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Abstract

Gradient-based numerical optimization of complex engineering designs offers the promise of rapidly producing better
designs. However, such methods generally assume that the objective function and constraint functions are continuous,
smooth, and defined everywhere. Unfortunately, realistic simulators tend to violate these assumptions, making opti-
mization unreliable. Several decisions that need to be made in setting up an optimization, such as the choice of a
starting prototype and the choice of a formulation of the search space, can make a difference in the reliability of the
optimization. Machine learning can improve gradient-based methods by making these choices based on the results of
previous optimizations. This paper demonstrates this idea by using machine learning for four parts of the optimization
setup problem: selecting a starting prototype from a database of prototypes, synthesizing a new starting prototype,
predicting which design goals are achievable, and selecting a formulation of the search space. We use standard tree-
induction algorithms (C4.5 and CART). We present results in two realistic engineering domains: racing yachts and
supersonic aircraft. Our experimental results show that using inductive learning to make setup decisions improves both
the speed and the reliability of design optimization.

Keywords: Case-based Reasoning; Decision Tree Induction; Engineering Design; Numerical Optimization;
Reformation

1. INTRODUCTION olationspathologiesNon-gradient—based optimization meth-
ods, such as simulated annealing and genetic algorithms,
An automated search of a space of candidate designs is &€ better able to deal with search spaces that have pathol-
attractive way to improve the traditional engineering de-0gies, but they tend to require many more runs of the sim-
Sign process. Each step of such an automated search rlélatOI’ than do the gradient-based methods. We therefore
quires evaluating the quality of the candidate designs; forvould like to find a way to reliably use gradient-based meth-
complex artifacts such as aircraft, this evaluation must b@ds in the presence of pathologies.
done by computational simulation. The performance of gradient-based methods depends to
Gradient-based optimization methods, such as sequentidilarge extent on choices that are made when the optimiza-
quadratic programming (see Section 5.1), are reasonably faPns are set up, especially in cases where the search space
and reliable when applied to search spaces that satisfy theff@s pathologies. For example, if a starting prototype is cho-
assumptions. They generally assume that the objective fun&en in a less pathological region of the search space, the
tion and constraint functions are continuous, smooth, anghance of reaching the optimum is increased. Machine learn-
defined everywhere. Unfortunately, realistic simulators tendng can help by learning rules based on the results of pre-
to violate these assumptions. We call these assumption viious optimizations that map the design goal into these
optimization setup choices. We demonstrate this idea by
using machine learning for four parts of the optimization
setup problem.

Reprint requests to: Mark Schwabacher, National Institute of Standards \\/hen designing a new artifact. it is desirable to make
and Technology, Building 220, Room A127, Gaithersburg, MD 20899, '
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whole design problem. The training data would consist oflearning techniques improves the speed of optimization
design goals and designs that satisfy those goals, and tlead/or the quality of the resulting designs.

learning algorithm would learn a function that maps a de-

sign goal into a design. We believe that this function is too
hard to learn. We therefore focused on improving optimi—2' INDUCTIVE LEARNING

zation performance by using machine learning to make somghe problem addressed by an inductive learning system is
of the choices that are involved in setting up an optimiza+o take a collection of labeled “training” data and form rules
tion. In the course of our work, we found parts of the opti- that make accurate predictions on future data. Inductive
mization setup problem for which machine learning can helpjearning is particularly suitable in the context of an auto-
selecting starting prototypes, predicting whether goals argnated design system because training data can be gener-
achievable, and selecting formulations of the search spacgted in an automated fashion. For example, one can choose
If each design in the design library that is used as training; set of training goals (a training goal is a design goal used
data for the learner was created by an automated optimizaor training purposes) and perform an optimization for all
tion, and some of these optimizations failed to reach the trugombinations of training goa|s and |ibrary prototypes_ One
optimum due to pathologies, then the training data will con-can then construct a table that records which prototype was
tain some noise. It is therefore important to use a machingest for each training goAlThis table can be used by the
learning method that has the ability to ignore reasonablgnductive learning algorithm to generate rules mapping the
amounts of noise in the training data. space of all possible goals into the set of prototypes in
Our first effort was in the domain of the design of racing the library. If learning is successful, this mapping inter-
yachts of the type used in the America’s Cup race. In thispolates or extrapolates from the training data and can be
domain, we had success using a technique that wemall  ysed successfully in future design sessions to map each new
totype selectionwhich maps the design goal into a selec- goal into an appropriate initial prototype in the design library.
tion of a prototype from a database of existing prototypes. The specific inductive learning systems used in this work
We used C4.5, the standard tree-induction algorithm, in thi%re C4.5 (Quin|an' 1993) (re|ease 3.0, with Windowing turned
work. off) for problems requiring discrete-class induction, and
Our second effort was in the domain of the design of SUCART (Breiman, 1984) for problems requiring continuous-
personic transport aircraft. We tried prototype selection inclass induction. Both of these systems represent the learned
this domain and found that it did not perform well, so we knowledge in the form of decision trees. The approach taken
decided to try a new idea that we cpllototype synthesis by these systems is to find a small decision tree that cor-
Prototype synthesis synthesizes a new prototype by mapectly classifies the training data and then remove the lower
ping the design goal into the design parameters that defingortions of the tree that appear to fit noise in the data. The

a prototype. It requires continuous-class induction, whichresulting tree is then used as a decision procedure for as-
is not available in C4.5; hence we used CARWe then Signing labels to future, unlabeled data.

realized that we could use the training data that we had col-
lected for prototype synthesis to further enhance optimiza-
tion performance using a new idea that we eahievable 3. DESIGN ASSOCIATE

goal prediction Achievable goal prediction uses inductive Our prototype-selection and formulation-selection tech-

learning to predict whether a given design goal is achiev-_. B . .
. ) : nigues have been developed as part of the “Design Associ-
able before attempting to synthesize a starting prototype for, ", . . .
. ) SO .—ate,” a system for assisting human experts in the design of
the goal. Since this decision is discrete rather than contin- . . .
complex physical engineering structures (Ellman et al.,

uous, we used C4.5.

We then had the idea of recognizing when designs are a]t992)_ Figure 1 shows a block diagram of the system's soft-

. i . ; : are architecture. The inductive learner learns a decision
constraint boundaries, learning to predict this accurately, an

using these predictions to reformulate the search space. We. - from the design library. Given a new design goal, the
gthesep ; . . carch space. Vi, cision tree is used to map this design goal into a choice of
call this ideaformulation selectionThis prediction is dis-

. T .starting prototype from the design library or a choice of for-
crete, so we used C4.5 to make it. We tested this idea in 'g P yp 9 .y' o .

: . . mulation of the search space. The optimizer optimizes this
both the yacht and aircraft domains and found it to be suc- . .
cessful in both domains prototype for the new design goal, using the selected for-

. . . - mulation. At each iteration of this optimization, the opti-
This paper includes sections describing the four tech- . L .
. . . . " ‘mizer uses a multidisciplinafysimulator to evaluate the
niques for using machine learning to set up optimizations. , .~ . . . .
4 . . objective and constraint functions. At the end of the opti-

prototype selection, prototype synthesis, achievable goal pre-.. . . o e
. i . o mization, the new optimal design is added to the design li-
diction, and formulation selection. Each section includes ex-

perimental results which demonstrate that using the machine

2The cost of generating this table is discussed in Section 4.3.

3We call the simulatomultidisciplinary because it contains code to
evaluate the design using several engineering disciplines. For example,
1CART stands for Classification And Regression Trees. our aircraft simulator includes weights, aerodynamics, and propulsion.
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] of initial prototype will restrict the set of possible designs that
Decision E‘gﬁﬁgﬁe can be obtained bgnysearch process. A poor choice of ini-

/ Tree - (C4.5 or CART) tial prototype may therefore lead to a suboptimal final de-
sign. Finally, the choice of prototype may have an impact on

Design Starting A the time needed tq carry putthe des_ign modificatio.n process—
Goal Prototype two different starting points may yield the same final design
or Reformulation but take very differentamounts of time to get there. In design

Q problems where evaluating even just a single design can take

Optimizer atremendous amount oftime, we believe that selecting an ap-
g;lglglslgl‘,’)er propriate initial prototype can be the determining factor in the

success or failure of the design process.

Optimal
Design To use inductive learning to form prototype-selection rules,
we take as training data a collection of design goals, each
labeled with which prototype in the library is best for that
goal. “Best” can be defined to mean the prototype that best
satisfies the design objectives, the prototype that results in
l?bjeCFive 1gonst_raint the shortest design time, or the prototype that optimizes some
unction unction ; ; ; ; ; ;
Evaluation Evaluation combination of design quality and design time.
e t 4.1. Yacht domain
Multidisciplinary Simulator We developed and tested our prototype-selection methods

in the domain of 12-Meter racing yachts, which until re-
cently was the class of yachts raced in America’s Cup com-
petitions? An example of a 12-Meter yacht is ti8tars &
Stripes '87 which is shown in Figure 2; a close-up of its
brary. The decision tree is periodically rebuilt to reflect thehull and keel is shown in Figure3.
latest design library. In the yacht domain, a design is represented by eight de-
sign parameters that specify the magnitude with which a set
of geometric operators are applied to the B-spline surfaces
4. PROTOTYPE SELECTION (Rogers and Adams, 1990) representing the hull of the start-

Many automated design systems begin by retrieving an iniing prototype. The goal is to design the yacht that has the smalll-
tial prototype from a library of previous designs, using the€st course time for a particular wind speed and race course.
given design goal as an index to guide the retrieval procesgourse time is evaluated using a velocity-prediction pro-
(Sycaraand Navinchandra, 1992). The retrieved prototype igram (VPP) called “AHVPP” from AeroHydro, Inc., which
then modified by a set of design modification operators to taiis @ marketed product used in yacht design (Letcher, 1991).
lor the selected design to the given goals. In many cases, the A search space is specified by providing an initial proto-
quality of competing designs can be assessed using domaifpe geometry and a set of operators for modifying that pro-
specific evaluation functions. In such cases, the design modotype. Our current set of shape modification operators was
ification process often is accomplished by an optimizationobtained by asking our yacht-design collaborators for an ex-
method such as a hill-climbing search (Ramachandran et alhaustive list of all features of a yacht's shape that might be
1992; Ellman et al., 1992). relevant to the racing performance of a yacht. These oper-
In the context of such case-based design systems, thafors include:
choice of an initial prototype can affect both the quality of
the final design and the computational cost of obtaining that ® Global-Scaling OperatorSicale-XScale-YandScale-Z
design, for three reasons. First, prototype selection may im- ~ change the overall dimensions of a racing yacht by uni-
pact quality when the design process is guided by a nonlin- ~ formly scaling all surfaces. . _
ear evaluation function with unknown global properties. ¢ Prismatic-Coefficient OperatorBrism-X Prism-Y and
Since there is no known method that is guaranteed to find ~ Prism-Zmake a yacht's canoe-body more or less stream-
the global optimum of an arbitrary nonlinear function lined when viewed along th&, Y, and Z axes,
(Schwabacher, 1996), most design systems rely on iterative ~ respectively.
local search methods whose results are sensitive to the ini-
tial starting point. Second, prototype selection may impact “In 1992, the 12-Meter class was replaced with the new America’s Cup

uality when the prototypes lie in disjoint search spaces. Ir¥ass-
q Y P yp ) b SThis is the boat that won the 1987 America’s Cup competition, return-

part'CUIar’ ifthe system’s qu|gn modification operators Celml'ng the trophy to the United States after an Australian win in 1983 (Letcher
not convert any prototype into any other prototype, the choicet al., 1987).

Fig. 1. Design Associate block diagram.
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Fig. 3. The hull and keel ofStars & Stripes '87

closest goal method can be seen as a simple version of
instance-based learning.

2. Bestinitial evaluation. This method requires running
the evaluation function on each prototype in the data-
base. It chooses the prototype that, according to the
evaluation function, is best for the new goal (before
any operators have been applied to the prototype). In
the case of our yacht-design problem, this corre-
sponds to starting the design process from whichever
yacht in the library is fastest for the new course and
wind speed.

3. Most frequent class (MFC). This is actually a very
simple inductive method that always chooses a fixed
prototype, namely the one that is most frequently the
best prototype for the training data.

4. Random. This method involves selecting a random
element from the design library, using a uniform dis-
tribution over the designs.

-

We compare these methods using two different evalua-
Fig. 2. Stars & Stripes '87winner of the 1987 America’s Cup competition. tion criteria:

1. Error rate. How often is a nonoptimal prototype

selected?
« Keel OperatorsScale-Keeandinvert-Keelchange the 2. Course-time increaseHow much worse is the result-
depth and taper ratio of the keel, respectively. ing average course time than it would be using the op-

timal choice that an omniscient selection would make?
These eight operators represent a subset of the full set that

was actually developed; they are a smaller set suitable for In our experiments we focused primarily on the question
testing our prototype-selection methdds. of how well our inductive learning prototype-selection
method handles problems where the prototypes lie in dis-
joint search spaces. Our experiments therefore explored how
4.2. Prototype selection results prototype selection affects the quality of the final design.
For the prototype selection experiments in the yacht do-
We conducted several sej[s of experiments. In each case W&ain, we used the Rutgers Hill-climber as our optimizer
compare our approach with each of four other methods. (schwabacher, 1996). It is an implementation of steepest-
_ . descent hill-climbing that has been augmented to allow it to
1. Closest goal . This method requires a measure of the«cjimp over” bumps in the surface defined by the objective
distance between two goals, and knowledge of the goaynction that have less than a certain width or a certain
for which each prototype in the design library was orig- hejght.
inally optimized. It chooses the prototype whose orig-  For our first set of experiments we created a database of
inal goal has minimum distance from the new goal.for designs that would serve as our sample prototype li-
Intuitively, in our yacht-design problem this method prary (and thus also serve as the class labels for the training
chooses a yacht designed for a course and wind spegghta given to our inductive learner). To simulate the effect
most similar to the new course and wind speed. The having each prototype define a different space, the de-
sign library was created by starting from a single prototype
6Using the full set would have required too much CPU time. (the Stars and Stripes '87and optimizing for four different
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Table 1. A portion of the input to C4.5 for prototype selection long-leg <= 90 :
in the yacht domain | windspeed > 10 : Design-1
| windspeed <= 10 :

Long leg Short leg Wind speed Initial design I | short-leg <= 90 : Design-1

; | | short-leg > 90 : Design-2
180 0 8 DeS|_gn1 long-leg > 90 :
180 0 10 Design 2 . X
180 0 12 Design 2 |  windspeed > 14 : Design-2
180 0 14 Design 2 | windspeed <= 14 :
180 0 16 Design 2 | |  windspeed <= 10 : Design-4
180 90 8 Design 1 I |  windspeed > 10 : Design-4
180 90 10 Design 4
180 90 12 Design 4 Fig. 4. Example of a prototype-selection decision tree generated by C4.5.
180 90 14 Design 4
180 90 16 Design 1

In this experiment, the inductive method (C4.5) per-
formed better than the other methods on both measures of

goals using all eight of our design modification operafors. Performance. Moreover, we were particularly surprised by
All subsequent design episodes used only four of the eigh®oW poorly the noninductive prototype-selection methods
operators, so that each yacht would define a separate &pacéclosest goal and smallest initial evaluation) performed—
We defined a space of goals to use in testing the learne@Ur expectation was that the prototypes chosen by these
prototype-selection rules. Each goal consisted of a windnethods would be close in “design space” to the optimal
speed and a race course, where the wind speed is cofin@l design, thus yielding better final designs than starting
strained to be 8, 10, 12, 14, or 16 knots and the race courdgom the other prototypes.
is constrained to be 80% in one direction (relative to the After studying these results we generated two new hy-
wind) and 20% in a second direction, and each direction ig0theses for why these two prototype-selection methods did
constrained to be an integer between 0 and 1B0is space  Not work well. The first hypothesis was that the shape of the
contains 162,900 goals. design space may be such that there is little relationship be-
To generate training data we defined a set of “trainingtween the distance between two designs and the ability of
goals” that spans the goal space. This smaller set of goa[gle hill-climber to climb from one design to the other. If the
was defined in the same fashion as for the testing set of goafPace contains “bumps” or “ridges” over which the hill-
except that the directions in the race course are restricted @imber cannot climb, then it might be more important for
be only 0, 90, or 187 yielding a smaller space of 30 goals. the initial prototype to be on the “right side” of a bump or a
To label the training data we attempted to find designs foridge than for it to be close to the optimal point. Our second
each of the 30 goals, starting from each of the four protonew hypothesis was that some of the prototypes in the data-
types, using the restricted set of operators, and determind?fse may be “bad” prototypes. This could be the case if the
which starting point was best. hill-climber got stuck at a local (nonglobal) optimum dur-
To generate test data we randomly selected ten “testintd the run that produced the prototype. This latter hypoth-
goals” from the goal space. We then generated designs, sta@sis was supported by the fact that one of the four prototypes
ing from each of the four prototypes in the database, for eacas never found to be a good starting point for any of the
of these testing goals to determine which prototype was bes80 goals in the training data (not even the goal for which it
as well as to determine how much of aloss in course time eac@s supposedly optimal, since it wound up being a local
incorrect selection would impoSeTable 1 shows a portion Optimum and starting from another prototype yielded a su-
of the input to C45, and Figure 4 gives an examp|e of aoerior result). In a realistic dESign Scenario, when there is
decision tree output by C4.5. Table 2 compares the results
of using C4.5 with the results of using the other prototype-
selection methods. (Since there are four prototypes, one would

expect random guessing to get 75% of the test exampleS:2/€ 2. Comparison of prototype-selection methods when
trained on a set of goals that spans the goal space, using

wrong.) AHVPP

“The four resulting designs were locally optimal according to our op- Method Error rate Course-time increase (s)
timizer but were not necessarily globally optimal, or even necessarily lo
cally optimal, because of the pathologies in the search space. Inductive learning 30% 24

8The four operators we chose weSeale-X Scale-YPrism-Y, andScale- Most frequent class 70% 47
Keel We chose these operators because the results of our earlier work dRandom guessing 75% 62
operator-importance analysis suggested that these are the four most irgest init eval 70% 64
portant operators [Ellman and Schwabacher, 1993]. Closest goal 70% 78

9Since four complete optimizations were required for each testing goal,
we were limited by available CPU time to only ten testing goals.
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Table 3. Comparison of prototype-selection methods when three of the sets for training data and the remaining one as

trained on a set of training examples that spans the goal space,testing. This is repeated four times, using each ten-element

using the simplified velocity prediction program RUVPP set once for testing, and this process was repeated ten times
— with different random partitionings of the data. Table 4 re-

Method Error rate Course-time increase (s) ports the results of these experiments.

Best init eval 12% 26 Consistent with our first new hypothesis, the closest goal

Inductive learning 37% 57 and best initial evaluation methods both did much better in

fﬂ'ostefst goal i i%// 17765 both cases with the simplified VPP than they did with AH-

ost frequent class () . . .
Random guessing 7E% 957 VPP, while C4.5 did about the same as it had done before.

We believe that because the simplified VPP is much smoother
than AHVPP, the hill-climber is much less likely to get stuck,
so the distance in goal space or the difference in initial eval-
uation becomes much more relevant when choosing a pro-
o totype. In fact, the improvement in the best initial evaluation
no control over the source of a design library, there couldnethod was so great that it significantly outperformed the
easily be “bad” prototypes included. Unlike the noninduc-inguctive method. The best initial evaluation method may
tive prototype-selection methods, the inductive methods learge the best method to use when the search space is smooth.
to avoid the bad prototypes. We performed another set of experiments to test our sec-
We performed some experiments to test our first new hypnd new hypothesis of why the closest goal and smallest ini-
pothesis that the closest goal and smallest initial evaluatiog| evaluation methods performed so poorly using AHVPP,
methods performed poorly because of the “bumps”inthe evalﬁame|y that they were unable to avoid the “bad” prototype in
uation function. We repeated the earlier experiments using e database. We repeated our preceding experiments using
simplified, “smooth” velocity prediction program, called the simplified VPP, except that we intentionally put a “bad”
“RUVPP," thatwe developed at Rutgers (Schwabacher, 1996hototype into the database. To generate a bad prototype, we
RUVPP differs from the more complex AHVPP in several re- g rted with th&tars and Stripes '8and added a random num-
spects. To begin with, RUVPP represents a yacht as a list ¢fer petween-0.2 and+0.2 to each of the operator param-
major geometric dimensions such as length, depth, and beargyers. We then randomly chose one of the four prototypes
rather than B-spline surfaces. Furthermore, RUVPP embodp, the database to be replaced by the bad prototype (but we
ies anumber of simplifying assumptions aboutthe physics ofeft the class label the same). The results of repeating the ex-
sailingthatare notmadel_nAHVPP. Nevertheless, RUVPPi$eriments with the bad prototype in the database are pre-
useful for two reasons: it is much faster to execute tharsented in Table 5 for training on goals that span the space and
AHVPP, and it has fewer of the bumps and ridges that appeagaple 6 for training on random goals.
inAHVPP. We therefore expect that a hill-climbing search al-  cgnsistent with our second new hypothesis, C4.5's abil-
gorithmislesslikely to get stuck onthe wrong side ofabumpity to avoid the “bad” prototype improved its performance
orridge whenthe simple RUVPPis used as an evaluation fungeative to the other methods. When trained on the spanning
tion. Table 3 presents the results of experiments comparingoab, C4.5 performed only slightly worse than the smallest
the performance of inductively learned prototype-selectionpitia| evaluation method. When trained on the random goals,
rules to the other prototype-selection methods, repeating oyt 5 performed markedly better than any other method, as
earlier experiments, butusing RUVPP as the evaluation funGneasured by average course-time increase, although the
tion and using 40 random test cases instead of justten.  gmallest initial evaluation method had a lower error rate.
Because RUVPP is much faster than AHVPP, we con-Thjs apparent anomaly can be explained as follows: The
ducted additional supporting experiments to test our firskpyq» prototype was very bad, so that choosing it even a

new hypothesis to see if using a spanning set of goals &gy times resulted in large increases in average course time.
training data was significant for our results. In particular,

rather than just using inductive learning on a set of goals
that span the space of possible goals, we also performed ble 4. C ) ‘ lect hods wh
experiments where C4.5 was trained on a random sample %fa. e 4. Comparison of prototype-selection methods when

. rained and tested on random goals, using cross-validation and
goals selected from the same space as the testing data. T SvPp
was done using ten trials of fourfold cross-validation on a
set of 40 random goals. Each such trial involved ran- pethod

R - " ] Error rate Course-time increase (s)
domly dividing the data into four sets of size ten, and using———
Best init eval 12% 26
Inductive learning 30% 35
1%Since RUVPP uses less CPU time than AHVPP, we were able to us€losest goal 40% 76
more random test cases. o ) Most frequent class 45% 175
"We chose fourfold cross-validation so that each trial would useRandom guessing 75% 257
the same number of testing goals (ten) as our earlier experiments with
AHVPP.
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Table 5. Comparison of prototype-selection methods when Table 6. Comparison of prototype-selection methods when

trained on a set of goals that span the space, using the trained and tested on a set of random goals, using

simplified VPP and a “bad” prototype in the database cross-validation, the simplified VPP, and a “bad” prototype
in the database

Method Error rate Course-time increase (s)

Best init eval 10% 80 Method Error rate Course-time increase (s)

Inductive learning 30% 82 Inductive learning 19% 38

Closest goal 32% 89 Best init eval 10% 80

Most frequent class 45% 171 Closest goall 32% 89

Random guessing 75% 348 Most frequent class 45% 171
Random guessing 75% 348

C4.5 never chose the bad prototype. The best initial evalu-
ation method occasionally chose the bad prototype, so thdWWhen using the inductive prototype-selection methi,
even though it chose the best prototype more frequently thai$ the cost of generating the training data & the cost
C4.5, the few times when it chose the bad prototype worsof performing optimizations for the new goals. When using
ened its average course-time incre&se. the exhaustive method, each prototype in the database must
be optimized for each new goal, at a costRgd.) In all of
the experiments that we performed, there were four proto-
4.3. Cost of learning types and 30 training examples; therefore, our inductive ap-

_ ) ) ) ~ proach was less expensive than the exhaustive approach as
One important question to answer is whether the |nduct|ve}0ng as at least 40 out of the more than 150,000 remaining

prototype-selection method is worth the considerable “Oﬁ'design goals had to be attempted.
line” expense of coIIecti_ng training data—gvery training eX-  \when doing prototype synthesis rather than prototype se-
amplerequires one designrun for each designin the prototypgction, itis not necessary to collect training data.in which each
library. An aIFernatwe, possibly cheaper method would be toprototype in a database is used as a starting point of an opti-
take an “on-line” approach: For each new design problem, opmjzation for each of a collection of goals. (Prototype syn-
timize starting from every prototype in the database, and thefhesis takes as training data the optimal design parameters for
use wh|chev§r of the V?SU|t'”9 Qe5|gns is the best. each goal, rather than the selection of the best prototype from
If the quality of the final design is extremely important 4 gatabase for each goal.) Instead, any optimizations that were
and there is ample CPU time available, this “exhaustive’yone previously (within the same goal space) can be used as
method is the one to use (over any of the methods listed ifyaining data. Hopefully, such data will already exist in a de-
Table 2). On the other hand, if limiting CPU time is impor- sjqn |iprary, so additional optimizations will not be needed to

tant, our inductive learning method becomes cost-effectivgyenerate training data. Prototype synthesis is described fur-
when the computational expense of learning can be amokner in the next section.

tized over a sufficiently large number of new design goals.

More specifically, the inductive prototype-selection method

is less expensive than the exhaustive method whenever ttte PROTOTYPE SYNTHESIS AND ACHIEVABLE
number of hill-climbing runs taken by the inductive ap- GOAL PREDICTION

proach is less than the number of runs taken by the exhau

tive approach, that iSTP + G < PG or %_rototype synthesis uses continuous-class induction (also

known as regression) to map the design goal directly into
T the design parameters that define a new prototype, instead
> =) of selecting an existing prototype from a database. What is
learned is not a set of rules for selecting a prototype, but
where rather a set of functions that map the design goal into the
design parameters. We performed some experiments to test
prototype synthesis in the domain of supersonic transport

P = number of prototypes in the database, aircraft design.

G

T = number of training examples,

G = number of new goals for which prototypes need to _ )
be selected. 5.1. Aircraft domain

Figure 5 shows a diagram of a typical airplane automati-

12This hypothesis was verified by checking the data: C4.5 never chos&a”y deggned by our SOftWa.re system to fIy t_he mission
the “bad” prototype, but the best initial evaluation method did. shown in Table 7. The optimizer attempts to find a good
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67.0916

e

-1 47.2618

engineScale=1.14596
wing_area(m”2)=342.846
wing_aspect_ratio=1.0895
fuselage_taper_length(m)=39.6596
wing_t_over_c=0.0272754
fuel_annulus_width(m)=0
passenger_cabin_radius(m)=1.3716
structure_annulus_width(m)=0.3048
fuselage_mid_length(m)=27.432
fuselage_diameter(m)=3.3528
wing_sweep(rad)=1.29379
wing_root_chord(m)=35.4785

wing_span(m)=19.3269 —+ 19.8298
v_tail_sweep(rad)=0.785398
v_tail_root_chord(m)=8.46036
v_tail_taper_ratio=0.33
v_tail_semi_span(m)=2.81307
v_tail_t_over_c=0.03
nacelle_length(m)=11.5824
nacelle_inlet_diameter(m)=0.85344
engine_diameter(m)=0.981579
wing_sweep_over_design_mach_angle=1.2354
wing_taper_ratio=0

Lo

[ | |
|

-9.66345 0 9.66345

4.48947

K;.b, 1.6764
T E 0

Fig. 5. Supersonic transport aircraft designed by our system (dimensions in meters).

aircraft conceptual design for a particular mission by vary-tion, the optimizer’s goal is to minimize the takeoff mass of
ing major aircraft parameters such as wing area, aspect réhe aircraft, a measure of merit commonly used in the air-
tio, engine size, and so on, by using a numerical optimizatiorcraft industry at the conceptual design stage. Takeoff mass
algorithm. The optimizer evaluates candidate designs using the sum of fuel mass, which provides a rough approxi-
a multidisciplinary simulator. In our current implementa- mation of the operating cost of the aircraft, and “dry” mass,
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Table 7. Mission specification for aircraft in Figure 5

Altitude
Phase Mach m ft Duration (min) Comment
1 0.227 0 0 5 “takeoff”
2 0.85 12192 40000 50 subsonic cruise (over land)
3 2.0 18288 60000 225 supersonic cruise (over ocean)

Capacity: 70 passengers.

which provides a rough approximation of the cost of build-included). We generated 100 random missions as follows:
ing the aircraft. The simulator computes the takeoff mass ofrhe distance and Mach number were uniformly distributed
a particular aircraft design for a particular mission as follows:over their possible ranges. There was a 1/3 probability of
having the mission entirely over land, a 1/3 probability of
1. Compute “dry” mass using historical data to estimatehaving it entirely over water, and a 1/3 probability of hav-
the weight of the aircraft as a function of the designing the percentage over land uniformly distributed between
parameters and passenger capacity required for thg and 100%. There was a 1/2 probability of including the

mission. takeoff phase.
2. Compute the landing mas¥t;,,,), which is the sum The numerical optimizer used in the prototype synthesis
of the fuel reserve plus the “dry” mass. experiments is CFSQP (Lawrence et al., 19653, state-

3. Compute the takeoff mass by numerically solving theOf'the"”.lrt implementation of the Sequentiql Quadratic Pro-
ordinary differential equation gramming (SQP).method. SQ!D is a qgafsl—l\!ewton method
that solves a nonlinear constrained optimization problem by
m fitting a sequence of quadratic programming probl&hts
gt = fmb), it, and then solving each of these problems using a qua-
dratic programming method. We supplemented CFSQP with
which indicates that the rate at which the mass of theule-based gradient¢Schwabacher & Gelsey, 1997) and
aircraft changes is equal to the rate of fuel consump-model constraint¢Gelsey et al., 1996b).
tion, which in turn is a function of the current mass of ~ Because the search space has many local optima, we used
the aircraft and the current time in the mission. At each@ technique that we call “random multistart” to attempt to
time step, the simulator’s aerodynamic model is usedind the global optimum. In am-point random multistart,
to compute the current drag, and the simulator’s prothe system randomly generates starting points within a par-
pulsion model is used to compute the fuel ConsumpIiCU|ar box until it findsn evaluable pointé,s and then per-
tion required to generate the thrust that will compensatdorms an SQP optimization from each of these points. The
for the current drag. best design found in theseoptimizations is taken to be the
global optimum.
A complete mission simulation requires about 0.25 s of CPU
time on a DEC Alpha 250 4/266 desktop workstation. ) o
In the airframe domain, the design goal is to minimize2-2- Achievable goal prediction

takeoff mass (a rough estimate of life-cycle cost) for a spec order to generate training data to test our techniques in
ified mission. We defined the following space of missions:inea airframe domain, we performed a ten-point random mul-

tistart CFSQP optimization for each of the 100 random mis-
sions. We found that for many of these missions CFSQP
was unable to find a feasible design in any of the ten runs—
that is, it was unable to design a plane that could fly the
mission. It occurred to us that it would be valuable if we
could predict in advance whether a given mission was achiev-

distance between 1609 km (1000 miles)
and 16 090 km (10 000 miles)
percentage over land between 0 and 100%
Mach number over land of 0.85, altitude

12 192 m (40 000 ft)

Mach number over water between 1.5 and
2.2, altitude 18 288 m (60 000 ft)
optional takeoff phase, no climb phase

13CFSQP stands for “C code for Feasible Sequential Quadratic
Programming.”

14A quadratic programming problem consists of a quadratic objective
Amission within this space can be represented using thre@nction to be optimized and a set of linear constraints.

| b dist. t land d Mach 5Some randomly generated designs, which we call “unevaluable points,”
realnum ers( Istance, percentage over land, an ach NUBsnnot be simulated, either because the designs are meaningless or be-

ber) and one Boolean value (whether the takeoff phase isause of limitations of the simulator.
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distance > 14 456 km (8982.46 miles): infeasible Table 8. Accuracy of CART in predicting each design
distance <= 14 456 km (8982.46 miles): parameter in the airframe domain
| distance <= 10 276 km (6384.94 miles): feasible
|  distance > 10 276 km (6384.94 miles): Design parameter Relative RMSE
| | overland <= 23.6023% : feasible X -
[ |  overland > 23.6023% : infeasible Engine size 0.65
Wing area 0.59
Fig. 6. Learned decision tree for deciding if a mission is feasible. ~ Wing aspect ratio 0.06
Fuselage taper length 0.07
Effective structural thickness over chord 0.08
Wing sweep over design Mach angle 0.08
. . . Wing taper ratio 0.21
able, so that we could avoid attempting to synthesize prog,q annulus width 1.02

totypes for infeasible missions. We hypothesized that C4.5
would be able to make this prediction, and that it would be
able to do so with greater accuracy than MFC.

To test this nevachievable goal predictioitlea, we trained
C4.5 on a set of training examples showing whether each of ]
our 100 airframe domain missions was feas#iét pro- tive errors would be low was confirmed for all of the param-

duced the decision tree in Figure 6, which shows that mis€ters except fuel annulus width. .
sions are infeasible if they are very long or if they are We performed a set of experiments to test whether using
moderately long and have a significant portion over land N€se trees to do prototype synthesis would produce better
Further analysis revealed that building a plane to fly such £Ptimization performance than using the mean prototype or
mission would require an engine larger than the largest er random7prototype. We used 25 randomly generated test-
gine that we allowed. Our upper bound on engine size cad 9oals.” Table 9 compares using the prototypes synthe-
be considered to be representative of the largest comme?iZ€d by CART with using a one-, two-, or three-point
cially available engine. random multistart or always using the prototype that is the
Tenfold cross-validation showed that C4.5 has a 4% ermean of all the optimized prototypes in the training d.ata. of
ror rate on this learning task, compared with 50% for ranthe 25 randomly generated test goals, 16 We.re.fea.s,lble. The
dom guessing and 24% for most frequent class. The decisiorfUccess” column shows the number of optimizations that

tree in Figure 6 can be used to predict, without doing any*a@me within 1% of the point that we believe to be the global
simulation or optimization, whether a new proposed mis_optimum.18 Some of the failures occurred because the learn-

sion is feasible. ing met_hod produced an unevaluable prototype. that could
not be simulated and therefore could not be optimized. Other
failures occurred because the optimizer, when started from
5.3. Prototype synthesis the synthesized point, failed to get within 1% of the appar-
ent global optimum. The “cost” column shows the total num-
In order to map the new mission into the numerical design paper of simulations used in the 16 optimizations. Using the
rametersthatdefineaprototype,We needed tcosBnuous- mean prototype instead of a Sing|e random prototype re-
Classinductiorﬁwhich isalso known as regression).We Used5u|ted in much greater success, at 33% lower cost. Using
CART (Classification And Regression Trees), which buildsCART produced a success rate that was about the same as
a “regression tree” that has a numerical constant at each le@ie one using the mean prototype, with an additional 38%
(Breiman, 1984). We trained CART on the 100 randomly gencost reduction. Using a two-point random multistart pro-
erated training goals as follows: For each design parametgfuced the same success rate as the one using CART, but it
we gave CART a set of training data, where each item in tneequired more than four times as many simulations.
training data included the goal and the “optimal” (according  To test the significance of the result that CART per-
to the optimizer) value of the design parameter. CART thuSormed better than one random probe, we repeated the one-
generated a set of trees to map the design goal into a set of demdom-probe test ten times with ten different seeds to the
sign parameters that we hoped would be near the optimal vajandom number generator. The mean and standard devia-
ues for that goal. Table 8 shows the root mean squared err@ion of the success rate and cost are shown in Table 10.
(RMSE) in CART's prediction of each design parameter,CART’s success rate was more than two standard devia-
relative to the error of “constant regression,” which alwaystjons higher than that of one random probe, and its cost was

usesthe mean ofthe training data.Avaluelessthanonein tniﬁore than two standard deviations lower than that of one
table indicates that CART's prediction was more accurate thafandom probe.

that of constant regression. Our expectation that these rela-

17Again, the number of testing goals was limited by available CPU
16\We did not test achievable goal prediction in the yacht domain, sinceresources.

almost all goals (within our goal space) in that domain are achievable, *®Because CFSQP failed to find a feasible point in some of these op-

making the prediction unnecessary. timizations, it was not possible to compute the average design quality.
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Table 9. Comparison of prototype-synthesis methods IF: f(Xq,Xp,..4,%,) > K

THEN: apply penaltyP (X, X5, . . . ,Xp)-
Method Success Cost (number of simulations)
CART 13/16 7394 These usually arise from human-written laws, such as reg-
mean 14/16 11963 ulations specifying a monetary penalty for exceeding a cer-
1 random 8/16 16893 tain noise level. In either case, if it is known that the
2 random 13/16 33883 constraint will be active at the optimal design point, and
3 random 14/16 47395

that the constraint functiof is invertible, then the con-
straint can bencorporatedinto the search space by using
the inverse of to eliminate one of the design parameters.
This incorporation is done by making the inequality con-
straint into an equality constraint and then solving for one
6. FORMULATION SELECTION of the design parameters in terms of the other design pa-
Besides the selection of a starting prototype, another imtameters. Papalambros and Wilde (1988) describe how
portant decision in setting up an optimization is the deci-monotonicity knowledge can be used to determine whether
sion on how to formulate the search space. This decisiofertain constraints will be active at the optimum. Incorpo-
can substantially affect the performance of the optimizer irfating these constraints produces a new search space with
two ways. First, using a lower dimensional formulation of lower dimensionality, since the incorporation eliminates a
the search space makes optimization faster, since each gr@esign parameter, and greater smoothness, since the incor-
dient computation requires fewer runs of the simulator andPoration eliminates the “ridge” (or nonsmoothness) in the
the distance in design space from the starting point to théearch space caused by the “if” statement in the constraint.
optimum is smaller. Second, different formulations of thelf there aren constraints that can be incorporated in this
search space can result in different degrees of “smoothway, then there are"%ossible formulations that can be pro-
ness” of the search space, which can impact not only théluced by incorporating different subsets of constraints.
speed of the optimizer, but also the ability of the optimizer ~Constraint activity depends on the goal (some constraints
to get to the optimum, and therefore the quality of the re-are active at the optimum for only some design goals), for
sulting designs. two reasons: First, the constraint thresholds are part of the
We present a method of reformulation called “constraintdesign goal. Second, different design goals will resultin dif-
incorporation,” which reduces the dimensionality of the ferent optimal values of the design parameters on which the
search space and increases its smoothness by incorporatig@nstraint functions depend.
constraints into the search space. Because constraint activity depends on the goal, differ-
Traditionally, numerical optimization has dealt with ex- ent formulations of the search space are appropriate for dif-
plicit, “hard” constraints. The optimizer assumes that thesderent design goals. We describe a way in which inductive
constraints can never be violated. A hard constraint can barning can be used to map the design goal into the appro-
expressed as priate formulation.
To use inductive learning to form formulation-selection
f(Xq,Xo, ..., Xn) = k. rules, we take as training data a collection of design goals,
each labeled with the set of constraints that are active (within
(Here, x4, %o, ... X, are thedesign parameterthat repre- a threshold) at the optimal design point. We then run the
sent the design.) The constraint is said toibactive if inductive learner once for each constraint, producing for each

f(X1, X, ..+, Xs) < k, active if f(xq,X,,...,X,) = k, andvi- constraint a set of rules that can be used to predict whether
olatedif f(xy,Xs,...,X,) > k. Hard constraints can result the constraint will be active for new design goals.
from the laws of physics, for example. The training data can be generated in an automated fash-

Another type of constraint is the “soft” constraint, for ion. For example, one can choose a set of training goals and
which there is some sort of known penalty for violating the perform an optimization for each goal. One can then eval-
constraint. A soft constraint can be expressed as uate each constraint function for each optimal design, and

then construct a table that records which constraints were

active (within a threshold) for each training goal. This table

can be used by the inductive-learning algorithm to generate
Table 10. Performance of one random probe averaged a set of rules for each constraint, mapping the space of all
over ten trials possible goals into a prediction of whether or not that con-
straint will be active at the optimal design point for that goal.

Measure Success Cost (number of simulations) . . .
If learning is successful, these mappings can be extrapo-
Mean 8.8/16 15062 lated from the training data and used successfully in future
Standard Deviation 1.9/16 3102 design sessions to map a new goal into an appropriate
formulation.
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6.1. Formulation selection results in yacht domain 3.6 m causes the quantigngthin the formula to increase,
which causesailareato decreasé!

We performed some experiments to test the performance of Because the beam constraint contains an “if” statement,
formulation selection in the yacht domain. In the experi-this incorporation causes a nonsmoothnessourse time
ments described in this subsection, we used CFSQP as tlag a function obeam That is, there is a discontinuity in the
optimizer, withcourse time computed by RUVPP, as the first derivative ofcourse timewith respect tobeam Fig-
objective function and with one explicit, nonlinear, “hard” ure 7 illustrates this nonsmoothness by showing the cross-
model constraint. This constraint specifies that the mass afection of the search space corresponding tbé&aendesign

the yacht, before adding any ballast, must be less than grarametef? This nonsmoothness can cause a gradient-
equal to the mass of the water that it displaces. (In othebased optimizer such as CFSQP to get stuck, and to fail to
words, the boat must not sink?) get to the optimum.

Yachts entered in the 1987 America’s Cup race had to sat- For many design goals, the optimal design is directly on the
isfy a hard constraint known as the 12-Meter Rule (IYRU, constraint boundary. The optimal beam is often 3.6 m. If we
1985). Instead of using this rule as an explicit constraintexpect the optimal beam to be 3.6 m, then we canincorporate
we incorporated it into the search space. (How we incorpothe beam constraintinto the operators. In the case of the beam
rated it is described below.) The basic formula in the rule isconstraint, this incorporation is trivial—we simply sesam
to 3.6 m and leave it there. For other constraints, the incor-
poration is more complicated. For example, there is a con-
straint that specifies a penaltydfsplacemendoes not vary
with a certain cubic polynomial iiength Displacemenis not
a design parameter; rather, itis a quantity computed from all
In addition to the basic formula, the rule contains severabfthe design parameters. In order to incorporate the displace-
soft constraints, along with associated penalties for violatment constraint, we used Maple (Char et al., 1992), a sym-
ing these constraints. These soft constraints are bolic algebra package, toinvertthe displacementformula, and
created a new set of operators that vary certain parameters
while maintainingdisplacemenat the minimum displace-
ment allowed by the constraint. For still more complicated
constraints, it might not be possible to invert the constraint
function using Maple; it might therefore be necessary for the
operators to contain numerical solvers that find the correctval-
ues of the incorporated design parameters so as to put the de-
sign on the constraint boundd&r.

We created operators to incorporate all four of the above-
listed 12-Meter Rule constraints: the draft constraint, the

While constructing the simulator. we used a reasonin ropeam constraint, the displacement constraint, and the wing-
I g . iy 9 PI9%%t constraint. Using these operators, we were able to either
cess similar to that described in Papalambros and Wild

(1988) to determine that the constraint described by the be}g ggrppeorrgte?‘g;n\c/)\;;ntchourgc:jr:ftiigdac; gghoefsié?(ug;::sr;;[;alnts
sic formulg of the 12.-Meter.RuIe \.Ni!l a]ways be act'ive, .Sinceformulations df the search space. From our initial experi-
E:gn%?éi?élgﬁyfzgztilr?greb;slinn% rg;'g:é:%p;;? t::;nleelf?- ments with these operators, we determined empirically that
X S . . .~ . incorporating the draft constraint substantially improved the
hand side of the constraint is monotonically increasing 'nreliability and speed of optimization for any design goal
sailarea We thereforéncorporatedthis constraintinto the —\\ wp o ccoe0 10 e to always incorporate the draft coﬁ—

s!mulator by solving fosailareain terms of the other de- _straint, leaving us with a space of eight possible formula-
sign parameters. Therefore, for example, when the opti:

mizer makedenathbigaer sailareais automatically made tions that we used in the experiments described below.
smaller. In addigon Egca,use we also im Iement)é:d the sof Having defined eight formulations of the search space,

" ' . P \X/e used inductive learning to decide, based on the design
constraints as penalty functions, reducingambeyond

length— freeboard+ + sailarea
> 37 =12m

draft constraint,

beam constraint,
displacement constraint,
winglet span constraint.

For example, thbeam constrainstates that

IF: beam< 3.6 m,
THEN: add four times the difference tength

21Because we incorporated the 12-Meter Rule into the simulator, we
19Actually, the mass of the yacht mustjualthe mass of the water it  did not need to use it as an explicit constraint.

displaces. SQP can more easily use inequality constraints than equality 2?Although this figure shows only a “snapshot” of the search space for

constraints, and we determined that the inequality constraint specifyingpecific values of the other design parameters, we believe that the trend

that the mass of the yacht must be greater than or equal to the mass of tisbown in the figure is generally applicable.

water it displaces would be inactive, so we used only the “less than or ?*Operators containing numerical solvers would probably be more com-

equal” constraint.

2%The simulator assumes that there is perfect reefing, so addisaial

areacan never hurt the yacht's performance.
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Fig. 7. The nonsmoothness in the search space caused by the beam constraint.

goal, which formulation to use. As training data, we used We used C4.5 to perform tenfold cross-validation and ob-
100 previous optimizations. The optimizer failed for one oftained the error rates shown in Table 11. Here we compare
these goals, so we used the remaining 99 goals as trainirthe error rates of C4.5 with and without pruning, and of
data in the results that follow. For each previous optimiza-C4.5rules, a variant of C4.5 that extracts rules from the trees,
tion, we evaluated each 12-Meter Rule constraint functiorwith the expected error rate of random guessing (which is
at the optimum and determined whether the constraint wasvo-thirds, since there are three classes from which to guess),
active (within a tolerance). Each of these previous optimi-and the error rate of the most frequent class (MFC) learn-
zations had as its design goal minimizing course time for ang method. MFC always chooses the class that occurs most
single-leg race course, which can be represented using twioequently in the training data, which in this case means that
numbers: the wind speed and the heading (the angle bé-always chooses the same formulation, namely the one that
tween the yacht's direction and the wind direction). The dedis most often the best formulation in the training data.

sign goal therefore can be represented using these two
numbers. We ran the inductive learner once for each of the
three constraints. Each time, the inductive learner was pro-
vided with a set of triples: the wind speed, the heading, and
a ternary value indicating whether the constraint was inac- |
tive, active, or violated. One of the constraints was violated |

at the optimum in ten of these optimizations. Figure 8 gives |

an example of a decision tree output by C4.5. This decision |

tree predicts whether the displacement constraint will be ac- | | | heading <= 65 : violated
tive at the optimum, based on the design goal. By running a I I | heading > 65 : active
new design goal down three decision trees, one for each of llleading > 109 :
I
[
I

heading <= 109 :
windspeed <= 6.3 : active
windspeed > 6.3 :
|  windspeed > 8.2 : violated
|  windspeed <= 8.2 :

the three constraints that can be incorporated, the system windspeed > 11.5 : active
can make predictions of whether each constraint will be ac- Tlndipecel('i <_<E1i25: ,
tive at the optimum. These three yes/no predictions directly eacing <= § active
. . . | heading > 135 : inactive
map into one of the eight ) formulations of the search
space. Fig. 8. Learned decision tree for the displacement constraint.
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Table 11. Cross-validated error rates for predicting whether Also included in this table is the performance of several
each constraint will be inactive, active, or violated other methods. A hypothetical “omniscient” problem solver

always magically guesses the best possible choice (the one
Method Beam Displacement Winglet that results in the best course tinfé)No learning method
C4.5 wipruning 11.1% 15.1% 7.0% Will enable results superior to this. The “exhaustive” opti-
C4.5 wlo pruning 11.1% 15.1% 10.0% mization method performs eight optimizations for each goal,
C4.5rules 11.1% 15.1% 10.0%  ysing all eight possible formulations, and then chooses the
MFC 33.3% 53.5% 13.1%

best resulting design. Incorporating “all” constraints all the
time results in the fastest possible optimization within this
set of formulations (at the cost of quality loss).

C4.5 produced a significant speedup in optimization with
no quality loss. In fact, it produced a small quality increase.
(This quality increase suggests that, with the standard for-

As Table 11 shows, C4.5 with pruning performed slightly mjyjation, the optimizer gets “stuck” on the “ridges” that the
better than C4.5 without pruning or C4.5rules (and so inconstraints cause the search space to have, and therefore
our further experiments reported below we use only C4.5gmetimes fails to get to the optimum). MFC produced a
with pruning), and all three substantially outperformed MFCainghtIy smaller speedup and a slightly smaller quality im-
which in turn substantially outperformed random gueSSingprovement. The difference between C4.5 and MFC in qual-

These results are for error rates, the proportion of casegy change was, however, statistically significant at the 99%
where learning makes an incorrect guess. Amore importardonfidence level, according to the pairetést. Both learn-
question in this domain is how learning affects the overalling methods performed substantially better than random
problem-solving task, namely, how does itimprove the speegyessing. C4.5 performed almost as well as the hypotheti-
and reliability of the design optimization process? Doescg| omniscient learner, which means that it performed al-
learning make the design process faster or slower? Are thgost as well as any learner could possibly?do.
resulting designs better or worse? To measure these eﬁeCtS:Incorporating all of the constraints all of the time re-
we performed optimizations for 25 new, randomly gener-gyjted in a very large speedup with a modest quality loss.
ated goals using the formulations suggested by each learfhis method may be appropriate for a quick and approxi-
ing method. Table 12 shows the effect that C4.5 (withmate optimization. It might, for example, be used in the early
pruning) and MFC had on the average course time (the quaktages of design, when the engineer wants to get a feel for
ity of the design) and the average number of evaluationgne search space by asking “what—if” questions.

(the speed of the optimization), as compared with the “old - one question that these results raise is how training-data
way” of doing optimization, without incorporating any of gyantity affects performance. If one does not have results
the three constraints into the operators. The first column igom a large number of previous optimizations available,
the table shows the percentage difference between the ogyen one can either run some extra optimizations to gener-
timized course timeproduced with the standard formula- gte training data (which is expensive) or do the learning with
tion that does not incorporate constraints, and the optimizeghgg training data (which is likely to produce higher error
course timeproduced with the specified formulation. The ates and lower optimization performance). We ran some
second column shows the percentage difference betweentlgg(perimemS to determine how C4.5's performance varies
cost of performing the optimization with the standard for-ith training-set size, and how its performance compares
mulation and the cost of performing it with the specified yyith that of MFC for various training-set sizes. We applied
formulation. our learning approach to datasets of varying sizes, with the
error rates shown in Figure 9. For each training-set size in
the figure, we randomly chose ten different subsets of our
training data of that size and performed tenfold cross-
validation on each subset. The figure shows the averages.
The three symbols at the right side of the figure show MFC'’s
performance on the full training set. C4.5 outperformed MFC
for every training-set size, but C4.5’s error rate on smaller

Random 66.7% 66.7% 66.7%

Table 12. Effect of using formulations chosen by learner on
optimization performance. A positive quality change indicates
an improvement in quality (which is a reduction in course time)

Method Quality change CPU time change

Omniscient +0.085% —36%

Exhaustive +0.085% +384% 24pe simulated the omniscient learner by performing optimizations using
C4.5 +0.080% —35% all eight formulations for each goal (as in the “exhaustive” method), and
MFC +0.029% —32% then ignoring the cost of the seven optimizations that turned out not to be
None 0 0 best.

Random —0.276% —40% 2SInterestingly, according to thetest, the difference between C4.5 and
All ~0.599% —74% the omniscient method was not statistically significant, but this only illus-

trates a limitation of thé-test, since we know that the omniscient method
really is better, on average, than C4.5.
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Fig. 9. Effect of training-set size on learner performance.

training sets was significantly larger than C4.5s error ratetheir lower bounds for some missions. We trained C4.5 to
for larger training sets (with performance reaching an aspredict whether these four design parameters would be at
ymptote for training sets of about 60 cases or more). their lower bounds, depending on the mission. C4.5 pro-
duced a separate decision tree for each of these four design
variables. For example, Figure 10 shows the decision tree
for wing taper ratio. This decision tree says that the wing
taper ratio will be at its lower bound of zero, unless the mis-
We believe that our formulation-selection technique is apSion includes a takeoff phase and is almost entirely over land.
plicable to a broad range of design optimization problemsThe four decision trees can be used to select among“)6 (2
To test the domain independence of the formulation-selectioR0SSible formulations.
technique, we performed additional experiments in the air- Table 13 compares the cross-validated error rates of C4.5
frame domain and compared the impact on optimization perVith those of the most frequent class method and random
formance of C4.5 with that of MEC. guessing for each of the four design parameters. For the first
In the airframe domain there are eight design parameterdiiree parameters, C4.5 did much better than the most fre-
each of which can have an upper and lower bound. The ogduent class method. For the fourth parameter, fuel annulus
timal design sometimes lies at the bounds of some of thes@idth, C4.5 did much worse than the most frequent class
parameters, depending on the mission. method, violating our expectations. In this case, only 4 of
We used CFSQP as the optimizer, and we used the sant@e 76 training examples were positive. We suspect that C4.5
simulator and the same space of missions as in Section 5.
We used the same C4.5 decision tree described in that sec-
tion to predict which missions are feasible. As training data,

6.2. Formulation selection results
in airfframe domain

we used the same 100 ten-point random multistart CFSQP overland <= 95.0872% : zero (54.0)
optimizations, 76 of which were feasible. overland > 95.0872 :
We used the 76 feasible missions to train C4.5 for formu- | takeoff = no: zero (12.0/1.0)

lation selection. Of the eight design parameters, four were | takeoff = yes: nonzero (10.0)

never at their upper or lower bounds at the apparent optimajg. 10. Learned decision tree for predicting if the taper ratio will be at its
for any of the 76 missions. The other four had optima atiower bound of zero.
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Table 13. Cross-validated error rates for selecting whether to  Table 14. Effect of using formulations chosen by learner on

incorporate each lower bound in the airframe domain optimization performance in airframe domain
Design parameter C4.5 MFC Random Method Success Time change
Wing taper ratio 2.7% 14.5% 50.0%  Omniscient 16 —51%
Wing sweep 2.5% 27.6% 50.0%  Exhaustive 16 +1206%
Fuselage taper length 3.9% 22.4% 50.0% C4.5/none 15 —36%
Fuel annulus width 13.6% 5.3% 50.0% None 15 0
C4.5/MFC 13 —57%
MFC 13 —21%
All 3 —55%

would need more training examples to be more accurate.
Interestingly, in our prototype synthesis experiments, CART
had difficulty predicting the optimal value of fuel annulus
width (see Section 5).

To determine the impact of using the formulations s

The firstinteresting thing to note about Table 14 is that there
e_is one mission for which CFSQP failed to reach the optimum
lected by the various methods on optimization perfor-Withoutreformulation. The only way toreach the optimum for
mance, we randomly generated 25 new missions. Table 14iS mission is to use the “omniscient” method (which does
compares the performance of the various methods of forfOtexist) or the “exhaustive” method (which is extremely ex-
mulation selection when doing optimizations for theseP€NSive). The next thing to note is that using the formula-

new missions. For the methods that used C4.5, we usdlipns selected by C4.5 for the firstthree parameters, while not
the decision tree of Figure 6 to predict whether each nevcorporating fuelannulus width (*C4.5/none”), reduces cost
mission was feasible, and only performed optimizations?y 36% compared with not incorporating any constraints
for those missions that were predicted to be feasible. Fof NON€”) withoutany loss of quality. Using C4.5 for the first

the other methods, we performed optimizations for all 25three parameters and MFC for fuel annulus width (C4.5/

missions. Each optimization was a ten-point multistart. TheVIFC), causes CFSQP to fail to find the optimum in two ad-

“success” column indicates for how many of the missiongditional cases. Using MFC for all parameters causes the same

the specified method came within 1% in takeoff mass of thd'Umber of missed optima, at a higher cost. Incorporating all
best design founf The “time change” column shows the of the parameter bounds all of the time results in CFSQP al-

change in total number of simulations used in all of the op-NOSt @lways failing to get to the optimum. o
The airframe domain results are surprisingly similar to

timizations performed, compared with not incorporating any i X ;
constraints. the yacht-domain results. In the yacht domain, using the for-

Because cross-validation showed that C4.5 underperr-nUIationS selected by C4.5 reduced the cost of optimiza-

forms MFC for predicting whether to incorporate fuel an- ion by 35% (Table 12), while in the airframe domain the
nulus width, we did not use C4.5 to decide whether toSP€€dUP was 36%. In the yacht domain, using C4.5 also re-
incorporate this parameter. We used C4.5 to decide wheth&Ulted in a small quality increase, while quality remained
to incorporate the other three parameters, and then used t/{3® Same in the airframe domain. The reason for this differ-
different methods to decide whether to incorporate fuel an€Nc€ may be that the yacht-domain reformulations increase
nulus width. The first method used MFC to decide whetherth® Smoothness of the search space (by eliminating the 12-
to incorporate the fuel annulus width, which resulted in it Meter Rule penalties), while the airframe domain reformu-

always being incorporated. The results of this method ardations do not. Another interesting thing to note is that while
labeled “C4.5/MFC” in Table 14. For the second method.the difference between MFC and C4.5 was small (but sta-

we decided to play it safe and did not incorporate fuel anlistically significant) in the yacht domain, it was much larger

nulus width, since cross-validation suggests that we are ndf the airframe domain.
able to accurately predict when this parameter will be at its
bound. The results of this method are labeled “C4.5/none”

in Table 14. We compare these methods with the most frez' RELATED WORK

quent cla.ss method, witg the exhagstive rr'1eth0d that.doeéerbone (1992) has reported work that applied machine
op_tlmlzanons for all 16 ( ) formulations, with the OMNi-  |earning techniques to a problem similar to our prototype-
scient method that magically guesses the best formulationyg e ction problem. His design space, in the domain of truss
and with always incorporating all of the constraints (“all’) yesign, has an exponential number of disconnected search
or never incorporating any of the constraints ("none”).  gpaces. He uses inductive learning techniques to learn rules
for selecting a subset of these search spaces for further ex-
25Because CFSQP failed to find a feasible point in some of these opploratlon. In contrast, 'our sy;tem has a smaller number_Of
timizations, it was not possible to compute the average design quality. prototypes (each of which defines a search space) from which
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to choose, and it chooses only one of them. Cerbone uses @aper, exceptthatthey use qualitative reasoning instead of ma-
ad-hoc utility function to combine solution quality and searchchine learning to determine which constraints will be active
time when evaluating his learning methods, while we onlyat the optimum. Advantages of this technique are that it does
consider solution quality in this paper. Cerbone also presentsot require training data and that the reformulation is guar-
two learners that incorporate background knowledge by inanteed not to lose the global optimum. The disadvantage of
corporating the objective function into the learner. thistechnique is thatitrequires that the objective function and
Research on prototype-retrieval strategies for hill-climbingconstraint functions be symbolically differentiable and com-
design optimization is reported by Ramachandran et alposed of simple arithmetic operations; it would therefore not
(1992), who investigated a number of library-based methbe applicable to the complex simulators used in the experi-
ods for finding starting points for the DPMED iterative ments described in this paper.
parameter-design system. These included a nearest-neighborA number of research efforts have combined Al tech-
method, a curve-fitting method, and a hybrid method. Theniques with numerical optimization. Ellman et al. (1993)
curve-fitting method is similar to our prototype-synthesisdescribe a method for switching between a less expensive,
method. It uses regression to find a function that maps godess accurate simulator, and a more expensive, more accu-
parameters to initial design parameters, whereas our apate simulator during optimization, based on the magnitude
proach uses inductive learning to find a regression tree thaif the gradient. Bouchard et al. (1988) describe ways in
maps goal parameters to initial design parameters. Ranwhich expert systems could be applied to the parametric de-
achandran et al. compared their retrieval strategies in termsign of aeronautical systems. Hoeltzel and Chieng (1987)
of the number of iterations needed to carry out the hill-describe a system for digital chip design in which design is
climbing design-optimization process. They showed thatdone at an abstract level, using machine learning to esti-
starting points obtained by curve-fitting led to fewer itera- mate the performance that would be obtained if the design
tions than were required when the nearest-neighbor methodere carried out at a more detailed level. Orelup et al. (1988)
was used. In contrast to this, our work evaluates retrievatiescribe a system called Dominic Il, which uses an expert
strategies in terms of the quality of the resulting designs, irsystem to switch among various strategies during numeri-
addition to the number of iterations needed to find them. cal optimization. None of these efforts is focused directly
There has been much work arase-based reasoning on the problems of prototype selection and formulation se-
(Kolodner, 1993). Our prototype selection system can be sedection addressed in this paper.
as a case-based reasoning system, in which the prototype-Simulated annealing (SA) and genetic algorithms (GA)
selection method is theetrieval process and the optimiza- are able to deal with certain pathologies, such as nonsmooth-
tion method is thadaptatiorprocess.’ Researchersin case- ness, but they tend to be much slower than gradient-based
based reasoning have investigated the use of library-retrievalptimization. They tend to require thousands, or even tens
techniques for case-based design (Sycara & Navinchandraf thousands, of simulations, and thus are not practical when
1992) but have not used them to initialize an iterative desigreach simulation is expensive.
process. Bhatta and Goel (1995) describe a system that learnsPowell (Powell, 1990; Tong etal., 1992; Powell & Skolnick,
toretrieve a starting point for the design of a high-acidity sul-1993) has built a module called Inter-GEN, part of the
furic acid cooler. They evaluate the performance of this in-ENGINEOUS system (Tong, 1988), that seeks to combine the
dexing system based onits effect on retrieval time, rather thaability of genetic algorithms to handle multiple local optima
on its impact on optimization performance. with the speed of numerical optimization algorithms. It con-
Burns (1989) presents a graphical representation that caains a genetic algorithm and a numerical optimizer, and uses
be used to compare different design optimization pro-arule-based expertsystem to decide when to switch between
cesses. He uses the technique to show that small changestire two. Powell has tested his system on arealistic jet-engine
the starting prototype can result in large differences in thalesign problem. He does not, however, address the issues of
final design. Gelsey et al. (1996a) describe a Search Spageototype selection or formulation selection.
Toolkit, which assists in determining properties of the search
space that can be used for reformulation. Choy and Agodg  FTURE WORK
ino (1986) describe a system that automates Papalambros’s
and Wilde’s (1988) method of using monotonicity analysisOne area for future work is the application of our tech-
to detect constraint activity. niques to harder problems. For example, we need to study
Williams and Cagan (1994) presextivity analysisatech-  how our prototype selection approach scales up as the li-
nique inspired by monotonicity analysis. Their technique isbrary size increases. Also, the yacht-domain results pre-
similar to the formulation-selection technique described in thissented here apply to a constrained class of yacht-design goals,
those comprised of a fixed number of legs. Applying this
approach to courses with a variable number of legs would
*’We use the worgbrototypeto refer to a complete design, notan in- rajse an interesting machine learning question, since de-
complete prototype. The optimization process modifies the retrieved de- . . . . .
cribing a multileg race course requires a variable number

sign to satisfy the new goal. Our system is thus best viewed as a case ; -
based design system, rather than as a prototype-based design system. Of attributes, and thus traditional learners such as C4.5 do
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not directly apply. Learning methods operating on more ex- We have applied inductive learning to several decisions
pressive representations, such as inductive logic progranthat must be made when setting up an optimization, includ-
ming systems like FOIL (Quinlan, 1990), may enable goinging choosing a starting prototype and a formulation of the
beyond the simple representation of goals used here and hasearch space, and predicting whether a design goal is achiev-
dling more complicated goals. Further, in the results preable. There are other parts of the setup process to which
sented here, we assume that the only change between thwluctive learning might be applicable. For example, one
previous design sessions and the current design sessionnsght try to use inductive learning to choose an optimiza-
the design goal [for example, expressed awiad speed tion algorithm, a good value of the optimizer’s stopping tol-
heading pair for formulation selection in the yacht do- erance, a good step size to use in gradient computation, a
main]. An interesting question is, what would happen if, ingood box within which to randomly generate starting pro-
addition to changing the goal, we also changed the contotypes, a good number of random starting prototypes to
straints, or the simulator, or the form of the goal? We wouldgenerate, or the right level of accuracy to use in the simu-
need to find a way to encode whatever had changed as a dator. For each of these decisions, it would need to be de-
of attributes for the learner. termined whether the best choice depends on the design goal.

Other more difficult problems might involve a less smooth Finally, more experiments need to be done to explore the
search space, a higher dimensional goal space, or a less iigpact on optimization performance of using inductive learn-
liable optimizer. Such problems may arise when we test thisng to simultaneously make multiple choices within the op-
method in still other domains. timization setup problem.

It would be interesting to see if learning performance could

be improved by using neural networks, nearest-neighbog. DIMENSIONS OF MACHINE LEARNING
methods, statistical regression, or an “oblique” decisiontree |N DESIGN
learner [such as OC1 (Murthy et al., 1994)]. Another ap-_, . . : .
. . : . . This section attempts to categorize our work on using ma-
proach to improving learning performance is to integrate , . . T TR
! . chine learning to initialize an optimization in terms of the
background knowledge into the learning process. One forng . C . A . .
. . . . dimensions” of machine learning in design presented in
of background knowledge that is often availablenisdality
; L .. Grecu and Brown (1996).
constraints This is knowledge that expresses the modality
of the learned class with respect to the attributes. For ex- ) o
ample, in the yacht-design domain, we believe that optimaP-1- What can trigger learning®
beamis monotonically increasing in wind speed, and mono-In the experiments described in this paper, we ran the learner
tonically decreasing in heading. We also know that the acmanually when we felt that we had data from enough opti-
tivity of any constraint of the formi(x,,x,,...,x,) =kmust  mizations to learn something useful. The decision on when
be monotonic irk; therefore, for example, the activity of a to run the learner was thus one of human judgment. Learn-
cost constraint must be monotonic in the cost threshold. Oners that are invoked manually should be added to Grecu and
open question is how such knowledge could be integrate@rown’s (1996) taxonomy. We envision a system that uses
into learning. One approach would be to use such modalitpur techniques to learn incrementally (see Section 8). In such
constraints to remove from the training data points that vi-a system, learning would be triggered every time an opti-
olate the constraints (on the assumption that these pointwization is completed. It would learn both from successful
are noise). A second approach is to modify the tree induceptimizations and from unsuccessful optimizations. Hence,
tion algorithm so that it will never construct a tree that vi- in Grecu and Brown’s taxonomy, learning would be trig-
olates the constraints. A similar approach was used tgered by both success and failure.
constrain decision lists in Clark and Matwin (1993).
Finally, even after our learning approach is applied, ev-9.2. What are the elements supporting learning?

ery additional future optimization can serve as an addis . s o
i S ) . . When learning to initialize an optimization, our system learns
tional training point for the learning. Thus, learning methods, . S .

: . . : from the results of previous optimizations. These results in-
that can work in an incremental fashion might also prove

useful for this task. In addition, it may prove useful to de- clude the design goal, the design parameters of the optimal

: . . design, and the output of the simulator when applied to the
velop methods that select suitable data prior to learning. For ~. . )
o .2 optimal design. In Grecu and Brown’s taxonomy, these re-

example, when there are not enough existing optimizations : . .
to achieve adequate learnina results. additional o timizasults could be characterized as “feedback provided after com-
q 9 y P pleting the design task.” However, the “feedback” is provided

tions can be performed to generate further training datab S
. Lo y the system’s simulator rather than by a person or some-
Rather than performing these new optimizations for ran-

dom goals or for a set of goals that span the goal space, oggmg else that is external to the system.
could allow the learner to choose the goals to be used in the )

new training data. Background knowledge—such as modal-3- What might be learned?

ity constraints—could prove particularly useful in select- Our system learns rules that it uses to initialize future opti-

ing such goals. mizations. In Grecu and Brown’s taxonomy, this knowl-
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edge might be described as “preferences in selection task$dtype synthesis is especially appropriate in domains such
or “design rules.” as the aircraft domain, in which finding a feasible design is
difficult. The third technique, feasible goal prediction, is sim-
ilarly useful in such a domain.

We tested the fourth technique, formulation selection, in
Our system learns from the stored results of previous deboth the yacht domain and the aircraft domain. We showed
signs. In Grecu and Brown'’s taxonomy, it learns from “re- that using this technique can make design optimization faster,
positories of design and interaction histories.” because the reformulation reduces the dimensionality of the
search space, and more reliable, because the reformulation
can make the search space smoother.

9.4. Availability of knowledge for learning

9.5. Methods of learning

Our system uses induction; specifically, it uses decision tree
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9.8. Critique of the taxonomy DISCLAIMER

We suggest two additions to the taxonomy. First, we would )
add the following new dimension: To what type of design'\© @Pproval or endorsement of any commercial product by

process are the learning techniques applied? Is it, for exanjl® National Institute of Standards and Technology is in-
ple, a numerical optimization process (as in our case), éended or implied. Certain commercial equipment, instru-

search through a discrete space of designs, or a rule-basBifNts: or materials are identified in this paper in order to
procedure to produce a new design without any search? facilitate understanding. Such identification does not imply
Second, for inductive learning systems, it is important torecommendation or endorsement by the National Institute

ask whether the system does discrete-class learning (as fif Standards and Technology, nor does itimply that the ma-
our prototype selection work) or continuous-class Iearningte”als or equipment identified are necessarily the best avail-

(as in our prototype synthesis work). This distinction coulg@P!€ for the purpose.
be added to the taxonomy by substituting “discrete induc-

tion” and “continL_Jous indyction” for “induction” in the REFERENCES
“methods of learning” section of the taxonomy.

Bhatta, S., & Goel, A. (1995, August). Model-based design indexing and
index learning in engineering design. Working Notes of the 1IJCAI
10. CONCLUSION Workshop on Machine Learning in Engineering
Bouchard, E.E., Kidwell, G.H., & Rogan, J.E. (1988). The application of
Gradient-based methods do not perform well when optimiz- artificial intelligence technology to aeronautical system desigAlf/

ing designs using simulators that have pathologies. We de- AHS/ASEE Aircraft Design Systems and Operations Meeditignta,
ibed and demonstrated the utility of four techniques thag, . cordia September. AIAA Paper 88-4426.
scribed an str utifity ur niques Ereiman, L. (1984)Classification and Regression Tre&adsworth In-

improve optimization performance in such situations by ternational Group, Belmont, CA.

using inductive Iearning to make decisions when setting u@urns, S.A. (1989). C_;raphical representation of design optimization pro-
cessesComput. Aided Des. 21(121-24.

the deS|gn optimization. Two of these teChmqueS are methCerbone, G. (1992Machine learning in engineering: Techniques to speed

ods of choosing an initial prototype for optimization. Pro-  up numerical optimizatiorReport No. 92-30-09, PhD Thesis, Oregon
totype selection is especially appropriate in domains such__State University Department of Computer Science.

h htd L. hich there i datab f brevi Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monagan, M.B., &
as the yac omain in whic ere IS a database of previous Watt, S.M. (1992) First Leaves: A Tutorial Introduction to Maple V.

designs available and the available simulators are noisy. Pro- Springer-Verlag, New York.

https://doi.org/10.1017/50890060498122084 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060498122084

192 M. Schwabacher et al.

Choy, J., & Agogino, A. (1986). Symon: Automated symbolic monotonic- Schwabacher, M. (1996The use of artificial intelligence to improve the

ity analysis system for qualitative design optimizatiéttoc. ASME numerical optimization of complex engineering desigrReport No.

Int. Comput. Engrg. Conf. HPCD-TR-45. PhD Thesis, Rutgers University, New Brunswick, NJ.
Clark, P., & Matwin, S. (1993). Using qualitative models to guide induc- Sycara, K., & Navinchandra, D. (1992). Retrieval strategies in a case-
tive learning Proc. Tenth Int. Machine Learning Conpp. 49-56. Mor- based design system. Attificial Intelligence in Engineering Design

gan Kaufmann, Los Altos, CA. (Volume Il)(Tong, C. & Sriram, D., Eds.), pp. 145-164. Academic Press,
Ellman, T., & Schwabacher, M. (1993)bstraction and decomposition in New York.

hillclimbing design optimizatiorReport No. CAP-TR-14. Rutgers Uni- Tong, S.S. (1988). Coupling symbolic manipulation and numerical simu-

versity, New Brunswick, NJ. lation for complex engineering desigrist. Assoc. Math. and Comput.
Ellman, T., Keane, J., & Schwabacher, M. (199t)e Rutgers CAP Project in Simulation Conf. Expert Syst. for Numerical Computihgrdue Uni-

Design AssociateReport No. CAP-TR-7. Rutgers University, New versity, West Lafayette, IN.

Brunswick, NJ. Tong, S.S., Powell, D., & Goel, S. (1992). Integration of artificial intelli-
Ellman, T., Keane, J., & Schwabacher, M. (1993). Intelligent model selec- gence and numerical optimization techniques for the design of com-

tion for hillclimbing search in computer-aided desidtroc. Eleventh plex aerospace systemk992 Aerospace Design Confrvine, CA.

Nat. Conf. on Artificial IntelligenceWashington, DC, pp. 594-599. AIAA Paper 92-1189.

MIT Press, Cambridge, MA. Williams, B., & Cagan, J. (1994). Activity analysis: The qualitative anal-
Gelsey, A, Smith, D., Schwabacher, M., Rasheed, K., & Miyake, K. (1996a).  ysis of stationary points for optimal reasonifgoc. Twelfth Nat. Conf.

A search space toolkit: SSDeci. Support Sys. 1841-356. Artificial Intelligence Seattle, WA, pp. 1217-1223. MIT Press, Cam-

Gelsey, A., Schwabacher, M., & Smith, D. (1996b). Using modeling knowl-  bridge, MA.
edge to guide design space searchAltificial Intelligence in Design
‘96 (Gero, J.S. & Sudweeks, F., Eds.), pp. 367—385. Kluwer Academic
Publishers, Dordrecht, The Netherlands.
Grecu, D., & Brown, D. (1996). Dimensions of learning in agent-based
design.Workshop Notes, Machine Learning in Design, Artificial Intel- \Mark Schwabacher is a Postdoctoral Research Associate

ligence in Design '96. . . . ,
Hoeltzel, D., & Chieng, W. (1987). Statistical machine learning for the 1 the National Institute of Standards and Technology’s En-

cognitive selection of nonlinear programming algorithms in engineer-gineering Design Technologies Group. He has a B.A. (1990)

ing design optimization. IMdvances in Design AutomatipBoston, in Computer Science, Mathematical Sciences, and Econom-
MA.

International Yacht Racing Union (1985Jhe Rating Rule and Measure- ics from Rice UniverSity' ?‘nd M.S. (1992) and Ph'D' (.1996_)
ment Instructions of the International Twelve Metre Class. degrees in Computer Science from Rutgers University. His

Kolodner, J. (1993)Case-Based Reasoninglorgan Kaufmann Publish-  phR D. thesis was on the use of artificial intelligence, espe-
ers, San Mateo, CA.

Lawrence, C., Zhou, J., & Tits, A. (1998)ser’s guide for CFSQP version cially machine learning, to control the numerical optimiza-
2.3: A C code for solving (large scale) constrained nonlinear (mini- tion of complex engineering designs. This work focused on

_max) optimization problems, generating ite_:rates satisfying all inequal-the ability to use, within an optimization, “legacy” analysis
ity constraintsReport No. TR-94-16r1. Institute for Systems Research,

University of Maryland, College Park, MD. _codes that have “p_atholog|es” such as nl_Jmerl_caI noise. It
Letcher, J., Marshall, J., Oliver, J., & Salvesen, N. (1987). Stars and Stripesnvolved collaborations with Rutgers’ engineering depart-

Letcher, J. (1991)The Aero/Hydro VPP Manuahero/Hydro, Inc., South-
west Harbor, ME. ) ) )

Murthy, S., Kasif, S., Salzberg, S., & Beigel, R. (1994). A system for in- Thomas Ellmanis an Assistant Professor in the Department
duction of oblique decision tree3. Artif. Intell. Res. 21-32. of Computer Science at Rutgers University. He received his

Orelup, M.F., Dixon, J.R., Cohen, P.R., & Simmons, M.K. (1988). Do- . . . .
minic Il: Meta-level control in iterative redesigfroc. Nat. Conf. on Ph.D. and M.S. in Computer Science from Columbia Uni-

Artif. Intell., St. Paul, MN, pp. 25-30. MIT Press, Cambridge, MA.  versity, and his B.A. in Physics from Wesleyan University. His

Papalambros, P., & Wilde, J. (198&)rinciples of Optimal DesignCam-  research combines Atrtificial Intelligence and Software En-
bridge University Press, New York.

Powell, D. (1990)Inter-GEN: A Hybrid Approach to Engineering Design 9/N€€ring to _develo_p knOWInge'ba_Sed programming an_d
Optimization PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY. problem-solving environments for engineering design and sci-

Powell, D., & Skolnick, M. (1993). Using genetic algorithms in engineer- entific computation. Part of his work is focused on program
ing design optimization with non-linear constrairsoc. Fifth Int. Conf.

Genetic AlgorithmsUniversity of lllinois at Urbana-Champaign, pp. sy_ntheS|s. and p_rOgram tranSfOFmat|9n teghnlques for simu-
424-431. Morgan Kaufmann, Los Altos, CA. lation, optimization, and constraint satisfaction problems. An-

e e legical definitions from relatiadiachine  other part of his work is focused on environments for setting
earning —266. . . .
Quinlan, J.R. (1993C4.5: Programs for Machine Learninylorgan Kauf- ~ UP, carrying out, and interpreting the results of computa-
mann, San Mateo, CA. tional experiments.
Ramachandran, N., Langrana, N., Steinberg, L., & Jamalabad, V. (1992).
Initial design strategies for iterative desidtes. Engrg. Design,459—

169. Haym Hirsh received his B.S. in 1983 in Mathematics and
Rogers, D., & Adams, J. (1990Mathematical Elements for Computer Computer Science from UCLA, and his M.S. in 1985 and
Graphics 2nd Ed. McGraw-Hill, New York. Ph.D. in 1989 in Computer Science from Stanford Univer-

Schwabacher, M., & Gelsey, A. (1997). Intelligent gradient-based search . . . .
of incompletely defined design spacdstif. Intell. for Engrg. Design, sity. Since 1989 he has been at Rutgers University, where

Anal. and Manuf. 11(3)199-210. he is an Associate Professor of Computer Science.

https://doi.org/10.1017/50890060498122084 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060498122084

