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In this paper we investigate the statics and the dynamics of large-viscosity ligaments
attached to a rod and drawn out of a pure-liquid bath. Following the similar work of films
pulling out of a bath (Champougny et al., J. Fluid Mech., vol. 811, 2017, pp. 499–524), a
one-dimensional model is applied to describe the ligaments drawn at constant velocities.
We focus on the whole drawing dynamics of the ligament up to breakup, for which the
breakup height is determined. The breakup height coincides with the maximum static
meniscus height for very slow drawing, whose process can be described by quasi-static
solutions. We present the numerical results of the static menisci and analytically unravel
the mechanism in the low gravity case. Starting from a stable static meniscus, the breakup
height of faster drawing depends separately on the rod radius and the drawing velocity,
the latter dependency being fully determined by considering the agravic limit. Next, it is
shown that the entire lifetime of the ligament drawing can be sequenced into a ductility
stage, a capillarity stage and a pinch-off stage, the latter being shown to be almost
instantaneous. The ductility and capillarity stages are decorrelated with the help of an
approximate solution of the ductility stage, and the transition between the two stages
corresponds to the time at which the capillarity-induced contraction velocity exceeds
the ductility-induced one. The one-dimensional predictions of the breakup height and
the entrained liquid volume attached to the rod quantitatively agree with experimental
results of silicone oil ligaments, and the deviations are rationalized in comparison with a
two-dimensional model.
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1. Introduction

The breakup of stretching ligaments is a common phenomenon in everyday life experience,
e.g. animal drinking strategies (Reis et al. 2010; Kim & Bush 2012; Gart et al. 2015), drop
formations (Villermaux 2007; Javadi et al. 2013; Rubio-Rubio, Sevilla & Gordillo 2013)
or pathogen aerosolizations (Abkarian & Stone 2020). Various industrial applications
are based on the stretching process, such as the manufacture of glass or polymer fibres
(Griffiths & Howell 2008; Bechert & Scheid 2017), gravure printing (Kumar 2015), tip
streaming for single or double emulsification (Evangelio, Campo-Cortés & Gordillo 2016),
measurement of extensional viscosity (Spiegelberg, Ables & McKinley 1996) or food
processing (Jimenez, Martínez Narváez & Sharma 2020). In printing processes such as
roll coating, stretching ligaments have been shown to be at the origin of misting, which is
the undesirable formation of aerosol droplets (Owens et al. 2011).

In different geometries, there are mainly three axisymmetric stretching configurations:
(i) ligaments stretched out of a nozzle, (ii) ligaments stretched between disks, and (iii)
ligaments drawn out of a liquid bath. (i) The properties of ligaments stretched out of a
nozzle by gravity (Padday et al. 1997; Clanet & Lasheras 1999; Henderson et al. 2000;
Javadi et al. 2013; Rubio-Rubio et al. 2013; Martínez-Calvo, Rubio-Rubio & Sevilla 2018)
or by viscous stresses (Dewandre et al. 2020) have been extensively studied, and three
distinct regimes can be identified by the flow rate provided by the nozzle: a periodic
dripping regime for low flow rates, a dripping faucet regime for intermediate flow rates
and a jetting regime for high flow rates. (ii) Ligaments stretched between two disks, mainly
one of the disks being pulled up at a constant velocity or acceleration, have been studied
by Zhang, Padgett & Basaran (1996), Vincent, Duchemin & Villermaux (2014b), Zhuang
& Ju (2015), Wylie, Bradshaw-Hajek & Stokes (2016) and Brulin, Tropea & Roisman
(2020). Two different regimes depending on the Ohnesorge number can be observed:
the breakup length stays nearly constant or even decreases with the stretching velocity
for low Ohnesorge numbers, whereas it keeps increasing for high Ohnesorge numbers.
(iii) Ligaments drawn out of a bath have more involved boundaries, namely an upward
moving boundary and a bath exchange boundary. It has received less attention, the few
investigations being reported by Marmottant & Villermaux (2004), Reis et al. (2010),
Gart et al. (2015), Zheng, Liu & Luo (2013), and more recently, by Kim, Kim & Jung
(2018). In all these works, ligaments characterized by small Ohnesorge numbers have been
studied, whose breakup times are approximately the capillary instability time scale. In the
present paper we consider ligaments drawn out of a pure-liquid bath with large Ohnesorge
numbers, and unravel the drawing dynamics from the initial static meniscus to the final
pinch-off.

When the drawing velocity is very slow, the subject is reduced to a quasi-static problem,
namely the rod-in-free-surface problem, as referred by Padday & Pitt (1973). As we
consider ligaments between a perfectly wetting rod bottom and an infinite pure-liquid bath,
a fixed contact line condition at the rod boundary and a constant pressure condition at the
bath boundary should be imposed. Unlike static menisci of films (Heller 2008), there is no
apparent analytical solution for the rod-in-free-surface meniscus. Profiles and stabilities
of axisymmetric menisci have been extensively studied (Padday & Pitt 1973; Kovitz 1975;
Pitts 1976; Benilov & Oron 2010; Benilov & Cummins 2013). In particular, Pitts (1976)
put forward the analytical proof of the unstable region; Benilov & Oron (2010) pointed out
there could be two solutions for a certain height, and only one is stable. Two limits exist in
the problem, respectively for very large and very small rods. The former can be described
analytically by omitting the radial curvature (Benilov & Oron 2010), while the latter is
much more difficult, the analytical attempts are given by Kovita (1975) and James (1974),
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Regimes of a viscous ligament drawn out of a liquid bath

but only at the leading order in the expansion of the small rod radius. The first objective of
this work is to describe the static, and, therefore, the quasi-static meniscus for very small
rods by numerical and analytical methods.

When the drawing velocity is higher, the breakup height of ligaments results from the
interaction of ductility and capillarity (Ide & White 1976). By ductility we mean the
diameter reduction caused by viscous stretching in the absence of capillary forces, which
has been widely studied in non-Newtonian stretching problems (Ide & White 1976; Zhu
& Wang 2013). By capillarity we mean capillary instability, pioneered by Rayleigh (1878,
1892) and later extended by Keller, Rubinow & Tu (1973) and Huerre & Monkewitz (1990).
Drawing or ductile effects on capillarity have attracted much attention, as first considered
by Tomotika & Taylor (1936). Frankel & Weihs (1985, 1987) and Henderson et al. (2000)
pointed out that the most amplified wavelength is no longer constant for a drawing ligament
or jet. These works are based on the linear stability analysis, which does not allow us to
account for the transient dynamics of drawing. Hence, the second objective of this work is
to unravel the transient drawing dynamics considering both ductile and capillary effects.

The last stage of the ligament drawing dynamics is the pinch-off leading to breakup.
Due to the highly nonlinear effect, it is not until the last few decades that mathematical
descriptions of pinch-off phenomena have been carried out by using similarity methods.
Eggers (1993) first found a universal solution in the viscous-inertial regime for Newtonian
ligaments, which is independent of the initial and outside conditions. Later followed the
solutions in the viscous regime (Papageorgiou 1995) and in the inertial regime (Day, Hinch
& Lister 1998) for viscous and inviscid ligaments, respectively. An extensive literature
exists on transitions of pinch-off regimes (Li & Sprittles 2016; Verbeke et al. 2020), and a
good overview can be found in Eggers (2005). The third objective of this work then is to
determine the role of the pinch-off stage in the drawing dynamics.

In this paper we present a non-stationary one-dimensional model to describe the
ligaments drawn out of a pure-liquid bath. A one-dimensional model based on a
long-wavelength description has been widely used in breakup problems (Eggers 1993;
Eggers & Dupont 1994; Eggers 2005; Augello 2015), which gives huge savings in
the computer time and simplifies the analysis compared with the two-dimensional
axisymmetric model. After obtaining the numerical results, we investigate the
drawing dynamics around the above three objectives by analytical and quantitative
analyses. Experimental and two-dimensional results are also presented to validate the
one-dimensional model and analyse the deviations. This paper will be organized in the
following sequence. The one-dimensional model is presented in § 2. Static results and
dynamic results are shown and discussed in §§ 3 and 4, respectively. Then we compare the
one-dimensional model with the experiments in § 5 and with the two-dimensional model
in § 6. The entrained liquid volume is presented in § 7 as an application, and conclusions
are finally given in § 8.

2. One-dimensional model

2.1. Problem settings
We consider a liquid ligament drawn out of a pure-liquid bath by a perfectly wetting rod at
a constant velocity U. The liquid under consideration is incompressible and Newtonian, of
dynamic viscosity μ, density ρ and surface tension γ . As shown in figure 1, a cylindrical
coordinate system is built, the centre is fixed at the initial position of the rod bottom. The
rod has a circular cross-section of radius R, the meniscus then is pinned at r = R. During
the whole drawing process the ligament is assumed to be axisymmetric with respect
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(b)

g
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f (z, 0) f (z, t)
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(a)

Figure 1. Sketches of the liquid ligament under consideration, showing the notations, in particular the
locations zd , zs, and L(t) where the boundary conditions are imposed. The origin of the cylindrical coordinate
system is fixed at the initial position of the rod bottom. The initial configuration is presented in (a), where a
static meniscus is formed between the rod (located at z = 0) and the bath (located at z = −Hs, dotted line) with
a static meniscus angle θs = π/2, g is gravity. The configuration in (b) represents the liquid ligament at a later
time, with a dynamic meniscus angle θ(t). The distance between the bath and the rod bottom is defined as the
height H(t), whereas the distance travelled by the rod is defined as the length L(t).

to the z-axis, so that the interface is defined at r = f (z, t), with t the time. According
to the one-dimensional model built by Eggers & Dupont (1994), the two-dimensional
axisymmetric partial differential system presented in § 6.1, can be reduced to a system
of three equations:

(i) mass conservation equation

∂t f 2 + ∂z

(
f 2u
)

= 0, (2.1)

(ii) momentum equation

f 2ρ (∂tu + u∂zu)+ f 2γ ∂zK + f 2ρg − 3μ∂z

(
f 2∂zu

)
= 0, (2.2)

(iii) mean curvature

K(z, t) = 1

f
[
1 + (∂zf )2

]1/2 − ∂zzf[
1 + (∂zf )2

]3/2 , (2.3)

where u = u(z, t) is the extensional velocity and K is the mean curvature. The first two
terms in (2.2) account for inertia while the rest account, respectively, for capillary pressure,
gravity and the extensional viscous stress (Trouton 1906). Note that we keep the full
expression of the curvature in the one-dimensional model, as it allows us to have a full
description of the ligament including the regions close to the bath and the rod. The same
approaches have proven to provide good agreement with experimental results for ligaments
(Eggers & Dupont 1994; Clasen et al. 2006; van Hoeve et al. 2010; Vincent, Duchemin &
Le Dizès 2014a; Martínez-Calvo et al. 2018) and films (Champougny et al. 2017; Kofman
et al. 2018). In particular, in Martínez-Calvo et al. (2018) the authors used it for the same
geometry: a ligament and a liquid bath, with remarkable agreement.
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2.2. Non-dimensionalised problem
Applying the following transformations,

f → Rf , z → Rz, H → RH, L → RL, (2.4a–d)

K → 1
R

K, u → γ

μ
u, t → μR

γ
t, (2.4e–g)

the non-dimensional system of equations becomes

∂t f 2 + ∂z( f 2u) = 0, (2.5)

1
Oh2 f 2 (∂tu + u∂zu)+ f 2 (∂zK + Bo)− 3∂z

(
f 2∂zu

)
= 0, (2.6)

K(z, t) = 1

f
[
1 + (∂zf )2

]1/2 − ∂zzf[
1 + (∂zf )2

]3/2 , (2.7)

where Bo and Oh are the Bond and Ohnesorge numbers, respectively, defined as

Bo = ρgR2

γ
and Oh = μ√

ργR
. (2.8a,b)

2.3. Initial and boundary conditions
The dynamic system requires two initial conditions respectively for f and u. Naturally, we
consider the static meniscus shown in figure 1 as the initial profile, with a static meniscus
angle θs at the rod bottom, which is located at a dimensionless height Hs above the bath.
Simplified from (2.6) and (2.7), the non-dimensional static system is

K′
s = −Bo, (2.9)

Ks = 1

fs
(
1 + f ′2

s
)1/2 − f ′′

s(
1 + f ′2

s
)3/2 , (2.10)

where fs(z) represents the static profile, Ks(z) the static curvature and the prime denotes
the derivative with respect to the z-coordinate. It is an ordinary differential equation system
requiring three boundary conditions,

Ks(−Hs) = 0, (2.11a)

f ′
s(−Hs) = −∞, (2.11b)

fs(0) = 1, (2.11c)

where −Hs is the position of the flat bath. However, an analytical solution does not
obviously exist and a numerical method should be applied. Firstly, integrating (2.9) with
respect to z and using the boundary condition (2.11a) yields

Ks = −Bo (z + Hs) . (2.12)

Substituting (2.10) into (2.12), we obtain

f ′′
s = Bo (z + Hs)

(
1 + f ′2

s

)3/2 + 1
fs

(
1 + f ′2

s

)
. (2.13)

To avoid the infinite boundary condition (2.11b), a position zs (see figure 1) close to the
bath is used as the new boundary, i.e. f ′

s(−Hs) is replaced by f ′
s(zs). According to Benilov
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& Oron (2010), the asymptotic solutions of fs and f ′
s close to the bath are

fs(zs) = 1√
Bo

[
− ln(a(zs + Hs))− ln(− ln(a(zs + Hs)))

2
− 2 ln(− ln(a(zs + Hs)))− 1

8 ln(a(zs + Hs))

]

+ O

[
1√
Bo

(
ln(− ln(a(zs + Hs)))

ln(a(zs + Hs))

)2
]
, (2.14a)

f ′
s(zs) = − 1√

Bo(zs + Hs)

[
1 + 1

2 ln(a(zs + Hs))
+ 3 − 2 ln(− ln(a(zs + Hs)))

8 (ln(a(zs + Hs)))
2

]

+ O
[

2 ln(− ln(a(zs + Hs))) (1 − ln(− ln(a(zs + Hs))))√
Bo(zs + Hs) (ln a(zs + Hs))

3

]
, (2.14b)

for zs → −Hs, where a is a positive constant parameter. To obtain the static solution
for a certain Bo and a certain Hs, we seek for the corresponding parameter a(Bo,Hs),
namely shooting fs using (2.14) and adjusting the parameter a until fs satisfies (2.11c).
After obtaining the solutions, we calculate the static meniscus angles θs using f ′

s(0)
and find that two solutions with two θs (equivalently a) exist for most of the cases.
Instead, we found it more convenient to parametrize the profile, the meniscus height
and the parameter a with Bo and θs henceforth, namely fs(z,Bo, θs), Hs(Bo, θs) and
a(Bo, θs). For the following, we define the static meniscus height with a right angle
meniscus as Hπ/2,s(Bo) = Hs(Bo,π/2), the maximum static meniscus height of a certain
Bo as Hb,s(Bo), and the corresponding static meniscus angle as θb,s, hence Hb,s(Bo) =
Hs(Bo, θb,s) and ∂θsHs(Bo, θb,s) = 0.

As presented in figure 1, one can draw ligaments from static menisci with various initial
θs. We show in Appendix A that the contraction stages are reasonably independent of the
initial θs, while the preliminary stages can be significantly influenced by θs. We also show
in § 6.2 that strong two-dimensional effects exist for ligaments close to the bath. Hence,
to focus on the contraction dynamics and avoid the two-dimensional effects, we consider
ligaments drawn from static menisci with θs = π/2, i.e. from an initial height Hπ/2,s, in
the present paper. The dimensionless initial conditions and the initial guess for K are

f (z, 0) = fs(z,Bo,π/2), (2.15a)

u(z, 0) = Ca
f 2
s (z,Bo,π/2)

, (2.15b)

K(z, 0) = Ks(z,Bo,π/2), (2.15c)

where the capillary number Ca is defined as

Ca = μU
γ
. (2.16)

According to the dimensionless transformations (2.4), Ca henceforth is also mentioned as
the dimensionless drawing velocity. We approximate the initial condition (2.15b) on u by
solving the stationary version of the conservation equation (2.5), using the constant speed
at the rod as the boundary condition (see (2.17b)).
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Regimes of a viscous ligament drawn out of a liquid bath

For the boundary conditions, using the same strategy as Champougny et al. (2017), four
boundary conditions are required, two at the rod side,

f (L(t), t) = 1, (2.17a)

u(L(t), t) = Ca, (2.17b)

where L(t) = Ca t is the dimensionless position of the rod, and two at a position zd close
to the bath,

∂zf (zd, t) = ∂z fs(zd,Bo,π/2), (2.18a)

K(zd, t) = Ks(zd,Bo,π/2). (2.18b)

The boundary conditions (2.18) impose that the profile sufficiently close to the bath
(−Hs < z < zd) generally remains static and can translate horizontally, as we only fix the
slope and the curvature at that boundary. This quasi-static approach will later be validated
in § 6.2, and can also be found in simulations of fibres (Ryck & Quéré 1996), plates (Scheid
et al. 2010) and films (Champougny et al. 2017) pulled out of a liquid bath. Note that, now
there are two near-bath boundary positions zs and zd respectively for the static and the
dynamic systems, with the relationship −Hs < zs < zd < 0 (see figure 1). The reasons we
do not keep zs in the dynamic system are: on the one hand, −∂z fs ≈ 1/(Bo1/2(zs + Hs))
inferred from (2.14b) can be quite large for small Bo and brings convergence difficulties for
the partial differential equation (PDE) system; on the other hand, we show in Appendix B
that the results are independent of the boundary position for −∂z fs � 100. In practice,
we first solve the static system with zs = −0.999Hs (ensuring the three decimal accuracy
for Hs), obtaining fs, ∂zfs and Ks, then solve the dynamic system with ∂zfs and Ks at the
position zd where ∂z fs = −100.

Based on the above, it results that the problem is governed by three independent
parameters, the Bond number Bo, the capillary number Ca and the Ohnesorge number
Oh. Finally, the Ohnesorge number can also be expressed as a function of Bo,

Oh = μ

Bo1/4√ργ �c
, (2.19)

such that only Bo and Ca should be varied independently for a given liquid. The
dimensional physicochemical parameters we implement in the simulations (except
Appendix C) are those of the V5000 silicone oil that we used in the experiments
presented in § 5, namely μ = 4.92 Pa s, ρ = 970 kg m−3, γ = 21.1 mN m−1. We will
show both numerically in Appendix C and experimentally in § 5 that drawing processes
are reasonably independent of the Ohnesorge number for large-viscosity liquids with
μ ≥ 0.5 Pa s. The following parameter space is therefore considered in the present paper:

10−4 ≤ Bo ≤ 1, (2.20a)

10−5 ≤ Ca ≤ 1, (2.20b)

2.86 ≤ Oh. (2.20c)

The static system of ordinary differential equations (2.13), (2.14) and (2.11c) is solved
using MATLAB R2019b. The dynamic system of partial differential equations (2.5)–(2.7),
supplemented by the initial conditions (2.15) and boundary conditions (2.17)–(2.18), is
solved using the direct solver MUMPS in COMSOL 5.4. The computational domain
(zd ≤ z ≤ L(t)) is deforming with time due to the moving rod boundary, thus, the arbitrary
Lagrangian–Eulerian (ALE) algorithm is applied for the moving mesh computation.
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Figure 2. Dimensionless height of the static meniscus Hs in (a), and rescaled height
√

Bo Hs in (b), varying
with static meniscus angle θs for different values of Bo. The dashed lines represent the maximum height cases
for θs = θb,s.

3. Static results

In this section we present the numerical results obtained when solving the static
system in § 2. In particular, we focus on the mathematical formulation in the small rod
configuration corresponding to the low gravity case. Furthermore, it should be noted in
the dimensionless momentum equation (2.6) that Bo → 0 implies the disappearance of
gravity, referred hereafter to as the agravic limit.

3.1. Basic results
We first consider the static meniscus height Hs(Bo, θs), the results of which are shown in
figure 2(a). For a certain Bo, Hs first increases with θs and reaches the maximum value Hb,s
when θs = θb,s, then decreases with θs. Note that, as given in (2.4), we non-dimensionalise
the meniscus height with the rod radius R, the square of which appears in Bo. To show
the dependence of meniscus heights on R or equivalently on Bo, we present

√
Bo Hs in

figure 2(b), namely the meniscus height non-dimensionalised by the capillary length �c
(�c = √

γ /ρg). It can be observed that though Hs decreases with Bo,
√

Bo Hs increases
with Bo. The maximum height curve, as shown by the dashed line in figure 2, shows θb,s
varying between 0 for Bo → ∞ and π/2 for Bo → 0 (Padday & Pitt 1973). This critical
curve further separates the static menisci into the unstable (θs < θb,s), the stable (θs > θb,s)
and the neutral (θs = θb,s) regions (Padday & Pitt 1973; Pitts 1976; Benilov & Oron 2010).
The static meniscus with θs = π/2 is therefore always stable, i.e. for all values of Bo.
It thus appears as the suitable choice for the initial solution of the dynamic system of
equations, as set up in § 2.3. Figure 3(a) shows Hs varying with Bo for various θs, Hs
tends to be linear to ln Bo with different slopes depending on θs. The first derivative of
Hs with respect to ln Bo is presented in figure 3(b), showing that the linear relationship
holds when Bo � 10−2, and the slopes tend to be the same for supplementary angles. This
relationship is mentioned as the Derjaguin–James formula in the literature Tang (2019),
which has been analysed analytically James (1974), but only at the leading order. A similar
behaviour was reported by Kovitz (1975), the author having observed that the envelope of
menisci of various radii behaves like y ∼ −x ln x with y = √

Bo(z + Hs) and x = √
Bo fs,

when Bo → 0.
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Figure 3. Dimensionless height of the static meniscus Hs in (a) and first derivative of Hs with respect to ln Bo
in (b), varying with Bo for different values of the static meniscus angle θs. The dashed lines represent the
maximum height cases Hb,s for θs = θb,s, the squares in (b) represent the analytical values of (sin θs)/2 (see
(3.11a)).

3.2. Static meniscus in the low gravity case
As suggested by the results in the previous section, some simplifications can arise in the
low gravity case corresponding to Bo � 10−2. To unravel the underlying mechanism, we
introduce the radial curvature Kr, the axial curvature Ka and define Kg as the gravity term,

Kr = 1

fs
(
1 + f ′2

s
)1/2 , Ka = − f ′′

s(
1 + f ′2

s
)3/2 , Kg = −Bo(z + Hs). (3.1a–c)

Then the static system (2.12) can be written as a balance between the three components of
pressure, Kr + Ka = Kg. Typical profiles and comparisons of the three terms for θs = π/2
are presented in figure 4. At the rod boundary (z = 0), we have boundary conditions fs = 1
and f ′

s = cot θs, leading to a finite radial curvature Kr. On the other hand, the gravity term
Kg is at least one order of magnitude smaller than Kr for Bo � 10−2. In fact, not only at
the rod boundary but also from a position slightly above the bath, the relationship Kr ≈
−Ka 
 Kg holds, as shown in figure 4(b). The top region of the static meniscus therefore
can be described as

1

fs
(
1 + f ′2

s
)1/2 − f ′′

s(
1 + f ′2

s
)3/2 ≈ 0 for Bo � 10−2 and z � −Hs, (3.2)

in which O(Bo) terms have been omitted. Note that we use the symbol � −Hs to represent
the position away from the bath, we will later use the opposite symbol � 0 to represent
the position away from the rod, namely the top region and the bottom region, respectively.
The solution of the top region static meniscus with θs = π/2 can be found in de Gennes,
Brochard-Wyart & Quéré (2004), which turns out to be a catenoid. In Appendix D we
derive the solutions for arbitrary θs, obtaining

fs,top(z, θs) ≈ cos2
(
θs

2

)
exp

(
z

sin θs

)
+ sin2

(
θs

2

)
exp

( −z
sin θs

)

for Bo � 10−2 and z � −Hs. (3.3)

This profile being independent of Bo, it automatically describes the entire meniscus profile
in the agravic limit, i.e. for Bo → 0.
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Figure 4. Typical results of static menisci for θs = π/2 and different values of Bo. (a) Static profiles in solid
lines as compared with the static meniscus in the agravic limit (see (3.3)) as a dashed line. (b) The radial
curvatures Kr in solid lines, the axial curvature −Ka in dashed lines and the gravity term Kg in dotted lines.

In the meniscus region away from the rod the derivative f ′
s becomes large, i.e. f ′2

s 
 1.
Following the work of Benilov & Oron (2010), the bottom region of the static meniscus
can then be described as

− 1
fs f ′

s
+ f ′′

s

f ′3
s

≈ −Bo(z + Hs) for z � 0. (3.4)

The solution of the bottom region has the form

fs(z,Bo, θs) ≈ 1√
Bo

F(x) for x > 0, (3.5)

where x = a(z + Hs), in which a = a(Bo, θs) is the positive parameter in (2.14b), and F(x)
is a certain function to be determined. As shown in figure 5(a), a(Bo, θs) tends to be
symmetric around π/2 and converges to a certain a(θs) for Bo � 10−2, where the explicit
expression for a(θs) is derived below. Meanwhile the numerical result of F(x) in figure 5(b)
shows that ln F(x) is linear to x for x � 0, namely

F(x) = exp(mx + n) for x � 0, (3.6)

where m = −1.251 and n = 0.108 are fitted from the numerical results. We then obtain
the bottom region static meniscus,

fs,bot(z,Bo, θs) ≈ 1√
Bo

F(a(θs)(z + Hs)) for Bo � 10−2 and z � 0. (3.7)

In addition to the top and bottom regions, there is the middle region that should satisfy
both conditions, namely, Kr ≈ −Ka 
 Kg and f ′2

s 
 1. The middle region of the static
meniscus therefore can be described as

− 1
fs f ′

s
+ f ′′

s

f ′3
s

≈ 0 for Bo � 10−2 and − Hs � z � 0. (3.8)

The analytical solution can be obtained as

fs,mid(z,Bo, θs) ≈ exp(kz + b) for Bo � 10−2 and − Hs � z � 0, (3.9)

where k and b are parameters depending on Bo and θs. Equations (3.3), (3.7) and (3.9)
represent the three regions of the static meniscus in the low gravity case, and as shown
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(b)
Bo = 1 F(x)

exp(mx + n)Bo = 10–2

Bo = 10–4

θs x

Fa

a(θs) = –1/(m sin θs)

16

8

4

2

1

0.5
1801501209060300

10–1
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100

101

2.52.01.51.00.50 3.0

(a)

Figure 5. (a) Parameter a varying with θs for different values of Bo, and the analytical solution a(θs) (see
(3.11b)) is the solid line. (b) The numerical result of F(x) is the solid line, and the asymptote (see (3.6)) is the
dashed line.

in figure 4(a), the middle region becomes longer with smaller Bo. To match the different
regions, we compare the logarithms of (3.3), (3.7), (3.9), and use (3.6), yielding

k ≈ − 1
sin θs

≈ ma, (3.10a)

b ≈ 2 ln sin
θs

2
≈ maHs + n − 1

2
ln Bo, (3.10b)

for Bo � 10−2, where only the second term of (3.3) is used here since the first term is
negligible for z � 0. Combining (3.10) gives the relationships

Hs(Bo, θs) ≈ −1
2

sin θs ln Bo + sin θs

(
n − 2 ln sin

θs

2

)
, (3.11a)

a(Bo, θs) ≈ a(θs) = − 1
m sin θs

, (3.11b)

for Bo � 10−2. Equation (3.11a) is actually the Derjaguin–James formula, which reveals
the linear relationship between Hs and ln Bo we observed in figure 2(b) for Bo � 10−2,
while (3.11b) gives the explicit expression of the parameter a in this low gravity case
reproduced in figure 5(a). Finally, we derive from (3.11a) the explicit expression for Hπ/2,s,

Hπ/2,s(Bo) ≈ −1
2

ln Bo + ln 2 + n for Bo � 10−2. (3.12)

4. Dynamic results

In this section we present the numerical results of the non-stationary one-dimensional
model described in § 2. We show in Appendix C and § 5 that inertia has little effect on the
breakup height, provided Oh ≥ 2.86, making the results independent of Oh, such as the
breakup height can be expressed as

Hb(Bo,Ca) = Hπ/2,s(Bo)+ Lb(Bo,Ca), (4.1)

where Lb is defined as the breakup length. As Hπ/2,s only depends on Bo, we consider Lb
as the main variable to describe the drawing dynamics.
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4.1. Basic results
Typical profiles f (z, t) and axial velocities u(z, t) are presented in figure 6, at different
lengths L(t) during drawing. At L = 0, a static meniscus forms between the liquid bath
and the rod, the bottom of which is initially located at z = 0, and set into motion at a
constant dimensionless velocity Ca. As the rod goes up, the ligament extends axially and
contracts radially, whereas the bottom profile remains static. In a first stage for L � 2.3, the
ligament evolves with the following behaviour: the middle part of the profile is generally
tangent to the dashed line in figure 6(b), and the velocity stays in the range 0 � u � Ca as
seen in figure 6(c). The dashed line corresponds to (3.9) with θs = π/2, namely fs,mid =
exp(−z − ln 2). The instability effect is not clearly observable in the first behaviour, which
is thus referred to as the ductility stage. As the rod is drawn higher for L > 2.3, it enters
the capillarity stage, in which the former ductility behaviour fails due to the observable
capillary instability. As shown in figure 6(b), the middle part of the profile departs from
the dashed line and develops into a local symmetric shape around the thinnest position,
while the axial velocity forms a bimodal shape with a peak value u > Ca and a trough
value u < 0. The ligament length at which the ductility/capillarity transition occurs is
defined as the transition length Lt. We here use the result Lt ≈ 2.3 of the agravic limit
obtained in § 4.2 to approximately identify the transition, marked by the squares in figure 6.
Finally, when the thinnest radius fmin � 1, the process enters the pinch-off stage. As we
are concerned with large-viscosity ligaments for Oh ≥ 2.86, the process first enters the
viscous regime (Papageorgiou 1995; Eggers 2005) with the well-defined dimensionless
relationship fmin = 0.0709(tb − t). The first derivative of fmin with respect to t is shown
in figure 7, for a typical Bond number Bo = 10−2 and different velocities in (a), and a
typical dimensionless velocity Ca = 0.1 and different Bo in (b). The derivative converges
to −0.0709 when tb − t � 0.1. Hence, the drawing length Lp within the pinch-off stage of
duration tb − t verifies

Lp � 0.1Ca � 0.1Lb, (4.2)

since Ca � Lb as observed below in figure 8(a). As the ligament continues contracting,
it will later enter the final viscous-inertial regime (Eggers 1993, 2005). Now, we do not
elaborate more on the pinch-off stage as the additional length (4.2) indicates it has a
negligible contribution to the breakup length. The pinch-off stage is here used as the stop
criterion for the simulation, i.e. when the minimum radius reaches 10−5, which ensures a
numerical accuracy of three decimals for Lb.

We also present the development of the dynamic meniscus angle θ in the inset of
figure 6(a), showing that θ first decreases then increases with L, and the minimum dynamic
meniscus angle θmin = 41.4◦ occurs at L = 1.20. This result validates the hypothesis that
the liquid ligament remains pinned at the edge of the rod bottom, provided the receding
contact angle of the liquid on the rod bottom is smaller that θmin, which is the case in the
experiments presented in § 5.

Breakup lengths Lb varying with Ca for typical values of Bo are presented in figure 8(a),
compared with the static limit Lb,s and the agravic limit Lb,a, the corresponding regimes
are shown in figure 9. The static breakup length is defined as Lb,s(Bo) = Hb,s(Bo)−
Hπ/2,s(Bo). The agravic limit Lb,a(Ca) is obtained numerically by omitting the gravity
term in the dimensionless momentum equation (2.6) and starting with the agravic static
meniscus (3.3). As one can expect intuitively, the breakup length increases with the
drawing velocity. For very slow drawing, i.e. Ca → 0, Lb tends to Lb,s such as the
drawing of ligaments can be regarded as a quasi-static process. As shown in figure 8(a),
Lb converges to Lb,a for Bo � 10−2 (see the inset) and Ca � Bo, indicating that gravity
has a negligible influence on the drawing dynamics, since Bo � 10−2 ensures that the
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Figure 6. Dimensionless profiles f (z, t) in (a) linear and (b) log scales, axial velocities u(z, t) in (c) at different
drawing lengths L(t) = Ca t during the drawing for Bo = 10−2 and Ca = 0.3. The bath is located at −Hπ/2,s =
−3.111, as shown as a dotted line in (a). The ligament breakup, defined as the instant when the minimum
dimensionless profile radius reaches 10−5, occurs at Lb = 3.065 (presented in the inset of b). The inset in (a)
shows the dynamic meniscus angle θ varying with L(t), with the minimum value θmin marked by a circle. The
squares indicate the ligament length Lt ≈ 2.3 when the ductility/capillarity transition occurs. The dashed line
in (b) represents the line of the middle region static meniscus in the agravic limit, the dash–dotted line in (c)
represents u = Ca.
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Figure 7. First derivative of fmin with respect to t, converges to −0.0709 when it enters the viscous pinch-off
regime. (a) Bound number Bo = 10−2 with different Ca, (b) the dimensionless drawing velocity Ca = 0.1
with different Bo.

initial meniscus approximates the agravic static meniscus, while Ca � Bo ensures the
extensional viscous forces to dominate the gravitational drainage (Champougny et al.
2017). These cases with low gravity and not slow drawing velocities are defined as the
agravic drawing (see figure 9), whose results are thus identical to the agravic limit Lb,a,

Lb(Bo,Ca) ≈ Lb,a(Ca) for Bo � 10−2 and Ca � Bo. (4.3)

Note that, for convenience, Lb,a can be fitted by 4.661Ca0.609 + 1.072Ca0.157 (without
physical background). Breakup heights Hb are shown in figure 8(b), which generally
increases with the same law for the dimensionless drawing velocity Ca, and generally
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Figure 8. (a) Breakup lengths Lb(Bo,Ca) vs Ca for different values of Bo in solid lines, the static limit
Lb,s(Bo) in dotted lines, the agravic limit Lb,a(Ca) as a dashed line. The inset shows Lb vs Bo for Ca = 1.
(b) Breakup heights Hb(Bo,Ca) vs Ca for different values of Bo in solid lines, the maximum static meniscus
height Hb,s(Bo) in dash–dotted lines.
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Figure 9. Regimes of ligaments drawn out of a pure-liquid bath in our parameter space, the static limit for
Ca → 0, the agravic limit for Bo → 0, the low gravity case for Bo � 10−2 and the agravic drawing for Bo �
10−2 and Ca � Bo.

decreases linearly with ln Bo. For the agravic drawing regime, substituting (3.12) and (4.3)
into (4.1) yields

Hb(Bo,Ca) ≈ Hπ/2,s(Bo)+ Lb,a(Ca) for Bo � 10−2 and Ca � Bo. (4.4)

4.2. Transient drawing dynamics
It is a fact that the breakup length (height) does result from the interaction of ductility and
capillarity (Ide & White 1976). However, the transient dynamics of ligaments drawing have
rarely been studied. As presented in figure 8 and (4.3), the agravic drawing cases represent
the main feature of the drawing dynamics, it is therefore reasonable to focus on the agravic
limit Lb,a (with no gravity) to unravel its mechanism. To describe the development of the
ligament quantitatively, we define the contraction and the contraction velocity as

η(Ca, L(t)) = 1 − fmin(Ca, L(t)), (4.5a)

ξ(Ca, L(t)) = ∂η

∂t
= Ca

∂η

∂L
. (4.5b)
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Figure 10. Results of the agravic limit (Bo = 0) with different dimensionless drawing velocity Ca.
Dimensionless contractions in (a), numerical results η in solid lines and the ductility solution ηd is a dashed
line. Dimensionless contraction velocities in (b), numerical results ξ in solid lines (final values in the inset), the
ductility-induced ξd in dashed lines and the capillarity-induced ξc is a dash–dotted line. The squares represent
the transition lengths Lt (obtained by solving ξd = ξc, i.e. the lengths corresponding to the intersections of the
dashed lines and the dash–dotted line), separating the whole process into a ductility stage (0 < L � Lt) and a
capillarity stage (Lt < L < Lb).

Contractions η for different Ca are presented in figure 10(a), starting at 0 and breaking
at 1. Note that the squares in figure 10 are the transition lengths Lt(Ca) which are later
obtained by (4.10). For Ca � 10−2, η first increases slowly with L in the ductility stage
(L � Lt) and then suddenly increases more rapidly (L > Lt) in the capillarity stage. This
transition corresponds to the failure of the ductility behaviour (see figure 6b,c), whereas
it is less clear for Ca > 10−2. The corresponding contraction velocities ξ are shown in
figure 10(b), with ξ = 0.0709 when it enters the pinch-off stage, as shown in the inset
of figure 10(b) and discussed in § 4.1. Transitions in the slope of ξ can also be clearly
observed when Ca � 10−2.

4.2.1. Determining the transition length
Obviously, determining the transition length Lt is the principal step of unravelling the
transient drawing dynamics. We assume the capillary instability to be determined by
the transient profile, which corresponds to the ductility profile in the ductility stage (see
figure 6b). Notice the ductility behaviour could be observed in all cases, indicating that
they could be approximately described in an identical spatial function fd(z, L) for all
Ca, which can help us to obtain the ductility-induced and capillarity-induced contraction
velocities independently. We therefore first seek the approximate ductility solution and
then determine the ductility/capillarity transition by comparing the respective contraction
velocities.

For the agravic limit, the initial profile can be derived by substituting θs = π/2 into the
agravic static meniscus (3.3), yielding

f (z, 0) = 1
2

(
ez + e−z) , (4.6)

which is a catenoid. As presented in figure 6(b), the bottom profile remains quasi-static
during the whole process. We thus assume the approximate ductility solution in the form

fd(z, t) = 1
2

(
E(t)ez + e−z) , (4.7)

where E(t) is a new function depending on t. Substituting (4.7) into the boundary condition
(2.17a) at the rod bottom, we obtain the approximate ductility solution, written in the
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spatial form

fd(z, L) = 1
2

(
2eL − 1

e2L ez + e−z
)
. (4.8)

Notice fd(z, L) is referred hereafter to as the ductility solution. The corresponding
contraction and contraction velocity could be derived by minimizing (4.8) and substituting
the result into (4.5), which gives

ηd(L) = 1 −
√

2eL − 1
eL , (4.9a)

ξd(L,Ca) = Ca

(√
2eL − 1

eL − 1√
2eL − 1

)
. (4.9b)

As shown in figure 10(a), ηd is a spatial function identical for all Ca, while figure 10(b)
shows that ξd is a family of curves proportional to Ca. They fit well the numerical results
in the ductility stage for Ca � 10−3, and approach the tendency for Ca > 10−3.

After the ligament is drawn for a while in the ductility stage, the profile can be
approximately described by fd(z, L), which is then used to infer the capillarity-induced
contraction. We consider the process starting from fd(z, L) with zero drawing speed, and
use the numerical method described in § 2 to solve the nonlinear transient problem with
modified initial and boundary conditions, obtaining the capillarity-induced contraction
velocity ξc(L), as detailed in Appendix E. Results are presented in figure 10(b) as a
dash–dotted line, showing that ξc increases rapidly with L.

With contraction velocities ξd and ξc, the transition length Lt(Ca) can be obtained by
solving

ξd(Ca, Lt) = ξc(Lt), (4.10)

i.e. the intersections of the dashed lines and the dash–dotted line shown in figure 10(b). In
figure 10(a,b), Lt for typical values of Ca are marked by squares on the one-dimensional
solutions in solid lines. They fit the numerical ductility/capillarity transition regions quite
well, indicating that the transition indeed results from the competition of contraction
velocities induced by ductility and capillarity.

4.2.2. Capillary instability for the stretched ligaments
We show in the following that the transient drawing dynamics can be further explained by
the transient development of the growth rate. Defining σ(L) as the estimate of the transient
growth rate for each ductility profile fd(z, L), yielding σ(L) = ξc(L)/ηd(L). We show σ(L)
in figure 11(a), compared with the analytical solution σcy of a viscous cylindrical ligament
whose dimensionless radius is unity. We observe that σ → 0 when L → 0, which agrees
with the neutrally stable property of the initial static meniscus. As L increases, σ increases
while the profile becomes thinner and longer, and σ gradually tends to the same magnitude
as σcy for L � 1. To understand the underlying mechanism, we display the characteristic
curvatures of fd(z, L) at the fmin position, namely Kc,r for the radial curvature, −Kc,a for
the axial curvature and Kc for the mean curvature, as shown in figure 11(b). The radial
curvature destabilizes the ligaments: for L � 1, Kc,r ≈ −Kc,a, leading to very small Kc
and σ ; for L > 1, Kc,r dominates the mean curvature Kc, leading to σ close to σcy. Related
findings can be found in Rubio-Rubio et al. (2013), Gordillo, Sevilla & Campo-Cortés
(2014) and Martínez-Calvo et al. (2018), where the authors pointed out the essential
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Figure 11. (a) Estimate of the transient growth rate σ(L) for different profiles fd(z,L), compared with
the analytical maximum growth rate σcy of a viscous cylindrical ligament (of unit dimensionless radius).
(b)Characteristic values of the radial curvature (Kc,r), of the axial curvature (−Kc,a), and of the mean curvature
(Kc), for fd(z,L) at the fmin position.

stabilizing role played by the axial curvature. In particular, Martínez-Calvo et al. (2018)
found that the growth rate tends to a very small value when the ligament profile tends to a
neutral meniscus, while it tends to a finite value when the ligament is quite long, which is
similar to our results in figure 11(a).

5. Experiments

In the following we show the experimental results of ligaments drawn out of a pure-liquid
bath in order to test our numerical results presented in § 4. In particular, we investigate the
independence of viscosities, and the influences of the drawing velocity and the rod radius.

5.1. Experimental set-up
Ligaments are drawn out of a pure-liquid bath by a steel cylindrical rod of radius R = 75,
250 or 750 μm. As sketched in figure 12(a), the rod is attached on a vertical translation
plate, which can be lifted at a constant velocity 0.01 mm s−1 ≤ U ≤ 10 mm s−1 by a
motorised screw stage. The acceleration distance is tested to be less than 3 μm even for
the highest velocity of 10 mm s−1, which is negligible compared with the rod radius. A
liquid container with diameter 120 mm and depth 40 mm is put on a fixed platform. We
use silicone oil to form the ligaments, which can be considered as a model Newtonian
pure liquid. Table 1 shows the physicochemical parameters of the different silicone oils
used in the experiments, the viscosities and surface tensions are respectively measured
with a viscosimeter (NDJ-5S, LICHEN) and a tensiometer (MC-1021, MINCEE) at the
temperature 25 ◦C. The results of ligament drawing are recorded by a high-speed camera
(Phantom V2512, USA) fitted with a Nikkro 100 mm microlens at frame rates ranging
from 2000 to 5000 frames per second and resolution of 3–13 μm per pixel, with flickerless
backlighting produced by a high-intensity LED lamp.

We use symbols with the superscript ()∗ to represent the dimensional experimental
variables. The rod is initially just attached to the flat surface of the bath, namely at the
dimensional height H∗ = 0, as shown in figure 12(b). The liquid climbs up along the
outside of the rod and forms an outside static meniscus (James 1974), which is different
from the static meniscus we considered in the present paper, namely the meniscus attached
to the edge of the rod bottom. The experiments are operated in the following three steps:
(i) lift the rod up from H∗ = 0 slowly at a constant velocity U = 0.01 mm s−1, until
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(1) Vertical translation plate

(2) Cylindrical rod

(3) Liquid container

(4) Fixed platform

(5) LED lamp

(6) High-speed camera

(5) (1)

(2)

(3)

(4)

(6)

H∗ = 0 H∗ = H∗
π/2,s H∗ = H∗

b,exp

(a)

(b) (c) (d )

U

Figure 12. (a) Sketch of the experimental set-up. (b–d) Sketches (top) and experimental pictures (bottom, for
R = 750 μm, Ca = 0.108) of the critical states with respectively the dimensional height H∗ = 0, H∗

π/2,s and
H∗

b,exp. The dotted lines (top) and the bottom edges (bottom) represent the flat surface of the bath.

Property Unit V500 V5000 V60000

Viscosity μ Pa s 0.493 4.92 57.5
Density ρ kg m−3 970 970 971
Surface tension γ mN m−1 21.2 21.1 21.1

Table 1. Main physicochemical parameters of the silicone oils used in the experiments, all parameters are
given at 25 ◦C.

it reaches a dimensional height H∗
π/2,s (see figure 12(c), H∗

π/2,s is defined as Hπ/2,sR,
inferred from the static solution); (ii) stop the rod at the position for 20 s; (iii) lift the rod up
at a prescribed constant velocity 0.01 mm s−1 ≤ U ≤ 10 mm s−1, the ligament breaks at a
dimensional height H∗

b,exp (see figure 12d). During step (i), the outside meniscus gradually
retreats from the rod side and transforms into the static meniscus considered in this paper
as the initial condition. By doing this, we obtain a perfectly wetting rod with a very small
receding contact angle (ideally zero), meaning that the dewetting phenomenon will not
occur in our experiments, which is also validated in the experimental results. In order to
ensure that the meniscus we start with in step (iii) is the static one, we stop the rod in step
(ii) for a duration much larger than the typical time scale μR/γ , which is at most 2.04 s for
the largest rod (R = 750 μm) and the most viscous oil (V60000). Step (iii) corresponds to
the ligament drawing considered in the present paper. The dimensional breakup heights
H∗

b,exp are identified from the final breakup images, the corresponding dimensionless
breakup heights Hb,exp are obtained by Hb,exp = H∗

b,exp/R. The experimental errors are
� 0.5 % for the breakup height, 2 % for the viscosity and 0.05 % for the surface tension.

5.2. Experimental results
We first investigate the influence of the drawing velocity, using the silicone oils of
various viscosities shown in table 1 and the same rod of radius R = 750 μm (Bo =
922 A14-18
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Figure 13. (a) The dimensionless breakup heights Hb,exp in symbols for three different silicone oils, using
the same rod of radius R = 750 μm (Bo = 2.5 × 10−1), compared with the corresponding one-dimensional
predictions Hb shown as a solid line. (b) The dimensionless breakup heights Hb,exp in symbols for V5000
silicone oil, using rods of radii R = 75 μm (Bo = 2.5 × 10−3), 250 μm (Bo = 2.8 × 10−2) and 750 μm (Bo =
2.5 × 10−1), compared with the corresponding one-dimensional predictions Hb in solid lines.

2.5 × 10−1). The dimensionless results Hb,exp are shown in figure 13(a), compared with
the one-dimensional prediction Hb. Data points are obtained with viscosities varying over
two orders of magnitude and drawing velocities varying over three orders of magnitude.
Each point is the average value over three measurements, with the standard deviation being
smaller than the size of the symbols. As shown in figure 13(a), Hb,exp for all three oils
collapse onto a single master curve when plotted vs Ca, indicating that inertia has little
effect on the drawing dynamics (see also Appendix C). This was also the case for films
(Champougny et al. 2017), but with a different destabilizing mechanism taking its origin in
van der Waals forces while ligaments are destabilized by capillary forces. Data for V60000
lie slightly above those of V500 and V5000, which should be attributed to the coating effect
during step (i) in experiments (see § 6.2). The experimental results Hb,exp agree well with
the one-dimensional predictions Hb, while small deviations could be observed: Hb,exp are
lower than Hb for Ca � 0.2, while higher for Ca > 0.2.

The influences of the rod radius are then investigated, using the V5000 silicone oil,
and rods of different radii R = 75 μm (Bo = 2.5 × 10−3), 250 μm (Bo = 2.8 × 10−2)
and 750 μm (Bo = 2.5 × 10−1). Results are presented in figure 13(b), each point is again
repeated three times. For all three rods, Hb,exp agree well with the corresponding Hb,
showing small deviations similar to those observed in figure 13(a). We will show in § 6
that, except for the slight elevation of the V60000 silicone oil, the deviations between
Hb,exp and Hb are mainly due to two-dimensional effects but not the coating effect.

6. Comparison with the two-dimensional model

In this section we first introduce a two-dimensional model, then compare its results with
the one-dimensional results presented in § 4 and the experimental results presented in § 5,
next rationalize the deviations.

6.1. Two-dimensional model
The flow in the liquid ligament and inside the bath can be modelled with the dimensionless
mass conservation and the dimensionless momentum equations

∇ · v = 0, (6.1a)
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1
Oh2 (∂tv + v · ∇v) = ∇ · 𝞽 − Boez, at V, (6.1b)

where 𝞽 = −pI + ∇v + (∇v)T is the stress tensor, v is the velocity and p is the pressure.
These equations hold at any position, x, of the deformable axisymmetric domain V(t)
occupied by the liquid. To deal with the deformable domain, the ALE method is used, as
in Martínez-Calvo et al. (2020), and Rivero-Rodriguez, Perez-Saborid & Scheid (2021).
In this method, any point X of a reference domain Vref is transformed into a point in the
actual domain, such that x = x(X , t) ∈ V . We choose the mapping q = x − X to fulfil

∇2q = 0 at V, (6.2)

for which boundary conditions must be imposed. The boundary of V consists of the
truncation boundary of the infinite bath, Σ∞, the interphase between the rod and the
liquid, Σrod, and the free surface, Σ . The truncation boundary is sufficiently far to avoid
influence on the dynamics. The truncation boundary is fixed whereas we use a Lagrangian
description for the displacement of the rod and an Eulerian description for the velocity of
the free surface,

q = 0 at Σ∞, (6.3a)

q = Ca tez at Σrod, (6.3b)

∂tq = vnn at Σ, (6.3c)

where vn = v · n is the normal component of the velocity. The quality of the mesh is
ensured by remeshing when the distortion exceeds a certain value and the independence
of the results with respect to the mesh and remeshing criteria has been checked.

Initially, the system is started from rest,

p = −Bo(z + Hs), v = 0, at Vref , (6.4)

where z = −Hs is the reference in the z coordinate of the bath level, z = 0 is the initial
position of the rod, and the domain occupied by the liquid at static equilibrium is set
to the reference one. Thus, at the initial time, the identity mapping holds, x(X , 0) =
X . Hydrostatic pressure is imposed at the truncation boundary, the liquid follows the
movement of the rod and surface tension is considered at the free surface,

𝞽 · n = Bo(z + Hs)n at Σ∞, (6.5a)

v = Ca ez at Σrod, (6.5b)

𝞽 · n = −n∇s · n at Σ. (6.5c)

The system of (6.1)–(6.5) has been solved in COMSOL 5.4, coupled with the moving
mesh and weak form PDE modules. Linear Lagrangian interpolants are used for the
pressure and quadratic ones for the velocity and geometry.

6.2. Deviations: the two-dimensional effect
In figure 14(a) we show the one-dimensional breakup height Hb, the two-dimensional
breakup height Hb,2D and the experimental breakup height Hb,exp, for the rod of radius
R = 250 μm (Bo = 2.8 × 10−2) and the V5000 silicone oil. The two-dimensional model
is stopped at a minimum dimensionless radius 0.005, which is then in the pinch-off stage
and, thus, accurate enough for Hb,2D. The agreement with Hb,exp is almost perfect, which
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Figure 14. (a) The dimensionless experimental breakup height Hb,exp = H∗
b,exp/R and the dimensionless

effective experimental breakup height Hb,eff = H∗
b,exp/Reff , using the rod radius R = 250 μm (Bo = 2.8 ×

10−2) and the V5000 silicone oil. The dashed line and the solid line represent respectively the two-dimensional
breakup height Hb,2D and the one-dimensional breakup height Hb, both for Bo = 2.8 × 10−2. (b) Sketches of
the rod boundary, the ideal condition considered in the models (top) and the practical condition coated with
oils in the experiments (bottom).

validates the two-dimensional model. We can thus state that the deviations between Hb
and Hb,exp observed in figures 13 and 14(a) are mainly due to the two-dimensional effects
and not the coating effect as explained hereafter. In experiments, as we lift the rod at
a small constant velocity U = 0.01 mm s−1 in step (i), a liquid layer is coated on the
rod side during the retreat of the outside meniscus, as shown in figure 14(b). Following
the works of Landau & Levich (1942) and Champougny et al. (2017), the effective rod
radius can be estimated quantitatively as Reff = (1 + 1.34Ca2/3)R, namely Reff = 1.024R
for Ca = 2.33 × 10−3. The dimensionless effective experimental breakup height, defined
as Hb,eff = H∗

b,exp/Reff , is presented in figure 14(a). Note that Hb,eff actually corresponds
to a new Bond number Boeff = 1.05Bo. According to (4.4), the dimensionless breakup
heights Hb,2D and Hb for Boeff should be quite close to those for Bo, which are thus not
presented in figure 14(a). It can be observed that the influence of the coating effect on the
breakup height is negligible compared with that of two-dimensional effects, and is thus
not the main reason for the deviations between Hb and Hb,exp.

The profile developments of all three methods are presented in figure 15(a), showing
an almost perfect agreement between the two-dimensional and experimental results, and
good agreement for the one-dimensional results. The deviations of the one-dimensional
model mainly occur at the position close to the bath, where the one-dimensional profiles
remain static for z < −1.5 while the experimental and the two-dimensional profiles
actually fall down. To show the underlying mechanism of this bath side deviation, we
plot streamlines in figure 15(b). The one-dimensional streamlines are obtained by plotting
the isocontours of the dimensionless streamfunction ψ by integrating ur with respect to r.
They coincide well with the two-dimensional ones in the region higher than the minimum
radius position, but turns different for the lower region. Here, we find that the liquid
drains from the ligament into the quasi-static meniscus (which actually could translate
horizontally) in the one-dimensional model, but not as much as in the two-dimensional
model that includes the bath volume. We further show in figure 16 that it is reasonable to
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Figure 15. (a) Ligament profiles during the drawing for the rod radius R = 250 μm (Bo = 2.8 × 10−2) and
the dimensionless drawing velocity Ca = 0.342: experimental pictures with Hb,exp = 6.126; two dimensional
(2D) on the left in dashed lines, with Hb,2D = 5.961; one dimensional (1D) on the right in solid lines, with
Hb = 5.817. The two-dimensional simulation is stopped when fmin = 0.005, the one-dimensional simulation
is stopped when fmin = 10−5. (b) Streamlines for the case shown in (a), at the length L = 1.701 (top) and the
breakup states (bottom), two dimensional on the left and one dimensional on the right. The bath is located at
−Hπ/2,s = −2.594, namely the bottom edge of (a) and the red dotted lines in (b).

impose the quasi-static bath boundary conditions (2.18) in the one-dimensional model, as
the profile close enough to the bath also remains static in the two-dimensional model (see
figure 16a–c). Therefore, the two-dimensional effects are two-fold: (i) a two-dimensional
convective effect inside the ligament, leading to a longer ligament by expanding the
dynamic region (see figure 16a–c compared with figure 16d– f ); (ii) a two-dimensional
drainage effect at the bath boundary, decreasing the breakup height by reducing the liquid
volume inside the ligament, thus promoting its contraction. In the case of ligaments drawn
out of a liquid bath, the two-dimensional drainage effect wins when Ca � 0.2, and the
two-dimensional convective effect wins when Ca > 0.2. For ligaments stretched between
disks, only the two-dimensional convective effect works since the two-dimensional
drainage effect is prevented by the bottom disk; hence, the one-dimensional model always
predicts a lower breakup height (Yildirim & Basaran 2001). Despite the two-dimensional
effects, the one-dimensional model predicts the drawing process quite well. As shown in
figure 16, the ductility stage and the capillarity stage we find using the one-dimensional
model are observed similarly in the two-dimensional model, as discriminated by the
dashed lines.

7. Entrained liquid volume

One of the applications is determining the entrained liquid volume attached to the
rod after the ligament breakup. The numerical dimensionless entrained volumes are
defined as Ve and Ve,2D, non-dimensionalised by R3, respectively for the one-dimensional
and two-dimensional models. Since we consider large-viscosity liquids, we observed
experimentally that no satellite occurs after the breakup, the numerical dimensionless
entrained volumes are therefore obtained by integrating πf 2 from zp to Lb for the final
breakup profile, where zp represents the pinch-off position. The comparison between Ve
and Ve,2D is shown in figure 17(a) for Bo = 2.8 × 10−2, showing that the one-dimensional
model generally predicts the right tendency of entrained volume with the maximum
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Figure 16. Profiles f (z, t) in log scales for different Bo = 1, 10−2, 10−4 with the same dimensionless drawing
velocity Ca = 0.342 for (a−c) the two-dimensional model and (d−f ) the one-dimensional model. Dashed lines
represent the line of the middle region static meniscus in the agravic limit, generally discriminating the ductility
and the capillarity stages. The bath positions for Bo = 1, 10−2, 10−4 are −Hπ/2,s = −0.997,−3.111,−5.411,
respectively, shown in dotted lines.

value occurring at Ca ≈ 0.2, even though it systematically underestimates the volume.
Volumes Ve and Ve,2D varying with Bo for a typical dimensionless drawing velocity
Ca = 0.1 are presented in the inset of figure 17(a). The two models predict a same
tendency, that is, the entrained volume is reasonably independent of Bo for the low
gravity case Bo � 10−2. The experimental results are also shown in figure 17(a) for the
corresponding rod of radius R = 250 μm and the V5000 silicone oil, with error bars
representing the volume errors of one pixel at the rod that obscures the rod position.
Given the dimensional experimental entrained volume V∗

e,exp, we define the dimensionless
experimental entrained volume Ve,exp = V∗

e,exp/R
3. It can be observed that Ve,2D agrees

well with Ve,exp, and the deviations should be attributed to the coating effect. A relevant
work can be found in Lambert et al. (2006), in which the authors measured the entrained
liquid volume of a cylindrical microgripper slowly lifted out of a pure-liquid bath, with
the maximum Bond number Bo = 2.0 × 10−2 quite close to that of R = 250 μm in our
experiments. With very slow drawing velocities (Ca ∼ 10−6), the dimensionless entrained
volume is found to be 1.12. As shown in figure 17(a), Ve,2D agrees quite well with this
value for the slow drawing, even for a slightly different value of Bo.
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Figure 17. Entrained volume Ve, Ve,2D, Ve,exp in (a) and minimum dynamic meniscus angle θmin, θmin,2D in
(b), varying with Ca for the rod of radius R = 250 μm (Bo = 2.8 × 10−2). The square in (a) represents the
value of 1.12 obtained from Lambert et al. (2006) for very slow drawing. The insets in (a,b) show the entrained
volume and minimum dynamic meniscus angle varying with Bo for Ca = 0.1, respectively.

To understand the variation of the entrained liquid volume, we show the minimum
dynamic meniscus angle θmin (one-dimensional, see also the inset of figure 6a), and θmin,2D
(two-dimensional) during the drawing in figure 17(b). The results show a quite similar
development to those of the entrained liquid volume: the one-dimensional model generally
underestimates the angle, the maximum value occurs at Ca ≈ 0.1, and both models predict
the independence of the Bond number for Bo � 10−2. It can be deduced that the drawing
influences the profiles close to the rod, which determines the entrained liquid volume: the
larger θmin is, the more liquid volume Ve could be entrained. It is worth noting that, as
shown in the inset of figure 17(b), θmin can be smaller for larger Bo and Ca, indicating that
one needs to keep both the rod radius and the drawing velocity in a certain range to avoid
the dewetting phenomenon occurring if the receding contact angle exceeds θmin.

8. Conclusions

In this paper the drawing of large-viscosity liquid ligaments out of a pure-liquid bath
have been described by means of a non-stationary one-dimensional model. For very slow
drawing, the process can be regarded as a quasi-static deformation of the static meniscus,
and the ligament breaks once the meniscus height exceeds the maximum static meniscus
height Hb,s, beyond which no equilibrium solution exists. We observed a linear relationship
between the static meniscus height Hs and the logarithm of the Bond number ln Bo when
Bo � 10−2, then unraveled the underlying mechanism using analytical methods. For faster
drawing, the process can be sequenced into a ductility stage, a capillarity stage and a
pinch-off stage, among which we showed that the last stage has a negligible effect on the
breakup height. We also identified the agravic drawing regime for Bo � 10−2 and Ca � Bo
for which gravity plays no role and that can thus be described by solutions found in the
agravic limit. Taking the ductility behaviour for reference, a ductility solution fd(z, L) was
derived for the arbitrary dimensionless drawing velocity Ca in the agravic limit, which
agrees with the one-dimensional predictions quite well. Based on this ductility solution,
we unraveled the transient drawing dynamics and demonstrated that the breakup height is
determined by the competition between contractions sequentially dominated by ductility
and capillarity. The further underlying mechanism is found to be the destabilizing role of
the radial curvature during the transient development of ligaments. In addition, gravity,
when significant, determines the static meniscus and accelerates the contraction due to
drainage.
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Experiments were performed on ligaments made of silicone oils of different viscosities
and rod radii, both varying over two orders of magnitude. For the large-viscosity liquids
considered in the present paper, the experimental results confirmed the dominant role
of extensional viscous stresses on the drawing dynamics of ligaments, whereas inertia
plays an almost insignificant role. The one-dimensional breakup height turned out to be in
good agreement with the experimental breakup heights, even though small deviations were
observed. Compared with a two-dimensional model, it was found that the deviations were
mainly due to two-dimensional effects, namely two-dimensional convection and drainage.
Finally, we presented predictions for the entrained liquid volume as a potential application,
which was found to be maximum at Ca ≈ 0.2.
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Appendix A. Choosing the initial configuration

In this appendix we show the results of ligaments drawn from static menisci with
different static meniscus angles θs ≥ π/2 using the two-dimensional model described
in § 6.1, and give the explanation of choosing θs = π/2 as the initial configuration. As
introduced in § 3.1, static menisci with θs ≥ π/2 are always stable and can be considered
as the initial configuration of the drawing. We define the height when the dynamic
meniscus angle reaches θ(t) = π/2 as Hπ/2,2D, which should tend to the static value
Hπ/2,s when the drawing is slow enough. Typical results for Bo = 10−4 and Ca = 0.1
are shown in figure 18(a), starting from Hs with different θs, the ligament height passes
through Hπ/2,2D and breaks at Hb,2D (not shown). As presented in figure 18(a), Hπ/2,2D
decreases from θs = π/2 to π, indicating that the preliminary stage (H(t) < Hπ/2,2D) can
be significantly influenced by the initial configuration. Whereas for the later contraction
stage (H(t) ≥ Hπ/2,2D), both Hb,2D − Hπ/2,2D in figure 18(a) and especially the entrained
volume Ve,2D in figure 18(b) show that it is reasonably independent of the initial θs.
Note that the entrained volume is defined in § 7. Meanwhile, as presented in § 6.2, strong
two-dimensional effects exist for the ligament close to the bath, which should be avoided in
the one-dimensional simulations. We therefore choose the static meniscus with θs = π/2
as the initial configuration to study the contraction dynamics of ligaments drawn out of
a bath, since it corresponds to the only value of θ in the stable region for which Hs and
Hπ/2,2D coincide.

Appendix B. Influence of zd on the ligament breakup height

In this appendix we check for which conditions the breakup height Hb is reasonably
independent of the arbitrary dynamic boundary position zd. We choose zd as a function
of ∂z fs, namely zd is the position where a certain ∂zfs is reached. Results of typical cases
are shown in figure 19(a), indicating that Hb converges when −∂z fs is large enough. We
choose zd = zd(−100) in order to obtain a sufficient accuracy while avoiding too large
−∂z fs which brings numerical difficulties. Figure 19(b) shows the position of zd as a
function of Bo, as well as the position of the bath −Hπ/2,s. Despite the fact that the
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Figure 18. (a) Two-dimensional results Hb,2D − Hπ/2,2D, Hπ/2,2D, the initial static height Hs and Hπ/2,s,
varying with different initial θs. (b) The entrained volume Ve,2D varying with different initial θs. All cases
are for Bo = 10−4 and Ca = 0.1.

1.80 0

–1

–2

–3

–4

–5

–6

1.75

1.70

1.65

1.60

1.55

1.50

100 101 102 103 10–4 10–2 100

–Hπ/2,s
zd (–100)

Static

Bo–∂z fs

Hb z

(a) (b)

Figure 19. (a) Influence of the boundary position zd on the breakup height Hb for Bo = 1, Ca = 0.01, note
zd = zd(∂zfs); (b) the boundary position zd(−100) and the bath positions −Hπ/2,s as functions of Bo.

difference can be large between both positions, especially for small Bo, choosing a value
of zd smaller than zd(−100) has no influence on Hb.

Appendix C. Influence of inertia on the ligament breakup height

In this appendix we show inertia has little effect on the breakup height Hb in our parameter
space. Following the analysis in § 2, Hb can be written as Hb(Oh,Bo,Ca), where Oh,
Bo and Ca are three independent parameters. Inertia effects are gauged by 1/Oh2 (see
(2.6)), where Oh = μ/(Bo1/4√ργ �c), meaning that larger Bond numbers lead to larger
inertia effects for a certain liquid. We therefore consider Bo = 1 to analyse the influence of
inertia. Figure 20(a) shows that inertia has a noticeable influence only when Ca > 0.1 and
Oh < 2.86. Figure 20(b) shows indeed that Hb is reasonably independent of large Oh for
the case Bo = 1,Ca = 1. In the present paper we thus consider Oh ≥ 2.86, corresponding
to μ ≥ 0.5 Pa s for silicone oils, for which inertia effects can be safely neglected, provided
Bo ≤ 1 and Ca ≤ 1, hence, the parameter space defined in (2.20).

Appendix D. Derivation of the agravic static meniscus

In this appendix we derive the top region static meniscus, namely the agravic static
meniscus, for the arbitrary static meniscus angle. The top region system consists of an
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Figure 20. Influence of inertia on the breakup height for the largest Bond number Bo = 1. (a) The
dimensionless breakup height Hb varying with dimensionless drawing velocity Ca for different Oh. (b) The
dimensionless breakup height Hb varying with Oh for Ca = 1.

ordinary differential equation (3.2), a fixed radius condition (2.11c) and a given angle
condition

f ′
s(0) = cot θs, (D1)

where 0 < θs < π. The equations in the following are all in the ranges Bo � 10−2 and
z � −Hs, which are omitted for the sake of simplicity. Firstly, we write (3.2) in the form

1
fs

1√
1 + f ′2

s
+ 1

f ′
s

(
1√

1 + f ′2
s

)′
≈ 0. (D2)

Then, integrating (D2) and substituting the boundary conditions (3.2), (D1), yields

√
1 + f ′2

s

fs
≈ 1

sin θs
, (D3)

i.e.

f ′
s ≈ ±

√
f 2
s

sin2 θs
− 1. (D4)

Integrating (D4) and substituting (2.11c) yields

(1 + | cos θs|) exp
(

± z
sin θs

)
− fs ≈

√
f 2
s − sin2 θs. (D5)

Squaring both sides and arranging the equation, we obtain

fs,top(z, θs) ≈ 1 + | cos θs|
2

exp
(

± z
sin θs

)
+ sin2 θs

2
1

1 + | cos θs| exp
(

∓ z
sin θs

)
. (D6)

Finally, (D6) actually corresponds to two solutions, in which only one satisfies the
boundary condition (D1), as presented in (3.3).
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Figure 21. (a) The transient contraction velocity ξ , starting from the base state fd(z,L) for L = 0.14, 0.30,
1.00. (b) The capillarity-induced contraction velocity ξc. The symbols represent ξc for the three L.

Appendix E. Capillarity-induced contraction velocity

In this appendix we show how we obtain the capillarity-induced contraction velocity
ξc by solving the one-dimensional model described in § 2 with new initial and
boundary conditions. To avoid the influence of drawing, we impose the following
conditions: the initial conditions and the initial guess for K,

f (z, 0) = fd(z, L), u(z, 0) = 0, K(z, 0) = Kd(z, L), (E1a–c)

where Kd(z, L) is derived from fd(z, L) using (2.7), and the boundary conditions,

∂z f (zd, t) = ∂z fd(zd, L), K(zd, t) = Kd(zd, L), (E2a,b)

f (L, t) = 1, u(L, t) = 0. (E2c,d)

Note that L is a parameter during the calculation. We here present typical cases for L =
0.14, 0.30 and 1.00. The results show that the ligaments contract and break in finite times
tb. Transient contraction velocities ξ(L, t) vary with time and reach the minimum values at
the rescaled time tmin/tb = 0.28, 0.23 and 0.22, as shown in figure 21(a). It is found that
the minimum of ξ coincides with the minimum of the mean curvature K, which indicates
that the decrease of ξ (or K) for t < tmin are the accommodation process due to the fact
that fd(z, L) actually is an approximation of the transient profile, and the increase of ξ (or
K) for t > tmin can be attributed to the capillary instability. Consequently, we define the
capillarity-induced contraction velocity as ξc(L) = min{ξ(L, t)}, as it corresponds to the
triggering value of the capillary instability. Results are shown in figure 21(b) and plotted
in figure 10(b).
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