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HANDMADE DENSITY SETS

GEMMACAROTENUTO

Abstract. Given a metric space (X, d), equipped with a locally finite Borel measure, a measurable set
A ⊆ X is a density set if the points where A has density 1 are exactly the points of A. We study the
topological complexity of the density sets of the real line with Lebesgue measure, with the tools—and from
the point of view—of descriptive set theory. In this context a density set is always in Π03. We single out a
family of true Π03 density sets, an example of true Σ

0
2 density set and finally one of true Π

0
2 density set.

§1. Introduction. A measure on a topological space is locally finite if every point
has a neighborhood of finite measure. Fix a triple (X, d, �), where � is a locally
finite Borel measure on the metric space (X, d ). Given A ⊆ X , a measurable set, we
say that A has density r ∈ [0; 1] at a point x ∈ X if

DA(x)
def= lim
ε→0
�(A ∩ B(x, ε))
�(B(x, ε))

= r,

where B(x, ε) is the open ball of radius ε centered at x. The density set of A is
the set

Φ(A) = {x ∈ X | A has density 1 at x}.
We define a density set to be any set of the form Φ(B), for some B measurable
subset of X . An exhaustive study of the topological complexity of density sets in
the Cantor space, equipped with the usual metric and the coin-tossing measure, is
carried out byA. Andretta andR. Camerlo in [1]. Unfortunately, since the notion of
density heavily depends on the distance and themeasure, there is no straightforward
way to translate their results to other measure metric spaces.
Consider the real line with Lebesgue measure �. It is well known that in this
context the density sets are in Π03. In fact, for every measurable set A ⊆ R,

Φ(A) =
⋂
n∈�
n>0

⋃
k∈�
k>0

⋂
h∈(0;k−1)∩Q

{
x ∈ R | �(A ∩ (x − h;x + h))

2h
≥ 1− 1/n

}
.

Thus, we have the first natural question:

Question 1.1. Does there exist a trueΠ03 density set?
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HANDMADEDENSITY SETS 209

In [6] the author considers a particular type of compact set of positive measure,
which arises from some very regular Cantor constructions. If K is a compact set of
this type, in [6] a combinatorial condition for a point x is determined so thatK has
density 1 at x (Theorem 3.2). Using this result, we show that Φ(K) isΠ03-complete,
giving a positive answer to Question 1.1 (Theorem 3.3).

Question 1.2. What about density sets of simpler topological complexities?

Every open interval is trivially a density set, while C. Costantini showed that
there is no true Π01 density set (personal communication). On the other hand,
looking at the second level of the Borel hierarchy, we single out an example of true
Σ02 density set (Proposition 4.3) and one of true Π

0
2 density set (Proposition 5.5).

The word handmade in the title of the paper refers to the fact that the density sets
which we will illustrate here arise from ad hoc constructions, and in this sense it
expresses the difference with a more systematic method of finding density sets of
specific topological complexities, which will be followed in a forthcoming work on
the same theme.
The paper is organized as follows. In Section 2, we will review some standard
notations, and thenwewill introduce some terminology aboutCantor constructions
of the real line. In Section 3, we will prove that the density sets of an entire family of
Cantor sets of positivemeasure are trueΠ03, through a combinatorial argumentation.
In Section 4, we will give an example of a density set which is true Σ02, by means of
a very asymmetric Cantor-construction. Finally, in Section 5, we will define a true
Π02 density set, starting from the ternary Cantor set.
This work is part of the author’s Ph.D. thesis ([3]), who would like to thank
her advisor Alessandro Andretta for all the useful suggestions and stimulating
discussions on this argument. The anonymous referee should be also thanked for
thoroughly reading the manuscript of this paper.

§2. Notation and preliminaries.
2.1. Basics. For the basic concepts of descriptive set theory and measure theory,
the reader is referred to [4] and [5], respectively. The notation of this paper is
standard, but for the reader’s benefit we summarize it below.

2.1.1. Sequences. The set of all natural numbers is denoted by � = {0, 1, 2, . . . }.
A sequence s is a function from an ordinal to a set: its domain is called length
and is denoted by lh(s). We denote by nX , <�X , and �X the sets of the sequences
of elements of X of length n, of finite length and of length �, respectively. We set
≤�X = <�X ∪�X . Notice that we allow the case n = 0 and by definitionX 0 = {∅},
where ∅ denotes here the empty sequence. A sequence s of length n is denoted
by 〈s(0), s(1), . . . , s(n − 1)〉 and a sequence z of length � by 〈z(0), z(1), . . . 〉.
If s ∈ ≤�X is constantly equal to some x ∈ X , we simply indicate s by x(n), if
lh(s) = n < �, or by x(∞), if lh(s) = �. If m < lh(s), we indicate by s � m the
restriction of s to the domain m. Given s ∈ <�X and z ∈ ≤�X , we put s ⊆ z, if
s = z � dom(s). Two sequences s, t ∈ ≤�X are incompatible, in symbols s⊥t, if
there is some n < lh(s), lh(t) such that s(n) �= t(n); otherwise they are compatible,
that is s extends t or t extends s . For s ∈ <�X and z ∈ ≤�X , the concatenation
of s with z is denoted by s�z, or even by sz, if there is no danger of confusion. If
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z = 〈x〉, we often write s�x, instead of s�〈x〉. IfX is a linear order and s, t ∈ n2 for
some n > 0, by s <lex t we mean that s is smaller than t in the lexicographic order.

2.1.2. Sets, functions and metric spaces. If A ⊆ X and the set X is clear from the
context, �A is the set theoretic complement ofAwith respect toX , i.e., �A = X \A.
If f is a function, we denote its domain and its range by dom(f) and ran(f),
respectively. If f : X → Y and A ⊆ X , then f[A] denotes the image of A under
f and f−1[B] denotes the preimage of B under f, where B ⊆ Y .
Let (X, d ) be a metric space. For x ∈ X and r > 0 the open ball with center x
and radius r is the set B(x; r) = {y ∈ X | d (x, y) < r}. Given ∅ �= A,B ⊆ X , we
set d (x,A) = inf{d (x, y) | y ∈ A} and d (A,B) = inf{d (x, y) | x ∈ A, y ∈ B},
and we call r-ball around A the set B(A; r) = {x ∈ X | d (x,A) < r}.
We follow the modern logician notation for the classes of the Borel hierarchy:
by Σ01 we mean the family of the open sets, by Σ

0
n+1 the family of the countable

unions ofΠ0n sets, whereΠ
0
n is the family of the complements of Σ

0
n sets. Therefore,

in particular, Σ02 = F� , Π
0
2 = G� , andΠ

0
3 = F�� .

Given any class Γ(X ) of subsets of X , let Γ̆(X ) be its dual class, i.e., Γ̆(X ) =
{X \ A | A ∈ Γ(X )}. We say that a set A ⊆ X is true Γ, if A ∈ Γ(X ) \ Γ̆(X ).
2.1.3. Wadge reducibility. Let X and Y be topological spaces and A ⊆ X ,
B ⊆ Y . We say that A is Wadge reducible to B, and we write (X,A) ≤W (Y,B),
if there is a continuous function f : X → Y such that A = f−1[B], i.e.,
x ∈ A ⇔ f(x) ∈ B. If X = Y and the space X is clear from the context,
then (X,A) ≤W (Y,B) is usually abbreviated by A ≤W B.
LetΓbe a class of sets in Polish spaces. IfY is a Polish space andA ∈ Γ(Y ), we say
that A is Γ-complete if B ≤W A, for any B ∈ Γ(X ), where X is a zero-dimensional
Polish space. Note that ifA isΓ-complete, thenX \A is Γ̆-complete.Moreover, given
a Γ-complete set B and A ∈ Γ, if B ≤W A, then A is Γ-complete. As a consequence
of the Wadge’s Lemma (see, e.g., [4, p. 156]), we have the following result:
Theorem 2.1 (Wadge). Let X be a zero-dimensional Polish space and Γ(X ) a
class of Borel subsets ofX , closed under continuous preimages. If Γ is not closed under
relative complementation, then for every A ⊆ X

A is Γ-complete⇔ A is true Γ.
2.2. Cantor constructions. We exclusively consider the Lebesgue measure on R,
denoted by the symbol �. For the sake of simplicity, the length (i.e., the Lebesgue
measure) of an interval I is denoted by |I |.
The Cantor ternary set, usually denoted by E1/3, is the subset of R created
by repeatedly deleting the open middle third of a set of line segments, starting
by [0; 1] (Figure 1). This definition is generalized to a wide class of subsets of R

Figure 1. A Cantor construction.
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as follows.1 We say that an interval is nondegenerate if it is nonempty and not a
singleton. Moreover, if X and Y are subsets of the real line, by X < Y we mean
that

∀x ∈ X ∀y ∈ Y (x < y),
where < is the usual order on R. Let K∅ be a closed nondegenerate interval. If I∅ is
an open interval completely contained in K∅,2 we can extract I∅ from K∅, creating
two closed nondegenerate subintervals K0 < K1 of K∅. If we infinitely repeat this
operation we obtain a closed nondegenerate interval Ks and an open interval Is
completely contained in Ks for every s ∈ <�2, such that Ks \ Is is the union of the
intervals Ks�0 and Ks�1.
Notice that if s ⊆ t, then Ks ⊇ Kt ; while if s, t ∈ n2 and s <lex t, then Ks < Kt .
We set

K = K∅ \
⋃
s∈<�2

Is =
⋂
n∈�

⋃
s∈n2
Ks.

It is evident thatK �= ∅ and thatK is compact. Moreover, if
∀x ∈ �2( lim

n→∞ |Kx�n| = 0
)
,

then K has empty interior and the map

HK : �2→ K, HK(x) = the unique element of
⋂
n

Kx�n

is an homeomorphism. In this case 〈Ks | s ∈ <�2〉 is calledCantor construction,K is
the resulting Cantor set and HK is the canonical homeomorphism associated to the
Cantor construction. It is easy to see that different Cantor constructions can give
rise to the same resulting Cantor set and thus, in general,HK depends on theCantor
construction, and not simply on K . We indicate by as and bs the left extremity and
the right extremity of Ks , respectively: namely, for every s ∈ <�2

Ks = [as ; bs ], and so Is = (bs�0; as�1).

Definition 2.2. A Cantor construction 〈Ks | s ∈ <�2〉 and its resulting Cantor
set K are said to be

• centered, if the Is ’s are centered in the Ks ’s, i.e., |Ks�0| = |Ks�1|,
• uniform, if lh(s) = lh(t)⇒ |Is | = |It |,
• symmetric, if they are centered and uniform.
In Lebesgue measure theory,E1/3 is a classical example of a set which is uncount-
able and has zero measure. On the other hand, it is possible to define Cantor set of
positive measure, as we will do in Section 3.
Now we will focus on the reciprocal positions of some elements of a generic
Cantor construction. As usual, we say that two intervals I and J are contiguous, or
that the one is contiguous to the other one, if

sup I = inf J or sup J = inf I.

1The notation below follows [2].
2We say that (a; b) is completely contained in [c; d ] if c < a and b < d .

https://doi.org/10.1017/jsl.2016.53 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.53


212 GEMMACAROTENUTO

Given a Cantor construction 〈Ks | s ∈ <�2〉, it is evident that for every s ∈ <�2\{∅}
the compactKs is contiguous to the open interval Is�(lh(s)−1), which is the extracted
intervalKs arises from. If s is of the form 0(n) or 1(n) for some n > 0, then Is�(lh(s)−1)
is the only extracted interval to which Ks is contiguous. When s is not constant,Ks
is contiguous to another extracted interval: the following definition, introduced in
[6], will permit us to individuate it easily.

Definition 2.3. For every s ∈ <�2 \ {∅}, s not constant, let m(s) < lh(s)− 1 be
greatest such that

s(m(s)) �= s(lh(s)− 1).

For example if s = 0100, thenm(s) = 1. It is easy to see that for every nonconstant
s ∈ <�2 \ {∅} the interval Is�m(s) is contiguous to Ks . Obviously, m(s) ≤ lh(s)− 2,
and so Is�m(s) �= Is�(lh(s)−1). For example, for s = 0100we have that both the interval
Is�(lh(s)−1) = I010 and the interval Is�m(s) = I0 are contiguous to Ks :

I∅

I0

I01

I010

K0100

§3. A family of true Π03 density sets. In this section we will achieve the following
result.

Theorem 3.1. IfK is a symmetric Cantor set, with �(K) �= 0, thenΦ(K) is a true
Π03 set.

First of all wewill present someproperties of the symmetricCantor sets.As shown
in [2], if K ⊆ R is a symmetric Cantor set, then it is possible to recover from K the
unique symmetric Cantor construction that yieldsK . Therefore, ifK is a symmetric
Cantor set, then there exists a canonical homeomorphism associated to it: the
canonical homeomorphism associated to its unique uniform Cantor construction.
Moreover, a symmetric Cantor set is uniquely determined by the initial compactK∅,
which from now on we suppose to be equal to [0; 1], and by a sequence of positive
reals (un)n with

∑∞
n=0 un ≤ 1, describing the total length of the intervals removed

at each step of the construction process. That is, |I∅| = u0, |I0| = |I1| = 2−1 · u1,
and more in general, for every x ∈ �2 and n ∈ �

|Ix�n| = 2−n · un. (1)

In Definition 2.3 we have associated an index m(s) to every s ∈ <�2 \ {∅} which
is not constant. For technical reasons, we set m(s) = −1 for every s constant and
we put u−1 = 1. Moreover, for every s ∈ <�2 \ {∅} let

p(s) = lh(s)− 1−m(s).
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Thus, if s is constant, then p(s) = lh(s); otherwise, p(s) is the length of the constant
tail of s . Observe that p(s) ≥ 1, since m(s) ≤ lh(s)− 2.
Theorem 3.2 (Tacchi, [6]). Let K be a symmetric Cantor set of positive measure
andH the canonical homeomorphism associated withK . For every a ∈ K , a = H (x)
for some x ∈ �2,

a ∈ Φ(K)⇔ lim
n→∞ 2

p(x�n) · um(x�n) = 0,
where (ui)i<� is the sequence which characterizes K .

Each Cantor set K is closed, thus Φ(K) ⊆ K . Thanks to Theorem 3.2, in order
to obtain a proof of Theorem 3.1 it will be enough to prove the following result:

Theorem 3.3. For every (ui)i∈� sequence of positive real numbers, with∑∞
i=0 ui < 1, the set

A = {x ∈ �2 | lim
n→∞ 2

p(x�n) · um(x�n) = 0}

is Π03-complete.

Fix a sequence (ui)i∈� as in Theorem 3.3. Consider the function

r : <�2 \ {∅} → R+, r(s) = 2p(s) · um(s)
and for every s ∈ <�2 \ {∅} such that r(s) ∈ (0; 1], set

�(s) = n ⇔ r(s) ∈ (2−(n+1); 2−n].
Note that the intervals (2−(n+1); 2−n], for n ∈ �, form a partition of (0; 1] and that
if A is defined as in Theorem 3.3, then

x ∈ A⇔ lim
n→∞ r(x � n) = 0⇔ lim

n→∞ �(x � n) =∞. (2)

Lemma 3.4. Let s ∈ <�2 with s(lh(s)− 1) = 1, �(s) = n and length of s such that
∀N ≥ lh(s)− 1(uN < 2−(n+1)).

Then for every j < � there exists t � s , with t(lh(t)− 1) = 1, such that
• �(t) = j,
• ∀z(s ⊆ z ⊂ t ⇒ �(z) ≥ min{n, j}),
• ∀N ≥ lh(t)− 1(uN < min{2−(n+1), 2−(j+1)}).
In order to simplify the proof of Lemma 3.4, and later its application, we will
distinguish the following three cases: n < j, j < n and j = n, which will be
separately examined in Lemmas 3.5, 3.6, and 3.7, respectively.

Lemma 3.5. Let s ∈ <�2 with s(lh(s)− 1) = 1, �(s) = n and length of s such that
∀N ≥ lh(s)− 1(uN < 2−(n+1)).

Then for every j > n there exists t � s , with t(lh(t)− 1) = 1, such that:
• �(t) = j,
• ∀z(s ⊆ z ⊂ t ⇒ �(z) ≥ n),
• ∀N ≥ lh(t)− 1(uN < 2−(j+1)).
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Proof. Since the sequence (un)n approaches zero, there exists � > lh(s)− 1 such
that �′ = � − (lh(s)− 1) is even and

∀N ≥ �(uN < 2−(j+1)).
Put k = �′/2. LetM be least such that 2M ·u�+1 ∈ (2−(j+1); 2−j ].We claim that the
following extension of s

t = s�(01)(k)�0�1(M )

satisfies our requirements.
Observe that t effectively ends with 1, i.e.,M �= 0, since u� < 2−(j+1).
Now we will prove that �(t) = j. Notice that m(t) = lh(s) + �′ = � + 1 and
p(t) = M , so we have that r(t) = 2M · u�+1 and then, by construction, r(t) ∈
(2−(j+1), 2−j ], hence �(t) = j.
Let s ⊂ z ⊂ t. If s ⊂ z ⊆ s�(01)(k)�0�1, then m(z) ≥ lh(s) − 1, by recalling
that s ends with 1. Then um(z) < 2

−(n+1) by hypothesis and thus, since p(z) = 1,
we obtain r(z) = 2 · um(z) < 2−n. Otherwise, if s�(01)(k)�0�1 ⊂ z ⊂ t, then
m(z) = m(t) = �+1 and p(z) < p(t) =M . So r(z) = 2p(z) ·u�+1 and theminimality
ofM implies that r(z) ≤ 2−(j+1). We conclude that in both cases �(z) ≥ n.
We finally observe that by construction lh(t) = lh(s) + �′ + 1 +M = � +M , so
lh(t)− 1 ≥ �. Then ∀N ≥ lh(t)− 1(uN < 2−(j+1)). �
Lemma 3.6. Let s ∈ <�2 with s(lh(s) − 1) = 1 and �(s) = n. Then for every
j < n there exists t � s , with t(lh(t)− 1) = 1, such that
• �(t) = j,
• ∀z(s ⊆ z ⊂ t ⇒ �(z) > j).
Proof. LetM = n − j. We consider the following extension of s

t = s�1(M ).

Notice that, since s ends with 1, then m(t) = m(s) and p(t) = p(s) +M , thus

r(t) = 2M · r(s) ∈ (2−(j+1); 2−j ],
i.e., �(t) = j. It is evident that if s ⊂ z ⊂ t, then �(z) > j. �
Lemma 3.7. Let s ∈ <�2 with s(lh(s)− 1) = 1 and length of s such that

∀N ≥ lh(s)− 1(uN < 2−(n+1)).
Then there exists t � s , with t(lh(t) − 1) = 1, such that
• �(t) = �(s),
• ∀z(s ⊆ z ⊂ t ⇒ �(z) ≥ �(s)).
Proof. It is enough to apply Lemma 3.5 for j = �(s) + 1 and then Lemma 3.6
for j = �(s) to the resulting extension. �
Proof of Theorem 3.3. It is clear that A ∈ Π03. Consider now the set

P3 = {z ∈ �×�2 | ∀n∀∞m(z(n,m) = 0)}.
Since P3 is a Π03-complete set (see [4, p. 179]), it will be enough to show that
P3 ≤W A. For every 0-1 matrix a = 〈a(i, j) | i, j < n〉 of order n, we will construct
a sequence ϕ(a) ∈ <�2 such that

if a ⊂ b then ϕ(a) ⊂ ϕ(b).
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Therefore the function

f : �×�2→ �2, f(z) =
⋃
n

ϕ(z � n × n)

will be continuous. Since (un)n approaches zero, then there exists � > 0, � even such
that ∀N > � − 2(uN < 1/2). Let k = �/2 andM be such that 2M · u�−2 ∈ (1/2; 1].
Let

t0 = (01)(k)�1(M ).

It is easy to see that �(t0) = 0 and ∀N > lh(t0) − 1(uN < 1/2). We set ϕ(∅) = t0.
If a = 〈a(i, j) | i, j ≤ n〉 is a (n + 1)-order matrix, and ϕ(a � n × n) is already
defined, let

ϕ(a) = t,

where t is defined as follows:

Case 1: ∀i ≤ n(a(i, n) = 0). Let t be the extension of ϕ(a � n × n) given by
Lemma 3.5 for j = n + 1. Observe that in particular we have that

∀z(ϕ(a � n × n) ⊆ z ⊂ t ⇒ �(z) ≥ �(ϕ(a � n × n))).
Case 2: ∃i ≤ n(a(i, n) = 1). Let i0 be the least such i . Let t be the extension of
ϕ(a � n × n) such that �(t) = i0, defined as in Lemma 3.4. Note that

∀z(ϕ(a � n × n) ⊆ z ⊂ t ⇒ �(z) ≥ min{�(ϕ(a � n × n)), i0}
)
.

Let z ∈ P3. For every i ∈ �, let mi be such that ∀m ≥ mi(z(i, m) = 0). Given
k ∈ �, let �k = max{m0, . . . , mk, k}. Notice that for every n ≥ �k the least i0 ≤ n
such that z(i0, n) = 0, if it exists, is larger than k and hence �(ϕ(z � n × n)) ≥ k.
Therefore limi→∞ �(f(z) � i) =∞ and thus f(z) ∈ A, by (2).
On the other hand, let z /∈ P3. Let n0 be the least n such that ∃∞m(z(n0, m) = 1).
Then for arbitrarily large n, ϕ(z � n × n) is computed as in Case 2, hence �(f(z) �
i) = n0 for infinitely many i ’s. Therefore f(z) /∈ A, by (2). �

§4. An example of true Σ02 density set. For A ⊆ R a measurable set and x ∈ R,
the right density of A at x is defined as

D+A (x) = lim
ε→0
�(A ∩ (x;x + ε))

ε
.

The left density is defined similarly. If D+A (x) and D−
A (x) both exist, then DA(x)

exists and in this case

DA(x) =
D+A (x) +D−

A (x)
2

.

In this section we will define an open set U of R such that Φ(U ) ∈ Σ02 \ Π02.
The definition of U goes through the Cantor construction 〈Ks | s ∈ <�2〉, where
K∅ = [0; 1] and for all s ∈ <�2

|Ks�1| = 2−1 · |Ks | and |Ks�0| = 2−(lh(s)+2) · |Ks |.
Thus it results that |Is | = (2−1 − 2−(lh(s)+2)) · |Ks |.

https://doi.org/10.1017/jsl.2016.53 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.53


216 GEMMACAROTENUTO

For example
K0 = [0; 1/4] and K1 = [1/2; 1],

K00 = [0; 1/32], K01 = [1/8; 1/4], K11 = [1/2; 1/2 + 1/16], andK11 = [3/4; 1],
...

We indicate by K the associated Cantor set and by H the associated homeomor-
phism. Obviously, K is neither centered nor uniform. Moreover, the relative length
of Is with respect to |Ks |, i.e., the fraction |Is |/|Ks |, is directly proportional to lh(s);
so in particular K has no ratio.
For every s ∈ <�2, we define an open interval Us ⊂ Is = (bs�0; as�1) by setting

Us = (bs�0; c(s)),

where
c(s)− bs�0
as�1 − bs�0

= 1− 2−N (s), (3)

and
N(s) = number of final consecutive 1’s in s,

that is, N(s) is the largest k such that s = t�1(k) for some t.
So Us and Is have the same left extremity; while c(s) < as�1, and the more the
final sequence of 1’s in s is large, the closer c(s) is to as�1. On the other hand, if
s = ∅ or s ends in 0, then c(s) coincides with bs�0, i.e., Us = ∅.
We set

U =
⋃
s∈<�2

Us.

Since U is open, then U ⊆ Φ(U ); moreover, by construction the other density
points of U will all belong to K .

Proposition 4.1. For every a ∈ K
a ∈ Φ(U ) ⇔ a = bs�0 for some s ∈ <�2, s ends by 1.

In other words, the only points of K which are points of density 1 in U are the left
extremities of the Us ’s with Us �= ∅. Therefore

Φ(U ) = U ∪ {bs�0 | s ∈ <�2 & s(lh(s)− 1) = 1}.
Proof. (⇒) Let a = H (x), for some x ∈ �2. Suppose that a �= bs�0 for any s
ending by 1. We distinguish two cases:

Case 1: ∃∞n(x(n) = 0). Then a ∈ Ks�0 for infinitely many s . Observe that
Us�0 = ∅, and so Is�0 ∩Ks�0 ⊂ �U for every s . Therefore for infinitely many s

�(U ∩ B(a; |Ks�0|))
2 · |Ks�0|

<
2 · |Ks�0| − |Is�0|
2 · |Ks�0|

=
2 · |Ks�0| − (2−1 − 2−(lh(s)+2)) · |Ks�0|

2 · |Ks�0|
= 1− 2−2 + 2−(lh(s)+3) < 7/8,

and thus a /∈ Φ(U ).
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Case 2: ∀∞n(x(n) = 1). Let a = bt with t ⊂ x minimal such that x = t�1(∞).
Since by assumption

H (t�1(∞)) = a �= bs�0 = H (s�0�1(∞))
for any s ending by 1, then by the minimality of t

t = ∅ or t = 0 or t ends by 00.

Suppose t = ∅, and so a = 1. Since U ⊂ [0; 1], it follows that D+U (a) = 0. Also
if t = 0, that is, a = b0, we have that D+U (a) = 0, since (b0; a1) = I∅ ⊂ �U .
Finally, consider the case t = u�00, for some u ∈ <�2. Then a = bu�00 is the left
extremity of Iu�0, Since Iu�0 ⊂ �U , we also have D+U (a) = 0.

(⇐) Now we will show the converse. Let s ∈ <�2, with s ending by 1. Trivially,
since ∅ �= Us = (bs�0; c(s)) ⊂ U , it follows that D+U (bs�0) = 1. It remains to show
that D−

U (bs�0) = 1. Consider the following subset of U ∩ Ks�01, which intersects
U in a left neighborhood of bs�0,

Ũ = Ũ (s) :=
⋃
n>0

Us�01(n)

(see Figure 2) and the function

f : Ks�01 \ {bs�0} → [0; 1], f(z) =

(Ũ ∩ (z; bs�0))
bs�0 − z

.

Trivially, since Ũ ⊆ U , we have that

f(z) <
�(U ∩ (z; bs�0))
bs�0 − z

, for all z ∈ Ks�01 \ {bs�0}. (4)

Notice thatf alternates decreasing phaseswith increasing ones. For example,f is
decreasing on (bs�010; c(s�01)), because the whole interval is included in Ũ , while
f is increasing on (c(s�01); bs�0110), since Ũ ∩ (c(s�01); bs�0110) = ∅. In general,
it is easy to see that f is decreasing on (bs�01(k)0; c(s

�01(k))) and is increasing
on (c(s�01(k)); bs�01(k+1)0) for every k > 0. Then f has a local minimum point
at each c(s�01(k)) and only there. So by the continuity of f, in order to show
that f(z) converges to 1 as z approaches bs�0, it will be enough to prove that
f(c(s�01(k)))→ 1, as k → ∞, i.e.,

lim
k→∞

�(Ũ ∩ (c(s�01(k)); bs�0))
bs�0 − c(s�01(k))

= 1,

or equivalently

lim
k→∞

�(�Ũ ∩ (c(s�01(k)); bs�0))
bs�0 − c(s�01(k))

= 0. (5)

Let us verify the limit relation (5). Set

Qk = �(�Ũ ∩ (c(s�01(k)); bs�0))/(bs�0 − c(s�01(k))
and notice that

�(�Ũ ∩(c(s�01(k)); bs�0)) =
∞∑
n=0

(as�01(k+n)1−c(s�01(k+n)))+
∞∑
n=1

|Ks�01(k+n)0|. (6)
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The following easy facts about our Cantor construction and the setU will permit
us to get an upper bound to the value Qk .

Lemma 4.2. For every s ∈ <�2 and for every n, k ∈ �,
(a) |Ks�01(n) | = 2−n · |Ks�0|,
(b) as�01(k+n)1 − c(s�01(k+n)) < 2−(2k+2n+1) · |Ks�0|,
(c) |Ks�01(k+n)0| = 2−(lh(s)+2k+2n+3) · |Ks�0|,
(d) bs�0 − c(s�01(k)) > 2−(k+1) · |Ks�0|.
Proof. The equalities in (a) and (c) hold by construction. Notice that we have
that

as�01(k+n)1 − c(s�01(k+n)) = 2−(k+n) · |Is�01(k+n) |
and so we obtain (b), considering that |Is�01(k+n) | < 2−1 · |Ks�01(k+n) | and then using
(a). Finally, we obtain (d) by observing that

bs�0 − c(s�01(k)) > bs�0 − as�01(k)1 = |Ks�01(k)1|
and again applying (a). �
From the equality (6) and the relations (b), (c), and (d) we have that

Qk <

∑∞
n=0 2

−(2k+2n+1) · |Ks�0|+
∑∞
n=1 2

−(lh(s)+2k+2n+3) · |Ks�0|
2−(k+1) · |Ks�0|

,

thus

Qk <
2−(2k+1) ·∑∞

n=0 2
−2n + 2−(lh(s)+2k+3) ·∑∞

n=1 2
−2n

2−(k+1)

= 2−k · (4/3 + 2− lh(s)−2 · 1/3).
Then Qk converges to 0 as k tends to ∞, i.e., the limit relation (5) is proved.
By (4) we have that D−

U (bs�0) = 1. �
Proposition 4.3. The density set of U is a true Σ02.

Proof. By Proposition 4.1

Φ(U ) = U ∪ {bs�0 | s ∈ <�2 & s(lh(s)− 1) = 1}, (7)

so it is clear that Φ(U ) ∈ Σ02. Set A = H−1[Φ(U )]. Since U ⊆ �K , then by (7) we
obtain

A = H−1({bs�0 | s ∈ <�2 & s(lh(s)− 1) = 1}).
Observe that bs�0 = H (s�0�1(∞)) for every s ∈ <�2, and thus

A = {x ∈ �2 | x = t�10�1(∞), for some t ∈ <�2}.
Notice that A is countable, therefore F� ; moreover, A is dense and codense in �2.
Therefore by the Baire Category Theorem A is not G� , and so Φ(U ) ∈ Σ02 \Π02. �

§5. An example of true Π02 density set. From now on by 〈Ks | s ∈ <�2〉 we
mean the usual construction which gives rise to the Cantor ternary set E1/3, that is
K∅ = [0; 1], K0 = [0; 1/3], K1 = [2/3; 1], and so on. To simplify the notation, we
put for every n ∈ �

εn = 3−n.
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as bsbs�0 c(s) as�1

Ks�0 Us Ks�1

as�0 bs�0as�01bs�00

Ks�01

as�01 bs�0as�011bs�010 c(s�01)

Ks�010 Us�01 Ks�011

as�011 bs�0as�0111bs�0110 c(s�011)

Ks�0110 Us�011 Ks�0111

a
s�0111 bs�0b

s�01110 a
s�0111c(s�0111)

Ks�01110 Us�0111 Ks�01111

Figure 2. The union of the thick grey lines is a finite approximation of Ũ (s), for some s ending by 1.
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Observe that |Ks | = εlh(s), for every s ∈ <�2. For the following Remark see,
e.g., [7, p. 680], or [2] for a more general version.

Remark 5.1. Given X ⊆ R measurable, X has density 1 at a ∈ R if and only if
there exists a sequence of positive reals (hn)n converging to 0 such that

lim inf
n→∞

hn+1
hn
> 0 and lim

n→∞
�(X ∩ (a − hn; a + hn))

2 · hn = 1.

Note that the sequence (εn)n satisfies the conditions above.

Definition 5.2. For every s ∈ <�2, the round of Ks is the open interval
R(Ks ) = B(Ks ; εlh(s)+1),

i.e., R(Ks ) is the 3−(lh(s)+1)-ball around Ks .
For example, R(K∅) = (−1/3; 4/3), R(K0) = (−1/9; 4/9), R(K1) = (5/9;
10/9), and so on. The following properties are straightforward. For every
s, t ∈ <�2,
• |R(Ks )| = εlh(s) + 2 · εlh(s)+1 = 5 · εlh(s)+1;
• if s ⊆ t, thenR(Kt) ⊆ R(Ks ).
we are interested in characterizing the points of E1/3 which are density points of
some measurableX ⊆ R. Since E1/3 ⊆ [0; 1], we can consider only the setsX which
are contained in (−1/3; 4/3). The next result shows how to detect the elements of
Φ(X ) ∩ E1/3 in terms of rounds.
Lemma 5.3. Let X ⊆ (−1/3; 4/3), X measurable. For every a ∈ E1/3, a = H (x)
for some x ∈ �2,

a ∈ Φ(X )⇔ lim
n→∞

�(X ∩R(Kx�n))
|R(Kx�n)| = 1.

Proof. (⇐) It is easy to see that for every n ∈ �
(a − εn+1; a + εn+1) ⊆ R(Kx�n),

being a ∈ Kx�n, and thus
R(Kx�n) = (a − εn+1; a + εn+1) ∪ (R(Kx�n) \ (a − εn+1; a + εn+1)). (8)

Observe that

�(R(Kx�n) \ (a − εn+1; a + εn+1)) = εn + 2 · εn+1 − 2 · εn+1 = εn,
so by (8) we obtain

�(X ∩ (a − εn+1; a + εn+1))
2 · εn+1 ≥ �(X ∩R(Kx�n))

2 · εn+1 − εn
2 · εn+1

=
�(X ∩R(Kx�n))

5 · εn+1 · 5 · εn+1
2 · εn+1 −

3 · εn+1
2 · εn+1

= 5/2 · �(X ∩R(Kx�n))
|R(Kx�n)| − 3/2.
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Therefore, if limn �(X ∩R(Kx�n))/|R(Kx�n)| = 1, then

lim
n→∞

�(X ∩ (a − εn+1; a + εn+1))
2 · εn+1 = 1,

and thus a ∈ Φ(X ), thanks to Remark 5.1.
(⇒) Now suppose that

lim inf
n→∞

�(X ∩R(Kx�n))
|R(Kx�n)| = �,

for some 0 ≤ � < 1, and so
∀n∃m ≥ n(�(X ∩R(Kx�m)) ≤ � · 5 · εm+1). (9)

Claim 1. R(Kx�(n+1)) ⊆ (a − εn; a + εn).
Proof. Note that3

R(Kx�(n+1)) = (ax�(n+1) − εn+2 ; bx�(n+1) + εn+2)
= (ax�(n+1) − εn+2 ; ax�(n+1) + 4 · εn+2).

Since a ∈ Kx�(n+1), then
ax�(n+1) ≤ a ≤ ax�(n+1) + εn+1. (10)

By the second relation in (10), it follows that

a − εn ≤ ax�(n+1) + εn+1 − εn = ax�(n+1) − 2 · εn+1 = ax�(n+1) − 6 · εn+2,
and so

a − εn < ax�(n+1) − εn+2.
Similarly, it is possible to show that ax�(n+1) + 4 · εn+2 < a + εn; hence the Claim is
proved. �
By Claim 1, we have that

�(X ∩ (a − εn; a + εn))
= �(X ∩R(Kx�(n+1))) + �(X ∩ ((a − εn; a + εn) \ R(Kx�(n+1)))),

(11)

and so (9) implies that for every n there existsm ≥ n such that
�(X ∩ (a − εm; a + εm)) ≤ � · 5 · εm+1 + 2 · εm − 5 · εm+1 = (5 · � + 1) · εm+1,

thus

�(X ∩ (a − εm; a + εm))
2 · εm ≤ (5 · � + 1) · εm+1

6 · εm+1 < 1, being � < 1.

We conclude that a /∈ Φ(X ). �
Nowwewill define a subsetV ofR such that Φ(V ) ∈ Π02\Σ02, by considering par-
ticular open sets inside the Is ’s, the extracted intervals of our Cantor construction.
SinceV will be open, thenV ⊆ Φ(V ); moreover, we will show that a ∈ E1/3 \Φ(V )
if and only if x = H−1(a) is eventually equal to 1 (Proposition 5.4).

3Recall that by as and bs we denote the left and the right extremity of Ks , respectively.
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c

I

εn · |I |

Figure 3. Filln(I ) in black.

Given n > 0 and an open interval I with central point c, the n-filling of I is the
open set (Figure 3)

Filln(I ) = I \ Cl(B(c; εn · |I |/2)).
For example,

Fill1((0; 1)) = (0; 1/3) ∪ (2/3; 1) and Fill2((0; 1)) = (0; 4/9) ∪ (5/9; 1).
Note that the larger is n, the closer Filln(I ) is to I . More precisely,

�(Filln(I ))
|I | = 1− εn. (12)

For every s ∈ <�2, let
Vs =

⋃
{Filllh(s)(It) | t ∈ <�2, t ⊇ s},

and put

V =
⋃

{Vs | s ∈ <�2, s(lh(s)− 1) = 0} ∪
⋃

{Fill1(Is ) | s ∈ <�2} ∪ (−1/3; 0).

Proposition 5.4. For every a ∈ E1/3, with x = H−1(a) ∈ �2,
a ∈ Φ(V )⇔ ∃∞n(x(n) = 0).

Proof. (⇒) Let x ∈ �2 and suppose that there exists N least such that
∀n ≥ N(x(n) = 1). By (12) for every n ≥ N ,

�(V ∩Kx�n)
|Kx�n| =

{
2/3, if N = 0 or N = 1,
1− εN , otherwise.

Thus lim supn �(V ∩Kx�n)/|Kx�n| �= 1. It follows that

lim
n→∞

�(V ∩R(Kx�n))
| R(Kx�n)| �= 1,

being Kx�n ⊆ R(Kx�n) and |Kx�n|/| R(Kx�n)| = 3/5 for every n. Thanks to
Lemma 5.3 we conclude that a = H (x) /∈ Φ(V ).
(⇐) First notice that by construction for all s ∈ <�2, s not constantly equals
to 1,

R(Ks) \Ks ⊆
⋃

{Fill1(Is ) | s ∈ <�2} ∪ (−1/3; 0), (13)

and soR(Ks ) \Ks is entirely contained in V . Let x ∈ �2 such that ∃∞n(x(n) = 0).
By (12) we have that for all large enough n

�(V ∩Kx�n)
|Kx�n| ≥ 1− εi(n)+1,
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where i(n) = i(x, n) is the greatest i < n such that x(i) = 0. Therefore

lim
n→∞

�(V ∩Kx�n)
|Kx�n| = 1, (14)

since i(n)→ ∞, and thus εi(n)+1 → 0, as n → ∞. By (13) and (14) we obtain

lim
n→∞

�(V ∩R(Kx�n))
| R(Kx�n)| = 1,

and so a = H (x) ∈ Φ(V ), by Lemma 5.3 �
Proposition 5.5. The density set of V is a trueΠ02.

Proof. First note that V ⊆ Φ(V ), being V an open set. Moreover, by
construction Φ(V ) \ V ⊆ E1/3. Therefore, thanks to Proposition 5.4 we get

Φ(V ) = V ∪H [Z], where Z = {x ∈ �2 | ∃∞n(x(n) = 0)}.
It is well known that Z ∈ Π02 \ Σ02, see, e.g., [4, p. 179]. Thus Φ(V ) ∈ Π02, and
Φ(V ) /∈ Σ02, being Z = H−1[Φ(V )]. �
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