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Abstract. Foreman and Weiss [Measure preserving diffeomorphisms of the torus are
unclassifiable. Preprint, 2020, arXiv:1705.04414] obtained an anti-classification result for
smooth ergodic diffeomorphisms, up to measure isomorphism, by using a functor F (see
[Foreman and Weiss, From odometers to circular systems: a global structure theorem.
J. Mod. Dyn. 15 (2019), 345–423]) mapping odometer-based systems, OB, to circular
systems, CB. This functor transfers the classification problem from OB to CB, and it pre-
serves weakly mixing extensions, compact extensions, factor maps, the rank-one property,
and certain types of isomorphisms. Thus it is natural to ask whether F preserves other
dynamical properties. We show that F does not preserve the loosely Bernoulli property
by providing positive and zero-entropy examples of loosely Bernoulli odometer-based
systems whose corresponding circular systems are not loosely Bernoulli. We also construct
a loosely Bernoulli circular system whose corresponding odometer-based system has zero
entropy and is not loosely Bernoulli.
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1. Introduction
An important development in ergodic theory that began in the late 1990s is the emer-
gence of anti-classification results for measure-preserving transformations (MPTs) up
to isomorphism. Here, an MPT is a measure-preserving automorphism of a standard
non-atomic probability space, and two such MPTs, T and S, are said to be isomorphic
if there is a measure-preserving isomorphism between the underlying probability spaces
that intertwines the actions of T and S. We denote by X the set of MPTs on a fixed
standard non-atomic probability space (�, M, μ), and let the equivalence relation R ⊂
X × X be defined by R := {(T , S) : T and S are isomorphic}. We endow X with the weak
topology. (Recall that Tn → T in the weak topology if and only if μ(Tn(A)�T (A)) → 0
for every A ∈ M.) The first anti-classification theorem in ergodic theory is due to
Beleznay and Foreman [BF96], who showed that a certain natural class of measure-distal
transformations is not a Borel set in X. In the present context of isomorphism of MPTs,
the first result is due to Hjorth [Hj01], who proved that R is not a Borel subset of X × X.
However, this left open the question of what happens if we replace X by the subset X̃

consisting of ergodic MPTs, with the relative topology. Foreman, Rudolph, and Weiss
[FRW11] proved that the equivalence relation R̃ := R ∩ (X̃ × X̃) is also not a Borel
set. These results show that the problem of classifying MPTs (or ergodic MPTs) up to
isomorphism, which goes back to von Neumann’s 1932 paper [Ne32], is inaccessible to
countable methods that use countable amounts of information. (See [FW1, FW2, FW3]
for further discussion of this interpretation of these anti-classification results.)

The most important positive results consist of Halmos and von Neumann’s classification
of ergodic MPTs with pure point spectrum [HN42] and the classification of Bernoulli shifts
by their (metric) entropy due to Kolmogorov [KH95, §4.3], Sinai [Si62], and Ornstein
[Or70]. Yet many open questions remain. For example, the rank-one transformations,
which have been studied extensively, form a dense Gδ subset of X, and the restriction
of the equivalence relation R to rank-one transformations is Borel [FRW11]. However,
there is still no known classification of rank-one transformations up to isomorphism.

In view of the anti-classification results mentioned above and, in general, the difficulty
of classifying ergodic MPTs, other versions of the classification problem have been
considered. One possibility is to restrict the attempted classification to smooth ergodic
diffeomorphisms of a compact manifold M with respect to a smooth measure μ. Except
in dimensions one and two, there are no known obstructions to realizing an arbitrary
ergodic MPT as a diffeomorphism of a compact manifold except the requirement, proved
by Kushnirenko [Ku65], that the ergodic MPT have finite entropy. Thus, it is not clear
that this restricted classification problem is any easier. Indeed, in this context there is also
an anti-classification result due to Foreman and Weiss [FW3]. They showed that if X is
replaced by the collection X̂ of smooth Lebesgue-measure-preserving diffeomorphisms of
the two-dimensional torus and X̂ is given the C∞ topology, then the equivalence relation
R̂ consisting of pairs of isomorphic elements of X̂ still fails to be a Borel set.

Another modification of the classification problem is to consider Kakutani equivalence
instead of isomorphism. Two ergodic MPTs are said to be Kakutani equivalent if
they are isomorphic to measurable cross-sections of the same ergodic flow. It follows
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from Abramov’s formula that two Kakutani-equivalent MPTs have the same entropy
type: zero entropy, finite entropy, or infinite entropy. Until the work of Katok [Ka75,
Ka77] in the case of zero entropy, and Feldman [Fe76] in the general case, no other
restrictions were known for achieving Kakutani equivalence. Ornstein, Rudolph, and Weiss
[ORW82] showed, by building on the work of Feldman, that there are uncountably many
non-Kakutani equivalent ergodic MPTs of each entropy type. Thus there is a rich variety
of Kakutani equivalence classes, and classification of ergodic MPTs up to Kakutani
equivalence also remains an open problem. It is not known whether anti-classification
results analogous to those in [FRW11, FW3] can be obtained for Kakutani equivalence,
either in the original setting of ergodic MPTs or in the setting of smooth diffeomorphisms
preserving a smooth measure.

In transferring the results of [FRW11] to the smooth setting, Foreman and Weiss [FW2]
introduced a continuous functor F that maps odometer-based systems to circular systems.
(See §3 for definitions of these terms.) According to an announcement in [FW2], any
finite-entropy system that has an odometer factor can be represented as an odometer-based
system. It is a difficult open question whether any transformation with a non-trivial
odometer factor can be realized as a smooth diffeomorphism on a compact manifold.
Foreman and Weiss [FW2] were able to circumvent this difficulty by using the functor
F to transfer the classification problem for odometer-based systems to circular systems.
Under mild growth conditions on the parameters, circular systems can be realized as
smooth diffeomorphisms of the two-dimensional torus using the Anosov–Katok method
[AK70]. The functor F preserves weakly mixing extensions, compact extensions, factor
maps, the rank-one property, and certain types of isomorphisms, as well as numerous
other properties (see [FW2]). While all circular systems have zero entropy, there exist
positive-entropy odometer-based systems, and thus F does not preserve the entropy type.
In connection with a possible Kakutani-equivalence version of the results in [FW3], a
natural question is whether F preserves Kakutani equivalence (at least for zero-entropy
odometer-based systems). In particular, J.-P. Thouvenot asked whether F maps loosely
Bernoulli automorphisms (those Kakutani-equivalent to an irrational rotation of the circle
in case of zero entropy, or those Kakutani-equivalent to a Bernoulli shift in case of positive
entropy) to loosely Bernoulli automorphisms. We provide examples to show that the
answer to both of these questions is ‘no’. We also obtain an example which shows that
F−1 fails to preserve the loosely Bernoulli property. Our examples suggest that a different
approach may be needed for Kakutani-equivalence versions of anti-classification results in
the diffeomorphism setting.

In §§4.1 and 4.2 we give an example of a positive-entropy odometer-based system E that
is loosely Bernoulli, but the circular system F(E) is not loosely Bernoulli. In this example,
(n + 1)-blocks of the odometer-based system are constructed mostly by independent
concatenation of n-blocks. Because of this, E satisfies the positive-entropy version of the
loosely Bernoulli property. However, using techniques of Rothstein [Ro80], we show that
this independent concatenation, when transferred to F(E), causes the zero-entropy version
of the loosely Bernoulli property to fail.

The zero-entropy odometer-based system K constructed in §§5.1–5.4, is of greater
interest in connection with [FW2, FW3], because the anti-classification results of Foreman
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and Weiss can be obtained by considering only zero-entropy odometer-based systems. Our
zero-entropy example is more difficult to construct than our positive-entropy example, and
it uses some delicate refinements of the methods in [ORW82]. However, the heuristics of
the construction can be described fairly easily, as illustrated in Figure 2. This example is
loosely Bernoulli, but its image under F is not loosely Bernoulli. There is also a simple
example (see Example 3.12) of a zero-entropy odometer-based system that is loosely
Bernoulli and whose image under F is again loosely Bernoulli. This example, together
with our example K, shows that F does not preserve Kakutani equivalence.

Finally, in §§6.1–6.4, we give an example M of a zero-entropy non-loosely Bernoulli
odometer-based system whose corresponding circular system is loosely Bernoulli. Figure 3
shows the idea for this construction. Our §§5.1–6.4 with the zero-entropy odometer-based
systems can be read independently of §§4.1 and 4.2.

Our results may also be of interest as another way that non-loosely Bernoulli transfor-
mations arise naturally from loosely Bernoulli transformations. Previous examples in this
spirit include non-loosely Bernoulli Cartesian products in which the factors are loosely
Bernoulli [KR, KW19, ORW82, Ra78, Ra79]. The functor F in [FW2] changes the
way (n + 1)-blocks are built out of n-blocks according to a scheme that seems, upon
first consideration, likely to preserve the loosely Bernoulli property. In this sense, our
zero-entropy examples K and M were unexpected.

2. The f metric and the loosely Bernoulli property
Feldman [Fe76] introduced a notion of distance, now called f , between strings of symbols.
He replaced the Hamming metric in Ornstein’s very weak Bernoulli property [Or] to define
loosely Bernoulli transformations (see Definitions 2.2 and 2.3 below). A zero-entropy
version of this property was introduced independently by Katok [Ka77].

Definition 2.1. A match between two strings of symbols a1a2 . . . an and b1b2 . . . bm,
from a given alphabet �, is a collection I of pairs of indices (is , js), s = 1, . . . , r ,
such that 1 ≤ i1 < i2 < · · · < ir ≤ n, 1 ≤ j1 < j2 < · · · < jr ≤ m and ais = bjs for s =
1, 2, . . . , r . Then

f (a1a2 . . . an, b1b2 . . . bm)

= 1 − 2 sup{|I | : I is a match between a1a2 . . . an and b1b2 . . . bm}
n + m

.
(2.1)

We will refer to f (a1a2 . . . an, b1b2 . . . bm) as the ‘f -distance’ between a1a2 . . . an

and b1b2 . . . bm, even though f does not satisfy the triangle inequality unless the strings
are all of the same length. A match I is called a best possible match if it realizes the
supremum in the definition of f .

Suppose (T , P) is a process, that is, T is a measurable automorphism of a measur-
able space (�, M) and P = {Pσ : σ ∈ �} is a finite measurable partition of �. For
x, y ∈ � with T i(x) ∈ Pai

and T i(y) ∈ Pbi
for i = 1, . . . , K , we define f K(x, y) :=

f (a1a2 . . . aK , b1b2 . . . bK). If ν and ω are probability measures on (�, M) then we
say f K(ν, ω) < ε if there is a measure-preserving invertible map φ : (�, M, ν) →
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(�, M, ω) such that there exists a set G ⊂ � with ν(G) > 1 − ε and f K(x, φ(x)) < ε

for all x ∈ G.
We now define loosely Bernoulli in the general case (no assumptions on the entropy of

the process).

Definition 2.2. (Loosely Bernoulli in the general case) A measure-preserving process
(T , P, ν) is loosely Bernoulli if for every ε > 0, there exists a positive integer K = K(ε)

such that for every positive integer M the following holds: there exists a collection G
of ‘good’ atoms of ∨0−MT −iP whose union has measure greater than 1 − ε, so that for
each pair A, B of atoms in G of positive ν-measure, the measures νA and νB satisfy
f K(νA, νB) < ε. Here νA and νB denote the conditional measures on � defined by
νA(C) = ν(C|A) = ν(C ∩ A)/ν(A), and similarly for νB .

An ergodic measure-preserving transformation (T , ν) is loosely Bernoulli if (T , P, ν)

is a loosely Bernoulli process for every partition P. In fact, it suffices for (T , P, ν) to be
loosely Bernoulli for a generating partition P. (By Krieger’s generator theorem [Kr70]
every ergodic measure-preserving transformation of finite entropy has a finite generator.)

As was pointed out in [Fe76], Definition 2.2 is equivalent to the definition obtained by
replacing ‘there exists a positive integer K = K(ε)’ by ‘for any sufficiently large positive
integer K (how large depends on ε)’. Moreover, according to [Fe76, Corollary 2], ‘every
positive integer M’ can be replaced by ‘for every sufficiently large positive integer M’. In
fact, our Lemma 4.5 implies [Fe76, Corollary 2], and the proof is similar.

In the case of zero entropy, no conditioning on the past is needed, and there is a simpler
definition of loosely Bernoulli. That is, the definition reduces to the following version.

Definition 2.3. (Loosely Bernoulli in the case of zero entropy) A measure-preserving
process (T , P, ν) is zero-entropy loosely Bernoulli if for every ε > 0, there exist a positive
integer K = K(ε) and a collection G of ‘good’ atoms of ∨K

1 T −iP with total measure
greater than 1 − ε such that for each pair A, B of atoms in G, f K(x, y) < ε for x ∈ A,
y ∈ B.

If this condition is satisfied, then routine estimates show that the (T , P, ν) process
indeed has zero entropy.

Remark 2.4. For infinite strings of symbols a0a1 . . . , b0b1 . . . , we can define

f (a0a1 . . . , b0b1 . . .) = lim sup
n→∞

f (a0a1 . . . an, b0b1 . . . bn).

There is an alternate definition of zero-entropy loosely Bernoulli (which we do not make
use of) that can be formulated as follows. The process (T , P, ν) is zero-entropy loosely
Bernoulli if there is a G ∈ ∨∞

0 T −iP with ν(G) = 1 such that for x, y ∈ G, and for
T ix ∈ Pai

, T iy ∈ Pbi
for i = 0, 1, 2, . . . , we have f (a0a1 . . . , b0b1 . . .) = 0.

The following simple properties of f , which were already used in [Fe76, ORW82], will
appear frequently in our arguments. These properties can be proved easily by considering
the fit, 1 − f (a, b), between two strings a and b.
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Property 2.5. Suppose a and b are strings of symbols of length n and m, respectively, from
an alphabet �. If ã and b̃ are strings of symbols obtained by deleting at most 
γ (n + m)�
terms from a and b altogether, where 0 < γ < 1, then

f (a, b) ≥ f (ã, b̃) − 2γ . (2.2)

Moreover, if there exists a best possible match between a and b such that no term that is
deleted from a and b to form ã and b̃ is matched with a non-deleted term, then

f (a, b) ≥ f (ã, b̃) − γ . (2.3)

Likewise, if ã and b̃ are obtained by adding at most 
γ (n + m)� symbols to a and b, then
(2.3) holds.

Property 2.6. Suppose x = x1x2 . . . xn and y = y1y2 . . . yn are decompositions of the
strings of symbols x and y into substrings such that there exists a best possible match
between x and y where terms in xi are only matched with terms in yi (if they are matched
with any term in y). Then

f (x, y) =
n∑

i=1

f (xi , yi)vi ,

where

vi = |xi | + |yi |
|x| + |y| . (2.4)

Property 2.7. If x and y are strings of symbols such that f (x, y) ≤ γ , for some 0 ≤ γ < 1,
then (

1 − γ

1 + γ

)
|x| ≤ |y| ≤

(
1 + γ

1 − γ

)
|x|. (2.5)

We often use this property with γ = 1/7, in which case the conclusion can be formulated
as

3|x|
4

≤ |y| ≤ 4|x|
3

. (2.6)

3. Odometer-based and circular symbolic systems
In this section we review the notation and definitions for odometer-based and circular
symbolic systems. We also present the functor F of [FW2] between these two systems.

3.1. Symbolic systems. An alphabet is a countable or finite collection of symbols. In the
following, let � be a finite alphabet endowed with the discrete topology. Then �Z with the
product topology is a separable, totally disconnected and compact space. The shift

sh : �Z → �Z, sh(f )(n) = f (n + 1)

is a homeomorphism. If μ is a shift-invariant Borel measure, then the measure-preserving
dynamical system (�Z, B, μ, sh) is called a symbolic system. The closed support of μ is a
shift-invariant subset of �Z called a symbolic shift or subshift.
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Symbolic shifts are often described by giving a collection of words that constitute a
basis for the support of an invariant measure. A word w in � is a finite sequence of
elements of �, and we denote its length by |w|. A language (over �) is a subset of the
set of all words.

Definition 3.1. A sequence of collection of words (Wn)n∈N, where N = {0, 1, 2, . . .},
satisfying the following properties is called a construction sequence.
(1) For every n ∈ N all words in Wn have the same length hn.
(2) Each w ∈ Wn occurs at least once as a subword of each w′ ∈ Wn+1.
(3) There is a summable sequence (εn)n∈N of positive numbers such that for

every n ∈ N, every word w ∈ Wn+1 can be uniquely parsed into segments
u0w1u1w1 . . . wlul+1 such that each wi ∈ Wn, each ui (called spacer or boundary)
is a word in � of finite length, and for this parsing∑l+1

i=0|ui |
hn+1

< εn+1.

We will often call words in Wn n-words or n-blocks, while a general concatenation of
symbols from � is called a string. We also associate a symbolic shift with a construction
sequence. Let K be the collection of x ∈ �Z such that every finite contiguous substring
of x occurs inside some w ∈ Wn. Then K is a closed shift-invariant subset of �Z that is
compact if � is finite. In order to be able to unambiguously parse elements of K we will
use construction sequences consisting of uniquely readable words.

Definition 3.2. Let � be a language and W be a collection of finite words in �. Then W is
uniquely readable if and only if whenever u, v, w ∈ W and uv = pws with p and s strings
of symbols in �, then either p or s is the empty word.

Moreover, our (n + 1)-words will be uniform in the n-words as defined below.

Definition 3.3. We call a construction sequence (Wn)n∈N uniform if for each n ∈ N there is
a constant c > 0 such that for all words w′ ∈ Wn+1 and w ∈ Wn the number of occurrences
of w in w′ is equal to c.

Remark 3.4. In [FW2] such construction sequences are called ‘strongly uniform’. Since
we will only deal with this strong notion of uniformity in this paper, we abbreviate that
terminology.

To check the zero-entropy loosely Bernoulli property for our symbolic systems we will
use the following criterion, which follows from Rothstein’s Lemma 2.6 in [Ro80] and
the fact that the given condition in terms of n-blocks implies entropy zero. (See p. 18 of
[ORW82] for the type of estimate that is needed.)

LEMMA 3.5. Suppose K is a symbolic system with uniform and uniquely readable
construction sequence. Then K is zero-entropy loosely Bernoulli if and only if for every
ε > 0 there exists N such that for n ≥ N , there is a set of n-blocks Gn with cardinality
|Gn| > (1 − ε)|Wn| such that for A, B ∈ Gn, f (A, B) < ε.
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3.2. Odometer-based systems. Let (kn)n∈N be a sequence of natural numbers kn ≥ 2
and

O =
∏
n∈N

(Z/knZ)

be the (kn)n∈N-adic integers. Then O has a compact abelian group structure and hence
carries a Haar measure λ. We define a transformation T : O → O to be addition by 1
in the (kn)n∈N-adic integers (that is, the map that adds one in Z/k0Z and carries right).
Then T is a λ-preserving invertible transformation called odometer transformation which
is ergodic and has discrete spectrum.

We now define the collection of symbolic systems that have odometer systems as their
timing mechanism to parse typical elements of the system.

Definition 3.6. Let (Wn)n∈N be a uniquely readable construction sequence with W0 = �

and Wn+1 ⊆ (Wn)
kn for every n ∈ N. The associated symbolic shift will be called an

odometer-based system.

Thus, odometer-based systems are those built from construction sequences (Wn)n∈N
such that the words in Wn+1 are concatenations of a fixed number kn of words in Wn. Hence,
the words in Wn have length hn, where

hn =
n−1∏
i=0

ki

if n > 0, and h0 = 1. Moreover, the spacers in part (3) of Definition 3.1 are all the
empty words (that is, an odometer-based transformation can be built by a cut-and-stack
construction using no spacers).

3.3. Circular systems. A circular coefficient sequenceis a sequence of pairs of integers
(kn, ln)n∈N such that kn ≥ 2 and

∑
n∈N(1/ln) < ∞. From these numbers we inductively

define numbers

qn+1 = knlnq
2
n

and

pn+1 = pnknlnqn + 1,

where we set p0 = 0 and q0 = 1. Obviously, pn+1 and qn+1 are relatively prime. Moreover,
let � be a non-empty finite alphabet and b, e be two additional symbols (called spacers).
Then, given a circular coefficient sequence (kn, ln)n∈N, we build collections of words Wn

in the alphabet � ∪ {b, e} by induction as follows.
• Set W0 = �.
• Having built Wn, choose a set Pn+1 ⊆ (Wn)

kn of so-called prewords and form Wn+1
by taking all words of the form

Cn(w0, w1, . . . , wkn−1) =
qn−1∏
i=0

kn−1∏
j=0

(bqn−ji w
ln−1
j eji )
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with w0 . . . wkn−1 ∈ Pn+1. If n = 0 take j0 = 0, and for n > 0 let ji ∈ {0, . . . ,
qn − 1} be such that

ji ≡ (pn)
−1i mod qn.

We note that each word in Wn+1 has length knlnq
2
n = qn+1.

Definition 3.7. A construction sequence (Wn)n∈N will be called circular if it is built in
this manner using the C-operators and a circular coefficient sequence, and each Pn+1 is
uniquely readable in the alphabet with the words from Wn as letters (this last property is
called the strong readability assumption).

Remark 3.8. By [FW2, Lemma 45] each Wn in a circular construction sequence is
uniquely readable even if the prewords are not uniquely readable. However, the definition
of a circular construction sequence requires this stronger readability assumption.

The definition of a circular construction sequence stems from a symbolic representation
for untwisted Anosov–Katok diffeomorphisms on T

2 (and similarly on D
2 and S

1 ×
[0, 1]) described in [FW1]. Such a diffeomorphism is constructed inductively as the
limit of a sequence Tn+1 = Hn+1 ◦ Rαn+1 ◦ H−1

n+1, where Rαn+1(x, y) = (x + αn+1, y)

is the rotation by αn+1 = (pn+1/qn+1) with the numbers pn+1, qn+1 from above, and
Hn+1 = Hn ◦ hn+1 with area-preserving diffeomorphisms hn+1 satisfying hn+1 ◦ R1/qn =
R1/qn ◦ hn+1. In the untwisted version of the Anosov–Katok method the fundamental
domain [0, 1/qn] × [0, 1] is required to map to itself under hn+1. The conjugation
map hn+1 approximately permutes sets of the form [i/(knqn), (i + 1)/(knqn)) × [s/sn+1,
(s + 1)/sn+1), where sn+1 ≥ 2 is the number of (n + 1)-words. The combinatorics of hn+1

on the fundamental domain is determined by sn+1 different concatenations w0 . . . wkn−1

of n-words, and each n-word codes a Tn trajectory of length qn. Since knlnqnαn+1 =
1/qn mod 1 and hn+1 commutes with R1/qn , the code repeats but starting at a different
position within the n-words. Thus one uses the spacer symbols b and e to label the
incomplete beginning and end segments of words. We refer to [FW1, §7.5] for a detailed
exposition. The newly introduced spacers b, e will not matter for our arguments since they
occupy a small proportion of the (n + 1)-words and we will often neglect them in our
estimates with the aid of Property 2.5.

Definition 3.9. A symbolic shift K built from a circular construction sequence is called a
circular system. For emphasis we will often denote it by K

c.

For a word w ∈ Wn+1 we introduce the following subscales as in [FW2, §3.3].
• Subscale 0 is the scale of the individual powers of wj ∈ Wn of the form wl−1

j , and

each such occurrence of a wl−1
j is called a 0 -subsubsection.

• Subscale 1 is the scale of each term in the product
∏kn−1

j=0 (bqn−ji w
ln−1
j eji ) that has the

form (bqn−ji w
ln−1
j eji ) and these terms are called 1-subsections.

• Subscale 2 is the scale of each term of
∏qn−1

i=0
∏kn−1

j=0 (bqn−ji w
ln−1
j eji ) that has the

form
∏kn−1

j=0 (bqn−ji w
ln−1
j eji ), and these terms are called 2-subsections.
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3.4. The functor F. For a fixed circular coefficient sequence (kn, ln)n∈N we consider
two categories OB and CB whose objects are odometer-based and circular systems,
respectively. The morphisms in these categories are (synchronous and anti-synchronous)
graph joinings. In [FW2] Foreman and Weiss define a functor taking odometer-based
systems to circular systems that preserve the factor and conjugacy structure. In this
subsubsection we review the definition of the functor from the odometer-based symbolic
systems to the circular symbolic systems.

For this purpose, we fix a circular coefficient sequence (kn, ln)n∈N. Let � be an alphabet
and (Wn)n∈N be a construction sequence for an odometer-based system with coefficients
(kn)n∈N. Then we define a circular construction sequence (Wn)n∈N and bijections cn :
Wn → Wn by induction.
• Let W0 = � and c0 be the identity map.
• Suppose that Wn, Wn and cn have already been defined. Then we define

Wn+1 = {Cn(cn(w0), cn(w1), . . . , cn(wkn−1)) : w0w1 . . . wkn−1 ∈ Wn+1}
and the map cn+1 by setting

cn+1(w0w1 . . . wkn−1) = Cn(cn(w0), cn(w1), . . . , cn(wkn−1)).

In particular, the prewords are

Pn+1 = {cn(w0)cn(w1) . . . cn(wkn−1) : w0w1 . . . wkn−1 ∈ Wn+1}.
Definition 3.10. Suppose that K is built from a construction sequence (Wn)n∈N and K

c has
the circular construction sequence (Wn)n∈N as constructed above. Then we define a map F
from the set of odometer-based systems (viewed as subshifts) to circular systems (viewed
as subshifts) by

F(K) = K
c.

Remark 3.11. The map F is a bijection between odometer-based symbolic systems with
coefficients (kn)n∈N and circular symbolic systems with coefficients (kn, ln)n∈N that pre-
serves uniformity. Since the construction sequences for our odometer-based systems will
be uniquely readable, the corresponding circular construction sequences will automatically
satisfy the strong readability assumption.

In the following we will denote blocks in the odometer-based system by letters in
typewriter font (for example, A). For the corresponding block in the circular system we
will use calligraphic letters (for example, A). As already noted, the length of a n-block
w in the odometer-based system is hn = ∏n−1

i=0 ki if n > 0, and h0 = 1, while the length
of a n-block in the circular system is qn, that is, |cn(w)| = qn. Moreover, we will use the
following map from substrings of the underlying odometer-based system to the circular
system:

Cn,i (wsws+1 . . . wt ) =
t∏

j=s

(bqn−ji (cn(wj ))
ln−1eji )

for any 0 ≤ i ≤ qn − 1 and 0 ≤ s ≤ t ≤ kn − 1.
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Example 3.12. We give an example of a loosely Bernoulli odometer-based system K of
zero measure-theoretic entropy with uniform and uniquely readable construction sequence
such that F(K) is also loosely Bernoulli. For this purpose, let � be an alphabet with two
symbols and εn ↘ 0. Assume that we have two n-blocks w0 and w1 in the odometer-based
system. Then we define two (n + 1)-blocks by the following rule:

B(n+1)
0 = w1w1 w0w1w0w1 . . . w0w1︸ ︷︷ ︸

2sn blocks

w0w0,

B(n+1)
1 = w1w1w1 w0w1 . . . w0w1︸ ︷︷ ︸

2sn−2 blocks

w0w0w0,

where we choose the integer sn sufficiently large to guarantee that B(n+1)
0 and B(n+1)

1 are
εn-close to each other in f . Clearly, the construction sequence defined like this is uniform
and uniquely readable. Moreover, the corresponding (n + 1)-blocks B(n+1)

0 and B(n+1)
1 in

the circular system are also εn-close to each other in f . Hence, K and F(K) are loosely
Bernoulli by Lemma 3.5.

4. Positive-entropy example
4.1. Positive-entropy loosely Bernoulli odometer-based system. In this section we con-
struct a uniquely readable uniform odometer-based system E of positive entropy that is
loosely Bernoulli. In the next section we will prove that F(E) is not loosely Bernoulli. The
main idea in the construction of E is to concatenate n-blocks independently in long initial
segments of (n + 1)-blocks, and use a relatively small final segment of the (n + 1)-block to
achieve uniformity and unique readability. If we used only the independent concatenation,
then E would be Bernoulli (and hence loosely Bernoulli), and F(E) would still be
non-loosely Bernoulli. In this case the proof given in the next section that F(E) is not
loosely Bernoulli could be simplified, but we want to achieve uniformity and unique
readability to make our example fit the framework of the odometer-based constructions
in [FW2, FW3].

Our approach takes advantage of the fact that in the case of positive entropy, in particular
for the system E, there will be many n-blocks that are bounded apart in f -distance and the
loosely Bernoulli property can still be satisfied. However, all circular systems, as described
in §2, and in particular F(E), have entropy zero. In this case the loosely Bernoulli property
fails to hold if most of the n-blocks are bounded apart in the f metric. In the next section
we will use the approach of Rothstein [Ro80] to prove that the independent concatenation
of n-blocks that are mostly bounded apart in f distance leads to (n + 1)-blocks that are
also mostly bounded apart in f distance, and the lower bound on the f distance decreases
only slightly in going from n-blocks to (n + 1)-blocks.

We begin by describing some of the conditions on the parameters involved in the
construction of E. Further requirements on the lower bound on the kn will be imposed
in the next section and after the first lemma in the present section. First we choose
positive rational numbers εn such that εn < 2−(n+12). Then we choose kn (depending on
�n, N(n), εn) so that

∑∞
n=1 N(n)2/(ε2

nkn) < 1/8. Furthermore, we require that εnN(n) >

2, εnkn is an integer, and kn is a multiple of N(n). Let k′
n = (1 − εn)kn.
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We now describe the construction sequence (Wn)n∈N for E. Recall that W0 = �. Suppose
there are N(n) distinct n-blocks of length hn in Wn, say Wn = {y1, . . . , yN(n)}. Then Wn+1

consists of all words of the form w1w2 . . . wkn , where each wj = yi(j) for some i(j) ∈
{1, . . . , Nn(n)}, subject to the following conditions.
(1) For each i ∈ {1, 2, . . . , N(n) − 1}, card{j ∈ {1, 2, . . . , k′

n} : wj = yi} ≤ kn/N(n),
and wj �= yN(n) for j ∈ {1, 2, . . . , k′

n}.
(2) For j ∈ {kn − (kn/N(n)), kn − (kn/N(n)) + 1, . . . , kn − 1}, wj = yN(n).
(3) The substring w(1−εn)kn

. . . wkn−(kn/N(n))−1 consists of a finite string of y1’s,
followed by a finite string of y2’s, etc. ending with a finite string of yN(n)−1’s such
that card{j ∈ {1, 2, . . . kn} : wj = yi} = kn/N(n) for every i ∈ {1, 2, . . . , N(n)}.

Whenever condition (1) on the first k′
n n-blocks is satisfied, there is a unique way of

completing the (n + 1)-block so that conditions (2) and (3) are satisfied. Condition (2)
implies unique readability, and condition (3) implies uniformity. Our block construction
and Lemma 4.1 below are essentially a special case of the techniques in the substitution
lemma in [FRW11].

LEMMA 4.1. (Chebyshev application) Suppose k′
n = (1 − εn)kn symbols are chosen inde-

pendently from {1, 2, . . . , N(n) − 1}, where each symbol is equally likely to be chosen.
Then the probability τn that there exists a symbol that is chosen more than kn/N(n) times
satisfies τn < 4N(n)2/(ε2

nkn).

Proof. For a fixed i0 ∈ {1, . . . , N(n) − 1}, let S = Sk′
n

be the number of times i0 is
chosen in k′

n Bernoulli trials, where the probability of i0 being chosen in any one trial
is 1/(N(n) − 1). Then the expected value of S is E(S) = k′

n/(N(n) − 1) and the standard
deviation of S is σ = √

k′
n(N(n) − 2)/(N(n) − 1). Note that the condition εnN(n) > 2

implies that 1/N(n) > (1 − (εn/2))/(N(n) − 1). We have the following estimates on the
probabilities, where we apply Chebyshev’s inequality in the last step:

Pr(S > kn/N(n)) ≤ Pr
(

|S − E(S)| >
kn

N(n)
− (1 − εn)kn

N(n) − 1

)

≤ Pr
(

|S − E(S)| >
(1 − (εn/2))kn

N(n) − 1
− (1 − εn)kn

N(n) − 1

)

= Pr
(

|S − E(S)| >
(εn/2)kn

N(n) − 1

)
= Pr(|S − E(S)| > ασ)

< 1/α2,

where α = εnkn/(2
√

k′
n(N(n) − 2)). Thus Pr(S > kn/N(n)) < 4N(n)/(ε2

nkn). Since i0

was only one of N(n) − 1 possible symbols, the upper bound in the statement of the lemma
is obtained by multiplying the upper bound on Pr(S > kn/N(n)) by N(n).

We require the kn’s to be sufficiently large so that
∑∞

n=1 τ
(2−n)
n < ∞. From Lemma 4.1,

this is possible because kn is chosen after εn and N(n) are determined.
We apply Lemma 4.1 to the independent choice of k′

n n-blocks from the first N(n) − 1
n-blocks. Suppose E is a string of k′

n n-blocks chosen from the first N(n) − 1 n-blocks.

https://doi.org/10.1017/etds.2021.73 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.73


Loosely Bernoulli odometer-based systems 929

If this string of k′
n n-blocks satisfies condition (1) above, then E is a possible initial string

of k′
n n-blocks in an (n + 1)-block. If Prn(E) is the probability of E in the process E, and

P̃rn(E) is the probability of E in the process that consists of concatenating k′
n n-blocks

chosen independently from the first N(n) − 1 n-blocks, then

Prn(E) =
(

1
1 − τn

)
P̃rn(E) (4.1)

if E is a possible initial string, and Prn(E) = 0 if E is not a possible initial string. Note that
if we compare the probability distributions Prn and P̃rn on the collection A of all strings
of k′

n n-blocks, and the collection A′ of possible initial strings of k′
n n-blocks chosen from

the first N(n) − 1 n-blocks, we obtain∑
E∈A

|Prn(E) − P̃rn(E)| = τn +
∑

E∈A′
|Prn(E) − P̃rn(E)|

= τn +
(

1
1 − τn

− 1
)

(1 − τn) = 2τn. (4.2)

For i = 1, 2, . . . , |�|, let Pi be the set of points in �Z with the symbol i in position 0.
Then P := {P1, P2, . . . , P|�|} is a generating partition for the odometer system. For
integers a and b with a ≤ b, let Pb

a denote the partition of �Z into sets with the same
P-name from time a to time b. As before, we let μ denote the invariant measure on �Z

corresponding to the process E. We let H = H (sh, P) denote the measure entropy of the
left shift on �Z with respect to P, and we let Htop(sh, P) denote the topological entropy.
Note that uniformity and unique readability imply that sh : �Z → �Z is uniquely ergodic.
Therefore, by the variational principle [KH95, Theorem 4.5.3], H = Htop(sh, P).

LEMMA 4.2. If E is the odometer-based system constructed above, then the entropy of E
is positive.

Proof. The number of elements in Phn

1 is at least N(n), while the number of elements in
Pkhn

1 is at most hnN(n)k+1. These estimates show that

H = lim
n→∞

log N(n)

hn

.

Here hn = ∏n−1
i=0 ki and N(n + 1) = N(n)k

′
n(1 − τn) > N(n)k

′
n−1. Thus

log N(n + 1)

hn+1
≥ (k′

n − 1) log N(n)

knhn

≥ (1 − 2εn) log N(n)

hn

.

Therefore

log N(n)

hn

≥ (log |�|)
n−1∏
i=0

(1 − 2εi).

Since
∏∞

i=0(1 − 2εi) converges to a positive value, it follows that H > 0.

LEMMA 4.3. (Conditioning lemma) Suppose Pr and Pr′ are two probability distributions
defined on the join Q ∨ R of two partitions Q and R of the same space. Suppose that for
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some 0 < ε < 1, ∑
Q∈Q,R∈R

|Pr(Q ∩ R) − Pr′(Q ∩ R)| < ε. (4.3)

Also assume that Pr′(Q) > 0 whenever Pr(Q) > 0. Then for all but Pr at most
√

ε of the
Qs in Q, the conditional probabilities corresponding to Pr and Pr′ satisfy∑

R∈R
|Pr(R|Q) − Pr′(R|Q)| < 2

√
ε.

Proof. It follows from (4.3) that for all but Pr at most
√

ε of the Qs in Q,∑
R∈R

|Pr(Q ∩ R) − Pr′(Q ∩ R)| <
√

εPr(Q). (4.4)

Suppose Q ∈ Q is chosen so that (4.4) holds. Then

|Pr(Q) − Pr′(Q)| =
∣∣∣∣ ∑

R∈R
[Pr(Q ∩ R) − Pr′(Q ∩ R)]

∣∣∣∣ <
√

εPr(Q).

If we divide (4.4) by Pr(Q), we obtain∑
R∈R

∣∣∣∣Pr(Q ∩ R)

Pr(Q)
− Pr′(Q ∩ R)

Pr(Q)

∣∣∣∣ <
√

ε. (4.5)

We also have∑
R∈R

∣∣∣∣Pr′(Q ∩ R)

Pr(Q)
− Pr′(Q ∩ R)

Pr′(Q)

∣∣∣∣ =
∑
R∈R

Pr′(Q ∩ R)

∣∣∣∣ 1
Pr(Q)

− 1
Pr′(Q)

∣∣∣∣
= Pr′(Q)

|Pr(Q) − Pr′(Q)|
Pr(Q)Pr′(Q)

<
√

ε. (4.6)

The lemma now follows from (4.5) and (4.6).

Remark 4.4. The above proof also holds in case Pr′ is a probability distribution on a larger
space that contains ∪Q∈Q,R∈R. That is,

∑
Q∈Q,R∈R Pr′(Q ∩ R) can be less than 1.

LEMMA 4.5. (Finer partitioning lemma) Let 0 < ε < 1. Suppose Q is a refinement of
P0−M and there is a probability measure ω on �Z such that there is a collection G̃ of ‘good
atoms’ in Q with total μ-measure greater than 1 − ε2/16 such that for Q̃ ∈ G̃ we have

f K(μ(·|Q̃), ω) < ε/4.

Then there is a collection G of ‘good atoms’ in P0−M with total μ-measure greater than
1 − ε/4 such that for Q ∈ G we have

f K(μ(·|Q), ω) < ε/2.

Consequently,

f K(μ(·|Q), μ(·|R)) < ε,

for Q, R ∈ G.
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Proof. We let G consist of those atoms Q in P0−M such that a subset of Q of measure
greater than (1 − ε/4)μ(Q) is a union of atoms in G̃.

The following definition is due to Ornstein [Or70] .

Definition 4.6. A partition R is said to be ε-independent of a partition Q (with respect to
a given measure ν) if for a collection of atoms Q ∈ Q of total ν-measure at least 1 − ε,∑

R∈R
|ν(R|Q) − ν(R)| ≤ ε.

In this case we write R ⊥ε
ν Q. If the measure ν is understood, we may omit the subscript ν.

Remark 4.7. If Q, R, and S are partitions such that R refines S and R ⊥ε
ν Q, then by the

triangle inequality, S ⊥ε
ν Q.

Remark 4.8. The definition of ε-independence is not symmetric in Q and R, but R ⊥ε
ν Q

implies Q ⊥
√

3ε
ν R. (See [Sm71].)

LEMMA 4.9. (Epsilon independence lemma) Let τn be as in the Chebyshev application,
and let Pr n be the probability distribution on possible initial strings of k′

n n-blocks within
(n + 1)-blocks. Let Q and R be partitions of the union of all (n + 1)-blocks such that Q is
the partition into sets that have the same an initial n-blocks and R is the partition into sets
that have the same bn n-blocks appearing as the (an + 1)th through (an + bn)th n-blocks
of an (n + 1)-block. Assume that an + bn ≤ k′

n. Then R ⊥3
√

τn

Prn Q.

Proof. Let P̃rn be the probability distribution for k′
n n-blocks chosen independently from

the first N(n) − 1 n-blocks, with each of these n-blocks equally likely. Then by equation
(4.2), ∑

Q∩R∈Q∨R
|Prn(Q ∩ R) − P̃rn(Q ∩ R)| ≤ τn.

Note that we are only summing over those Q ∩ R that actually occur as initial strings of
some (n + 1)-block(s). Therefore by Lemma 4.3 and Remark 4.4, for a collection G of
Q ∈ Q of total Prn measure at least 1 − √

τn,∑
R∈R

|Prn(R|Q) − P̃rn(R|Q)| ≤ 2
√

τn.

But P̃rn(R|Q) = P̃rn(R), and
∑

R∈R |Prn(R) − P̃rn(R)| ≤ τn. Therefore for Q ∈ G,∑
R∈R

|Prn(R|Q) − Prn(R)| ≤ 2
√

τn + τn < 3
√

τn.

Remark 4.10. If bn = 1, then Prn(R) = P̃rn(R) and R ⊥2
√

τn

Prn Q.

The following lemma will be used in the inductive step of the proof that the
odometer-based system E is loosely Bernoulli.

https://doi.org/10.1017/etds.2021.73 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.73


932 M. Gerber and P. Kunde

LEMMA 4.11. (Inductive step) Suppose ν is a probability measure, and R1, R2, Q1, Q2

are measurable partitions. If R1 ⊥ε1
ν Q1 and R1 = Q2 ∨ R2, where R2 ⊥ε2

ν Q2 and 0 <

ε1, ε2 < 1, then R2 ⊥2
√

ε1+2
√

ε2
ν Q1 ∨ Q2.

Proof. Since R2 ⊥ε2
ν Q2, for a collection G2 of atoms Q2 of Q2 with ν(∪Q2∈G2Q2) ≥

1 − ε2, ∑
R2∈R2

|ν(R2|Q2) − ν(R2)| ≤ ε2. (4.7)

For at least total ν-measure 1 − √
ε2 of the Q1 in Q1,

ν(Q1 ∩ (∪Q2∈G2Q2)) ≥ (1 − √
ε2)ν(Q1). (4.8)

That is, G2 has total ν(·|Q1) measure at least 1 − √
ε2. Since R1 = Q2 ∨ R2 and R1 ⊥ε1

ν

Q1, for a collection of atoms Q1 ∈ Q1 of total ν-measure at least 1 − ε1,∑
Q2∩R2∈Q2∨R2

|ν(Q2 ∩ R2|Q1) − ν(Q2 ∩ R2)| ≤ ε1. (4.9)

Let G1 be the collection of Q1 ∈ Q1 such that (4.8) and (4.9) hold. Then we have
ν(∪Q1∈G1Q1) ≥ 1 − ε1 − √

ε2. Fix a choice of Q1 ∈ G1. By Lemma 4.3 applied to
Pr = ν(·|Q1) and Pr′ = ν, it follows from (4.9) that for a collection G3 = G3(Q1) of atoms
Q2 ∈ Q2 with total ν(·|Q1) measure at least 1 − √

ε1,∑
R2∈R2

|ν(R2|Q1 ∩ Q2) − ν(R2|Q2)| ≤ 2
√

ε1. (4.10)

Then ν(∪Q2∈G2∩G3Q2|Q1) ≥ 1 − √
ε1 − √

ε2, and for Q2 ∈ G2 ∩ G3, it follows from (4.7)
and (4.10) that ∑

R2∈R2

|ν(R2|Q1 ∩ Q2) − ν(R2)| ≤ 2
√

ε1 + ε2. (4.11)

Since ν(∪Q1∈G1Q1) ≥ 1 − ε1 − √
ε2 and for any Q1 ∈ G1, ν(∪Q2∈G2∩G3Q2|Q1) ≥

1 − √
ε1 − √

ε2, the collection G of Q1 ∩ Q2 ∈ Q1 ∨ Q2 such that (4.11) holds has
total ν-measure at least (1 − ε1 − √

ε2)(1 − √
ε1 − √

ε2) > 1 − 2
√

ε1 − 2
√

ε2. Therefore

R2 ⊥2
√

ε1+2
√

ε2
ν Q1 ∨ Q2.

THEOREM 4.12. The odometer-based system E constructed in this section is loosely
Bernoulli.

Proof. Let 0 < ε < 1. Fix a choice of n ≥ 2 sufficiently large so that
∑

j≥n εj < ε2/100,∑
j≥n τ

(2−j )
j < ε2/100, and (εnkn)

−1 < ε2/16. Let K = (εnkn + 1)hn and M ≥ hn+1.
We will show that the conclusion of Definition 2.2 holds for these choices of K and M . Let
ω be any probability measure on �Z such that

ω{(xk) : x1x2 · · · xεnknhn = c1c2 · · · cεnknhn} = Prn(c1c2 · · · cεnknhn),

which is the probability that the string c1c2 · · · cεnknhn comprises the εnkn initial n-blocks
in an (n + 1)-block. By Lemma 4.5, it suffices to show that for some refinement Q of

https://doi.org/10.1017/etds.2021.73 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.73


Loosely Bernoulli odometer-based systems 933

FIGURE 1. For j = n, n + 1, n + 2, the Qj and Rj are partitions into sets according to the P-names that appear
in the indicated j-blocks. The actual numbers of j-blocks are much larger than can be depicted in the figure.

P0−M , there is a collection G of good atoms of Q of total measure at least 1 − ε2/16 such
that for Q ∈ G,

f K(μ(·|Q), ω) < ε/4. (4.12)

Fix a choice of m such that hn+m−1 ≥ M . Let S be the partition of the space �Z into sets
that have the same (n + m)-block structure, that is, time 0 is in the same position within
the (n + m)-block.

We now describe the collection G̃ of good atoms in S. First we eliminate those atoms in
S such that for any j = 2, . . . , m, the deterministic part of the (n + j)-block containing
time 0 overlaps with the time interval [1, K]. (The deterministic part of an (n + j)-block
consists of the last εn+j−1kn+j−1 (n + j − 1)-blocks within the (n + j)-block.) We also
eliminate those atoms in S such that time 0 lies in the first (n + m − 1)-block within the
(n + m)-block containing time 0. Moreover, we eliminate those atoms in S such that time
0 occurs in any of the last 2εnkn n-blocks within an (n + 1)-block. The total measure of
the sets eliminated is less than 2(εn + · · · + εn+m−1) < ε2/50. Let G̃ be the collection of
atoms in S that remain, and fix a choice S ∈ G̃. For this S and j = 0, . . . , m − 1, let an+j

be the number of (n + j)-blocks preceding the (n + j)-block containing time 0 within the
(n + j + 1)-block containing time 0. Since an+m−1 ≥ 1 and hn+m−1 ≥ M , the beginning
of the (n + m)-block containing time 0 occurs at or before time −M . Let ν = νS be the
normalized restriction of μ to S.

Let Qn be the partition of S into sets with the same collection of n-blocks appearing
in positions 1 to an + 1 at the beginning of the (n + 1)-block containing time 0, and
let Rn be the partition of S into sets with the same collection of n-blocks appearing in
the εnkn n-blocks that follow the n-block containing time 0. For k = 1, 2, . . . , m − 1, let
Qn+m−k be the partition of S into sets with the same collection of (n + m − k)-blocks
comprising the an+m−k (n + m − k)-blocks that precede the (n + m − k)-block that
contains time 0, and let Rn+m−k be the partition of S into sets with (n + m − k)-blocks
containing time 0 agreeing up to the position of the last symbol in the εnkn n-blocks that
follow the n-block containing time 0 (see Figure 1).
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CLAIM. Let ηn+m−k = 4(τ 2−(k+1)

n+m−1 + τ 2−k

n+m−2 + · · · + τ 2−3

n+m−(k−1) + τ 2−2

n+m−k) for k =
1, 2, . . . , m. Then Rn+m−k ⊥ηn+m−k

ν (Qn+m−1 ∨ Qn+m−2 ∨ · · · ∨ Qn+m−k), for k =
1, 2, . . . , m.

Proof. According to Lemma 4.9 and Remark 4.7, Rn+m−1 ⊥3
√

τn+m−1
ν Qn+m−1. Since

3
√

τn+m−1 < 4τ 2−2

n+m−1 = ηn+m−1, the claim holds for k = 1. Now suppose the claim
holds for some k = 1, 2, . . . , m − 1, that is, Rn+m−k ⊥ηn+m−k

ν (Qn+m−1 ∨ Qn+m−2 ∨
· · · ∨ Qn+m−k). We have Rn+m−k = Qn+m−(k+1) ∨ Rn+m−(k+1), and by Lemma 4.9

and Remark 4.7, Rn+m−(k+1) ⊥3√
τn+m−(k+1)

ν Qn+m−(k+1). Therefore, by Lemma 4.11,
Rn+m−(k+1) ⊥η

ν (Qn+m−1 ∨ Qn+m−2 ∨ · · · ∨ Qn+m−(k+1)), where

η = 2
√

ηn+m−k + 2
√

3τ 2−2

n+m−(k+1)

= 4[τ 2−(k+1)

n+m−1 + τ 2−k

n+m−2 + · · · + τ 2−3

n+m−(k+1) + τ 2−2

n+m−k]1/2 + 2
√

3τ 2−2

n+m−(k+1)

≤ 4[τ 2−(k+2)

n+m−1 + τ 2−(k+1)

n+m−2 + · · · + τ 2−4

n+m−(k+1) + τ 2−3

n+m−k + τ 2−2

n+m−(k+1)]

= ηn+m−(k+1).

This completes the inductive step. Therefore the claim holds.

Applying the claim with k = m, we obtain Rn ⊥ηn
ν (Qn+m−1 ∨ · · · ∨ Qn). Note that

Qn+m−1 ∨ · · · ∨ Qn is a refinement of S ∩ P0−M and Rn is the partition into the
possible εnkn n-blocks comprising a fraction εnknhn/K = εnkn/(εnkn + 1) > 1 − ε2/16
of the PK

1 names. Since Rn ⊥ηn
ν (Qn+m−1 ∨ · · · ∨ Qn), for a set GS of atoms Q ∈

Qn+m−1 ∨ · · · ∨ Qn of ν-measure at least 1 − ηn, there is a measure-preserving map
φS : (S, ν) → (S ∩ Q, ν(·|Q)) such that on a set of ν-measure at least 1 − ηn, φS(x) is
contained in the intersection with Q of that atom of Rn that contains x, and the Rn

part of the PK
1 name of x is the same as that of φS(x). Thus, f K(ν(·|Q), ω) < ε/4 for

Q ∈ GS . Finally, we let G = ∪
S∈G̃GS . Then the total μ-measure of atoms in G is greater

than 1 − ε2/50 − ηn > 1 − ε2/16. Note that for Q ∈ GS , νS(·|Q) is the same as μ(·|Q).
Therefore, for Q ∈ GS , f K(μ(·|Q), ω) < ε/4. Then Lemma 4.5 implies that Definition
2.2 is satisfied. �

4.2. Non-loosely Bernoulli circular system arising from positive-entropy loosely
Bernoulli odometer-based system.

THEOREM 4.13. If E is the positive-entropy loosely Bernoulli odometer-based system
constructed in the previous section, and F is the map from odometer-based systems to
circular systems defined in §3, then F(E) is non-loosely Bernoulli.

We will prove F(E) is not loosely Bernoulli by proving that the condition in Lemma 3.5
does not hold.

In the construction of Wn+1 words in the circular system, we have many repetitions of
Wn words. To get lower bounds on the f distance between Wn+1 words, we will make use
of Definition 4.14 and Lemma 4.15 below.
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Definition 4.14. If b1b2 . . . bs is any string of s symbols, let T(b1b2 . . . bs) denote the
collection of all finite consecutive substrings of (b1b2 . . . bs)

t for any t ≥ 1.

LEMMA 4.15. (Repeated substring matching lemma) Suppose a1 . . . ar and b1 . . . bs are
strings of symbols. Then for any �, �̃ ≥ 1,

f ((a1 . . . ar )
�, (b1 . . . bs)

�̃) ≥ f (a1 . . . ar , T(b1 . . . bs)),

where the right-hand side denotes the infimum of the f distance from a1 . . . ar to any
element of T(b1 . . . bs).

Proof. Apply Property 2.6 with x1 = x2 = · · · = x� = a1a2 . . . ar .

The estimate below is proved in [Ro80] by a simple argument using just the binomial
theorem. A similar estimate can be obtained from Stirling’s formula.

LEMMA 4.16. If m is a positive integer and 0 < σ < 1, then we have the following
inequality for the binomial coefficient:(

m


σm�
)

< 23m
√

σ .

We make the following choices of parameters (in addition to those already described in
the previous section). Let bn = 2−(n+10), �n > 2n+10. Recall that εn < 2−(n+12).

LEMMA 4.17. (Inductive step in Rothstein’s argument to obtain a lower bound on the f

distance) For n ∈ N and 0 < δn < 1 define

ξn = ξn(δn) := 28(3δn)
((bn/2)−εn)(1−εn)23(1−εn)

√
(bn/2). (4.13)

Fix a particular n ∈ N and suppose δn is sufficiently small that ξn < 1. Assume that for
at least (1 − δn) of the n-blocks in Wn the f distance from the n-block to any specific
n-block or substrings of its extensions (as in Definition 4.14) is greater than an, where
0 < an < 1/3. Then for kn sufficiently large, depending only on parameters with subscript
n, there exists δn+1 such that ξn+1 = ξn+1(δn+1) < 1, and for at least (1 − δn+1) of the
(n + 1)-blocks in Wn+1 the f distance from the (n + 1)-block to any specific (n + 1)-block
or substrings of its extensions is greater than an+1 := an(1 − bn) − 15�−1

n .

Proof. Fix a particular choice

qn−1∏
i=0

kn−1∏
j=0

(bqn−jiB�n−1
j eji )

of (n + 1)-block in Wn+1, where B0, B1, . . . , Bkn−1 are n-blocks in Wn. Let T0 :=
T(

∏qn−1
i=0

∏kn−1
j=0 (bqn−jiB�n−1

j eji )). We will prove that the inequality

f

( qn−1∏
i=0

kn−1∏
j=0

(bqn−jiA�n−1
j eji ), T0

)
> an(1 − bn) − 15�−1

n (4.14)
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holds for at least (1 − δn+1) of the (n + 1)-blocks
∏qn−1

i=0
∏kn−1

j=0 (bqn−jiA�n−1
j eji ) in

Wn+1, where δn+1 will be specified later in the proof. The b’s and e’s that are newly added
in constructing (n + 1)-blocks from n-blocks in the circular system make up a fraction
�−1
n of the symbols in any (n + 1)-block. We may assume that the smallest f distance

between
∏qn−1

i=0
∏kn−1

j=0 (bqn−jiA�n−1
j eji ) and any element of T0 occurs for an element of

T0 of length at least q2
nkn�n/2, because otherwise it follows from (2.5) that the f distance

in (4.14) is greater than 1/3. For such an element of T0, the number of newly added b’s and
e’s is a fraction less than 2�−1

n of the length of that element. Therefore by Property 2.5 and
Lemma 4.15, to obtain (4.14) it suffices to show that

f (A�n−1
1 A�n−1

2 . . . A�n−1
kn

, T(B�n−1
1 B�n−1

2 . . . B�n−1
kn

)) > an(1 − bn) − 9�−1
n , (4.15)

without repeating the strings qn times. Suppose to the contrary of (4.15) that

f (A�n−1
1 A�n−1

2 . . . A�n−1
kn

, T(B�n−1
1 B�n−1

2 . . . B�n−1
kn

))

≤ an(1 − bn) − 9�−1
n < (an − 9�−1

n )(1 − bn) < 1/3, (4.16)

for some kn n-blocks A1, A2, . . . , Akn . We will show that this happens for at most δn+1

of the (n + 1)-blocks in Wn+1. Choose a match between the A-string and a B-string that
realizes the f distance in (4.16). For each substring A�n−1

i of the A-string, let fi be the f

distance between A�n−1
i and the corresponding part of the B-string. Let vi be the ratio of

the number of symbols in A�n−1
i plus the number of symbols in the corresponding part of

the B-string to the total length of the A- and B-strings. Then by Property 2.6, the f distance
for the entire strings is

∑kn

i=1 fivi , that is, a weighted average of the fi with weights vi .
Since this weighted average is less than (an − 9�−1

n )(1 − bn), the weights vi for those fi

with fi < an − 9�−1
n < 1/3 must have sum at least bn. For these weights vi , Property 2.7

and the assumptions that the f distance in (4.16) and fi are both less than 1/3 imply that
vi < 2k−1

n . Thus there must be at least (bn/2)kn indices i such that fi < an − 9�−1
n . Then

for at least a fraction (bn/2) − εn of the indices i ∈ {1, 2, . . . , k′
n} the f distance between

A�n−1
i and the corresponding part of the B-block is less than an − 9�−1

n . For each such i,
let σ(i) be the first index such that the part of the B-block corresponding to A�n−1

i starts
with a substring of a B�n−1

σ(i) . Then A�n−1
i may correspond just to a substring of B�n−1

σ(i) or

to a substring of B�n−1
σ(i) B�n−1

σ(i)+1 or to a substring of B�n−1
σ(i) B�n−1

σ(i)+1B
�n−1
σ(i)+2. Here the addition

in the subscripts is modulo kn. Any correspondence between A�n−1
i and strings of four

or more B�n−1
j would lead to the f distance between A�n−1

i and the corresponding part
of the B-string being greater than 1/3, and therefore we may disregard this possibility.
The number of ways of choosing the σ(i)’s and deciding whether to use just σ(i) or to
continue with just σ(i) + 1 or to continue with both σ(i) + 1 and σ(i) + 2 is at most
kn

(
7kn

kn

)
. Here we estimate 7kn > 3(2kn + 1), which is an upper bound on the number of

possible σ(i) combinations corresponding to A�n−1
i strings, allowing for the B-string to be

up to twice the length of the A-string (and thus contained in at most 2kn + 1 consecutive
Bln−1

j strings) and allowing for the three choices: just σ(i), just σ(i) and σ(i) + 1, and
all of σ(i), σ(i)+1, and σ(i) + 2. The additional factor of kn in front is due to being able
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to start the B-string with σ(1) being any of 1, 2, . . . , kn. According to the estimate on
binomial coefficients given in Lemma 4.16,

(
7kn

kn

)
≤ 221kn

√
1/7 ≤ 28kn . When we match

Aln−1
i with a substring of B�n−1

σ(i) B�n−1
σ(i)+1B

�n−1
σ(i)+2, we divide A�n−1

i into as many as three

substrings according to which part corresponds to each of B�n−1
σ(i) , B

�n−1
σ(i)+1, or B�n−1

σ(i)+2. By

removing at most a fraction 4(�n − 1)−1 of the symbols in each A�n−1
i string, we may

assume that full Ai strings correspond to each corresponding substring of B�n−1
σ(i) , B�n−1

σ(i)+1,

and B�n−1
σ(i)+2. By Property 2.5 this removal will increase the f distance from A�n−1

i to the
corresponding part of the B-string by at most 9�−1

n . Thus by Lemma 4.15, for a fraction of
at least (bn/2) − εn of the indices in {1, 2, . . . , k′

n}, at least one of the three f distances
from Ai to a string in T(Bσ(i)) or from Ai to a string in T(Bσ(i)+1) or from Ai to a string
in T(Bσ(i)+2) must be less than an. By assumption, the probability that the n-block Ai

satisfies at least one of these three conditions is less than 3δn. Thus if the first k′
n n-blocks

in the odometer (n + 1)-block corresponding to the A-string were selected independently,
then the probability δn+1 that

f (A�n−1
1 A�n−1

2 . . . A�n−1
kn

, T(B�n−1
1 B�n−1

2 . . . B�n−1
kn

)) < an − 9�−1
n

would be less than kn28kn(3δn)
((bn/2)−εn)k′

n

(
k′
n

(bn/2)k′
n

)
. Since the selection of the k′

n n-blocks
is not quite independent, we apply (4.1), and multiply our bound on the probability by (1 −
τn)

−1. Therefore from Lemma 4.16, we obtain δn+1 < kn(1 − τn)
−1ξ

kn
n . By assumption

ξn < 1. Thus we can choose kn sufficiently large so that δn+1 is sufficiently small to imply
ξn+1 < 1. For at least 1 − δn+1 of the (n + 1)-blocks in Wn+1 the f distance from the
(n + 1)-block to any specific (n + 1)-block or substrings of its extensions is greater than
an+1 := an(1 − bn) − 15�−1

n .

Proof of Theorem 4.13. The inductive step is contained in Lemma 4.17. For the base
case, we recall that 0-blocks are single symbols 1, 2, . . . , |�|. Choose 0 < δ0 < 1 so that
ξ0(δ0) < 1. Then require |�| to be sufficiently large that δ0 > |�|−1. We let a1 = 1/4.
According to the recursive formula for an, we have an > 1/8 for all n. Thus, if ε = 1/8,
the condition in Lemma 3.5 is not satisfied. Therefore F(E) is not loosely Bernoulli.

5. Zero-entropy example
In this section we prove the following theorem, which gives a zero-entropy version of the
example constructed in §§4.1 and 4.2.

THEOREM 5.1. There exist circular coefficients (ln) and a loosely Bernoulli odometer-
based system K of zero measure-theoretic entropy with uniform and uniquely readable
construction sequence such that F(K) is not loosely Bernoulli.

Outline of the proof of Theorem 5.1. In §5.4 we give a precise description of the inductive
building process of the uniform and uniquely readable construction sequence for the
odometer-based system K such that K will be loosely Bernoulli but F(K) will not be
loosely Bernoulli. The creation of this sequence relies on two mechanisms. On the one
hand, we will use what we will call the Feldman mechanism presented in §5.2. This will
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allow us to produce an arbitrarily large number of blocks that in the circular system remain
almost as far apart in f as the building blocks. In particular, we can produce sufficiently
many blocks to apply the second mechanism, the so-called shifting mechanism introduced
in §5.3 (see Figure 2 for a sketch of its idea). This mechanism requires not only sufficiently
many n-words to start with but also a sufficiently large number of stages p. Then we can
produce (n + p)-words in our construction sequence in such a way that these are close to
each other in the f metric and that the corresponding blocks in the circular construction
sequence stay apart from each other in the f metric. Both mechanisms will make use of
Feldman patterns for which we prove a general statement in §5.1. �

5.1. Feldman patterns for blocks. In [Fe76] Feldman constructed the first example of
an ergodic zero-entropy automorphism that is not loosely Bernoulli. The construction is
based on the observation that no pair of the strings

abababab

aabbaabb

aaaabbbb

can be matched very well. We use his construction of blocks (which we call Feldman
patterns) frequently in our two mechanisms in §§5.2 and 5.3. The basic Feldman patterns
are displayed in Lemma 5.8. In applying these patterns, we substitute blocks of symbols
for the individual symbols to produce a large number of strings that are almost as far apart
in f as their building blocks.

Our presentation of the Feldman patterns is similar to the one in [ORW82], but we apply
the patterns in the odometer system and then examine the f distance between strings in
the corresponding circular system. We also allow the consideration of different families of
strings and a preliminary concatenation of blocks (which will prove useful when dealing
with grouped blocks in §5.3). While we make a statement about substrings of different
Feldman patterns from either the same or different families in Proposition 5.10, we focus
on the situation of the same Feldman pattern but different families in Lemma 5.11.

In order to obtain lower bounds on the f distance between strings that are built from
blocks of symbols (as in Proposition 5.4 and Corollary 5.5), it is convenient to introduce a
notion of approximate f distance that we call f̃ .

Definition 5.2. If (i, j) and (i′, j ′) ∈ N × N, then we define (i, j) � (i′, j ′) if i ≤ i′
and j ≤ j ′. If (i, j) � (i′, j ′) and (i, j) �= (i′, j ′), then we say (i, j) ≺ (i′, j ′). An
approximate match between two strings of symbols a1a2 . . . an and b1b2 . . . bm from a
given alphabet � is a collection Ĩ of pairs of indices (is , js), s = 1, . . . , r , such that the
following conditions hold.
• (1, 1) � (i1, j1) ≺ (i2, j2) ≺ · · · ≺ (ir , jr) � (n, m).
• ais = bjs for s = 1, 2, . . . , r .
• If (i, j) ∈ Ĩ , then there exist s, t ∈ {1, . . . , r − 2} such that {s′ : (i, s′) ∈ Ĩ } ⊂ {s, s +

1, s + 2} and {t ′ : (t ′, j) ∈ Ĩ } ⊂ {t , t + 1, t + 2}.
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FIGURE 2. Heuristic representation of two stages of the shifting mechanism. Parts of three (n + 2)-blocks B1, B2, B3 in the odometer-based system and parts of their images
B1, B2, B3 under the circular operator are represented. The marked letters indicate a best possible f match between B1 and B2 with a fit of approximately

(
1 − 1

3

)2 (ignoring
spacers and boundary effects) while the blocks B1 and B2 have a very good fit in the odometer-based system.
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Then

f̃ (a1a2 . . . an, b1b2 . . . bm)

= max
(

0, 1 − 2 sup{|Ĩ | : Ĩ is an approx. match between a1a2 . . . an and b1b2 . . . bm}
n + m

)
.

Clearly f (a1a2 . . . an, b1, b2 . . . bm) ≥ f̃ (a1a2 . . . an, b1, b2 . . . bm). Moreover,
if every three consecutive symbols as , as+1, as+2 are distinct and every three
consecutive symbols bs , bs+1, bs+2 are distinct, then f (a1a2 . . . an, b1, b2 . . . bm) =
f̃ (a1a2 . . . an, b1, b2 . . . bm). Note that it is possible for f̃ (a1a2 . . . an, b1b2 . . . bm) to
be zero, even for a1a2 . . . an �= b1b2 . . . bm; for example, f̃ (11000, 11100) = 0.

LEMMA 5.3. Suppose f (a1a2 . . . an, b1b2 . . . bm) = 1 − ε, where 0 ≤ ε < 1
3 . Then

f̃ (a1a2 . . . an, b1b2, . . . bm) ≥ 1 − 3ε.

Proof. Suppose Ĩ = {(i1, j1), . . . , (ir , jr)} is an approximate match between a1a2 . . . an

and b1b2 . . . bm, as in Definition 5.2. We construct a match I with |I | ≥ |Ĩ |/3. Select the
first element (i1, j1) in Ĩ as an element of I and discard those at most two other elements
of Ĩ that have the same first coordinate or the same second coordinate as (i1, j1). Then
select the next element (is , js) in Ĩ that has not already been selected for I or discarded.
We again retain this (is , js) for I and discard those at most two other elements of Ĩ that
have not been discarded previously and that have the same first coordinate or the same
second coordinate as (is , js). Continue in this way until all elements of Ĩ have either been
discarded or retained for I . Then |Ĩ | ≤ 3|I |.
PROPOSITION 5.4. (Symbol by block replacement) Suppose Aa1 , Aa2 , . . . , Aan and
Bb1 , Bb2 , . . . , Bbm are blocks of symbols, with each block of length L. Assume that α ∈(
0, 1

7

)
, β ∈ [

0, 1
7

)
, α ≥ β, R ≥ 1, and for all substrings C and D consisting of consecutive

symbols from Aai
and Bbj

, respectively, with |C|, |D| ≥ L/R we have

f (C, D) ≥ α if ai �= bj

and

f (C, D) ≥ β if ai = bj .

Let f̃ = f̃ (a1a2 . . . an, b1b2 . . . bm). Then

f (Aa1Aa2 . . . Aan , Bb1Bb2 . . . Bbm) ≥ α

(
f̃ − 3

R

)
+ β(1 − f̃ ) > αf̃ + β(1 − f̃ ) − 1

R

> α − (1 − f̃ ) + β(1 − f̃ ) − 1
R

.

Proof. We may assume R ≥ 3; otherwise the conclusion holds trivially. We may also
assume that n ≤ m. We decompose Aa1Aa2 . . . Aan into the substrings Aa1 , Aa2 , . . . , Aan

and decompose Bb1Bb2 . . . Bbm into corresponding substrings B̃1, B̃2, . . . , B̃n according
to a best possible match between the two strings. Then we decompose each Aai

into at most three further substrings Aai ,0, Aai ,1, Aai ,2 corresponding to substrings
Bi,bji

, Bi,bji+1 , Bi,bji+2 of B̃i that lie entirely in Bbji
, Bbji+1 , Bbji+2 respectively, to
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obtain a best possible match between Aai
and B̃i . We will apply Property 2.6 to

this decomposition. We may ignore any Aai
and corresponding B̃i for which B̃i fails

to lie in three consecutive blocks Bbji
, Bbji+1 , Bbji+2 , because in this case it follows

from equation (2.6) in Property 2.7, that f (Aai
, B̃i) > 1

7 > α. For the same reason
we may also ignore any Bbj

whose corresponding substring in Aa1Aa2 . . . Aan fails
to lie in three consecutive blocks Aai

, Aai+1 , Aai+2 . We let Ĩ consist of those remaining
pairs (i′, j ′) ∈ ∪n

i=1{(i, ji), (i, ji + 1), (i, ji + 2)} such that ai′ = bj ′ . Then Ĩ gives an
approximate match between a1a2 . . . an and b1b2 . . . bm. The symbols in all Aai′ ∪ Bbj ′
for all (i′, j ′) ∈ Ĩ form a fraction of at most min(1, (2|Ĩ |/(n + m))) ≤ 1 − f̃ of the total
number of symbols in Aa1Aa2 . . . Aan and Bb1Bb2 . . . Bbm .

For any substring Aai ,s corresponding to a substring Bi,bji+s
such that the length of

at least one of these two substrings is less than L/R, the other substring has length
less than 4L/3R (unless f (Aai ,s , Bi,bji+s

) > α, a case that we again ignore). Moreover,
if Aai ,0 and Aai ,2 are both non-empty, then Bi,bji+1 = Bji

and |Aai ,1| ≥ (3/4)L ≥ L/R

(unless f (Aai ,1, Bji
) > α). Hence if we eliminate substrings Aai ,s and Bi,bji+s

such that
the length of at least one of the two substrings is less than L/R, we eliminate at most
14Ln/3R symbols from the two strings Aa1Aa2 . . . Aan and Bb1Bb2 . . . Bbm whose total
combined length is L(n + m) ≥ 2Ln. Thus the fraction of symbols that are eliminated due
to such short substrings is at most 7/3R < 3/R. For those pairs (i, ji + s), s ∈ {0, 1, 2},
such that neither of the strings Aai ,s and Bbji+s

has length less than L/R, it follows from
the hypothesis that

f (Aai ,s , Bbji+s
) ≥ α if (i, ji + s) /∈ Ĩ ,

and

f (Aai ,s , Bbji+s
) ≥ β if (i, ji + s) ∈ Ĩ .

Therefore by Property 2.6, we obtain

f (Aa1Aa2 . . . Aan , Bb1Bb2 . . . Bbm) ≥ α

(
1 − (1 − f̃ ) − 3

R

)
+ β(1 − f̃ )

> αf̃ + β(1 − f̃ ) − 1
R

≥ α − (1 − f̃ ) + β(1 − f̃ ) − 1
R

.

COROLLARY 5.5 Suppose Aa1 , Aa2 , . . . , Aan and Ab1 , Ab2 , . . . , Abm are blocks of
symbols with each block of length L. Assume that α ∈ (

0, 1
7

)
, R ≥ 1, and

f (C, D) ≥ α

for all substrings C and D consisting of consecutive symbols from Aai
and Abj

respectively,
where ai �= bj , and |C|, |D| ≥ L/R. Then for f̃ = f̃ (a1a2 . . . an, b1b2 . . . bm), we have

f (Aa1Aa2 . . . Aan , Ab1Ab2 . . . Abm) > αf̃ − 1
R

≥ α − (1 − f̃ ) − 1
R

.
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Proof. Let Bbj
= Abj

for j = 1, 2, . . . , m, and β = 0 in Proposition 5.4.

Remark 5.6. In fact, Corollary 5.5 and the case β = 0 of Proposition 5.4 hold with f̃

replaced by f (a1a2 . . . an, b1b2 . . . bm). We omit the proof because these versions are
not needed for our results.

Remark 5.7. The following lemma is essentially the same as [Fe76, Theorem 4] and
[ORW82, Proposition 1.1 in Ch. 10]. The proof is also essentially the same, but the
estimates are more suited to our applications.

LEMMA 5.8. Suppose a1, a2, . . . , aN are distinct symbols in �. Let

B1 = (aN2

1 aN2

2 . . . aN2

N )N
2M

,

B2 = (aN4

1 aN4

2 . . . aN4

N )N
2M−2

,
...

...

BM = (aN2M

1 aN2M

2 . . . aN2M

N )N
2
.

Suppose B and B are strings of consecutive symbols in Bj and Bk respectively, where
|B| ≥ N2M+2, |B| ≥ N2M+2, and j �= k. Assume that N ≥ 20 and M ≥ 2. Then

f (B, B) > 1 − 4√
N

and f̃ (B, B) > 1 − 12√
N

.

Proof. We may assume that j > k. By removing fewer than 2N2j symbols from the
beginning and end of B, we can decompose the remaining part of B into strings
C1, C2, . . . , Cr each of the form aN2j

i . Since 2N2j ≤ (|B| + |B|)/N2, it follows from
Property 2.5 that removing these symbols increases the f distance between B and B by less
than 2/N2. Let C1, C2, . . . , Cr be the decomposition of B into substrings corresponding
to C1, C2, . . . , Cr under a best possible match between C1C2 . . . Cr and B.

Let i ∈ {1, 2, . . . , r}.
Case 1. |Ci | < (3/2

√
N)|Ci |. Then by Property 2.7, f (Ci , Ci) > 1 − (3/

√
N).

Case 2. |Ci | ≥ (3/2
√

N)|Ci | = (3/2)N2j−(1/2). A cycle aN2k

1 aN2k

2 . . . aNN2k in Bk

has length at most N2j−1. Therefore Ci contains at least 
3
√

N/2� − 1 >
√

N complete
cycles. Thus deleting any partial cycles at the beginning and end of Ci would increase the
f distance between Ci and Ci by less than 2/

√
N . On the rest of Ci , only 1/N of the

symbols in Ci can match the symbol in Ci . Thus f (Ci , Ci) > 1 − (2/
√

N) − (4/N) >

1 − (3/
√

N).

Therefore, by Property 2.6, f (C1C2 . . . Cr , C1, C2 . . . , Cr) > 1 − (3/
√

N). By
Lemma 5.3 the claimed f̃ inequality holds as well.

Remark 5.9. If we replace each symbol ai by a constant number of repetitions al
i , then the

same conclusion still holds for substrings of length at least lN2M+2.

PROPOSITION 5.10. Let α ∈ (
0, 1

7

)
, n ∈ N, and K , R, S, N , M ∈ N \ {0} with N ≥ 20

and M ≥ 2. For 1 ≤ s ≤ S, let A(s)
1 , . . . , A(s)

N be a family of strings, where each A(s)
j
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is a concatenation of K n-blocks. Assume that for all 0 ≤ i1, i2 < qn, all 1 ≤ s1, s2 ≤ S

and all j1, j2 ∈ {1, . . . , N}, j1 �= j2, we have f (A, A) > α for all sequences A, A each
consisting of at least Klnqn/R consecutive symbols from Cn,i1(A

(s1)
j1

) and Cn,i2(A
(s2)
j2

),
respectively.

Then for 1 ≤ s ≤ S, we can construct a family of strings B(s)
1 , . . . , B(s)

M (of equal length
N2M+3Khn and containing each block A(s)

1 , . . . , A(s)
N exactly N2M+2 times) such that for

all 0 ≤ i1, i2 < qn, all 1 ≤ s1, s2 ≤ S, all j , k ∈ {1, . . . , M}, j �= k, and all sequences B,
B of at least N2M+2lnKqn consecutive symbols from Cn,i1(B

(s1)
j ) and Cn,i2(B

(s2)
k ) we have

f (B, B) > α − 13√
N

− 1
R

.

Proof. For every 1 ≤ s ≤ S we define

B(s)
1 =

(
(A(s)

1 )N
2
(A(s)

2 )N
2
. . . (A(s)

N )N
2
)N2M

,

B(s)
2 =

(
(A(s)

1 )N
4
(A(s)

2 )N
4
. . . (A(s)

N )N
4
)N2M−2

,

...
...

B(s)
M =

(
(A(s)

1 )N
2M

(A(s)
2 )N

2M

. . . (A(s)
N )N

2M
)N2

.

Let B(s1)
j ,i1 = Cn,i1(B

(s1)
j ), B(s2)

j ,i2 = Cn,i2(B
(s1)
j ), A(s1)

j ,i1 = Cn,i1(A
(s1)
j ), and A(s2)

j ,i2 = Cn,i2(A
(s2)
j ).

Then the formulas for the B(s1)
j ,i1 , j = 1, . . . , M , in terms of the A(s1)

1,i1
, . . ., A(s1)

N ,i1 can be

obtained from the formulas for the B(s1)
j in terms of the A(s1)

1 , . . . , A(s1)
N by replacing each

typewriter font A, B by the calligraphic A, B with the corresponding sub- and superscripts,
and the analogous statement is true for the B(s2)

j ,i2 , j = 1, . . . , M .
By adding fewer than 2lnKqn symbols to each of B and B we can complete any

partial A(s1)
j ,i1 at the beginning and end of B and any partial A(s2)

j ,i2 at the beginning and
end of B. Let Baug and Baug be the augmented B and B strings obtained in this way. By
Property 2.5, f (B, B) > f (Baug, Baug) − (4lnKqn)/(2N2M+2lnKqn) = f (Baug, Baug) −
2/N2M+2. Then we are comparing two different Feldman patterns of blocks, and by
Lemma 5.8 and Corollary 5.5 with f̃ > 1 − (12/

√
N), we have

f (Baug, Baug) > α − 12√
N

− 1
R

.

Therefore

f (B, B) > α − 12√
N

− 1
R

− 2
N2M+2 > α − 13√

N
− 1

R
.

For an application in §5.3 we will need the following result on the f distance between
strings that can be built as the same or different Feldman patterns but with building blocks
from different families.

LEMMA 5.11. Let α ∈ (
0, 1

7

)
, n ∈ N, and K , R, S, N , M ∈ N \ {0} with N ≥ 20, and

M , S at least 2. For 1 ≤ s ≤ S, let A(s)
1 , . . . , A(s)

N be a family of strings, where each A(s)
j
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is a concatenation of K n-blocks. Assume that for all 0 ≤ i1, i2 < qn, all s1 �= s2, and
all j1, j2 ∈ {1, . . . , N} we have f (A, A) > α for all strings A, A of at least Klnqn/R

consecutive symbols from Cn,i1(A
(s1)
j1

) and Cn,i2(A
(s2)
j2

) respectively.

Then for 1 ≤ s ≤ S we can construct a family of strings B(s)
1 , . . . B(s)

M , as in Proposition
5.10, and obtain that for all 0 ≤ i1, i2 < qn, all j1, j2 ∈ {1, . . . , M}, and all sequences B,
B of at least N2M+2lnKqn consecutive symbols from Cn,i1(B

(s1)
j1

) and Cn,i2(B
(s2)
j2

), s1 �= s2,
we have

f (B, B) > α − 2
N2M+2 − 1

R
. (5.1)

Proof. The same argument as in the proof of Proposition 5.10 applies, except we use
Corollary 5.5 with f̃ = 1.

5.2. Feldman mechanism to produce sufficiently many blocks. Recall that the images
of odometer n-blocks under Cn,i are part of the circular (n + 1)-block. The following
statement allows us to obtain lower bounds on the f distance between substrings of images
of odometer n-blocks under Cn,i , given a lower bound on the f distance between substrings
of the circular n-blocks. Since we will apply this result several times in the proofs of
Propositions 5.13 and 5.15, we state it as a separate lemma.

LEMMA 5.12. Let α ∈ (
0, 1

7

)
and n, N , R ∈ N \ {0}. Moreover, let N odometer n-blocks

B(n)
1 , . . . , B(n)

N be given such that for all j , k ∈ {1, . . . , N}, j �= k, we have f (A, A) > α

for any sequences A, A of at least qn/R consecutive symbols from the circular n-blocks
B(n)

j and B(n)
k respectively. Then for all j , k ∈ {1, . . . , N}, j �= k, any 0 ≤ i1, i2 < qn, and

any sequences D, D of at least qnln/R consecutive symbols from Cn,i1(B
(n)
j ) and Cn,i2(B

(n)
k )

respectively, we have

f (D, D) > α − 1
R

− 4R

ln
.

Proof. Let D, D be arbitrary sequences of at least qnln/R consecutive symbols from
Cn,i1(B

(n)
j ) = bqn−ji1 (B(n)

j )ln−1eji1 and from Cn,i2(B
(n)
k ) = bqn−ji2 (B(n)

j )ln−1eji2 , respec-
tively, for any j �= k and any 0 ≤ i1, i2 < qn. We modify D and D by first completing
any partial blocks B(n)

j and B(n)
k , which can be accomplished by adding fewer than 2qn

symbols to each of D and D. Then we remove any of the b’s preceding the B(n)
j s and any

of the e’s following the B(n)
j s that are included in Ds, and similarly for such b’s and e’s in

D. At most qn symbols are removed from each of D and D. Let Dmod and Dmod be these
modified versions of D and D. Then by Property 2.5,

f (D, D) > f (Dmod, Dmod) − 2R

ln
− 2R

ln
.

We have Dmod = (B(n)
j )l and Dmod = (B(n)

k )l , for some positive integers l and l. We are

given that f (A, A) > α for any strings of at least qn/R consecutive symbols from B(n)
j
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and B(n)
k , respectively. Thus it follows from Corollary 5.5 with f̃ = 1 that

f (Dmod, Dmod) > α − 1
R

.

In the proofs of both Propositions 5.13 and 5.15 we will also use the sequence (Rn)
∞
n=1,

where R1 = N(0) (with N(0) + 1 the number of symbols in our alphabet) and Rn = kn−2 ·
q2
n−2 for n ≥ 2. We note that for n ≥ 2,

qn

Rn

= kn−1 · ln−1 · (kn−2 · ln−2 · q2
n−2) · qn−1

kn−2 · q2
n−2

= ln−2 · kn−1 · ln−1 · qn−1. (5.2)

Hence, for n ≥ 2 a substring of at least qn/Rn consecutive symbols in a circular n-block
contains at least ln−2 − 1 complete 2-subsections which have length kn−1ln−1qn−1 (recall
the notion of a 2-subsubsection from the end of §3.3). This will allow us to ignore
incomplete 2-subsections at the ends of the substring.

PROPOSITION 5.13. Let α ∈ (
0, 1

7

)
and n, N , M ∈ N with N ≥ 100 and M ≥ 2. Suppose

A0, . . . , AN is the collection of n-blocks, which have equal length hn and satisfy the unique
readability property. Furthermore, if n > 0 assume that for all j1, j2 ∈ {0, . . . , N}, j1 �=
j2, we have f (A, A) > α for any sequences A, A of at least qn/Rn consecutive symbols
from Aj1 and Aj2 , respectively. Then we can construct M (n + 1)-blocks B1, . . . , BM of
equal length hn+1 (which are uniform in the n-blocks and satisfy the unique readability
property) such that for all j , k ∈ {1, . . . , M}, j �= k, and any sequences B, B of at least
qn+1/Rn+1 consecutive symbols from Bj and Bk we have

f (B, B) >

⎧⎪⎪⎨
⎪⎪⎩

α −
(

4
Rn

+ 4Rn

ln
+ 14√

N
+ 2

ln−1

)
if n > 0,

1 − 5√
N

− 2
l0

if n = 0.

Proof. We choose the block A0 as a ‘marker’, that is, an n-block whose appearances can
be used to identify the end of an (n + 1)-block. We distribute the marker blocks over the
new words and modify the classical Feldman patterns on the building blocks A1, . . . , AN

in the following way to define the (n + 1)-blocks:

B1 =
((

(A1)
N2

(A2)
N2

. . . (AN)N
2
)N2M−1

(A0)
N2M+1−1

)N

(A0)
N ,

B2 =
((

(A1)
N4

(A2)
N4

. . . (AN)N
4
)N2M−3

(A0)
N2M+1−1

)N

(A0)
N ,

...
...

BM =
((

(A1)
N2M

(A2)
N2M

. . . (AN)N
2M

)N

(A0)
N2M+1−1

)N

(A0)
N .

We note that every (n + 1)-block Bk contains each n-block Al exactly N2M+2 times and
has length (N + 1) · N2M+2 · hn. Moreover, the new blocks are uniquely readable because
the string (A0)

N2M+1+N−1 only occurs at the end of an (n + 1)-block. We also observe that
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Bk is built with N2·(M−k+1) cycles

Fk := (A1)
N2k

(A2)
N2k

. . . (AN)N
2k

.

Let B and B be sequences of at least qn+1/Rn+1 consecutive symbols from Bj and
Bk , j �= k. In the case n > 0 we note that B and B have at least the length of ln−1 complete
2-subsections by equation (5.2). By adding fewer than 2lnknqn symbols to each of B
and B, we can complete any partial 2-subsections at the beginning and end of B and B.
This change can increase the f distance between B and B, but by less than 2/ln−1. In
addition, we remove the marker blocks, possibly increasing f by at most 2/(N + 1). The
modified strings Bmod and Bmod obtained satisfy f (B, B) > f (Bmod, Bmod) − (2/ln−1) −
(2/(N + 1)).

By Lemma 5.12, f (D, D) > α − (2/Rn) − (4Rn/ln) for any substrings D, D of at least
qnln/Rn consecutive symbols from Cn,i1(Aj1) and Cn,i2(Aj2) with j1 �= j2. If we let �j ,i1
and �k,i2 be the jth and kth Feldman patterns built from Cn,i1(A1), Cn,i1(A2), . . . , Cn,i1(AN)

and Cn,i2(A1), Cn,i2(A2), . . . , Cn,i2(AN) respectively, then the same argument as in
Proposition 5.10 shows that for any substrings E, E consisting of at least |�j ,i1 |/N =
|�k,i1 |/N consecutive symbols from �j ,i2 and �k,i2 , we have f (E, E) > α − (4/Rn) −
(4Rn/ln) − (13/

√
N).

Note that Bmod and Bmod consist respectively of a string of �j ,is and a string of �k,is
(j and k fixed, i varying). Therefore, by Corollary 5.5 with f̃ = 1, f (Bmod, Bmod) > α −
(4/Rn) − (4Rn/ln) − (13/

√
N) − (2/N). Thus in the case n > 0 we obtain

f (B, B) > α − (4/Rn) − (4Rn/ln) − (13/
√

N) − (2/N) − (2/ln−1) − (2/N)

> α − (4/Rn) − (4Rn/ln) − (14/
√

N) − (2/ln−1).

In the case n = 0 we complete strings C0,0(Fj ) and C0,0(Fk) at the beginning and end
of B and B respectively by adding fewer than 2l0N

2M+1 symbols to each of B and B. This
corresponds to a fraction of at most 2/(N + 1) of the total length. In the next step we
remove the marker blocks and spacers b, possibly increasing f by at most (6/N) + (2/l0).
On the remaining strings we apply Remark 5.9 (note that we have enough symbols by our
completion above) to obtain the claim for n = 0.

Remark 5.14. In the proof above we cannot put all markers at the end of the new
(n + 1)-block since these markers would cover a fraction hn+1/(N + 1) of that block
due to uniformity. Thus, the conclusion would not hold true for n = 0. We will also need
the chosen form of the (n + 1)-blocks in an analogous statement for the odometer-based
system in Proposition 6.2.

5.3. Mechanism to produce closeness in odometer-based system and separation in
corresponding circular system. We impose the following conditions on the circular
coefficients (ln)n∈N:

ln+1 ≥ l2
n and ln ≥ 4Rn+1 for every n ∈ N. (5.3)
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PROPOSITION 5.15. Let K ≥ 2, 0 < ε < α, δ > 0, and α ∈ (
0, 1

7

)
. Then there are

numbers N , p ∈ N such that for N + 1 uniquely readable n-blocks B(n)
0 , B(n)

1 , . . . , B(n)
N

with f (A, A) > α for all sequences A, A of at least qn/Rn consecutive symbols from
B(n)

i and B(n)
j , i > j , we can build K (n + p)-blocks B(n+p)

1 , . . . , B(n+p)
K of equal length

hn+p (satisfying the unique readability property and uniformity in all blocks from stage n
through n + p) with the following properties:
(1) f (B(n+p)

i , B(n+p)
j ) < δ for all i, j ;

(2) f (B, B) > α − ε − ∑p−1
s=0 (6/Rn+s) for all sequences B, B of at least qn+p/Rn+p

consecutive symbols from B(n+p)
i and B(n+p)

j , i > j .

The number of stages p will be the least integer such that(
1 − 1

K

)p

<
ε

2
.

The proof is based upon an inductive construction (called a shifting mechanism; see
Figure 2 for a sketch of its idea) and a final step to align blocks in the odometer-based
system. For this construction process and the given n ∈ N, let (un+m)m∈N and (en+m)m∈N
be increasing sequences of natural numbers such that

∑
m∈N

1
u2

n+m

<
δ

4
(5.4)

and ∑
m∈N

(
8

un+m

+ 17√
en+m

)
<

ε

8
. (5.5)

Moreover, we will use the sequence (dn+m)m∈N, where

dn+m = u2
n+m. (5.6)

In the following, we will also use the notation

λn+m = dn+m · en+m

and N(n + m) + 1 = Kλn+m + 1 will be the number of (n + m)-blocks. In particular, we
start with N(n) + 1 = N + 1 n-blocks and we require N to satisfy

N > max(2/δ, (100/ε)2). (5.7)

5.3.1. Initial stage of the shifting mechanism: construction of (n + 1)-blocks. First
of all, we choose one n-block B(n)

0 as a marker. Then we apply Proposition 5.10 on
the remaining n-blocks B(n)

1 , . . . , B(n)
N to build Ñ(n + 1) := 2Kλn+1 pre-(n + 1)-blocks

denoted by Ai,j , i = 1, . . . , K , j = 1, . . . , 2λn+1. In particular, these have length
h̃n+1 = N2·Ñ(n+1)+3 · hn and are uniform in the n-blocks B(n)

1 , . . . , B(n)
N by construction.

More precisely, every pre-(n + 1)-block contains each n-block B(n)
j , 1 ≤ j ≤ N , exactly

N2·Ñ(n+1)+2 times, and pre-(n + 1)-blocks Ai,j in the circular system (that is, images of
Ai,j under the operator Cn,k for some k ∈ {1, . . . , qn}, where the value of k does not matter
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for the following investigation) have length q̃n+1 = N2·Ñ(n+1)+3 · ln · qn. Moreover, with
the aid of Lemma 5.12, Proposition 5.10 also implies that different pre-(n + 1)-blocks in
the circular system are at least

α − βn+1 where βn+1 := 4
Rn

+ 13√
N

+ 4Rn

ln
, (5.8)

f apart on substantial substrings of length at least N2·Ñ(n+1)+2 · ln · qn = q̃n+1/N .
Finally, we introduce the abbreviation

an = (B(n)
0 )K·N2Ñ(n+1)+2

.

We use these pre-(n + 1)-blocks to construct (n + 1)-blocks B(n+1)
i,j of K different

types (the index i indicates the type, and j = 1, . . . , λn+1 = dn+1en+1 numbers the
(n + 1)-blocks of that type consecutively):

(n + 1)-blocks of type 1: B(n+1)
1,1 = A1,1A2,1 . . . AK ,1an,

B(n+1)
1,2 = A1,2A2,2 . . . AK ,2an,

B(n+1)
1,3 = A1,3A2,3 . . . AK ,3an,

...
B(n+1)

1,λn+1
= A1,λn+1A2,λn+1 . . . AK ,λn+1an,

(n + 1)-blocks of type 2: B(n+1)
2,1 = A2,1A3,1 . . . AK ,1A1,2an,

B(n+1)
2,2 = A2,2A3,2 . . . AK ,2A1,3an,

B(n+1)
2,3 = A2,3A3,3 . . . AK ,3A1,4an,

...
B(n+1)

2,λn+1
= A2,λn+1A3,λn+1 . . . A1,λn+1+1an,

...
...

(n + 1)-blocks of type K : B(n+1)
K ,1 = AK ,1A1,2 . . . AK−1,2an,

B(n+1)
K ,2 = AK ,2A1,3 . . . AK−1,3an,

B(n+1)
K ,3 = AK ,3A1,4 . . . AK−1,4an,

...
B(n+1)

K ,λn+1
= AK ,λn+1A1,λn+1+1 . . . AK−1,λn+1+1an.

Moreover, we define an additional (n + 1)-block B(n+1)
0 which will play the role of a

marker:

B(n+1)
0 = A1,λn+1+2 . . . AK ,λn+1+2an,

where the pre-(n + 1)-blocks Ai,λn+1+2, i = 1, . . . , K , are not used in any other
(n + 1)-block. In total, there are Kdn+1en+1 + 1 (n + 1)-blocks. Since each of the
pre-(n + 1)-blocks contains each n-block B(n)

i , 1 ≤ i ≤ N , exactly N2Ñ(n+1)+2 times,

and each (n + 1)-block contains B(n)
0 exactly KN2Ñ(n+1)+2 times, every (n + 1)-block is

uniform in the n-blocks.
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LEMMA 5.16. (Distance between (n + 1)-blocks in the odometer-based system) For every
i1, i2 ∈ {1, . . . , K} and every j ∈ {1, . . . , dn+1en+1} we have

f (B(n+1)
i1,j , B(n+1)

i2,j ) ≤
(

N

N + 1

)
· |i2 − i1|

K
. (5.9)

Proof. Observe that

|an| = hn+1

N + 1
,

due to the uniformity of n-blocks within the (n + 1)-blocks. Thus the pre-(n + 1)-block
part of each B(n+1)

i,j , that is, the part before an, forms a fraction N/(N + 1) of B(n+1)
i,j .

Without loss of generality, let i2 > i1. We note that B(n+1)
i1,j and B(n+1)

i2,j have

Ai2,jAi2+1,j . . . AK ,jA1,j+1 . . . Ai1−1,j+1

as a common substring of their pre-(n + 1)-block parts. This substring forms a fraction
(K − (i2 − i1))/K of the pre-(n + 1)-block part of each of B(n+1)

i1,j and B(n+1)
i2,j . Therefore

(5.9) holds.

LEMMA 5.17. (Distance between (n + 1)-blocks in the circular system) Let B(n+1)
1 and

B(n+1)
2 be (n + 1)-blocks and J be the number of pre-(n + 1)-blocks both have in common.

Then for any sequences B and B of at least qn+1/Rn+1 consecutive symbols in B(n+1)
1 and

B(n+1)
2 we have

f (B, B) ≥
(

1 − J

K

)
α − En+1, where En+1 := βn+1 + 4

N
+ 4

ln−1

with βn+1 as in equation (5.8).

Proof. In order to get the estimate in the circular system we recall that under the circular
operator Cn the whole (n + 1)-word consists of qn many 2-subsections which differ from
each other just in the exponents of the newly introduced spacers b and e. Then we consider
B and B to be a concatenation of complete 2-subsections ignoring incomplete ones at
the ends which constitute a fraction of at most 2/ln−1 of the total length of B and B
by equation (5.2). In the following consideration we ignore the marker segments which
amount to a fraction 1/(N + 1) of the total length. Accordingly, we consider B and B to
be a concatenation of complete pre-(n + 1)-blocks Ah. Using the estimate from equation
(5.8) we apply Corollary 5.5 with f̃ ≥ 1 − (J/K) and obtain

f (B, B) ≥
(

1 − J

K

)
· (α − βn+1) − 2

N
− 4

ln−1
− 2

N + 1
,

which yields the claim.

5.3.2. Induction step: construction of (n + m)-blocks. We will follow the inductive
scheme for the construction of (n + m)-blocks described here for 2 ≤ m < p, where
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p > 2 is the smallest number such that(
1 − 1

K

)p

<
ε

2
. (5.10)

Assume that in our inductive construction we have constructed Kλn+m−1 (n + m − 1)

-blocks B(n+m−1)
i,j of K different types (once again, the index 1 ≤ i ≤ K indicates the type,

and 1 ≤ j ≤ λn+m−1 numbers the (n + m − 1)-blocks of that type consecutively), where
for m = 2 the (n + 1)-blocks are the ones constructed in §5.3.1 and for m > 2 the (n +
m − 1)-blocks are constructed according to the following formula (with λ = λn+m−1)

(n + m − 1)-blocks of type 1:

B(n+m−1)
1,1 = A(n+m−1)

1,1 A(n+m−1)
2,2 . . . A(n+m−1)

K ,K an+m−2,

B(n+m−1)
1,2 = A(n+m−1)

1,K+1 A(n+m−1)
2,K+2 . . . A(n+m−1)

K ,2K an+m−2,

...

B(n+m−1)
1,λ = A(n+m−1)

1,(λ−1)K+1A
(n+m−1)
2,(λ−1)K+2 . . . A(n+m−1)

K ,λK an+m−2,

(n + m − 1)-blocks of type 2:

B(n+m−1)
2,1 = A(n+m−1)

1,2 A(n+m−1)
2,3 . . . A(n+m−1)

K ,K+1 an+m−2,

B(n+m−1)
2,2 = A(n+m−1)

1,K+2 A(n+m−1)
2,K+3 . . . A(n+m−1)

K ,2K+1 an+m−2,

...

B(n+m−1)
2,λ = A(n+m−1)

1,(λ−1)K+2A
(n+m−1)
2,(λ−1)K+3 . . . A(n+m−1)

K ,λK+1 an+m−2,

...

(n + m − 1)-blocks of type K:

B(n+m−1)
K ,1 = A(n+m−1)

1,K A(n+m−1)
2,K+1 . . . A(n+m−1)

K ,2K−1 an+m−2,

B(n+m−1)
K ,2 = A(n+m−1)

1,2K A(n+m−1)
2,2K+1 . . . A(n+m−1)

K ,3K−1 an+m−2,

...

B(n+m−1)
K ,λ = A(n+m−1)

1,λK A(n+m−1)
2,λK+1 . . . A(n+m−1)

K ,(λ+1)K−1an+m−2,

with marker segment an+m−2 = (B(n+m−2)
0 )N̄(n+m−1), where N̄(n + m − 1) is chosen

according to (5.16) to guarantee uniformity of (n + m − 2)-blocks in the (n + m −
1)-blocks. Moreover, we have an additional marker block,

B(n+m−1)
0 = A(n+m−1)

1,(λn+m−1+1)KA
(n+m−1)
2,(λn+m−1+1)K . . . A(n+m−1)

K ,(λn+m−1+1)Kan+m−2.

These blocks are defined using pre-(n + m − 1)-blocks A(n+m−1)
i,j with

f (A(n+m−1)
i1,j , A(n+m−1)

i2,j ) ≤
m−2∑
u=1

(
1

N(n + u − 1) + 1
+ 1

dn+u

)
(5.11)
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if m > 2 (note that the assumption is vacuous if m = 2). Moreover, for any sequences B
and B of at least qn+m−1/Rn+m−1 consecutive symbols in B(n+m−1)

i1,j1
and B(n+m−1)

i2,j2
for

some i1, i2 ∈ {0, 1, . . . , K}, i1 ≤ i2, and j1, j2 ∈ {1, . . . , λn+m−1}, we assume

f (B, B) ≥ α − En+m−1 for i1 = i2 and j1 �= j2, (5.12)

f (B, B) ≥
(

1 −
(

1 − 1
K

)m−1)
α − En+m−1 for i1 < i2 and j1 = j2 or j1 = j2 + 1,

(5.13)

f (B, B) ≥ α − En+m−1 for i1 < i2 and all other cases of j1 �= j2, (5.14)

where

En+m−1 = En+1 +
m−2∑
i=1

(
6

Rn+i

+ 8
un+i

+ 17√
en+i

)
. (5.15)

We point out that assumptions (5.12)-(5.15) hold for m = 2 by Lemma 5.17.

In order to continue the inductive construction we define grouped (n + m − 1) -blocks
of type i by concatenating dn+m−1 (n + m − 1)-blocks of type i:

G(n+m−1)
i,s = B(n+m−1)

i,s·dn+m−1+1B
(n+m−1)
i,s·dn+m−1+2 . . . B(n+m−1)

i,(s+1)·dn+m−1
, for s = 0, . . . , en+m−1 − 1.

LEMMA 5.18. (Distance between grouped (n + m − 1)-blocks in the circular system) Let
G and G be sequences of at least un+m−1ln+m−1qn+m−1 consecutive symbols in G(n+m−1)

i1,s1

and G(n+m−1)
i2,s2

for some i1, i2 ∈ {1, . . . , K} and s1, s2 ∈ {0, . . . , en+m−1 − 1}.
(1) For i1 = i2 and s1 �= s2 we have

f (G, G) ≥ α − En+m−1 − 4
Rn+m−1

− 4Rn+m−1

ln+m−1
− 4

un+m−1
.

(2) For i1 �= i2 and s1 = s2 we have

f (G, G) ≥
(
1 −

(
1 − 1

K

)m−1)
· α − En+m−1 − 4

Rn+m−1
− 4Rn+m−1

ln+m−1
− 4

un+m−1
.

(3) For i1 �= i2 and s1 �= s2 we have

f (G, G) ≥ α − En+m−1 − 4
Rn+m−1

− 4Rn+m−1

ln+m−1
− 6

un+m−1
.

Proof. We factor G and G into 2-subsections Cn,j1(B
(n+m−1)
i1,t ) and Cn,j2(B

(n+m−1)
i2,u ) for

some j1, j2 ∈ {0, 1, . . . , qn − 1}, omitting partial blocks at the ends which constitute a
portion of at most 2/un+m−1 of the total length of G and G. With the aid of Lemma 5.12
we can transfer the estimates in equations (5.12)–(5.14) to estimates on the f distance of
substrings of at least qn+m−1ln+m−1/Rn+m−1 consecutive symbols in these strings of the
form Cn,j1(B

(n+m−1)
i1,t ) and Cn,j2(B

(n+m−1)
i2,u ), respectively.

We now examine the particular situation of each part of the lemma.
(1) Since the (n + m − 1)-blocks in G(n+m−1)

i1,s1
and G(n+m−1)

i1,s2
are of same type but

different pattern, Corollary 5.5 (with f̃ = 1) and the modified version of equation (5.12)
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yield

f (G, G) ≥ α − En+m−1 − 2
Rn+m−1

− 4Rn+m−1

ln+m−1
− 2

Rn+m−1
− 4

un+m−1
.

(2) For m = 2 we note that B(n+1)
i1,t and B(n+1)

i2,u in G(n+1)
i1,s1

and G(n+1)
i2,s1

respectively have
at most J = max(|i2 − i1|, K − |i2 − i1|) pre-(n + 1)-blocks in common. Then we apply
Lemma 5.17, Lemma 5.12, and Corollary 5.5 (with f̃ = 1) to conclude the inequality.

In order to obtain a lower bound on the f distance for m > 2 we note that B(n+m−1)
i1,t and

B(n+m−1)
i2,u in G(n+m−1)

i1,s1
and G(n+m−1)

i2,s1
could fall under the situation of the worst possible

estimate in equation (5.13). By another application of Lemma 5.12 and Corollary 5.5 (with
f̃ = 1) we get the claim.

(3) Without loss of generality let i2 > i1. Once again, we start with the proof for m = 2.
There is at most one pair of (n + 1)-blocks in G(n+1)

i1,s1
and G(n+1)

i2,s2
respectively that have

i2 − i1 pre-(n + 1)-blocks in common while all other pairs have no pair in common. This
corresponds to a proportion of at most 2/un+1. Then we use Lemma 5.17, Lemma 5.12,
and Proposition 5.4 (with f̃ ≥ 1 − (2/un+1)) to obtain

f (G, G) ≥
(

1 − 2
un+1

+ 2
un+1

(
1 − i2 − i1

K

))
α − En+1 − 4

Rn+1
− 4Rn+1

ln+1
− 4

un+1

≥ α − En+1 − 4
Rn+1

− 4Rn+1

ln+1
− 6

un+1
.

We proceed with the case of m > 2. There is at most one pair of n-blocks B(n+m−1)
i1,j1

and

B(n+m−1)
i2,j2

in G(n+m−1)
i1,s1

and G(n+m−1)
i2,s2

respectively with j1 = j2 + 1, while for all other pairs
j1 �= j2 and j1 �= j2 + 1. Since this corresponds to a proportion of at most 2/un+m−1, we
use the modified versions of equations (5.13) and (5.14) and Proposition 5.4 (with f̃ ≥ 1 −
(2/un+m−1)) to obtain the estimate on f (G, G) by the same calculation as above, replacing
the subscripts n + 1 by n + m − 1 and the term 1 − (i2 − i1/K) by 1 − (1 − (1/K))m−1.

In all other cases s1 �= s2 all pairs of n-blocks B(n+m−1)
i1,j1

and B(n+m−1)
i2,j2

in G(n+m−1)
i1,s1

and

G(n+m−1)
i2,s2

respectively have j1 �= j2 and j1 �= j2 + 1. Then we use the same estimate as in
part (1).

Let us introduce the notation

γn+m−1 := En+m−1 + 4
Rn+m−1

+ 4Rn+m−1

ln+m−1
+ 6

un+m−1
.

We continue the inductive construction by building 2K2λn+m = 2K2dn+men+m

pre-(n + m)-blocks A(n+m)
i,j , where j ∈ {1, . . . , 2λn+mK} stands for the jth Feldman

pattern and i ∈ {1, . . . , K} indicates the type of (n + m − 1)-blocks used. We let A(n+m)
i,j

be the jth Feldman pattern built of the grouped (n + m − 1)-blocks of type i. We point out
that A(n+m)

i,j contains each (n + m − 1)-block of type i

N̄(n + m) = (en+m−1)
4Kλn+m+2 (5.16)
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times because it is uniform in the building blocks G(n+m−1)
i,s by construction of the Feldman

patterns in Proposition 5.10 and each (n + m − 1)-block of type i is contained in exactly
one grouped (n + m − 1)-block. Moreover, this number of occurrences is the same for
every chosen Feldman pattern j. We will denote the length of the circular image A(n+m)

i,j =
Cn+m−1,k(A

(n+m)
i,j ), k ∈ {0, . . . , qn+m−1 − 1}, by q̃n+m.

LEMMA 5.19. (Closeness and separation of pre-(n + m)-blocks of same Feldman pattern)
For every j ∈ {1, . . . , 2Kdn+men+m} and i1, i2 ∈ {1, . . . , K} we have

f (A(n+m)
i1,j , A(n+m)

i2,j ) ≤
m−1∑
u=1

(
1

N(n + u − 1) + 1
+ 1

dn+u

)

in the odometer-based system. In the circular system we have for i1 �= i2 and for any
sequences A and A of at least q̃n+m/en+m−1 consecutive symbols in A(n+m)

i1,j and A(n+m)
i2,j

respectively that

f (A, A) ≥
(

1 −
(

1 − 1
K

)m−1)
α − γn+m−1 − 2

en+m−1
− 2

un+m−1
.

Proof. Without loss of generality, let i2 > i1.
We start with the proof of the first statement for m = 2. Ignoring the marker segment an,

we note that for every s = 0, . . . , en+1 − 1 the grouped n-block G(n+1)
i2,s is obtained from

G(n+1)
i1,s by a shift of i2 − i1 pre-(n + 1)-blocks. Since a grouped (n + 1)-block consists of

Kdn+1 pre-(n + 1)-blocks, the grouped (n + 1)-blocks G(n+1)
i1,s , G(n+1)

i2,s can be matched on
a portion of at least 1 − ((i2 − i1)/Kdn+1) of the part of pre-(n + 1)-blocks. Thus, we
have

f (G(n+1)
i1,s , G(n+1)

i2,s ) ≤ 1
N + 1

+ N

N + 1
· i2 − i1

Kdn+1
,

which yields the claim because A(n+2)
i1,j and A(n+2)

i2,j are constructed as the same Feldman
pattern with these grouped (n + 1)-blocks of different types as building blocks.

Turning to the proof of the first statement for m > 2, we ignore the marker blocks which
occupy a fraction

1
Kλn+m−2 + 1

= 1
N(n + m − 2) + 1

of each (n + m − 1)-block (since there are 1 + Kλn+m−2 (n + m − 2)-blocks, it follows
from the uniformity of (n + m − 2)-blocks within each (n + m − 1)-block that the marker
segment occupies a fraction 1/(1 + Kλn+m−2) of the (n + m − 1)-block). Let M denote
the right-hand side from inequality (5.11), that is, an upper bound for the f distance
between pre-(n + m − 1)-blocks of type i1 and i2 and the same Feldman pattern. Since
in the definition of (n + m − 1)-blocks of types i1 and i2 the Feldman patterns used are
shifted by i2 − i1, we obtain, for every s ∈ {0, . . . , en+m−1 − 1}G(n+m−1)

i1,s and G(n+m−1)
i2,s ,
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f (G(n+m−1)
i1,s , G(n+m−1)

i2,s ) ≤ 1
N(n + m − 2) + 1

+ (Kdn+m−1 − |i1 − i2|)
Kdn+m−1

· M + |i1 − i2|
Kdn+m−1

≤
m−1∑
u=1

(
1

N(n + u − 1) + 1
+ 1

dn+u

)

using equation (5.11). This yields the claim because A(n+m)
i1,j and A(n+m)

i2,j are constructed
as the same Feldman pattern with these grouped (n + m − 1)-blocks of different type as
building blocks.

The second statement follows from Lemmas 5.11 and 5.18.

We will need a statement on the f distance of different Feldman patterns in the circular
system only, but not in the odometer-based system.

LEMMA 5.20. (Separation of pre-(n + m)-blocks of different Feldman patterns) For any
sequences A and A of at least q̃n+m/en+m−1 consecutive symbols in A(n+m)

i1,j1
and A(n+m)

i2,j2
for some i1, i2 ∈ {1, . . . , K} and j1, j2 ∈ {1, . . . , 2Kdn+men+m}, j1 �= j2, we have

f (A, A) ≥ α − γn+m−1 − 13√
en+m−1

− 2
un+m−1

.

Proof. The result follows from Proposition 5.10 and Lemma 5.18.

Then we set

βn+m := γn+m−1 + 13√
en+m−1

+ 2
un+m−1

.

We continue our construction process by building (n + m)-blocks B(n+m)
i,j of K different

types (once again, the index 1 ≤ i ≤ K indicates the type, and 1 ≤ j ≤ λ = λn+m

numbers the (n + m)-blocks of that type consecutively) using the formula from the
beginning of §5.3.2 (with n + m − 1 replaced by n + m). Moreover, we define an
additional (n + m)-block B(n+m)

0 which will play the role of a marker again:

B(n+m)
0 = A(n+m)

1,(λn+m+1)KA
(n+m)
2,(λn+m+1)K . . . A(n+m)

K ,(λn+m+1)Kan+m−1,

where the pre-(n + m)-blocks A(n+m)
i,(λn+m+1)K are not used in any other (n + m)-block.

Hence, there are Kλn+m + 1 (n + m)-blocks in total. We also note that each (n +
m)-block B(n+m)

i,s contains exactly one pre-(n + m)-block of each type. Thus the (n +
m)-blocks are uniform in the (n + m − 1)-blocks by our observation above.

LEMMA 5.21. (Distance between (n + m)-blocks in the circular system) Let B and B be
sequences of at least qn+m/Rn+m consecutive symbols in B(n+m)

i1,j1
and B(n+m)

i2,j2
for some

i1, i2 ∈ {0, 1, . . . , K} and j1, j2 ∈ {1, . . . , λn+m}.
(1) For blocks of same type, for i1 = i2 and j1 �= j2 we have

f (B, B) ≥ α − βn+m − 4
en+m−1

− 4
ln+m−2

.
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(2) For blocks of different type, for i1 < i2 we have

f (B, B) ≥
(

1 −
(

1 − 1
K

)m)
· α − βn+m − 4

en+m−1
− 4

ln+m−2

if j1 = j2 or j1 = j2 + 1. For all other cases of j1 �= j2 we have

f (B, B) ≥ α − βn+m − 4
en+m−1

− 4
ln+m−2

.

Proof. As in the proof of Lemma 5.17 we consider B and B to be a concatenation
of complete 2-subsections. ignoring incomplete ones at the beginnings and ends which
constitute a fraction of at most 2/ln+m−2 of the total length of B and B by equation (5.2).
In the following consideration we ignore the marker segments an+m−1 which amount
to a fraction 1/(1 + Kλn+m−1) < (1/en+m−1) of the total length due to uniformity.
Accordingly, we consider B and B to be a concatenation of complete pre-(n + m)-blocks
A(n+m)

i1,h1
and A(n+m)

i2,h2
, respectively. Finally, we examine the particular situation of each case

of this lemma:
(1) We note that all Feldman patterns for pre-(n + m)-blocks used in B(n+m)

i1,j1
and B(n+m)

i1,j2
are different from each other. Accordingly, we apply Lemma 5.20 and Corollary 5.5 (with
f̃ = 1).

(2) For i1 < i2 the blocks B(n+m)
i1,j2

and B(n+m)
i2,j2

have K − (i2 − i1) Feldman patterns in
common. Then we use the second statement of Lemma 5.19 to estimate their f distance,
while we use Lemma 5.20 for the i2 − i1 differing Feldman patterns. Altogether we
conclude with the aid of Proposition 5.4 that f (B, B) is at least

(
i2 − i1

K
+

(
1 −

(
1 − 1

K

)m−1)
K − (i2 − i1)

K

)
α − βn+m − 4

en+m−1
− 4

ln+m−2

≥
(

1 −
(

1 − 1
K

)m)
α − βn+m − 4

en+m−1
− 4

ln+m−2
.

In our case of i1 < i2 the blocks B(n+m)
i1,j2+1 and B(n+m)

i2,j2
have i2 − i1 Feldman patterns in

common. With the aid of the second part of Lemma 5.19, Lemma 5.20, and Proposition
5.4 again we obtain that f (B, B) is at least

(
i2 − i1

K

(
1 −

(
1 − 1

K

)m−1)
+ 1 − i2 − i1

K

)
α − βn+m − 4

en+m−1
− 4

ln+m−2

≥
(

1 −
(

1 − 1
K

)m)
α − βn+m − 4

en+m−1
− 4

ln+m−2
.

In all other cases of j1 �= j2, B(n+m)
i1,j1

and B(n+m)
i2,j2

do not have any Feldman pattern in
common. Hence, we use the same estimate as for the statement in part (1).

By the conditions on the sequence (ln)n∈N from equation (5.3) we have
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βn+m + 4
en+m−1

+ 4
ln+m−2

= En+m−1 + 4
Rn+m−1

+ 8
un+m−1

+ 13√
en+m−1

+ 4
en+m−1

+ 4
ln+m−2

+ 4Rn+m−1

ln+m−1

≤ En+m−1 + 6
Rn+m−1

+ 8
un+m−1

+ 17√
en+m−1

.

Accordingly, we set

En+m := En+m−1 + 6
Rn+m−1

+ 8
un+m−1

+ 17√
en+m−1

= En+1 +
m−1∑
i=1

(
6

Rn+i

+ 8
un+i

+ 17√
en+i

)
.

Remark 5.22. We note that equations (5.11)–(5.15) are satisfied at stage n + m. Hence, the
induction step has been accomplished successfully.

5.3.3. Final step: construction of (n + p)-blocks. Recall that we follow the inductive
scheme described in the previous subsubsection until(

1 − 1
K

)p

<
ε

2
,

and we have constructed pre-(n + p)-blocks A(n+p)
i,j (of type i and Feldman pattern j) with

the following properties:

f (A(n+p)
i1,j , A(n+p)

i2,j ) ≤
p−1∑
u=1

(
1

N(n + u − 1) + 1
+ 1

dn+u

)
; (5.17)

for any sequences A and A of at least q̃n+p/en+p−1 consecutive symbols in A(n+p)
i1,j1

and

A(n+p)
i2,j2

respectively, for some i1, i2 ∈ {1, . . . , K} and j1, j2 ∈ {1, . . . , 2Kλn+p}, we have

f (A, A) ≥
⎧⎨
⎩

(
1 − ε

2

)
· α − βn+p for all i1 �= i2 and j1 = j2,

α − βn+p for all i1, i2 and j1 �= j2,
(5.18)

where

βn+p = En+p−1 + 4
Rn+p−1

+ 8
un+p−1

+ 13√
en+p−1

+ 4Rn+p−1

ln+p−1
(5.19)

and

En+p−1 = En+1 +
p−2∑
i=1

(
6

Rn+i

+ 8
un+i

+ 17√
en+i

)
. (5.20)
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By construction every pre-(n + p)-block A(n+p)
i,j contains each (n + p − 1)-block of

type i exactly N̄(n + p) times and this number of occurrences is the same for every chosen
Feldman pattern j.

Then we construct K(n + p)-blocks as follows:

(n + p)-block of type 1: B(n+p)

1 = A(n+p)

1,1 A(n+p)

2,2 . . . A(n+p)
K ,K (B(n+p−1)

0 )N̄(n+p),

(n + p)-block of type 2: B(n+p)

2 = A(n+p)

2,1 A(n+p)

3,2 . . . A(n+p)

1,K (B(n+p−1)

0 )N̄(n+p),

(n + p)-block of type 3: B(n+p)

3 = A(n+p)

3,1 A(n+p)

4,2 . . . A(n+p)

2,K (B(n+p−1)

0 )N̄(n+p),

...
...

(n + p)-block of type K: B(n+p)
K = A(n+p)

K ,1 A(n+p)

1,2 . . . A(n+p)

K−1,K(B(n+p−1)

0 )N̄(n+p).

Remark 5.23. We note that every (n + p)-block contains exactly one pre-(n + p)-block
of each type. Hence, it is uniform in the (n + p − 1)-blocks by our observation above.

LEMMA 5.24. (Closeness of (n + p)-blocks in the odometer-based system) For every
i1, i2 ∈ {1, . . . , K} we have

f (B(n+p)
i1

, B(n+p)
i2

) ≤
p−1∑
u=1

(
1

N(n + u − 1) + 1
+ 1

dn+u

)
. (5.21)

Proof. Let M denote the right-hand side of inequality (5.17). We observe that the
Feldman patterns of pre-(n + p)-blocks are aligned in all the (n + p)-blocks by con-
struction. Moreover, the marker segments are aligned as well and these occupy a fraction
1/(N(n + p − 1) + 1) of each (n + p)-block by uniformity. Hence, by equation (5.17) we
have

f (B(n+p)
i1

, B(n+p)
i2

) ≤
(

1 − 1
N(n + p − 1) + 1

)
· M ≤ M .

LEMMA 5.25. (Distance between (n + p)-blocks in the circular system) For every i1, i2 ∈
{1, . . . , K}, i1 �= i2, and any sequences B and B of at least qn+p/Rn+p consecutive
symbols in B(n+p)

i1
and B(n+p)

i2
we have

f (B, B) ≥
(

1 − ε

2

)
· α − En+p. (5.22)

Proof. By the same proof as in Lemma 5.17 (with J = 0), as well as case (1) of
Lemma 5.21, and the observation that all pre-(n + p)-blocks used in the construction of
the (n + p)-blocks are distinct, (5.22) follows from equations (5.18)–(5.20).

Proof of Proposition 5.15. By Lemma 5.24 and equations (5.4), (5.6), and (5.7), we have
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f (B(n+p)
i , B(n+p)

j ) ≤
p−1∑
u=1

(
1

N(n + u − 1) + 1
+ 1

dn+u

)

<
1

N + 1
+

p−1∑
u=1

(
1

Kdn+uen+u + 1
+ 1

dn+u

)
< δ,

which is the first statement of Proposition 5.15. In order to prove the second statement we
note that

En+p = En+1 +
p−1∑
i=1

(
6

Rn+i

+ 8
un+i

+ 17√
en+i

)

≤ 14√
N

+
p−1∑
i=1

(
8

un+i

+ 17√
en+i

)
+

p−1∑
i=0

6
Rn+i

<
ε

2
+

p−1∑
i=0

6
Rn+i

by equations (5.5), (5.7), and our assumption on the circular coefficients (ln)n∈N in (5.3).
We conclude for any sequences B and B of at least qn+p/Rn+p consecutive symbols in
B(n+p)

i and B(n+p)
j , respectively, that

f (B, B) ≥
(

1 − ε

2

)
· α − En+p ≥ α − ε

2
− En+p > α − ε −

p−1∑
i=0

6
Rn+i

with the aid of Lemma 5.25.

5.4. Proof of Theorem 5.1. We define the construction sequence for the odometer-based
system inductively. We begin by choosing an integer R1 ≥ 400, an increasing sequence
(Ks)s∈N of positive integers such that∑

s∈N

14√
Ks

<
1

32
, (5.23)

and two decreasing sequences (εs)s∈N and (δs)s∈N of positive real numbers such that δs ↘
0 and ∑

s∈N
εs <

1
64

. (5.24)

In addition to (5.3) we impose the condition

6
R1

+
∑
n∈N

6
kn

<
1

32

on the circular coefficients (kn, ln)n∈N. In particular, this yields
∞∑

n=1

6
Rn

<
1
32

(5.25)

by Rn = kn−2q
2
n−2 for n ≥ 2. We start with R1 + 1 symbols and let α0 = 1

8 .
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The first application of Proposition 5.15 will be on 1-blocks and we will apply it for
ε = ε1, δ = δ1, and K = K1 + 1. In order to apply the proposition we need sufficiently
many 1-blocks. Moreover, we want the 1-blocks in the circular system to be at least α0 − ε1

apart in the f metric on substantial substrings of at least q1/R1 consecutive symbols. To
produce such a family of 1-blocks we apply Proposition 5.13.

After the application of Proposition 5.15 on the 1-blocks we have K1 + 1 n1-blocks
(where n1 = 1 + p1 with p1 from Proposition 5.15, that is, the least integer such that
(1 − (1/K1 + 1))p1 < ε1/2) which are δ1-close in the odometer-based system and at least
α1 := α0 − 2ε1 − ∑n1−1

s=1 (6/Rs) apart in the f metric on substantial substrings of at
least qn1/Rn1 consecutive symbols. The next application of Proposition 5.15 will be on
(n1 + 1)-blocks and we will apply it for ε = ε2, δ = δ2, and K = K2 + 1. Once again this
will require sufficiently many (n1 + 1)-blocks, and we apply Proposition 5.13 to produce
such a family of (n1 + 1)-blocks that are at least α1 − (14/

√
K1) − (4/Rn1) − ε2 apart

on substantial substrings. This imposes the condition (2/ln1−1) + (4Rn1/ln1) < ε2 which
by condition (5.3) is fulfilled if (3/ln1−1) < ε2, and we choose ln1−1 sufficiently large to
satisfy this requirement.

Continuing like this, we use Propositions 5.13 and 5.15 alternately to produce Ks +
1 ns-blocks which are at least

αs = α0 −
s−1∑
i=1

14√
Ki

−
s∑

i=1

2εi −
ns−1∑
i=1

6
Ri

(5.26)

apart on substantial substrings of length at least hns /(Ks + 1) in the circular system and
δs-close in the odometer-based system. In the next step, we want to apply Proposition
5.15 on (ns + 1)-blocks with ε = εs+1, δ = δs+1, and K = Ks+1 + 1. In order to have
sufficiently many (ns + 1)-blocks for this application we make use of Proposition 5.13
(imposing the condition on lns−1 as described above) and produce the required number of
(ns + 1)-blocks which are at least αs − (14/

√
Ks) − (4/Rns ) − εs+1 apart on substantial

substrings in the circular system. After the intended application of Proposition 5.15 we have
Ks+1 + 1 ns+1-blocks (where ns+1 = ns + 1 + ps+1 with ps+1 the least integer such that
(1 − (1/(Ks+1 + 1)))ps+1 < (εs+1/2)) which are at least

αs+1 = αs − 14√
Ks

− 2εs+1 −
ns+1−1∑
i=ns

6
Ri

(5.27)

apart on substantial substrings in the circular system and δs+1-close in the odometer-based
system. This completes the inductive step.

By the requirements (5.23)–(5.25) this shows that any two distinct ns-blocks in the
circular system are at least

α0 −
∞∑

s=1

(
14√
Ks

+ 2εs + 6
Rs

)
>

1
8

− 1
32

− 1
32

− 1
32

= 1
32

(5.28)

apart on substantial substrings. Hence, the circular system cannot be loosely Bernoulli by
Lemma 3.5.
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On the other hand, the f distance between ns-blocks in the odometer-based system goes
to zero because δs ↘ 0. Thus, the odometer-based system is zero-entropy loosely Bernoulli
by Lemma 3.5. Since the blocks constructed by Propositions 5.13 and 5.15 satisfy the
properties of uniformity and unique readability, our construction sequence satisfies those
as well.

6. Non-loosely Bernoulli odometer-based system whose corresponding circular system is
loosely Bernoulli
In the previous two sections we showed that F does not preserve the loosely Bernoulli
property. In this section we will show that F−1 also does not preserve the loosely Bernoulli
property.

THEOREM 6.1. There exist circular coefficients (ln)n∈N and a non-loosely Bernoulli
odometer-based system M of zero measure-theoretic entropy with uniform and uniquely
readable construction sequence such that F(M) is loosely Bernoulli.

The proof of Theorem 6.1 is based upon two mechanisms. On the one hand, we again use
Feldman patterns to produce an arbitrarily large number of new blocks whose substantial
substrings are almost as far apart in f as the building blocks. This time we obtain lower
bounds on the f -distance between blocks in the odometer-based system. On the other
hand, we develop the so-called cycling mechanism in §6.3 to produce an arbitrarily large
number of blocks that are still f -apart from each other in the odometer-based system but
arbitrarily close to each other in the circular system. See Figure 3 for a sketch of this idea.

6.1. Feldman patterns revisited.

PROPOSITION 6.2. Let α ∈ (
0, 1

7

)
and n ∈ N, K , R, S, N , M ∈ N \ {0} with N ≥ 20,

and M ≥ 2. For 1 ≤ s ≤ S, let A(s)
1 , . . . , A(s)

N be a family of strings, where each A(s)
j

is a concatenation of K n-blocks. Assume that for all 1 ≤ s1, s2 ≤ S and all j1, j2 ∈
{1, . . . , N} with j1 �= j2, we have f (A, A) > α for all strings A, A of at least Khn/R

consecutive symbols from A(s1)
j1

and A(s2)
j2

, respectively.

Then for 1 ≤ s ≤ S, we can construct a family of strings B(s)
1 , . . . , B(s)

M (of equal length
N2M+3 · K · hn and containing each block A(s)

1 , . . . , A(s)
N exactly N2M+2 times) such that

for all 1 ≤ s1, s2 ≤ S, all j , k ∈ {1, . . . , M} with j �= k, and all strings B, B of at least
N2M+2 · K · hn consecutive symbols from B(s1)

j and B(s2)
k respectively, we have

f (B, B) > α − 13√
N

− 1
R

.

Proof. The proof follows along the lines of the statement on Feldman patterns for the
circular system in Proposition 5.10. (Here Cn,i1 and Cn,i2 are not applied since we remain
in the odometer-based system.)

We will also need a statement on the f distance between the identical Feldman pattern
but with building blocks from different families (compare with Lemma 5.11).
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FIGURE 3. Heuristic representation of two stages of the cycling mechanism. Parts of four (n + 2)-blocks Bi , i = 1, . . . , 4, in the odometer-based system and parts of the images
B1 and B2 under the circular operator (omitting the spacers) are represented. The marked letters indicate a best possible f match between B1 and B2 with a fit of approximately(

1 − 1
4

)2 (ignoring boundary effects), while the blocks B1 and B2 have a very good fit in the circular system (the lines indicating a best possible f match).
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LEMMA 6.3. Let α ∈ (
0, 1

7

)
and n ∈ N, K , R, S, N , M ∈ N \ {0} with N ≥ 20, and

M , S at least 2. For 1 ≤ s ≤ S, let A(s)
1 , . . . , A(s)

N be a family of strings, where each
A(s)

j is a concatenation of K n-blocks. Assume that for all j1, j2 ∈ {1, . . . , N} and all
s1, s2 ∈ {1, . . . , S} with s1 �= s2, we have f (A, A) > α for all sequences A, A of at least
Khn/R consecutive symbols from A(s1)

j1
and A(s2)

j2
, respectively. Then for 1 ≤ s ≤ S, we

can construct a family of strings B(s)
1 , . . . , B(s)

M as in Proposition 6.2 such that for all
j , k ∈ {1, . . . , M}, all s1, s2 ∈ {1, . . . , S} with s1 �= s2, and all strings B, B of at least
N2M+2Khn consecutive symbols from B(s1)

j and B(s2)
k respectively, we have

f (B, B) > α − 2
N2M+2 − 1

R
.

6.2. Feldman mechanism in the odometer-based system. Again we use the Feldman
mechanism to produce an arbitrarily large number of new blocks whose substantial
substrings are almost as far apart in f as the building blocks. In contrast to Proposition 6.2,
the constructed words also satisfy the unique readability property.

PROPOSITION 6.4. Let α ∈ (
0, 1

7

)
and n, N , M , R ∈ N with R ≥ 1, N ≥ 100, and M ≥

2. Suppose there are N + 1 n-blocks A0, . . . , AN , which have equal length hn and satisfy
the unique readability property. Furthermore, if n > 0 assume that for all j �= k, we have
f (A, A) > α for all strings A, A of at least hn/R consecutive symbols from Aj and Ak ,
respectively. Then we can construct M (n + 1)-blocks B1, . . . , BM of equal length hn+1

(which are uniform in the n-blocks and satisfy the unique readability property) such that
for all j �= k and all strings B, B of at least hn+1/N consecutive symbols from Bj and Bk

respectively, we have

f (B, B) > α − 12√
N

− 1
R

− 8
N

≥ α − 13√
N

− 1
R

.

Proof. We define the (n + 1)-blocks as in Proposition 5.13. As in its proof for n = 0 we
complete cycles at the beginning and end of each B and B. Once again, we remove the
marker blocks and apply Corollary 5.5 and f̃ > 1 − (12/

√
N) from Lemma 5.8.

6.3. Cycling mechanism.

PROPOSITION 6.5. If n, K , T ∈ N, K ≥ 2, T > 0, α ∈ (4/T , 1/7), δ > 0, and ε ∈
(0, α/(4K)), then there exist N , mn ∈ N and circular coefficients (kn+m, �n+m)

mn−1
m=0

satisfying the following condition. If we are given N + 1 uniquely readable n-blocks
B(n)

0 , B(n)
1 , . . . , B(n)

N in the odometer-based system such that for all i �= j and all sequences
A and A of at least hn/T consecutive symbols from B(n)

i and B(n)
j respectively we have

f (A, A) ≥ α, then we can build K (n + mn)-blocks B(n+mn)
1 , . . . , B(n+mn)

K of equal length
hn+mn (with the unique readability property and uniformity in all blocks from stage n
through n + mn) satisfying the following properties.
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(1) For all i �= j and all sequences B and B of at least hn+mn/K consecutive symbols
from B(n+mn)

i and B(n+mn)
j respectively, we have

f (B, B) ≥ α − 2
T

− ε.

(2) If B(n+mn)
1 , . . . , B(n+mn)

K are the corresponding circular (n + mn)-blocks, then for
all 1 ≤ i, j ≤ K we have

f (B(n+mn)
i , B(n+mn)

j ) ≤ δ.

Remark 6.6. Thus we obtain a mechanism to produce an arbitrarily large number of (n +
mn)-blocks that are still apart from each other in the odometer-based system but arbitrarily
close to each other in the circular system. The proof is based on an inductive construction
that we call the cycling mechanism (indicated in Figure 3) and a final step to guarantee
closeness of blocks in the circular system. In each step of the cycling mechanism the blocks
of different types are constructed by cycling the K pre-blocks used. On the one hand, this
will yield closeness in the circular system under the repetitions in the circular operator. On
the other hand, in a matching in the odometer-based system at least one pair of pre-blocks
will have a f distance close to α and at most K − 1 pairs will have a smaller f distance.
Over the course of the construction this distance will increase towards α (see equation
(6.9)).

For this construction, let (un+m)m∈N and (en+m)m∈N be increasing sequences of positive
integers such that ∑

m∈N

2
Ku2

n+men+m

<
δ

2
(6.1)

and ∑
m∈N

(
4

un+m

+ 14√
en+m

)
<

ε

8
. (6.2)

Additionally, we define the sequences (λn+m)m∈N and (dn+m)m∈N by

dn+m = u2
n+m (6.3)

and

λn+m = 2dn+men+m.

Moreover, we choose N sufficiently large such that

14√
N

<
ε

8
, (6.4)

and the positive integers (ln+m)m∈N sufficiently large such that∑
m∈N

4
ln+m

<
δ

2
. (6.5)
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The terms ln, ln+1, . . . , ln+mn−1 are the coefficients in the circular (n + 1)-, (n + 2)-,
. . . , (n + mn)-blocks, where mn is defined below. The proof of Proposition 6.5 utilizes
the parameters (αn+m)m=∞

m=2 and (βn+m)m=∞
m=2 defined inductively via

αn+2 = α − 14√
N

− 2
T

− 4
un+1

− 13√
en+1

, (6.6)

βn+2 = 1
K

α − 14√
N

− 2
KT

− 4
un+1

− 2
en+1

, (6.7)

αn+m+1 = αn+2 −
m∑

i=2

(
2

λn+i−1K + 1
+ 2

en+i−1
+ 4

un+i

+ 13√
en+i

)
, (6.8)

and

βn+m+1 = βn+m + 1
K

(αn+m − βn+m) − 2
en+m−1

− 4
un+m

− 2
λn+m−1K + 1

− 2
en+m

.

(6.9)

Since 1/K(α − (2/T )) > α/2K > 2ε, assumptions (6.2) and (6.4) imply that
βn+2 > ε. We also note that for every m ≥ 2,

αn+m ≥ α − 14√
N

− 2
T

−
∞∑
i=1

(
14√
en+i

+ 4
un+i

)
> α − 2

T
− ε

8
− ε

8
,

by equation (6.8) and our assumptions (6.2) and (6.4). Similarly, assumption (6.2) implies
that in our βn+m equation (6.9), the terms we subtract from β2 over the whole course of
the construction are bounded by ε/8. Due to these bounds, we can choose mn as the least
integer such that

βn+mn > α − 2
T

− ε

2
, (6.10)

and we will apply our inductive construction until stage n + mn.

6.3.1. Initial step: construction of (n + 1)-blocks. First of all, we choose one n-block
B(n)

0 as a marker. Then we apply Proposition 6.2 on the remaining n-blocks B(n)
1 , . . . , B(n)

N

to build Ñ(n + 1) := K · (λn+1 + 1) Feldman patterns denoted by Ai,j , i = 1, . . . , K ,
j = 1, . . . , λn+1 + 1. We will call them pre-(n + 1)-blocks. In particular, these have
length h̃n+1 = N2·Ñ(n+1)+3 · hn and are uniform in the n-blocks B(n)

1 , . . . , B(n)
N by con-

struction. More precisely, every pre-(n + 1)-block contains each n-block B(n)
i , 1 ≤ i ≤ N ,

exactly

N̄(n) := N2·Ñ(n+1)+2 (6.11)

times and pre-(n + 1)-blocks in the circular system have length q̃n+1 = N2·Ñ(n+1)+3 · ln ·
qn. In order to obtain uniformity, we will define the marker segment by

an = (B(n)
0 )KN̄(n).
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Moreover, we have

f (A, A) ≥ α − 13√
N

− 2
T

(6.12)

for any strings A and A of at least h̃n+1/N = N2·Ñ(n+1)+2 · hn consecutive symbols in
different pre-(n + 1)-blocks by Proposition 6.2.

Finally, we define the (n + 1)-blocks:

(n + 1)-blocks of type 1: B(n+1)
1,1 = A1,1A2,1 . . . AK−1,1AK ,1an,

B(n+1)
1,2 = A1,2A2,2 . . . AK−1,2AK ,2an,

B(n+1)
1,3 = A1,3A2,3 . . . AK−1,3AK ,3an,

B(n+1)
1,4 = A1,4A2,4 . . . AK−1,4AK ,4an,

...

B(n+1)
1,λn+1

= A1,λn+1A2,λn+1 . . . AK−1,λn+1AK ,λn+1an,

(n + 1)-blocks of type 2: B(n+1)
2,1 = A2,1A3,1 . . . AK ,1A1,1an,

B(n+1)
2,2 = AK ,2A1,2 . . . AK−1,2an,

B(n+1)
2,3 = A2,3A3,3 . . . AK ,3A1,3an,

B(n+1)
2,4 = AK ,4A1,4 . . . AK−1,4an,

...

B(n+1)
2,λn+1

= AK ,λn+1A1,λn+1 . . . AK−1,λn+1an,

...
...

(n + 1)-blocks of type K: B(n+1)
K ,1 = AK ,1A1,1 . . . AK−1,1an,

B(n+1)
K ,2 = A2,2A3,2 . . . AK ,2A1,2an,

B(n+1)
K ,3 = AK ,3A1,3 . . . AK−1,3an,

B(n+1)
K ,4 = A2,4A3,4 . . . AK ,4A1,4an,

...

B(n+1)
K ,λn+1

= A2,λn+1A3,λn+1 . . . AK ,λn+1A1,λn+1an.

Here, the index i ∈ {1, . . . , K} in B(n+1)
i,j indicates the type and j = 1, . . . , λn+1 numbers

the (n + 1)-blocks of that type consecutively. We note that for j odd the block B(n+1)
i+1,j is

obtained from B(n+1)
i,j by cycling the pre-(n + 1)-blocks to the left. On the other hand, for

j even the block B(n+1)
i+1,j is obtained from B(n+1)

i,j by cycling the pre-(n + 1)-blocks to the
right. Additionally, we define the next marker block.

B(n+1)
0 = A(n+1)

1,λn+1+1A
(n+1)
2,λn+1+1 . . . A(n+1)

K ,λn+1+1an,
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where A(n+1)
i,λn+1+1, i = 1, . . . , K , have not been used in any of the other (n + 1)-blocks.

Hence, there are are N(n + 1) + 1 = λn+1K + 1(n + 1)-blocks in total. We also note that
every (n + 1)-block is uniform in the n-blocks by equation (6.11).

6.3.2. Inductive step: construction of (n + m)-blocks. In an inductive process we
construct (n + m)-blocks for m ≥ 2. Assume that in our inductive construction we
have constructed Kλn+m−1 (n + m − 1)-blocks B(n+m−1)

i,j of K different types, where for
m = 2 the (n + 1)-blocks are the ones constructed in §6.3.1 and for m ≥ 3 the (n + m − 1)

-blocks are constructed according to the following formula (with λ = λn+m−1):

(n + m − 1)-blocks of type 1:

B(n+m−1)
1,1 = A(n+m−1)

1,1 A(n+m−1)
2,2 . . . A(n+m−1)

K ,K an+m−2,

B(n+m−1)
1,2 = A(n+m−1)

1,K+1 A(n+m−1)
2,K+2 . . . A(n+m−1)

K ,2K an+m−2,

B(n+m−1)
1,3 = A(n+m−1)

1,2K+1 A(n+m−1)
2,2K+2 . . . A(n+m−1)

K ,3K an+m−2,

B(n+m−1)
1,4 = A(n+m−1)

1,3K+1 A(n+m−1)
2,3K+2 . . . A(n+m−1)

K ,4K an+m−2,

...

B(n+m−1)
1,λ = A(n+m−1)

1,(λ−1)K+1A
(n+m−1)
2,(λ−1)K+2 . . . A(n+m−1)

K ,λK an+m−2,

(n + m − 1)-blocks of type 2:

B(n+m−1)
2,1 = A(n+m−1)

1,2 A(n+m−1)
2,3 . . . A(n+m−1)

K−1,K A(n+m−1)
K ,1 an+m−2,

B(n+m−1)
2,2 = A(n+m−1)

1,2K A(n+m−1)
2,K+1 . . . A(n+m−1)

K ,K−1 an+m−2,

B(n+m−1)
2,3 = A(n+m−1)

1,2K+2 A(n+m−1)
2,2K+3 . . . A(n+m−1)

K−1,3K A(n+m−1)
K ,2K+1 an+m−2,

B(n+m−1)
2,4 = A(n+m−1)

1,4K A(n+m−1)
2,3K+1 . . . A(n+m−1)

K ,4K−1 an+m−2,

...

B(n+m−1)
2,λ = A(n+m−1)

1,λK A(n+m−1)
2,(λ−1)K+1 . . . A(n+m−1)

K ,λK−1 an+m−2,

...

(n + m − 1)-blocks of type K:

B(n+m−1)
K ,1 = A(n+m−1)

1,K A(n+m−1)
2,1 . . . A(n+m−1)

K ,K−1 an+m−2,

B(n+m−1)
K ,2 = A(n+m−1)

1,K+2 A(n+m−1)
2,K+3 . . . A(n+m−1)

K−1,2K A(n+m−1)
K ,K+1 an+m−2,

B(n+m−1)
K ,3 = A(n+m−1)

1,3K A(n+m−1)
2,2K+1 . . . A(n+m−1)

K ,3K−1 an+m−2,

B(n+m−1)
K ,4 = A(n+m−1)

1,3K+2 A(n+m−1)
2,3K+3 . . . A(n+m−1)

K−1,4K A(n+m−1)
K ,3K+1 an+m−2,

...

B(n+m−1)
K ,λ = A(n+m−1)

1,(λ−1)K+2 . . . A(n+m−1)
K−1,λK A(n+m−1)

K ,(λ−1)K+1an+m−2,

https://doi.org/10.1017/etds.2021.73 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.73


Loosely Bernoulli odometer-based systems 967

using pre-(n + m − 1)-blocks A(n+m−1)
i,j of length h̃n+m−1 and a marker segment

an+m−2 = (B(n+m−2)
0 )N̄(n+m−2) with N̄(n + m − 2) chosen according to equation (6.17)

such that the (n + m − 1)-blocks are uniform in (n + m − 2)-blocks. We note that for j
odd the block B(n+m−1)

i+1,j is obtained from B(n+m−1)
i,j by cycling the second index to the left.

On the other hand, for j even the block B(n+m−1)
i+1,j is obtained from B(n+m−1)

i,j by cycling the
second index to the right. Additionally, we have a marker block

B(n+m−1)
0 = A(n+m−1)

1,λn+m−1K+1A
(n+m−1)
2,λn+m−1K+1 . . . A(n+m−1)

K ,λn+m−1K+1an+m−2,

where the pre-(n + m − 1)-blocks A(n+m−1)
i,λn+m−1K+1 have not been used in any other (n +

m − 1)-block. Hence, there are N(n + m − 1) + 1 = λn+m−1K + 1 (n + m − 1)-blocks
in total.

In our inductive construction process for m ≥ 3, for any strings A, A of at least
h̃n+m−1/en+m−2 consecutive symbols in A(n+m−1)

i1,j1
and A(n+m−1)

i2,j2
, we assume

f (A, A) ≥ βn+m−1 in case of i1 �= i2, j1 = j2, (6.13)

and

f (A, A) ≥ αn+m−1 in case of j1 �= j2 for all i1, i2, (6.14)

with the numbers αn+m−1 and βn+m−1 from equations (6.6)–(6.9). In the corresponding
circular system we have

f (A(n+m−1)
i1,j , A(n+m−1)

i2,j ) ≤
m−2∑
i=1

(
4

ln+i

+ 2
N(n + i − 1) + 1

)
. (6.15)

Note that this assumption is vacuous if m = 2. In the odometer-based system we will use
equation (6.12) for the first inductive step.

In the inductive step starting with m ≥ 2, we use (n + m − 1)-blocks to define grouped
(n + m − 1)-blocks G(n+m−1)

i,j (where i = 1, . . . , K indicates the type of (n + m −
1)-blocks used and j = 0, . . . , en+m−1 − 1 enumerates the grouped (n + m − 1)-blocks
of that type) as follows:

G(n+m−1)
i,j = B(n+m−1)

i,j ·2dn+m−1+1B
(n+m−1)
i,j ·2dn+m−1+2 . . . B(n+m−1)

i,(j+1)·2dn+m−1
,

that is, it is a concatenation of 2dn+m−1 (n + m − 1)-blocks of the same type. In the
following lemmas we see that different grouped blocks are still apart from each other in the
odometer-based system but grouped blocks with coinciding index j can be made arbitrarily
close to each other in the circular system.

LEMMA 6.7. (Distance between grouped (n + m − 1)-blocks in the odometer-based
system) Let i1, i2 ∈ {1, . . . , K}, j1, j2 ∈ {0, . . . , en+m−1 − 1} and G, G be strings of at
least un+m−1hn+m−1 consecutive symbols from grouped (n + m − 1)-blocks G(n+m−1)

i1,j1

and G(n+m−1)
i2,j2

respectively.
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(1) For i1 �= i2 and j1 = j2 we have

f (G, G)

≥

⎧⎪⎨
⎪⎩

1
K

α − 14√
N

− 2
KT

− 2
un+1

for m = 2,

βn+m−1 + 1
K

(αn+m−1 − βn+m−1) − 2
en+m−2

− 2
un+m−1

− 2
N(n + m − 2) + 1

for m ≥ 3.

(2) For j1 �= j2 and all i1, i2 we have

f (G, G) ≥

⎧⎪⎨
⎪⎩

α − 14√
N

− 2
T

− 2
un+1

for m = 2,

αn+m−1 − 2
en+m−2

− 2
un+m−1

− 2
N(n + m − 2) + 1

for m ≥ 3.

Proof. In the first case we have j1 = j2. We treat G and G as strings of complete (n +
m − 1)-blocks by adding fewer than 2hn+m−1 symbols to complete partial blocks at the
beginning and end of G and G. These constitute a fraction of at most 2/un+m−1 of the
total length. Additionally, we ignore the marker segments an+m−2 which form a fraction
1/(N(n + m − 2) + 1) of the length of each (n + m − 1)-block due to uniformity and
so of G as well as G. On the remaining strings for m = 2 we apply Corollary 5.5 with
f̃ ≥ 1/K and equation (6.12) which yields

f (G, G) ≥ 1
K

(
α − 13√

N
− 2

T

)
− 2

N
− 2

N + 1
− 2

un+1
≥ 1

K
α − 14√

N
− 2

KT
− 2

un+1
.

On the remaining strings Gmod and Gmod for m ≥ 3 we use Proposition 5.4 with f̃ ≥ 1/K

and equations (6.13) and (6.14) to obtain

f (Gmod, Gmod) ≥ 1
K

αn+m−1 +
(

1 − 1
K

)
βn+m−1 − 2

en+m−2
,

which implies the claim.
In the second case we observe that G and G do not have any Feldman pattern of pre-(n +

m − 1)-blocks in common due to j1 �= j2. As before we complete partial blocks at the
beginning and end of G and G and remove the marker segments an+m−2. On the remaining
strings for m = 2 we apply Corollary 5.5 with f̃ = 1 and equation (6.12), while for m ≥ 3
we use Corollary 5.5 with f̃ = 1 and equation (6.14).

LEMMA 6.8. (Distance between grouped (n + m − 1)-blocks in the circular system) For
all i1, i2 ∈ {1, . . . , K} and j ∈ {0, . . . , en+m−1 − 1}, we have

f (G(n+m−1)
i1,j , G(n+m−1)

i2,j ) ≤
m−1∑
i=1

(
4

ln+i

+ 2
N(n + i − 1) + 1

)
.

Proof. We recall that the marker segment an+m−2 occupies a fraction (N(n + m − 2)

+1)−1 of the total length of each (n + m − 1)-block. Moreover, for every j = 1,
. . . , λn+m−1 the (n + m − 1)-block B(n+m−1)

i2,j is obtained from B(n+m−1)
i1,j by a cycling
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permutation of the Feldman patterns used for the pre-(n + m − 1)-blocks. Under the
cyclic operator Cn+m−1 each (n + m − 1)-block is repeated ln+m−1 − 1 times. Hence, the
f distance between G(n+m−1)

i1,j and G(n+m−1)
i2,j is at most

M + 4
ln+m−1

+ 2
N(n + m − 2) + 1

,

where M is the f distance of pre-(n + m − 1)-blocks of the same pattern in the circular
system. For m = 2 this distance M = 0, while for m ≥ 3 we obtain the claim with the aid
of equation (6.15).

For each type i ∈ {1, . . . , K} we use the en+m−1 grouped (n + m − 1)-blocks of type i
as building blocks for the Feldman patterns A(n+m)

i,j , j = 1, . . . , (λn+m + 1)K , which are

the pre-(n + m)-blocks with length h̃n+m. Thus there are Ñ(n + m) := (λn+m + 1)K2

pre-(n + m)-blocks. For every i ∈ {1, . . . , K} each pattern A(n+m)
i,j , j = 1, . . . , (λn+m +

1)K , contains each (n + m − 1)-block of type i exactly

N̄(n + m − 1) = (en+m−1)
2(λn+m+1)K+2 (6.16)

times by the construction in Proposition 6.2.

LEMMA 6.9. (Separation and closeness of pre-(n + m)-blocks of the same Feldman
pattern) Let j ∈ {1, . . . , (λn+m + 1)K} and i1, i2 ∈ {1, . . . , K}, i1 �= i2. For all strings
A and A of at least h̃n+m/en+m−1 consecutive symbols in A(n+m)

i1,j and A(n+m)
i2,j respectively,

we have for m = 2,

f (A, A) ≥ 1
K

α − 14√
N

− 2
T K

− 4
un+1

− 2
en+1

;

while for m ≥ 3, we have f (A, A) greater than or equal to

βn+m−1 + 1
K

(αn+m−1 − βn+m−1) − 2
en+m−2

− 4
un+m−1

− 2
N(n + m − 2) + 1

− 2
en+m−1

.

For the corresponding strings in the circular system we have

f (A(n+m)
i1,j , A(n+m)

i2,j ) ≤
m−1∑
i=1

(
4

ln+i

+ 2
N(n + i − 1) + 1

)
.

Proof. The statement in the odometer-based system follows from the first part of Lemma
6.7 and Lemma 6.3 (with R = un+m−1) because A(n+m)

i1,j and A(n+m)
i2,j are constructed as the

same Feldman pattern with the grouped (n + m − 1)-blocks of different type but the same
pattern as building blocks. This also yields the statement in the circular system as a direct
consequence of Lemma 6.8.

We will also need a statement on the f distance between different Feldman patterns in
the odometer-based system.

LEMMA 6.10. (Separation of pre-(n + m)-blocks of different Feldman patterns) Let
j1, j2 ∈ {1, . . . , (λn+m + 1)K}, j1 �= j2, and i1, i2 ∈ {1, . . . , K}. For all strings A and
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A of at least h̃n+m/en+m−1 consecutive symbols in A(n+m)
i1,j1

and A(n+m)
i2,j2

respectively, we
have

f (A, A)

≥

⎧⎪⎪⎨
⎪⎪⎩

α − 14√
N

− 2
T

− 4
un+1

− 13√
en+1

for m = 2,

αn+m−1 − 2
en+m−2

− 4
un+m−1

− 2
N(n + m − 2) + 1

− 13√
en+m−1

for m ≥ 3.

Proof. Since we consider different Feldman pattern with the grouped (n + m − 1)-blocks
as building blocks, we obtain the result from the second part of Lemma 6.7 and Proposition
6.2 (with R = un+m−1).

In the next step, we use these Feldman patterns A(n+m)
i,j to define (n + m)-blocks

for i = 1, . . . , K and j = 1, . . . , λn+m as in the formula at the beginning of
§6.3.2 with n + m − 1 replaced by n + m, and an additional marker block B(n+m)

0 =
A(n+m)

1,λn+mK+1A
(n+m)
2,λn+mK+1 . . . A(n+m)

K ,λn+mK+1an+m−1 with the marker segment an+m−1 =
(B(n+m−1)

0 )N̄(n+m−1). We also note that every (n + m)-block contains exactly one pattern
A(n+m)

i,j of each type i ∈ {1, . . . , K} and thus it is uniform in the (n + m − 1)-blocks.
Thus, the inductive step has been accomplished.

6.3.3. Final step: construction of (n + mn)-blocks. As foreshadowed in equation (6.10),
we follow the inductive construction scheme until βn+mn > α − (2/T ) − (ε/2) and we
have constructed Feldman patterns A(n+mn)

i,j , j = 1, . . . , (λn+mn + 1)K , i = 1, . . . , K ,

of length h̃n+mn . In particular, we have

f (A, A) ≥ βn+mn > α − 2
T

− ε

2
(6.17)

for all strings A, A of at least h̃n+mn/en+mn−1 consecutive symbols in A(n+mn)
i1,j1

and A(n+mn)
i2,j2

respectively, for i1 �= i2 or j1 �= j2. On the other hand, we have

f (A(n+mn)
i1,j , A(n+mn)

i2,j ) ≤
mn−1∑
i=1

(
4

ln+i

+ 2
N(n + i − 1) + 1

)
(6.18)

in the circular system. Moreover, we recall that for every i ∈ {1, . . . , K} each pattern
A(n+mn)

i,j , j = 1, . . . , (λn+mn + 1)K , contains each (n + mn − 1)-block of type i exactly

N̄(n + mn − 1) = (en+mn−1)
2·(λn+mn+1)·K+2

times. In the final step, we define K(n + mn)-blocks as follows (with λ = λn+mn):

B(n+mn)
1 = A(n+mn)

1,1 A(n+mn)
2,2 . . . A(n+mn)

K ,K A(n+mn)
1,K+1 . . . A(n+mn)

K ,2K . . . A(n+mn)
K ,λK an+mn−1,

B(n+mn)
2 = A(n+mn)

2,1 A(n+mn)
3,2 . . . A(n+mn)

1,K A(n+mn)
2,K+1 . . . A(n+mn)

1,2K . . . A(n+mn)
1,λK an+mn−1,

...
...

B(n+mn)
K = A(n+mn)

K ,1 A(n+mn)
1,2 . . . A(n+mn)

K−1,KA
(n+mn)
K ,K+1 . . . A(n+mn)

K−1,2K . . . A(n+mn)
K−1,λKan+mn−1,
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with

an+mn−1 = (B(n+mn−1)
0 )λn+m·N̄(n+mn−1).

We note that each (n + mn)-block contains exactly λn+mn patterns of each type. Hence,
it is uniform in the (n + mn − 1)-blocks. We prove the statement in Proposition 6.5 on the
f distance in the odometer-based system.

Proof of part (1) of Proposition 6.5. By adding fewer than 2h̃n+mn symbols to each B and
B we can complete any partial pre-(n + mn)-blocks at the beginning and end of B and B.
This change increases the f distance between B and B by at most

4h̃n+mn

2hn+mn/K
<

2h̃n+mn

λn+mnh̃n+mn

= 2
λn+mn

.

In the next step, we ignore the marker segment an+mn−1 which occupies a fraction of
1/(N(n + mn − 1) + 1) in each (n + mn)-block due to uniformity and so a fraction of
at most K(N(n + mn − 1) + 1)−1 < e−1

n+mn−1 of the total length of B and B. On the
remaining strings all pre-(n + mn)-blocks are different from each other. Hence, they are
at least α − (2/T ) − (ε/2) apart in f on substantial substrings of at least h̃n+mn/en+mn−1

consecutive symbols by equation (6.18). We apply Corollary 5.5 with f̃ = 1 to obtain

f (B, B) ≥ α − 2
T

− ε

2
− 4

en+mn−1
− 2

λn+mn

,

which yields the claim.

By choosing the circular coefficients (ln+m)m∈N to grow sufficiently fast as in equation
(6.5) we also obtain the second statement in Proposition 6.5.

Proof of part (2) of Proposition 6.5. Since the marker segments and the used Feldman
patterns of the pre-(n + mn)-blocks are aligned and only the used type of blocks differs,
we use equation (6.19) to obtain

f (B(n+mn)
i , B(n+mn)

j ) ≤
mn−1∑
i=1

4
ln+i

+
mn−1∑
i=1

2
Ku2

n+i−1en+i−1 + 1
< δ

with the aid of assumptions (6.1) and (6.5) in the last step.

Hence the proof of Proposition 6.5 has been accomplished.

6.4. Proof of Theorem 6.1. To define the construction sequence for the odometer-based
system inductively we choose an increasing sequence (Ks)s∈N of positive integers with∑

k∈N

15√
Ks

<
1

32
(6.19)

and two decreasing sequences (εs)s∈N and (δs)s∈N of positive real numbers such that δs ↘
0, εs < 1/(64Ks), and ∑

s∈N
εs <

1
32

. (6.20)
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We start by applying Proposition 6.4 on K0 + 1 symbols to obtain N(1) + 1 uniform and
uniquely readable 1-blocks that are α1 := 1

8 − 13K
−1/2
0 apart in f on substantial sub-

strings of length at least h1/K0. Here, the number N(1) + 1 is chosen such that it allows
the application of the cycling mechanism from Proposition 6.5 to obtain K1 + 1 n1-blocks
(where n1 := 1 + m1 with m1 from Proposition 6.5) that are α2 = α1 − 2K−1

0 − ε0 apart
on substantial subshifts of length at least hn1/(K1 + 1) in the odometer-based system and
are δ0-close in the corresponding circular system.

We continue by applying Proposition 6.4 on those blocks to obtain sufficiently many
(n1 + 1)-blocks (which are α3 = α2 − 13K

−1/2
1 apart on substantial substrings of length at

least hn1+1/K1 in the odometer-based system) such that we can apply Proposition 6.5 again
to get K2 + 1 n2-blocks (with n2 := n1 + 1 + mn1+1) that are α4 = α3 − 2K−1

1 − ε1 apart
on substantial subshifts of length at least hn2/(K2 + 1) in the odometer-based system and
δ1-close in the circular system.

Continuing like this we produce n-blocks that are at least

1
8

−
∑
s∈N

(
15√
Ks

+ εs

)
>

1
16

apart from each other by the requirements (6.20) and (6.21). Hence, the odometer-based
system cannot be loosely Bernoulli by Lemma 3.5, provided that the metric entropy H of
the odometer-based system is zero. As in Lemma 4.2, we have the formula

H = lim
n→∞

N(n)

hn

.

In our construction of (n + 1)-blocks, we start by producing Ñ(n + 1) pre-(n + 1)-blocks
of length h̃n+1 ≥ 22·Ñ(n+1)+3hn. There are fewer (n + 1)-blocks than pre-(n + 1)-blocks
while the hn+1 > h̃n+1. Therefore

log N(n + 1)

hn+1
≤ log Ñ(n + 1)

22·Ñ(n+1)+3
,

which converges to zero as n goes to infinity, because limn→∞ Ñ(n + 1) = ∞. Therefore
H = 0.

On the other hand, the f distance between n-blocks in the circular system goes to
zero because δs ↘ 0. Thus, the odometer-based system is loosely Bernoulli by Lemma
3.5. Since the blocks constructed by Propositions 6.4 and 6.5 satisfy the properties of
uniformity and unique readability, our construction sequence satisfies those as well.
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Note added in proof: The open questions regarding anti-classification results for Kakutani
equivalence mentioned in the introduction were answered recently [GK].
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