base center to the platform
is a passive leg and has an architecture different from the
other three identical chains. It consists of a fixed U-joint, a
prismatic joint attached to the base, a moving link fixed to
the platform. This last leg is used to constrain the motion of
the platform to only three degrees of freedom.

2.2. The modified Tricept machine tool
As represented in Figure 4, the modified Tricept machine tool
has 3DOF, it also consists of four kinematic chains, including
three variable length legs with identical topology as Tricept
and one passive leg which is different from that of Tricept,
connecting the fixed base to a moving platform. The fourth
chain connecting the base center to the platform center is a
passive constraining leg and has a different architecture from
the other three identical chains. It consists of a prismatic joint
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Fig. 1. Tricept machine tools prototype.

attached to the base, a moving link and a U-joint attached to
the platform. The positions of the attachment points on the
base and platform are the same as Figure 3.

3. KINEMATIC MODELING FOR THE
ACTUATED PART
As the two mechanisms have the identical actuated parts,
they have the same kinematic equations as well. Since
the platform of the two mechanisms has three degrees of
freedom, only three of the six Cartesian coordinates of the
platform are independent. For the Tricept mechanism of
Figure 2, the independent coordinates have been chosen for
convenience as (z, θ41, θ42), where (θ41, θ42) are the joint
angles of the U-joint attached to the base center. For the
modified Tricept one, the independent coordinates have been
chosen as (z, θm42, θm43), where θm42, θm43 are the joint angles
of the U-joint attached to the platform.

Assume that the vertices located on the base and the
platform are located on circles with radii Rb and Rp,
respectively. A fixed reference frame O − xyz is attached
to the base of the mechanism and a moving coordinate frame
P − x ′y ′z′ is attached to the platform. In the figure, the points
of attachment of the actuated legs to the base are represented
with Bi and the points of attachment of all legs to the platform
are represented with Pi , with i = 1, . . . , 4. Point P is located
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1

Fig. 2. Schematic representation of the Tricept machine tool.

Y

30

120

1

2 3

X

Fig. 3. Position of the attachment points on the base and platform.

at the center of the platform and its position coordinates are
P (x, y, z) (P (4) = P ).

The Cartesian coordinates of the platform are given by the
position of point P with respect to the fixed frame, and the
orientation of the platform (orientation of frame P − x ′y ′z′
with respect to the fixed frame), represented by matrix Q.
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Fig. 4. Schematic representation of the modified Tricept
machine tool.

If the coordinates of the point Pi in the moving reference
frame are represented with (x ′

i , y
′
i , z

′
i) and the coordinates of

the point Bi in the fixed frame are represented by vector bi ,
then for i = 1, . . . , 4, one has

pi =

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where pi is the position vector of point Pi expressed in
the fixed coordinate frame whose coordinates are defined
as (xi, yi, zi), r′

i is the position vector of point Pi expressed
in the moving coordinate frame, and p is the position vector
of point P expressed in the fixed frame as defined above, and
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(2)

One can then write

pi = p + Qr′
i (3)

where Q is the rotation matrix corresponding to the
orientation of the platform of the manipulator with respect to
the base coordinate frame.

The parallel mechanisms studied here comprise two main
components, namely, the constraining leg, which can be
thought of as a serial mechanism and the actuated legs acting
in parallel.

In order to solve the inverse kinematic problem, one must
first consider the passive constraining leg as a serial 3-
dof mechanisms whose 3 Cartesian coordinates are known,
which is a well known problem. Once the solution to the
inverse kinematics of this 3-dof serial mechanism is found,
the complete pose (position and orientation) of the platform
can be determined using the direct kinematic equations for
this serial mechanism.

For the actuated parts, subtracting vector bi from both
sides of eq. (3), one obtains

pi − bi = p + Qr′
i − bi , i = 1, 2, 3 (4)

Then, taking the Euclidean norm of both sides of eq. (4), one
derives

‖pi − bi‖ = ‖p + Qr′
i − bi‖ = ρi, i = 1, 2, 3 (5)

where ρi is the length of the ith leg, i.e. the value of the
ith joint coordinate. The solution of the inverse kinematic
problem for the two mechanisms is therefore completed and
can finally be written as

ρ2
i = (pi − bi)

T (pi − bi), i = 1, 2, 3 (6)

4. KINEMATIC MODELING FOR THE
PASSIVE LEG
The parallel mechanism studied here comprises two main
components, namely, the constraining leg, which can be
thought of as a serial mechanism and the actuated legs acting
in parallel.

4.1. Case with rigid links
4.1.1. The Tricept machine tools. Figure 5 illustrates the
configuration of the passive leg of the Tricept machine tool,
From the Figure 5, we can obtain the Denavit-Hartenberg
parameters as in Table I. With the Denavit-Hartenberg

Table I. The DH parameters for the pasive leg of the Tricept
machine tool.

i ai bi αi θi

0 0 0 90 0
1 0 0 90 θ41

2 0 0 90 θ42

3 0 Z 0 90
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Fig. 5. The passive leg of the Tricept (rigid case).

parameters above, one can obtain the kinematic model in
next section. For the passive kinematic chain, one has the
velocity equation

J4θ̇4 = t (7)

where

θ̇4 = [θ̇41 θ̇42 ρ̇]T (8)

and where t is the twist of the platform, written as t =[
ωT ṗT

]T
, where ω the angular velocity of the platform,

and the Jacobian matrix of the passive leg of the Tricept, J4

can be expressed as

J4 =
[

e41 e42 0
e41 × r41 e42 × r42 e41

]
(9)

where e4i is a unit vector defined in the direction of axis
i while r4i is a vector connecting the origin of frame i to
point P .

4.1.2. The modified Tricept machine tool. Figure 6
illustrates the configuration of the passive leg of the modified
Tricept machine tool, from the Figure 6, we can obtain the
Denavit-Hartenberg parameters as in Table II. For the passive
kinematic chain, we have the same velocity equation

Jm4θ̇m4 = t (10)

where

θ̇m4 = [ ρ̇ θ̇m42 θ̇m43 ]T (11)
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Fig. 6. The passive leg of the modified Tricept machine tool
(rigid case).

Table II. The DH parameters for the passive leg of the modified
Tricept machine tool.

i ai bi αi θi

0 0 0 0 0
1 0 Z 90 0
2 0 0 90 θm42

3 0 0 0 θm43

and the Jacobian matrix of the 4th leg of the modified Tricept
machine tool, Jm4 can be expressed as

Jm4 =
[

0 e42 e43

e41 e42 × r42 e43 × r43

]
(12)

4.2. Case with flexible links
In order to obtain a simple kinetostatic model, link
compliances are lumped at the joints as described in reference
[15]. In this framework, link bending stiffnesses are replaced
by equivalent torsional springs located at virtual joints, as
described in reference [19]. Actuator stiffnesses are also
included and modeled as torsional or linear springs for
revolute and prismatic actuators, respectively.

4.2.1. Tricept machine tools. Figure 7 illustrates the
configuration of the passive leg with the consideration of
link flexibility. Since there are forces and moments acting on
the platform, the induced deformations are modeled using a
virtual revolute joint on the base and two orthogonal virtual
revolute joints in the middle of the passive constraining leg.
These joints are drawn using dashed lines in Figure 7.

The Denavit-Hartenberg parameters can be obtained in
Table III.

The kinematic chain can be taken as a serial manipulator,
the kinematics of the serial manipulators comprises the
study of the relations between joint variables and Cartesian
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Fig. 7. The passive leg of the Tricept machine tools (with flexible
links).

Table III. The DH parameters for the passive leg of the Tricept
machine tool with flexible links.

i ai bi αi θi

0 0 0 90 0
1 0 0 90 θ41

2 0 0 90 θ42

3 0 0 0 θ43

4 0 z/2 90 θ44

5 0 0 90 θ45

6 z/2 0 0 θ46

variables. A U-joint can be replaced by two orthogonal
revolute joints in our this case.

For the passive kinematic chain, we have the velocity equa-
tion by using the same method as in the section of rigid links.

J′
4θ̇

′
4 = t (13)

where

θ̇
′
4 = [θ̇41 θ̇42 θ̇43 ż/2 θ̇45 θ̇46]T (14)

and the Jacobian matrix of the passive leg of the Tricept, J4

can be expressed as

J′
4 =

[
e41 . . . 0 e45 e46

e41 × r41 . . . e44 e45 × r45 e46 × r46

]
(15)

The part for the three identical legs are the same as in the
rigid part.
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Fig. 8. The passive leg of the modified Tricept machine tool with
flexible links.

Table IV. The DH parameters for the passive leg of the modified
Tricept machine tool with flexible links.

i ai bi αi θi

0 0 0 90 0
1 0 0 90 θm41

2 0 0 90 θm42

3 0 0 0 θm43

4 0 b4 90 θm44

5 0 0 90 θm45

6 0 0 0 θm46

4.2.2. The modified Tricept machine tool. Figure 8
illustrates the configuration of the passive leg of the modified
Tricept machine tool with flexible links.

From Figure 8, we can obtain the Denavit-Hartenberg
parameters as in Table IV. For the passive kinematic chain,
we have the velocity equation by using the same method as
in section of rigid links.

J′
m4θ̇

′
m4 = t (16)

where

θ̇
′
m4 = [θ̇m41 θ̇m42 θ̇m43 ρ̇m44 θ̇m45 θ̇m46]T (17)

and the Jacobian matrix of the passive leg of the mechanism
J4 can be expressed as

J′
m4 =

[
e41 . . . 0 e45 e46

e41 × r41 . . . e44 e45 × r45 e46 × r46

]
(18)

5. GLOBAL VELOCITY EQUATION
Now considering the parallel component of the mechanism,
the parallel Jacobian matrix can be obtained by differen-
tiating eq. (6) with respect to time, one obtains

ρiρ̇i = (pi − bi)
T ṗi , i = 1, 2, 3 (19)
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Hence one has the velocity equation as

At = Bρ̇ (20)

where vectors ρ̇ and t are defined as

ρ̇ = [ρ̇1 ρ̇2 ρ̇3]T (21)

t = [ω1 ω2 ω3 ẋ ẏ ż]T (22)

ω1, ω2, ω3 are the angular velocities of the platform, and

A =




aT
1

aT
2

...

aT
6




(23)

B = diag[ρ1, ρ2, ρ3] (24)

where ai is a six dimension vector, which can be expressed
as

ai =
[

(Qr′
i) × (pi − bi)

(pi − bi)

]
(25)

Hence, eq. (10) or (16) relates the twist of the platform
to the joint velocities of the passive leg through the serial
Jacobian matrix J4 or J′

4 while eq. (20) relates the twist
of the platform to the actuator velocities through parallel
Jacobian matrices A and B. It should be pointed out that
the dimensions of matrix J4 will be (6 × 3), matrix J′

4 will
be (6 × 6), matrix A will be (3 × 6) and matrix B will be
(3 × 3). The derivation of the relationship between Cartesian
velocities and joint rates is thereby completed.

6. KINETOSTATIC MODELS

6.1. Case with rigid links
In this section, the velocity equations derived in the previous
section will be used to obtain the kinetostatic model for the
mechanism with rigid links.

According the principle of virtual work, one has

τ T ρ̇ = wT t (26)

where τ is the vector of actuator forces applied at each
actuated joint and w is the wrench (torque and force) applied
to the platform and where it is assumed that no gravitational
forces act on any of the intermediate links.

One has w = [
nT fT

]T
where n and f are respectively the

external torque and force applied to the platform.
Rearranging eq. (20) and substituting it in eq. (26), one

obtains

τ T B−1At = wT t (27)

Now, substituting eq. (10) into eq. (27), one has

τ T B−1AJ4θ̇4 = wT J4θ̇4 (28)

The latter equation must be satisfied for arbitrary values of
θ̇4 and hence one can write

(AJ4)T B−T τ = J4
T w (29)

The latter equation relates the actuator forces to the
Cartesian wrench, w, applied at the end-effector in static
mode. Since all links are assumed rigid, the compliance of
the mechanism will be induced solely by the compliance of
the actuators. An actuator compliance matrix C is therefore
defined as

Cτ = �ρ (30)

where τ is the vector of actuated joint forces and �ρ is the
induced joint displacement. Matrix C is a (3 × 3) diagonal
matrix whose ith diagonal entry is the compliance of the ith
actuator.

Now, eq. (29) can be rewritten as

τ = BT (AJ4)−T J4
T w (31)

The substitution of eq. (31) into eq. (30) then leads to

�ρ = CBT (AJ4)−T J4
T w (32)

Moreover, for a small displacement vector �ρ, eq. (20)
can be written as

�ρ � B−1A�c (33)
where �c is a vector of small Cartesian displacement and
rotation defined as

�c = [�ρT �αT ]T (34)

in which �α, the change of orientation, is defined as

�α = vect(�QQT ) (35)

where �Q is the variation of the orientation and vect(·) is the
vector linear invariant of its matrix argument.

Similarly, eq. (10) can also be written, for small displace-
ments, as

J4�θ4 � �c (36)

where �θ4 is a vector of small variations of the joint
coordinates of the constraining leg.

Substituting eq. (33) into eq. (32), one obtains

B−1A�c = CBT (AJ4)−T JT
4 w (37)

Premultiplying both sides of eq. (37) by B, and substituting
eq. (36) into eq. (37), one obtains,

AJ4�θ4 = BCBT (AJ4)−T JT
4 w (38)

Then, premultiplying both sides of eq. (38) by (AJ4)−1,
one obtains,

�θ4 = (AJ4)−1BCBT (AJ4)−T JT
4 w (39)

and finally premultiplying both sides of eq. (39) by J4, one
obtains,

�c = J4(AJ4)−1BCBT (AJ4)−T JT
4 w (40)

Hence, one obtains the Cartesian compliance matrix as

Cc = J4(AJ4)−1BCBT (AJ4)−T JT
4 (41)

with

�c = Ccw (42)

where Cc is a symmetric positive semi-definite (6 × 6)
matrix, as expected.
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Fig. 9. Compliance mappings of the Tricept machine tool (all length units in m).

It is pointed out that, in nonsingular configurations, the
rank of B, C and J4 is 3 and hence the rank of Cc will be
3. Hence, the nullspace of matrix Cc will not be empty and
there will exist a set of vectors w that will induce no Cartesian
displacement �c. This corresponds to the wrenches that
are supported by the constraining leg, which is considered
infinitely rigid. These wrenches are orthogonal complements

of the allowable twists at the platform. Hence, matrix Cc

cannot be inverted and this is why it was more convenient to
use compliance matrices other than stiffness matrices in the
above derivation. In the modified case, J4 is replaced by Jm4.

In the next section, the kinetostatic model will be rederived
for the case in which the flexibility of the links is considered.
In this case, stiffness matrices will be used.
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Fig. 10. Evolution of the stiffness as a function of the passive link’s lumped stiffness in different directions (Tricept).

6.2. Case with flexible links
According to the principle of virtual work, one can write

wT t = τ T
4 θ̇

′
4 + τ T ρ̇ (43)

where τ is the vector of actuator forces and ρ̇ is the vector
of actuator velocities (actuated legs), and τ 4 is the vector of
joint torques in the constraining leg. This vector is defined as
follows, where K4 is the stiffness matrix of the passive leg,

τ 4 = K4�θ ′
4 (44)

K4(modified Tricept) = diag[k41, k42, k43, 0, 0, 0] (45)

K4(Tricept) = diag[0, 0, k43, 0, k45, k46] (46)

Matrix K4 is a diagonal (6 × 6) matrix in which the ith
diagonal entry is zero if it is associated with a real joint is
equal to ki if it is associated with a virtual joint, where ki

is the stiffness of the virtual virtual spring located at the ith
joint.

Eq. (43) can be rewritten as

wT t = τ T
4 (J′

4)−1t + τ T B−1At (47)

Since this equation is valid for any value of t, we can write

w = (J′
4)−T τ 4 + AT B−T τ (48)

which can be rewritten as

w = (J′
4)−T K4�θ4 + AT B−T KJ �ρ (49)

where KJ is a 3 × 3 joint stiffness matrix for the actuated
joints.

Using the kinematic equations, we can then write:

w = (J′
4)−T K4(J′

4)−1�c + AT B−T KJ B−1A�c (50)

which is in the form

w = K�c (51)

where K is the Cartesian stiffness matrix, which is equal to

K = (J′
4)−T K4(J′

4)−1 + AT B−T KJ B−1A (52)
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Fig. 11. Compliance mappings of the Tripod-based PKM (all length units in m).

Matrix K is a symmetric (6 × 6) positive semi-definite
matrix, as expected. However, in this case, matrix K will be
of full rank in non-singular configurations. Indeed, the sum of
the two terms in eq. (52) still span the complete space of
constraint wrenches. In the modified case, J′

4 is replaced
by J′

m4.

7. IMPLEMENTATION
The parameters used in this example are given by SMT
Tricept AB as follows:

θb1 = π/2, θb2 = 7π/6, θb3 = −π/6,

θp1 = π/2, θp2 = 7π/6, θp3 = −π/6,

Rp = 225 mm, Rb = 500 mm,

ki1 = 1000 N/m, i = 1, 2, 3

where ki1 is the actuator stiffness and the Cartesian coordi-
nates are given as

x ∈ [−2, 2] cm, y ∈ [−2, 2] cm, z = 1300 mm,

θ41 = π/2, θ42 = π/2,

From eq. (52), the stiffness for passive leg can be written as

K = (J′
4)−T K4(J′

4)−1 (53)

We implemented the above model for both Tricept machine
tool and modified Tricept machine tool to compare the
difference of installing U-joint at the base and at the
moving platform. Given the same geometric sizes and other
parameters, i.e. the dimentions for moving platform and base
platform, the passive leg length, diameter and material, the
actuators and length for all three actuated prismatic joints.
For both the Tricept machine tool and the modified Tricept
machine tool, assuming the bending stiffness of the passive
leg in both X and Y directions is 100000 N/m, and torsional
stiffness of the passive leg is 100000 Nm. Based on the
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Table V. Comparison of the global stiffness contributed by the passive leg.

(N/m) Kθx
(Nm) Kθy

(Nm) Kθz
(Nm) Kx (N/m) Ky (N/m) Kz

Tricept 4 × 105 4 × 105 1 × 105 4.93827 × 105 4.93827 × 105 0
Modified Tricept 0 0 1 × 105 1 × 106 1 × 106 0

kinetostatic models, it’s easy to obtain the following results
(Table V).

The results are quite reasonable, as for Tricept machine
tool, the rotations in X and Y are compound ones rather than
pure rotation, therefore, there still exists stiffness in θx and θy .
For the modified Tricept machine tool, the rotations around
X and Y are pure rotation, the torsional stiffness in these two
directions are 0. It has been observed that Tripod with U-
joint in the moving platform is more rigid than Tripod with
U-joint installed at the base. The modified Tricept machine
tool is two times stiffer than that of the Tricept machine tool.

8. STIFFNESS MAPPINGS
Since we are now discussing the manipulator with 3dof, and
there should exist three infinite stiffnesses in three of the
directions, hence instead of a stiffness matrix, we applied a
compliance matrix. The analysis described above will now be
used to obtain the compliance maps for spatial three-degree-
of-freedom parallel manipulators. The maps are drawn on
square areas of the variation of the end-effector’s position.

Visualization tools to aid in the use of such expressions
have been developed. A program has been written on
Mathematica software, after giving the initial values above,
then the contour maps can be shown in Figure 9, from such
plots one can determine which regions of the workspace will
satisfy some compliance criteria.

From Figure 10, it can be seen that Kθx
, Kθy

, Kθz
, Kx

and Ky are becoming infinite while the flexible links are
becoming rigid, and Kz is kept constant, it corresponds to
the motions prevented by the passive constraining leg and
at this configuration, the motions along the X and the Y are
also limited (for passive leg is welded with platform).

In Figures 11(a) and 11(b), the torsional compliances in
θx and θy are shown, the compliances are symmetric. In
Figure 11(d) the stiffness in z is higher near the center of the
workspace, which is the best position for supporting vertical
loads. This is due to the architecture chosen, which aims at
supporting heavy objects in an environment where the gravity
is acting along the negative direction of z axis. All these are
in accordance with what would be intuitively expected.

9. CONCLUSIONS
In this paper, a modified Tricept machine tool with a different
passive leg structure is presented. The kinetostatic models
for both the original Tricept machine tool and the modified
Tricept machine tool are generated. The comparison of the
two configurations is conducted in terms of global stiffness
and compliance mapping. It is shown that a Tricept with a
U-joint installed at the moving platform is more rigid than
that of a Tricept with a U-joint installed at the base platform.
The influence of the different arrangement of the joint in the
passive leg is analyzed and pointed out.
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