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Abstract We compute the deficiency spaces of operators of the form HA⊗̂I + I⊗̂HB , for symmetric
HA and self-adjoint HB . This enables us to construct self-adjoint extensions (if they exist) by means of
von Neumann’s theory. The structure of the deficiency spaces for this case was asserted already in Ibort
et al. [Boundary dynamics driven entanglement, J. Phys. A: Math. Theor. 47(38) (2014) 385301], but
only proven under the restriction of HB having discrete, non-degenerate spectrum.
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1. Introduction

In quantum mechanics, the dynamics of a system is governed by the Schrödinger equation

∂tψt = −iHψt,

where H is a self-adjoint operator on a Hilbert space H, called the Hamiltonian, and
ψt ∈ H is the wave function at time t. Its time evolution is given by

ψt = e−itHψ0.

In many situations however, physical reasoning yields merely a symmetric, rather than
self-adjoint, operator, defined on a subspace of sufficiently regular functions. It is then
natural to ask whether this operator has self-adjoint extensions, and if so, how many.
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This question was completely answered by von Neumann, whose extension theory states
the following: A symmetric operatorH has self-adjoint extensions if and only if the dimen-
sions of the deficiency spaces N (H∗ − i) and N (H∗ + i) coincide, and in this case, the
self-adjoint extensions of H are parametrized by the unitary operators from N (H∗ − i) to
N (H∗ + i).

Now, given two systems A and B, we can consider the composite system AB. It is
modelled on the tensor product of the Hilbert spaces of the individual systems A and B.
In the simplest case when there is no interaction between A and B, the time evolution of
the composite system is separable, that is,

ψt = (e−itHA⊗̂e−itHB )ψ0.

The corresponding Hamiltonian is

HAB = HA⊗̂I + I⊗̂HB .

As such, operators of this form are the prototype of Hamiltonians governing the time
evolution of composite systems with interactions and are therefore key in understanding
the self-adjoint realizations of Hamiltonians of quantum many-particle systems and, in
particular, open quantum systems [2, 3].

In the light of the discussion above, one is lead to study self-adjoint extensions of oper-
ators of the form HA ⊗ I + I ⊗HB when HA and HB are merely symmetric (in general,
the time evolution generated by such a self-adjoint extension will not be separable).

In the case when one of the operators is self-adjoint, this problem was considered
by Ibort, Marmo and Pérez-Pardo. They state the following result ([4, Theorem 2.3],
[5, Theorem 1]).

Theorem 1.1. Let HA be a symmetric operator on HA, HB a self-adjoint operator
on HB and define HAB on HAB = HA⊗̂HB by

HAB = HA⊗̂I + I⊗̂HB .

Let NA± = N (H∗
A ∓ i) be the deficiency spaces of system HA. The deficiency spaces

NAB± = N (H∗
AB ∓ i) of HAB then satisfy

NAB± � NA±⊗̂HB .

However, in their proof, they restrict themselves to the case when the spectrum of HB

consists solely of simple eigenvalues, and only state that the general case can be treated
by a judicious use of the spectral theorem. In this article, we give a complete proof of he
preceding theorem for general self-adjoint HB .

In the case when the operator HB is (a restriction of) the Laplacian, the assumption
of discrete spectrum covers only compact geometries, while our proof justifies the result
also for non-compact geometries. For example, if the system B consists of a single free
particle in R

n, then the Hamiltonian HB is the Laplacian, which is essentially self-adjoint
on C∞

c (Rn), but the spectrum of its closure is not discrete.
Let us outline the proof strategy. First, the spectral theorem allows us to view HB

as a multiplication operator Mφ on L2(Ω, μ) for some measure μ. The tensor product
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HA⊗̂L2(Ω, μ) can be identified with the Bochner Lebesgue space L2(Ω, μ;HA). Under
this identification, the operator HAB acts as

(HABψ)(ω) = HAψ(ω) + φ(ω)ψ(ω).

These identifications make it possible to reduce the asserted isomorphism for the
deficiency spaces to a similar computation as in the proof of Ibort, Marmo and
Pérez-Pardo.

There are two main difficulties to overcome. First, while the identification of tensor
products of operators on HA⊗̂L2(Ω, μ) with operators on L2(Ω, μ;HA) is fairly obvious
in the bounded case, we deal with unbounded operators and, as usual, more care is
required to determine the correct domains. This is done in §3.

Second, the asserted isomorphism for the deficiency spaces comes from fiberwise iso-
morphisms. Then one has to prove that these isomorphisms can be chosen so that they
depend measurably on the base point. In the discrete case this is of course obvious, but it
becomes non-trivial in the general case at hand. This problem is resolved in §4. Finally,
the proof is completed in §5.

The self-adjoint extensions of operators of the form HAB as above were also described
in [1], using a completely different approach based on boundary triplets. More precisely,
given a boundary triplet for H∗

A, they construct a boundary triplet for H∗
AB that respects

the tensor structure.

2. Preliminaries

Throughout this article, all Hilbert spaces are assumed to be separable. An operator A
is called symmetric if it is densely defined and A ⊆ A∗.

Definition 2.1 (deficiency spaces). Let A be a symmetric operator. We call

N±(A) = R(A± i)⊥

the deficiency spaces of A and their dimensions

d±(A) = dimN±,

the deficiency indices of A.

In case we can rule out confusion, we shall write N± instead of N±(A).
Next, we state the central theorem of von Neumann’s extension theory (see, for

instance, [7, Chapter 10] for an extensive treatment). In the following, U+̇V denotes
the algebraic direct sum of subspaces U and V , not necessarily orthogonal, while U ⊕ V
is reserved for the orthogonal direct sum of closed subspaces.

Theorem 2.2 (von Neumann’s extension theorem). LetA be a closed, symmetric
operator on H. Then A has self-adjoint extensions if and only if d+(A) = d−(A). In this
case, let U : N+ → N− be unitary. Define the operator B by

D(B) = D(A)+̇(U + I)N+ B(f + Ug + g) = Af + ig − iUg.

Then A ⊆ B = B∗, and all self-adjoint extensions of A arise this way.
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This theorem yields a one-to-one correspondence between the set of self-adjoint exten-
sions of the operator A and the set of unitary operators N+ → N−, hence reduces the
problem of finding self-adjoint extensions of A to constructing unitary operators between
the deficiency spaces. We will therefore be interested in computing the deficiency spaces
of symmetric closed operators.

We also recall the spectral theorem in multiplication operator form (see for example
[7, Chapter 8]).

Theorem 2.3 (spectral theorem). Let H be a self-adjoint operator on the Hilbert
space H. There exists a σ-finite measure space (X, μ), a measurable function ϕ : X → R

and a unitary operator U : H → L2(X, μ) such that

H = U∗MϕU.

Let H and K be Hilbert spaces. We denote by H⊗K their algebraic tensor product
and by H⊗̂K their Hilbert space tensor product.

Definition 2.4. For operators A on H and B on K, we define the operator A⊗B on
H⊗̂K by

D(A⊗B) = D(A) ⊗D(B),

A⊗B

(∑
j

fj ⊗ gj

)
=

∑
j

Afj ⊗Bgj .

If A and B are closable, then so is A⊗B, and we denote its closure by A⊗̂B.

Let (Ω, F , μ) be a measure space, H a Hilbert space and f : Ω → H measurable. We
write L2(Ω;H) for the Bochner–Lebesgue space of square-integrable H-valued functions.

One can construct a unitary operator H⊗̂L2(Ω) → L2(Ω;H) by linearly and continu-
ously extending e⊗ f 	→ (ω 	→ f(ω)e), thus justifying the identification of H⊗̂L2(Ω) with
L2(Ω;H).

3. Finding the adjoint

Let HA be a symmetric operator on HA and let HB be a self-adjoint operator on HB .
We define the operator HAB on HA⊗̂HB by HAB = HA⊗̂I + I⊗̂HB .

The straightforward way to compute the deficiency spaces N±(HAB) = N (H∗
AB ∓ i)

of the operator HAB is, of course, to compute the adjoint of HAB and then the kernel of
H∗
AB ∓ i.
First, note the following:

D(HA⊗̂I + I⊗̂HB) = D(HA⊗̂I) ∩ D(I⊗̂HB)

⊇ D(HA ⊗ I) ∩ D(I ⊗HB)

= D(HA) ⊗D(HB).

Hence HA⊗̂I + I⊗̂HB is densely defined and it makes sense to consider its adjoint. Since
(HA⊗̂I)∗ = (HA ⊗ I)∗ ⊇ H∗

A ⊗ I, we have (HA⊗̂I)∗ ⊇ H∗
A⊗̂I and similarly (I⊗̂HB)∗ ⊇
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I⊗̂HB . Combined, this means that (HA⊗̂I + I⊗̂HB)∗ ⊇ H∗
A⊗̂I + I⊗̂HB , and further-

more (HA⊗̂I + I⊗̂HB)∗ ⊇ H∗
A⊗̂I + I⊗̂HB . In fact, we will see that these two operators

are equal.
Before proving this, let us simplify our notation. Without loss of generality, we can

assume, due to the spectral theorem, that HB = L2(Ω) and HB = Mϕ for some σ-finite
measure space Ω and a measurable function ϕ : Ω → R. Instead of HA and HA, we will
simply write H and H respectively. As we have seen, we can identify H⊗̂L2(Ω) with the
Bochner–Lebesgue space L2(Ω;H).

Theorem 3.1. Let K be a closed operator on H and let (Ω, F , μ) be a measure space.
The domain of the operator K⊗̂I on H⊗̂L2(Ω) is given by

D(K⊗̂I) = {f ∈ L2(Ω;H) : f(ω) ∈ D(K) a.e., ω 	→ K(f(ω)) ∈ L2(Ω;H)}

and the operator acts as

((K⊗̂I)f)(ω) = K(f(ω)),

for f ∈ D(K⊗̂I) and a.e. ω ∈ Ω.

Proof. Since K is closed, the space D(K) equipped with the inner product 〈·, ·〉K
given by

〈f, g〉K = 〈f, g〉 + 〈Kf,Kg〉
for f, g ∈ D(A), is a Hilbert space.

Since K⊗̂I is the closure of the operator K ⊗ I, the domain D(K⊗̂I) is the closure of
D(K ⊗ I) = D(K) ⊗ L2(Ω) with respect to the norm ‖·‖K⊗̂I =

√
‖·‖2 + ‖(K⊗̂I) · ‖2.

This norm, however, coincides with the norm defined on the Bochner–Lebesgue space
L2(Ω; (D(K), 〈·, ·〉K)) = D(K)⊗̂L2(Ω). Since D(K)⊗̂L2(Ω) is defined as the closure of
D(K) ⊗ L2(Ω) with respect to ‖·‖K⊗̂I , we have

D(K⊗̂I) = D(K ⊗ I)
K⊗̂I

= D(K) ⊗ L2(Ω)
K⊗̂I

= D(K)⊗̂L2(Ω) = L2(Ω;D(K)).

Since
∫ ‖f(ω)‖2

K dμ(ω) =
∫

(‖f(ω)‖2 + ‖Kf(ω)‖2)dμ(ω) <∞ if and only if both∫ ‖f(ω)‖2
dμ(ω) <∞ and

∫ ‖Kf(ω)‖2
dμ(ω) <∞, we can make the following identifi-

cation

L2(Ω;D(K)) = {f ∈ L2(Ω;H) : f(ω) ∈ D(K) a.e., ω 	→ K(f(ω)) ∈ L2(Ω;H)},

proving the statement about the domain. It remains to show how K⊗̂I acts.
Let f ∈ D(K ⊗ I) = D(K) ⊗D(Mψ), that is f , decomposes as a finite linear combina-

tion f =
∑
k ek ⊗ fk. Then

(K⊗̂If)(ω) =
∑
k

((Kek) ⊗ fk)(ω)

=
∑
k

fk(ω)Kek
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=
∑
k

K(fk(ω)ek)

= K

( ∑
k

fk(ω
)
ek)

= K(f(ω)),

for almost every ω ∈ Ω.
Now let f ∈ D(K⊗̂I). Since D(K ⊗ I) is a core for K⊗̂I, i.e. D(K ⊗Mψ) is dense in

D(K⊗̂Mψ) with respect to the graph norm, there is a sequence (φn)n in D(K ⊗ I) =
D(K) ⊗D(I) that converges in ‖·‖K⊗̂I =

√
‖·‖2 + ‖(K⊗̂I) · ‖2 to f . In particular, there

is a subsequence (φnl)l of (φn)n such that φnl(ω) → f(ω) for almost every ω ∈ Ω, and
a subsequence (φnlj )j of (φnl)l such that almost everywhere we have (K⊗̂Iφnlj )(ω) →
(K⊗̂If)(ω).

Since (K⊗̂Iφnlj )(ω) = K(φnlj (ω)), this convergence implies that for almost every ω,
we have K(φnlj (ω)) → (K⊗̂If)(ω).

Hence K(φnlj (ω)) → (K⊗̂If)(ω) almost everywhere. Closedness of K yields f(ω) ∈
D(K) and

(K⊗̂I)(ω) = lim
j

(K⊗̂Iφnlj )(ω) = lim
j
K(φnlj (ω)) = K(f(ω))

almost everywhere, which concludes the proof. �

Proposition 3.2. Let Mψ be the operator of multiplication by the measurable
function ψ : Ω → C on L2(Ω). The operator I⊗̂Mψ has domain

D(I⊗̂Mψ) = {f ∈ L2(Ω;H) : ω 	→ ‖f(ω)‖ ∈ D(Mψ)}
and acts by

(Mψf)(ω) = ψ(ω)f(ω),

almost everywhere.

Proof. To see how the operator acts, consider the following. Let f ∈ D(I ⊗Mψ) =
H⊗D(Mψ), then

(I⊗̂Mψf)(ω) =
∑
k

(ek ⊗ (Mψfk))(ω)

=
∑
k

ψ(ω)fk(ω)ek

= ψ(ω)
∑
k

fk(ω)ek

= ψ(ω)
∑
k

fk(ω)ek

= ψ(ω)f(ω).
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Now, let f ∈ D(I⊗̂Mψ). Since D(I ⊗Mψ) is a core for I⊗̂Mψ, i.e. D(I ⊗Mψ) is dense
in D(I⊗̂Mψ) with respect to the graph norm, there is a sequence (φn)n in D(I ⊗Mψ) =

D(I) ⊗D(Mψ) that converges in ‖·‖I⊗̂Mψ
=

√
‖·‖2 + ‖(I⊗̂Mψ) · ‖2 to f . In particular,

there is a subsequence (φnl)l of (φn)n such that φnl(ω) → f(ω) almost everywhere, hence
(I⊗̂Mψφnl)(ω) = ψ(ω)φnl(ω) → (I⊗̂Mψf)(ω) almost everywhere.

It remains to prove our claim about the domain.
Since I⊗̂Mψ acts by I⊗̂Mψf = (ω 	→ ψ(ω)f(ω)), the inclusion ‘⊆’ holds.
Now, let f ∈ {g ∈ L2(Ω;H) : ω 	→ ‖g(ω)‖ ∈ D(Mψ)}. Let (ξn) be an orthonormal basis

of H, then there are φn ∈ L2(Ω), such that

f =
∑
n

ξn ⊗ φn =
∑
n

φn(·)ξn.

Since
|φn0(ω)|2 ≤

∑
n

|φn(ω)|2 = ‖f(ω)‖2

for all n0 ∈ N, the fact that ‖f(·) ∈ D(Mψ)‖ implies φn ∈ L2(Ω) for all n ∈ N. Now, let
fN be given by fN =

∑N
n=1 φn(·)ξn ∈ H ⊗D(Mψ). Obviously, we have

‖f − fN‖ N→∞−−−−→ 0.

In particular, there is a subsequence (fNl) of (fN ) such that fNl(ω) l→∞−−−→ f(ω) almost
everywhere.

Let g = φf ∈ L2(Ω;H). Since

‖ψ(ω)(fN (ω) − f(ω))‖ = |ψ(ω)|
∥∥∥∥∥

∞∑
n=N+1

φn(ω)ξn

∥∥∥∥∥ ≤ |ψ(ω)| ‖f(ω)‖ ,

Lebesgue’s dominated convergence theorem yields

∥∥I⊗̂MψfNl − g
∥∥2 =

∫
‖ψ(ω)(fNl(ω) − f(ω))‖2

dμ(ω) l→∞−−−→ 0.

In summary ‖fNl − f‖ → 0 and
∥∥I⊗̂MψfNl − g

∥∥ → 0. Since I⊗̂Mψ is closed, f ∈
D(I⊗̂Mψ), which proves the inclusion ‘⊇’ and hence concludes the proof. �

In summary, we now know that H∗⊗̂I and I⊗̂Mϕ act in the following way

((H∗⊗̂I)f)(ω) = H∗(f(ω))

((I⊗̂Mϕ)g)(ω) = ϕ(ω)g(ω)

almost everywhere, for all f ∈ D(H∗⊗̂I) and g ∈ D(I⊗̂Mϕ). Therefore, the operator
H∗⊗̂I + I⊗̂Mϕ acts on f ∈ D(H∗⊗̂I) ∩ D(I⊗̂Mϕ) by

((H∗⊗̂I + I⊗̂Mϕ)f)(ω) = (ϕ(ω)I +H∗)(f(ω)).

almost everywhere. This extends to H∗⊗̂I + I⊗̂Mϕ, as the next lemma shows.
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Lemma 3.3. For every f ∈ D(H∗⊗̂I + I⊗̂Mϕ) we have

(H∗⊗̂I + I⊗̂Mϕf)(ω) = (ϕ(ω)I +H∗)(f(ω))

almost everywhere.

Proof. Let H̃ = H∗⊗̂I + I⊗̂Mϕ. Take f ∈ D(H̃). Then there is a sequence (fn) in the
space D(H∗⊗̂I + I⊗̂Mϕ) such that ‖fn − f‖H̃ → 0. In particular, there is a subsequence

(fnl) such that (H̃fnl)
l→∞−−−→ (H̃f) and fnl

l→∞−−−→ f almost everywhere. This yields

(H∗⊗̂I + I⊗̂Mϕf)(ω) = ϕ(ω)f(ω) + lim
l
H∗(fnl(ω))

almost everywhere. In particular, the limit limlH
∗(fnl(ω)) exists almost everywhere.

Since H∗ is closed, f(ω) ∈ D(H∗) and H∗(f(ω)) = limlH
∗(fnl(ω)) almost everywhere.

This concludes the proof. �

Proposition 3.4. The domain of H∗⊗̂I + I⊗̂Mϕ is given as follows

D = {f ∈ L2(Ω;H) : f(ω) ∈ D(H∗) a.e., ω 	→ (H∗ + ϕ(ω)I)(f(ω)) ∈ L2(Ω;H)}.

Proof. Let H̃ = H∗⊗̂I + I⊗̂Mϕ. Again, D(H̃) ⊆ D is obvious.
Let f ∈ D and define the sequence (Ek) of measurable subsets of Ω as follows

Ek = {ω ∈ Ω: ‖H∗(f(ω))‖ ≤ k ‖f(ω)‖ and |ϕ(ω)| ≤ k}.
Define fk = χ(·)Ekf . Since ‖H∗(fk(ω))‖ ≤ k ‖fk(ω)‖, it is fk ∈ D(H∗⊗̂I) and since
‖ϕ(ω)fk(ω)‖ ≤ k ‖fk(ω)‖ we have fk ∈ D(I⊗̂Mϕ), hence fk ∈ D(H∗⊗̂I + I⊗̂Mϕ). Now,

‖fk(ω) − f(ω)‖ = χ(ω)Ω\Ek ‖f(ω)‖ ≤ ‖f(ω)‖ and ‖fk(ω) − f(ω)‖ k→∞−−−−→ 0 almost every-
where. Therefore, by Lebesgue’s theorem

‖fk − f‖2 =
∫

‖fk(ω) − f(ω)‖2
dμ(ω) k→∞−−−−→ 0.

Similarly, ‖(H∗ + ϕ(ω)I)(fk(ω) − f(ω))‖ ≤ ‖(H∗ + ϕ(ω)I)f(ω)‖, once again applying
Lebesgue’s theorem yields∥∥∥H̃fk − g

∥∥∥2

=
∫

‖(H∗ + ϕ(ω)I)(fk(ω) − f(ω))‖2
dμ(ω) k→∞−−−−→ 0,

where g = (ω 	→ (H∗ + ϕ(ω)I)f(ω)). Since H̃ is closed, we have f ∈ D(H̃). �

Before we can prove that (H⊗̂I + I⊗̂Mϕ)∗ ⊆ H∗⊗̂I + I⊗̂Mϕ, we need a general fact
about adjoints (see [6, Prop. 7.26]).

Lemma 3.5. Let A and B be densely defined, closable operators on the Hilbert spaces
K and L, respectively. The operator A⊗̂B on K⊗̂L satisfies the following identity for its
adjoint

(A⊗̂B)∗ = A∗⊗̂B∗.
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Theorem 3.6. The following identity holds

(H⊗̂I + I⊗̂Mϕ)∗ = H∗⊗̂I + I⊗̂Mϕ.

Proof. Let H̃ = H∗⊗̂I + I⊗̂Mϕ. Only the inclusion D((H⊗̂I + I⊗̂Mϕ)∗) ⊆ D(H̃) is
left to prove.

Let f ∈ D((H⊗̂I + I⊗̂Mϕ)∗), that is there is an f∗ ∈ L2(Ω;H) such that for all g ∈
D(H⊗̂I + I⊗̂Mϕ) the following holds

〈f, (H⊗̂I + I⊗̂Mϕ)g〉 = 〈f∗, g〉.

Let Ek = {ω ∈ Ω: |ϕ(ω)| ≤ k} for k ∈ N. Since

D(H⊗̂I) = {h ∈ L2(Ω;H) : h(ω) ∈ D(H) a.e., ω 	→ H(h(ω)) ∈ L2(Ω;H)}
D(I⊗̂Mϕ) = {h ∈ L2(Ω;H) : ω 	→ ϕ(ω)h(ω) ∈ L2(Ω;H)}

D(H⊗̂I + I⊗̂Mϕ) = D(H⊗̂I) ∩ D(I⊗̂Mϕ)

for g ∈ D(H⊗̂I + I⊗̂Mϕ) also gk = χEkg ∈ D(H⊗̂I + I⊗̂Mϕ), hence

〈f �Ek , (H⊗̂IL2(Ek) + I⊗̂Mϕ�Ek )g �Ek〉L2(Ek,H)

=
∫
Ek

〈f(ω), ((H⊗̂I + I⊗̂Mϕ)g)(ω)〉dμ(ω)

=
∫

Ω

〈f(ω), ((H⊗̂I + I⊗̂Mϕ)gk)(ω)〉dμ(ω)

= 〈f, (H⊗̂I + I⊗̂Mϕ)gk〉L2(Ω;H)

= 〈f∗, gk〉L2(Ω;H)

=
∫
Ek

〈f∗(ω), g(ω)〉dμ(ω)

= 〈f∗ �Ek , g �Ek〉L2(Ek,H).

Obviously all functions in D(H⊗̂IL2(Ek) + I⊗̂Mϕ�Ek ) can be extended by 0 to functions
in D(H⊗̂IL2(Ω) + I⊗̂Mϕ), and are therefore representable by restrictions of elements of
D(H⊗̂IL2(Ω) + I⊗̂Mϕ). Consequently, the above computation yields

〈f �Ek , (H⊗̂I + I⊗̂Mϕ�Ek )h〉L2(Ek,H) = 〈f∗ �Ek , h〉L2(Ek,H),

for all h ∈ D(H⊗̂IL2(Ek) + I⊗̂Mϕ�Ek ), hence f �Ek∈ D((H⊗̂IL2(Ek) + I⊗̂Mϕ�Ek )∗). By
the very definition of Ek, the map ϕ �Ek is bounded, hence Mϕ�Ek is bounded, hence
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I⊗̂Mϕ�Ek is bounded by the closed graph theorem, since

D(I⊗̂Mϕ�Ek ) = {h ∈ L2(Ek,H) : ω 	→ ϕ(ω)h(ω) ∈ L2(Ek,H)}.
Therefore

D((H⊗̂IL2(Ek) + I⊗̂Mϕ�Ek )∗)

= D((H⊗̂IL2(Ek))
∗)

= D(H∗⊗̂IL2(Ek))

= {h ∈ L2(Ek,H) : h(ω) ∈ D(H∗) a.e., ω 	→ H∗(h(ω)) ∈ L2(Ek,H)}

Now let h ∈ D(H⊗̂IL2(Ek,) + I⊗̂Mϕ�Ek ), then

〈f∗ �Ek , h〉L2(Ek,H)

= 〈f �Ek , (H⊗̂IL2(Ek) + I⊗̂Mϕ�Ek )h〉L2(Ek,H)

=
∫
Ek

〈f �Ek (ω), ((H⊗̂IL2(Ek) + I⊗̂Mϕ�Ek )h)(ω)〉dμ(ω)

=
∫
Ek

(〈H∗(f �Ek (ω)), h(ω)〉 + 〈f �Ek (ω), ϕ(ω)h(ω)〉) dμ(ω)

= 〈H∗⊗̂IL2(Ek)f �Ek , h〉L2(Ek,H) +
∫
Ek

〈ϕ(ω)(f �Ek (ω)), h(ω)〉dμ(ω)

= 〈H∗⊗̂IL2(Ek)f �Ek , h〉L2(Ek,H) +
∫
Ek

〈ϕ(ω)(f �Ek (ω)), h(ω)〉dμ(ω)

= 〈(H∗⊗̂IL2(Ek) + I⊗̂Mϕ�Ek )f �Ek , h〉L2(Ek,H).

Hence

f∗ �Ek= (H∗⊗̂IL2(Ek) + I⊗̂Mϕ�Ek )f �Ek .
In summary, we have f(ω) ∈ D(H∗) and f∗(ω) = H∗(f(ω)) + ϕ(ω) for almost every ω ∈
Ek. Since Ω is covered by the Ek, k ∈ N, we have

f ∈ {k ∈ L2(Ω;H) : k(ω) ∈ D(H∗) a.e., ω 	→ H∗(k(ω)) + ϕ(ω)k(ω) ∈ L2(Ω;H)}}.
However, by Proposition 3.4, this means f ∈ D(H̃). �

4. Constructing a measurable family of orthonormal bases

Definition 4.1 (domain of regularity). Let A be an operator on the Hilbert space
H. The set

χ(A) = {z ∈ C : ∃cz > 0∀f ∈ D(A) : ‖(A− zI)f‖ ≥ cz ‖f‖}
is called domain of regularity of the operator A.
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Note that for all closed operators A, the number

dz(A) = dimR(A− z)⊥

is constant on each connected component of the domain of regularity χ(A) of A (see
[7, Chapter 10]). That is, for each pair of complex numbers z, w ∈ χ(A), there is an
isometric isomorphism between R(A− z)⊥ and R(A− w)⊥. Our goal is to construct
such an isomorphism more or less explicitly. We will restrict ourselves here to closed
symmetric operators.

Let A be a closed symmetric operator on the separable Hilbert space H. Since R(A+ i)
is a closed subspace of H, there exists N ∈ N ∪ {∞} and ξn ∈ D(A), n < N , such that
((A+ i)ξn)n is an orthonormal basis of R(A+ i).

By symmetry of A we have i ∈ χ(A), hence (A+ i)−1 : R(A+ i) → D(A) is bounded.
Therefore, the span of the ξn = (A+ i)−1(A+ i)ξn, n < N , is dense in D(A). This gives
rise to a total set in R(A+ z) for z ∈ C

+, as we will show next.

Proposition 4.2. For every f ∈ D(A) there are λn ∈ C, n < N , such that

(A+ z)f =
∑
n<N

λn(A+ z)ξn.

Proof. Since ((A+ i)ξn)n<N is an orthonormal basis of R(A+ i), there are λn ∈ C,
n < N , such that

∑
n |λn|2 <∞ and

(A+ i)f =
∑
n<N

λn(A+ i)ξn.

Thus, for all k < N ,

k∑
n=1

λn(A+ z)ξn =
k∑

n=1

λn(A+ i)ξn + (z − i)
k∑

n=1

λnξn

=
k∑

n=1

λn(A+ i)ξn + (z − i)(A+ i)−1
k∑

n=1

λn(A+ i)ξn.

Taking k = N − 1 if N <∞ or passing to the limit k → ∞ if N = ∞, we obtain

∑
n<N

λn(A+ z)ξn = (A+ i)f + (z − i)(A+ i)−1(A+ i)f = (A+ z)f. �

Note that since (A+ z)(A+ i)−1 is injective, the vectors (A+ z)ξ1, . . . , (A+ z)ξm are
linearly independent for every m < N . We can therefore apply Gram–Schmidt orthonor-
malization to ((A+ z)ξn)n<N to obtain an orthonormal basis (ηm(z))m<N of R(A+ z).
Note that all the operations in the Gram–Schmidt algorithm are continuous, in particular,
measurable in z. Thus, the map z 	→ ηm(z) is measurable.
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Denote the projection onto R(A+ z) by Pz, that is,

Pz =
∑
m

〈ηm(z), ·〉ηm(z).

Now I − Pz is the projection onto R(A+ z)⊥ = N (A∗ + z) and ((I − Pz)ζn) is total in
N (A∗ + z) for every orthonormal basis of (ζn) of H. Fix an orthonormal basis (ζn) of
H and set ρn(z) = (I − Pz)ζn for n ∈ N. We now introduce a modified Gram–Schmidt
algorithm which does not require the input vectors to be linearly independent.

Consider the map κ : R → R given by

κ(x) =

{
1, if x = 0
x, else

and note that it is obviously measurable. Define (σn) inductively by

σ1(z) =
ρ1(z)

κ(‖ρ1(z)‖)

σn+1(z) =
ρn+1(z) −

∑n
l=1〈σl(z), ρn+1(z)〉σl(z)

κ(‖ρn+1(z) −
∑n
l=1〈σl(z), ρn+1(z)〉σl(z)‖) .

By the original Gram–Schmidt algorithm, it is easy to see that those of the σn(z) that
do not vanish form an orthonormal basis of N (A∗ + z). Furthermore, it is evident that
z → σn(z) is measurable for every n ∈ N. We now want to prove that we can ‘extract’
those not-vanishing σn(z) in a measurable manner with respect to z. Remember that
d+ = dimN (A∗ − i) = dimN (A∗ + z).

Definition 4.3. Let nj : C
+ → N for j < d+ be defined inductively by

n1(z) = 0,

nj+1(z) = inf{n ∈ N : σn(z) �= 0, n > nj(z)}.
Lemma 4.4. For every j < d+ + 1, the map z 	→ nj(z) is measurable.

Proof. We proceed inductively: n1 is constant, hence measurable. In order to prove
that nj+1 is measurable, it suffices to show that the set {z ∈ C

+ : nj+1 = k} is measurable
for every k ∈ N. Note the following

{z ∈ C
+ : nj+1(z) = k}

= {z ∈ C
+ : nj(z) < k} ∩

⋂
nj(z)<l<k

{z ∈ C
+ : σj(z) = 0} ∩ {z ∈ C

+ : σk(z) = 0}

=
k−1⋃
m=1

({z ∈ C
+ : nj(z) = m} ∩

⋂
m<l<k

{z ∈ C
+ : σj(z) = 0}) ∩ {z ∈ C

+ : σk(z) = 0}.

By induction hypothesis, {z ∈ C
+ : nj(z) = m} is measurable and therefore the set {z ∈

C
+ : nj+1(z) = k} is measurable as well. �
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Lemma 4.5. The map z 	→ σnj(z)(z) is measurable.

Proof. Let A ⊆ H be measurable.

{z ∈ C
+ : ρnj (z) ∈ A} =

∞⋃
k=0

({z ∈ C
+ : nj(z) = k} ∩ {z ∈ C

+ : σk(z) ∈ A}) .
By the above lemma, this set is measurable. �

Note that (σnj(z)(z))j<d++1 is an orthonormal basis of N (A∗ + z).
Let us fix an orthonormal basis (τj)j<d++1 of N (A∗ − i). Define the unitary oper-

ator Uz : N (A∗ + z) → N (A∗ − i) by linearly and continuously extending the operator
Uzσnj(z)(z) = τj . Note that

Uzf =
∑
j

〈σnj(z)(z), f〉τj .

for all f ∈ N (A∗ + z). Since the inner product is continuous, for a measurable curve
C

+ → H, z 	→ f(z) ∈ N (A∗ + z), the map z 	→ Uzf(z) is measurable. In summary:

Theorem 4.6. There is a family of unitary operators (Uz)z∈C+ ,

Uz : N (A∗ + z) → N (A∗ − i),

such that for all measurable f : C
+ → H, satisfying f(z) ∈ N (A∗ + z), the map z 	→

Uzf(z) is measurable.

5. Computing the deficiency spaces

We finally dealt with sufficiently many technicalities so that we can prove our main result.

Theorem 5.1. Let HA and HB be a symmetric and a self-adjoint operator on the

Hilbert space HA and HB , respectively. If HAB = HA⊗̂I + I⊗̂HB , then

N±(HAB) � N±(HA)⊗̂HB .

Proof. Without loss of generality let HB = L2(Ω) for a σ-finite measure space
(Ω, F , μ) and let HB = Mϕ be the operator of multiplication by a real-valued mea-
surable function ϕ : Ω → R. For simplicity, denote H = HA and H = HA and H̃ =
H∗⊗̂I + I⊗̂Mϕ.

We will prove the existence of an isomorphism for the N+ only; for the N− the proof
works analogously.
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If f ∈ N+(HAB) = N (H∗
AB − i) = N (H̃ − i), then

(H̃f)(ω) = if(ω) a.e.,

that is,

H∗(f(ω)) + ϕ(ω)f(ω) = if(ω) a.e..

Hence f(ω) ∈ N (H∗ − (i− ϕ(ω))) almost everywhere. Since ϕ is real-valued i− ϕ(ω) ∈
C

+, thus by Theorem 4.6, there is a family of unitaries

Vω : N (H∗ − (i− ϕ(ω))) → N (H∗ − i),

such that the map ω 	→ Vωf(ω) is measurable. Since the Vω are unitary, we have∫
‖Vωf(ω)‖2

dμ(ω) =
∫

‖f(ω)‖2
dμ(ω) <∞.

In summary, ω 	→ Vωf(ω) is in L2(Ω;N (H∗ − i)). On the other hand, because the Vω
are onto, every g ∈ L2(Ω;N (H∗ − i)) admits a representation g(ω) = Vωf(ω) for some
f ∈ L2(Ω;H) satisfying f(ω) ∈ N (H∗ − (i− ϕ(ω))) almost everywhere, therefore

N (H̃ − i) � L2(Ω;N (H∗ − i)).

By closedness of H∗, the space N (H∗ − i), equipped with the inner product inherited
from H, is a Hilbert space. In particular,

N (H∗ − i)⊗̂L2(Ω) = L2(Ω;N (H∗ − i)). �

Remark 5.2. (i) Having constructed the deficiency spaces of HAB , we can answer
the question of existence of self-adjoint extensions of HAB and in case of existence,
construct them by the means we examined in §2.

(ii) Note that, because of the fact that there is a one-to-one correspondence between
self-adjoint extensions of a symmetric operator and unitary extensions of its Cayley
transform, there are ‘more’ self-adjoint extensions of HAB than there are of HA.

(iii) It still remains open to determine the deficiency spaces of HAB = HA ⊗ I + I ⊗HB

in the case when both HA and HB are only assumed to be symmetric. As stated
in [4], it is quite natural to conjecture that

NAB± � NA±⊗̂HB ⊕HA⊗̂NB±.
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