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Abstract

Gradient-based numerical optimization of complex engineering designs offers the promise of rapidly producing better
designs. However, such methods generally assume that the objective function and constraint functions are continuous,
smooth, and defined everywhere. Unfortunately, realistic simulators tend to violate these assumptions, making opti-
mization unreliable. Several decisions that need to be made in setting up an optimization, such as the choice of a
starting prototype and the choice of a formulation of the search space, can make a difference in the reliability of the
optimization. Machine learning can improve gradient-based methods by making these choices based on the results of
previous optimizations. This paper demonstrates this idea by using machine learning for four parts of the optimization
setup problem: selecting a starting prototype from a database of prototypes, synthesizing a new starting prototype,
predicting which design goals are achievable, and selecting a formulation of the search space. We use standard tree-
induction algorithms (C4.5 and CART). We present results in two realistic engineering domains: racing yachts and
supersonic aircraft. Our experimental results show that using inductive learning to make setup decisions improves both
the speed and the reliability of design optimization.

Keywords: Case-based Reasoning; Decision Tree Induction; Engineering Design; Numerical Optimization;
Reformation

1. INTRODUCTION

An automated search of a space of candidate designs is an
attractive way to improve the traditional engineering de-
sign process. Each step of such an automated search re-
quires evaluating the quality of the candidate designs; for
complex artifacts such as aircraft, this evaluation must be
done by computational simulation.

Gradient-based optimization methods, such as sequential
quadratic programming (see Section 5.1), are reasonably fast
and reliable when applied to search spaces that satisfy their
assumptions. They generally assume that the objective func-
tion and constraint functions are continuous, smooth, and
defined everywhere. Unfortunately, realistic simulators tend
to violate these assumptions. We call these assumption vi-

olationspathologies. Non-gradient–based optimization meth-
ods, such as simulated annealing and genetic algorithms,
are better able to deal with search spaces that have pathol-
ogies, but they tend to require many more runs of the sim-
ulator than do the gradient-based methods. We therefore
would like to find a way to reliably use gradient-based meth-
ods in the presence of pathologies.

The performance of gradient-based methods depends to
a large extent on choices that are made when the optimiza-
tions are set up, especially in cases where the search space
has pathologies. For example, if a starting prototype is cho-
sen in a less pathological region of the search space, the
chance of reaching the optimum is increased. Machine learn-
ing can help by learning rules based on the results of pre-
vious optimizations that map the design goal into these
optimization setup choices. We demonstrate this idea by
using machine learning for four parts of the optimization
setup problem.

When designing a new artifact, it is desirable to make
use of the information gleaned from past design sessions.
Ideally, one would like to learn a function that solves the
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whole design problem. The training data would consist of
design goals and designs that satisfy those goals, and the
learning algorithm would learn a function that maps a de-
sign goal into a design. We believe that this function is too
hard to learn. We therefore focused on improving optimi-
zation performance by using machine learning to make some
of the choices that are involved in setting up an optimiza-
tion. In the course of our work, we found parts of the opti-
mization setup problem for which machine learning can help:
selecting starting prototypes, predicting whether goals are
achievable, and selecting formulations of the search space.

If each design in the design library that is used as training
data for the learner was created by an automated optimiza-
tion, and some of these optimizations failed to reach the true
optimum due to pathologies, then the training data will con-
tain some noise. It is therefore important to use a machine
learning method that has the ability to ignore reasonable
amounts of noise in the training data.

Our first effort was in the domain of the design of racing
yachts of the type used in the America’s Cup race. In this
domain, we had success using a technique that we callpro-
totype selection, which maps the design goal into a selec-
tion of a prototype from a database of existing prototypes.
We used C4.5, the standard tree-induction algorithm, in this
work.

Our second effort was in the domain of the design of su-
personic transport aircraft. We tried prototype selection in
this domain and found that it did not perform well, so we
decided to try a new idea that we callprototype synthesis.
Prototype synthesis synthesizes a new prototype by map-
ping the design goal into the design parameters that define
a prototype. It requires continuous-class induction, which
is not available in C4.5; hence we used CART.1 We then
realized that we could use the training data that we had col-
lected for prototype synthesis to further enhance optimiza-
tion performance using a new idea that we callachievable
goal prediction. Achievable goal prediction uses inductive
learning to predict whether a given design goal is achiev-
able before attempting to synthesize a starting prototype for
the goal. Since this decision is discrete rather than contin-
uous, we used C4.5.

We then had the idea of recognizing when designs are at
constraint boundaries, learning to predict this accurately, and
using these predictions to reformulate the search space. We
call this ideaformulation selection. This prediction is dis-
crete, so we used C4.5 to make it. We tested this idea in
both the yacht and aircraft domains and found it to be suc-
cessful in both domains.

This paper includes sections describing the four tech-
niques for using machine learning to set up optimizations:
prototype selection, prototype synthesis, achievable goal pre-
diction, and formulation selection. Each section includes ex-
perimental results which demonstrate that using the machine

learning techniques improves the speed of optimization
and/or the quality of the resulting designs.

2. INDUCTIVE LEARNING

The problem addressed by an inductive learning system is
to take a collection of labeled “training” data and form rules
that make accurate predictions on future data. Inductive
learning is particularly suitable in the context of an auto-
mated design system because training data can be gener-
ated in an automated fashion. For example, one can choose
a set of training goals (a training goal is a design goal used
for training purposes) and perform an optimization for all
combinations of training goals and library prototypes. One
can then construct a table that records which prototype was
best for each training goal.2 This table can be used by the
inductive learning algorithm to generate rules mapping the
space of all possible goals into the set of prototypes in
the library. If learning is successful, this mapping inter-
polates or extrapolates from the training data and can be
used successfully in future design sessions to map each new
goal into an appropriate initial prototype in the design library.

The specific inductive learning systems used in this work
are C4.5 (Quinlan, 1993) (release 3.0, with windowing turned
off ) for problems requiring discrete-class induction, and
CART (Breiman, 1984) for problems requiring continuous-
class induction. Both of these systems represent the learned
knowledge in the form of decision trees. The approach taken
by these systems is to find a small decision tree that cor-
rectly classifies the training data and then remove the lower
portions of the tree that appear to fit noise in the data. The
resulting tree is then used as a decision procedure for as-
signing labels to future, unlabeled data.

3. DESIGN ASSOCIATE

Our prototype-selection and formulation-selection tech-
niques have been developed as part of the “Design Associ-
ate,” a system for assisting human experts in the design of
complex physical engineering structures (Ellman et al.,
1992). Figure 1 shows a block diagram of the system’s soft-
ware architecture. The inductive learner learns a decision
tree from the design library. Given a new design goal, the
decision tree is used to map this design goal into a choice of
starting prototype from the design library or a choice of for-
mulation of the search space. The optimizer optimizes this
prototype for the new design goal, using the selected for-
mulation. At each iteration of this optimization, the opti-
mizer uses a multidisciplinary3 simulator to evaluate the
objective and constraint functions. At the end of the opti-
mization, the new optimal design is added to the design li-

1CART stands for Classification And Regression Trees.

2The cost of generating this table is discussed in Section 4.3.
3We call the simulatormultidisciplinary because it contains code to

evaluate the design using several engineering disciplines. For example,
our aircraft simulator includes weights, aerodynamics, and propulsion.
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brary. The decision tree is periodically rebuilt to reflect the
latest design library.

4. PROTOTYPE SELECTION

Many automated design systems begin by retrieving an ini-
tial prototype from a library of previous designs, using the
given design goal as an index to guide the retrieval process
(Sycara and Navinchandra, 1992). The retrieved prototype is
then modified by a set of design modification operators to tai-
lor the selected design to the given goals. In many cases, the
quality of competing designs can be assessed using domain-
specific evaluation functions. In such cases, the design mod-
ification process often is accomplished by an optimization
method such as a hill-climbing search (Ramachandran et al.,
1992; Ellman et al., 1992).

In the context of such case-based design systems, the
choice of an initial prototype can affect both the quality of
the final design and the computational cost of obtaining that
design, for three reasons. First, prototype selection may im-
pact quality when the design process is guided by a nonlin-
ear evaluation function with unknown global properties.
Since there is no known method that is guaranteed to find
the global optimum of an arbitrary nonlinear function
(Schwabacher, 1996), most design systems rely on iterative
local search methods whose results are sensitive to the ini-
tial starting point. Second, prototype selection may impact
quality when the prototypes lie in disjoint search spaces. In
particular, if the system’s design modification operators can-
not convert any prototype into any other prototype, the choice

of initial prototype will restrict the set of possible designs that
can be obtained byanysearch process. A poor choice of ini-
tial prototype may therefore lead to a suboptimal final de-
sign. Finally, the choice of prototype may have an impact on
the time needed to carry out the design modification process—
two different starting points may yield the same final design
but take very different amounts of time to get there. In design
problems where evaluating even just a single design can take
a tremendous amount of time, we believe that selecting an ap-
propriate initial prototype can be the determining factor in the
success or failure of the design process.

To use inductive learning to form prototype-selection rules,
we take as training data a collection of design goals, each
labeled with which prototype in the library is best for that
goal. “Best” can be defined to mean the prototype that best
satisfies the design objectives, the prototype that results in
the shortest design time, or the prototype that optimizes some
combination of design quality and design time.

4.1. Yacht domain

We developed and tested our prototype-selection methods
in the domain of 12-Meter racing yachts, which until re-
cently was the class of yachts raced in America’s Cup com-
petitions.4 An example of a 12-Meter yacht is theStars &
Stripes ’87, which is shown in Figure 2; a close-up of its
hull and keel is shown in Figure 3.5

In the yacht domain, a design is represented by eight de-
sign parameters that specify the magnitude with which a set
of geometric operators are applied to the B-spline surfaces
(Rogers and Adams, 1990) representing the hull of the start-
ingprototype.Thegoal is todesign theyacht thathas thesmall-
est course time for a particular wind speed and race course.
Course time is evaluated using a velocity-prediction pro-
gram (VPP) called “AHVPP” from AeroHydro, Inc., which
is a marketed product used in yacht design (Letcher, 1991).

A search space is specified by providing an initial proto-
type geometry and a set of operators for modifying that pro-
totype. Our current set of shape modification operators was
obtained by asking our yacht-design collaborators for an ex-
haustive list of all features of a yacht’s shape that might be
relevant to the racing performance of a yacht. These oper-
ators include:

• Global-Scaling Operators:Scale-X, Scale-Y, andScale-Z
change the overall dimensions of a racing yacht by uni-
formly scaling all surfaces.

• Prismatic-Coefficient Operators:Prism-X, Prism-Y, and
Prism-Zmake a yacht’s canoe-body more or less stream-
lined when viewed along theX, Y, and Z axes,
respectively.

4In 1992, the 12-Meter class was replaced with the new America’s Cup
Class.

5This is the boat that won the 1987 America’s Cup competition, return-
ing the trophy to the United States after an Australian win in 1983 (Letcher
et al., 1987).

Fig. 1. Design Associate block diagram.
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• Keel Operators:Scale-KeelandInvert-Keelchange the
depth and taper ratio of the keel, respectively.

These eight operators represent a subset of the full set that
was actually developed; they are a smaller set suitable for
testing our prototype-selection methods.6

4.2. Prototype selection results

We conducted several sets of experiments. In each case we
compare our approach with each of four other methods.

1. Closest goal.This method requires a measure of the
distance between two goals, and knowledge of the goal
for which each prototype in the design library was orig-
inally optimized. It chooses the prototype whose orig-
inal goal has minimum distance from the new goal.
Intuitively, in our yacht-design problem this method
chooses a yacht designed for a course and wind speed
most similar to the new course and wind speed. The

closest goal method can be seen as a simple version of
instance-based learning.

2. Best initial evaluation.This method requires running
the evaluation function on each prototype in the data-
base. It chooses the prototype that, according to the
evaluation function, is best for the new goal (before
any operators have been applied to the prototype). In
the case of our yacht-design problem, this corre-
sponds to starting the design process from whichever
yacht in the library is fastest for the new course and
wind speed.

3. Most frequent class (MFC).This is actually a very
simple inductive method that always chooses a fixed
prototype, namely the one that is most frequently the
best prototype for the training data.

4. Random. This method involves selecting a random
element from the design library, using a uniform dis-
tribution over the designs.

We compare these methods using two different evalua-
tion criteria:

1. Error rate. How often is a nonoptimal prototype
selected?

2. Course-time increase.How much worse is the result-
ing average course time than it would be using the op-
timal choice that an omniscient selection would make?

In our experiments we focused primarily on the question
of how well our inductive learning prototype-selection
method handles problems where the prototypes lie in dis-
joint search spaces. Our experiments therefore explored how
prototype selection affects the quality of the final design.

For the prototype selection experiments in the yacht do-
main, we used the Rutgers Hill-climber as our optimizer
(Schwabacher, 1996). It is an implementation of steepest-
descent hill-climbing that has been augmented to allow it to
“climb over” bumps in the surface defined by the objective
function that have less than a certain width or a certain
height.

For our first set of experiments we created a database of
four designs that would serve as our sample prototype li-
brary (and thus also serve as the class labels for the training
data given to our inductive learner). To simulate the effect
of having each prototype define a different space, the de-
sign library was created by starting from a single prototype
(theStars and Stripes ’87) and optimizing for four different6Using the full set would have required too much CPU time.

Fig. 2. Stars & Stripes ’87, winner of the 1987 America’s Cup competition.

Fig. 3. The hull and keel ofStars & Stripes ’87.
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goals using all eight of our design modification operators.7

All subsequent design episodes used only four of the eight
operators, so that each yacht would define a separate space.8

We defined a space of goals to use in testing the learned
prototype-selection rules. Each goal consisted of a wind
speed and a race course, where the wind speed is con-
strained to be 8, 10, 12, 14, or 16 knots and the race course
is constrained to be 80% in one direction (relative to the
wind) and 20% in a second direction, and each direction is
constrained to be an integer between 0 and 1808. This space
contains 162,900 goals.

To generate training data we defined a set of “training
goals” that spans the goal space. This smaller set of goals
was defined in the same fashion as for the testing set of goals
except that the directions in the race course are restricted to
be only 0, 90, or 1808, yielding a smaller space of 30 goals.
To label the training data we attempted to find designs for
each of the 30 goals, starting from each of the four proto-
types, using the restricted set of operators, and determined
which starting point was best.

To generate test data we randomly selected ten “testing
goals” from the goal space. We then generated designs, start-
ing from each of the four prototypes in the database, for each
of these testing goals to determine which prototype was best,
as well as to determine how much of a loss in course time each
incorrect selection would impose.9 Table 1 shows a portion
of the input to C4.5, and Figure 4 gives an example of a
decision tree output by C4.5. Table 2 compares the results
of using C4.5 with the results of using the other prototype-
selection methods. (Since there are four prototypes, one would
expect random guessing to get 75% of the test examples
wrong.)

In this experiment, the inductive method (C4.5) per-
formed better than the other methods on both measures of
performance. Moreover, we were particularly surprised by
how poorly the noninductive prototype-selection methods
(closest goal and smallest initial evaluation) performed—
our expectation was that the prototypes chosen by these
methods would be close in “design space” to the optimal
final design, thus yielding better final designs than starting
from the other prototypes.

After studying these results we generated two new hy-
potheses for why these two prototype-selection methods did
not work well. The first hypothesis was that the shape of the
design space may be such that there is little relationship be-
tween the distance between two designs and the ability of
the hill-climber to climb from one design to the other. If the
space contains “bumps” or “ridges” over which the hill-
climber cannot climb, then it might be more important for
the initial prototype to be on the “right side” of a bump or a
ridge than for it to be close to the optimal point. Our second
new hypothesis was that some of the prototypes in the data-
base may be “bad” prototypes. This could be the case if the
hill-climber got stuck at a local (nonglobal) optimum dur-
ing the run that produced the prototype. This latter hypoth-
esis was supported by the fact that one of the four prototypes
was never found to be a good starting point for any of the
30 goals in the training data (not even the goal for which it
was supposedly optimal, since it wound up being a local
optimum and starting from another prototype yielded a su-
perior result). In a realistic design scenario, when there is

7The four resulting designs were locally optimal according to our op-
timizer but were not necessarily globally optimal, or even necessarily lo-
cally optimal, because of the pathologies in the search space.

8The four operators we chose wereScale-X, Scale-Y, Prism-Y, andScale-
Keel. We chose these operators because the results of our earlier work on
operator-importance analysis suggested that these are the four most im-
portant operators [Ellman and Schwabacher, 1993].

9Since four complete optimizations were required for each testing goal,
we were limited by available CPU time to only ten testing goals.

Table 1. A portion of the input to C4.5 for prototype selection
in the yacht domain

Long leg Short leg Wind speed Initial design

180 0 8 Design 1
180 0 10 Design 2
180 0 12 Design 2
180 0 14 Design 2
180 0 16 Design 2
180 90 8 Design 1
180 90 10 Design 4
180 90 12 Design 4
180 90 14 Design 4
180 90 16 Design 1

Fig. 4. Example of a prototype-selection decision tree generated by C4.5.

Table 2. Comparison of prototype-selection methods when
trained on a set of goals that spans the goal space, using
AHVPP

Method Error rate Course-time increase (s)

Inductive learning 30% 24
Most frequent class 70% 47
Random guessing 75% 62
Best init eval 70% 64
Closest goal 70% 78
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no control over the source of a design library, there could
easily be “bad” prototypes included. Unlike the noninduc-
tive prototype-selection methods, the inductive methods learn
to avoid the bad prototypes.

We performed some experiments to test our first new hy-
pothesis that the closest goal and smallest initial evaluation
methodsperformedpoorlybecauseof the “bumps” in theeval-
uation function. We repeated the earlier experiments using a
simplified, “smooth” velocity prediction program, called
“RUVPP,” thatwedevelopedatRutgers (Schwabacher,1996).
RUVPPdiffers from the more complexAHVPPin several re-
spects. To begin with, RUVPP represents a yacht as a list of
major geometric dimensions such as length, depth, and beam,
rather than B-spline surfaces. Furthermore, RUVPP embod-
ies a number of simplifying assumptions about the physics of
sailing that are not made inAHVPP. Nevertheless, RUVPPis
useful for two reasons: it is much faster to execute than
AHVPP, and it has fewer of the bumps and ridges that appear
inAHVPP.We therefore expect that a hill-climbing search al-
gorithm is less likely to get stuck on the wrong side of a bump
or ridge when the simple RUVPPis used as an evaluation func-
tion. Table 3 presents the results of experiments comparing
the performance of inductively learned prototype-selection
rules to the other prototype-selection methods, repeating our
earlier experiments, but using RUVPPas the evaluation func-
tion and using 40 random test cases instead of just ten.10

Because RUVPP is much faster than AHVPP, we con-
ducted additional supporting experiments to test our first
new hypothesis to see if using a spanning set of goals as
training data was significant for our results. In particular,
rather than just using inductive learning on a set of goals
that span the space of possible goals, we also performed
experiments where C4.5 was trained on a random sample of
goals selected from the same space as the testing data. This
was done using ten trials of fourfold cross-validation on a
set of 40 random goals.11 Each such trial involved ran-
domly dividing the data into four sets of size ten, and using

three of the sets for training data and the remaining one as
testing. This is repeated four times, using each ten-element
set once for testing, and this process was repeated ten times
with different random partitionings of the data. Table 4 re-
ports the results of these experiments.

Consistent with our first new hypothesis, the closest goal
and best initial evaluation methods both did much better in
both cases with the simplified VPP than they did with AH-
VPP, while C4.5 did about the same as it had done before.
We believe that because the simplified VPP is much smoother
than AHVPP, the hill-climber is much less likely to get stuck,
so the distance in goal space or the difference in initial eval-
uation becomes much more relevant when choosing a pro-
totype. In fact, the improvement in the best initial evaluation
method was so great that it significantly outperformed the
inductive method. The best initial evaluation method may
be the best method to use when the search space is smooth.

We performed another set of experiments to test our sec-
ond new hypothesis of why the closest goal and smallest ini-
tial evaluation methods performed so poorly using AHVPP,
namely that they were unable to avoid the “bad” prototype in
the database. We repeated our preceding experiments using
the simplified VPP, except that we intentionally put a “bad”
prototype into the database. To generate a bad prototype, we
startedwith theStarsandStripes ’87andaddedarandomnum-
ber between20.2 and10.2 to each of the operator param-
eters. We then randomly chose one of the four prototypes
in the database to be replaced by the bad prototype (but we
left the class label the same). The results of repeating the ex-
periments with the bad prototype in the database are pre-
sented in Table 5 for training on goals that span the space and
Table 6 for training on random goals.

Consistent with our second new hypothesis, C4.5’s abil-
ity to avoid the “bad” prototype improved its performance
relative to the other methods. When trained on the spanning
goals, C4.5 performed only slightly worse than the smallest
initial evaluation method. When trained on the random goals,
C4.5 performed markedly better than any other method, as
measured by average course-time increase, although the
smallest initial evaluation method had a lower error rate.
This apparent anomaly can be explained as follows: The
“bad” prototype was very bad, so that choosing it even a
few times resulted in large increases in average course time.

10Since RUVPP uses less CPU time than AHVPP, we were able to use
more random test cases.

11We chose fourfold cross-validation so that each trial would use
the same number of testing goals (ten) as our earlier experiments with
AHVPP.

Table 3. Comparison of prototype-selection methods when
trained on a set of training examples that spans the goal space,
using the simplified velocity prediction program RUVPP

Method Error rate Course-time increase (s)

Best init eval 12% 26
Inductive learning 37% 57
Closest goal 40% 76
Most frequent class 45% 175
Random guessing 75% 257

Table 4. Comparison of prototype-selection methods when
trained and tested on random goals, using cross-validation and
RUVPP

Method Error rate Course-time increase (s)

Best init eval 12% 26
Inductive learning 30% 35
Closest goal 40% 76
Most frequent class 45% 175
Random guessing 75% 257
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C4.5 never chose the bad prototype. The best initial evalu-
ation method occasionally chose the bad prototype, so that
even though it chose the best prototype more frequently than
C4.5, the few times when it chose the bad prototype wors-
ened its average course-time increase.12

4.3. Cost of learning

One important question to answer is whether the inductive
prototype-selection method is worth the considerable “off-
line” expense of collecting training data—every training ex-
ample requires one design run for each design in the prototype
library.An alternative, possibly cheaper method would be to
take an “on-line” approach: For each new design problem, op-
timize starting from every prototype in the database, and then
use whichever of the resulting designs is the best.

If the quality of the final design is extremely important
and there is ample CPU time available, this “exhaustive”
method is the one to use (over any of the methods listed in
Table 2). On the other hand, if limiting CPU time is impor-
tant, our inductive learning method becomes cost-effective
when the computational expense of learning can be amor-
tized over a sufficiently large number of new design goals.
More specifically, the inductive prototype-selection method
is less expensive than the exhaustive method whenever the
number of hill-climbing runs taken by the inductive ap-
proach is less than the number of runs taken by the exhaus-
tive approach, that is,TP1 G , PG or

G .
T

1 2 ~1/P!
,

where

T 5 number of training examples,

P 5 number of prototypes in the database,

G 5 number of new goals for which prototypes need to
be selected.

(When using the inductive prototype-selection method,TP
is the cost of generating the training data andG is the cost
of performing optimizations for the new goals. When using
the exhaustive method, each prototype in the database must
be optimized for each new goal, at a cost ofPG.) In all of
the experiments that we performed, there were four proto-
types and 30 training examples; therefore, our inductive ap-
proach was less expensive than the exhaustive approach as
long as at least 40 out of the more than 150,000 remaining
design goals had to be attempted.

When doing prototype synthesis rather than prototype se-
lection, it is not necessary to collect training data in which each
prototype in a database is used as a starting point of an opti-
mization for each of a collection of goals. (Prototype syn-
thesis takes as training data the optimal design parameters for
each goal, rather than the selection of the best prototype from
a database for each goal.) Instead, any optimizations that were
done previously (within the same goal space) can be used as
training data. Hopefully, such data will already exist in a de-
sign library, so additional optimizations will not be needed to
generate training data. Prototype synthesis is described fur-
ther in the next section.

5. PROTOTYPE SYNTHESIS AND ACHIEVABLE
GOAL PREDICTION

Prototype synthesis uses continuous-class induction (also
known as regression) to map the design goal directly into
the design parameters that define a new prototype, instead
of selecting an existing prototype from a database. What is
learned is not a set of rules for selecting a prototype, but
rather a set of functions that map the design goal into the
design parameters. We performed some experiments to test
prototype synthesis in the domain of supersonic transport
aircraft design.

5.1. Aircraft domain

Figure 5 shows a diagram of a typical airplane automati-
cally designed by our software system to fly the mission
shown in Table 7. The optimizer attempts to find a good

12This hypothesis was verified by checking the data: C4.5 never chose
the “bad” prototype, but the best initial evaluation method did.

Table 5. Comparison of prototype-selection methods when
trained on a set of goals that span the space, using the
simplified VPP and a “bad” prototype in the database

Method Error rate Course-time increase (s)

Best init eval 10% 80
Inductive learning 30% 82
Closest goal 32% 89
Most frequent class 45% 171
Random guessing 75% 348

Table 6. Comparison of prototype-selection methods when
trained and tested on a set of random goals, using
cross-validation, the simplified VPP, and a “bad” prototype
in the database

Method Error rate Course-time increase (s)

Inductive learning 19% 38
Best init eval 10% 80
Closest goal 32% 89
Most frequent class 45% 171
Random guessing 75% 348
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aircraft conceptual design for a particular mission by vary-
ing major aircraft parameters such as wing area, aspect ra-
tio, engine size, and so on, by using a numerical optimization
algorithm. The optimizer evaluates candidate designs using
a multidisciplinary simulator. In our current implementa-

tion, the optimizer’s goal is to minimize the takeoff mass of
the aircraft, a measure of merit commonly used in the air-
craft industry at the conceptual design stage. Takeoff mass
is the sum of fuel mass, which provides a rough approxi-
mation of the operating cost of the aircraft, and “dry” mass,

Fig. 5. Supersonic transport aircraft designed by our system (dimensions in meters).
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which provides a rough approximation of the cost of build-
ing the aircraft. The simulator computes the takeoff mass of
a particular aircraft design for a particular mission as follows:

1. Compute “dry” mass using historical data to estimate
the weight of the aircraft as a function of the design
parameters and passenger capacity required for the
mission.

2. Compute the landing massm~tfinal!, which is the sum
of the fuel reserve plus the “dry” mass.

3. Compute the takeoff mass by numerically solving the
ordinary differential equation

dm

dt
5 f ~m, t!,

which indicates that the rate at which the mass of the
aircraft changes is equal to the rate of fuel consump-
tion, which in turn is a function of the current mass of
the aircraft and the current time in the mission. At each
time step, the simulator’s aerodynamic model is used
to compute the current drag, and the simulator’s pro-
pulsion model is used to compute the fuel consump-
tion required to generate the thrust that will compensate
for the current drag.

A complete mission simulation requires about 0.25 s of CPU
time on a DEC Alpha 250 4/266 desktop workstation.

In the airframe domain, the design goal is to minimize
takeoff mass (a rough estimate of life-cycle cost) for a spec-
ified mission. We defined the following space of missions:

distance between 1609 km (1000 miles)
and 16 090 km (10 000 miles)
percentage over land between 0 and 100%
Mach number over land of 0.85, altitude
12 192 m (40 000 ft)
Mach number over water between 1.5 and
2.2, altitude 18 288 m (60 000 ft)
optional takeoff phase, no climb phase

A mission within this space can be represented using three
real numbers (distance, percentage over land, and Mach num-
ber) and one Boolean value (whether the takeoff phase is

included). We generated 100 random missions as follows:
The distance and Mach number were uniformly distributed
over their possible ranges. There was a 1/3 probability of
having the mission entirely over land, a 1/3 probability of
having it entirely over water, and a 1/3 probability of hav-
ing the percentage over land uniformly distributed between
0 and 100%. There was a 1/2 probability of including the
takeoff phase.

The numerical optimizer used in the prototype synthesis
experiments is CFSQP (Lawrence et al., 1995),13 a state-
of-the-art implementation of the Sequential Quadratic Pro-
gramming (SQP) method. SQP is a quasi-Newton method
that solves a nonlinear constrained optimization problem by
fitting a sequence of quadratic programming problems14 to
it, and then solving each of these problems using a qua-
dratic programming method. We supplemented CFSQP with
rule-based gradients(Schwabacher & Gelsey, 1997) and
model constraints(Gelsey et al., 1996b).

Because the search space has many local optima, we used
a technique that we call “random multistart” to attempt to
find the global optimum. In ann-point random multistart,
the system randomly generates starting points within a par-
ticular box until it findsn evaluable points,15 and then per-
forms an SQP optimization from each of these points. The
best design found in thesen optimizations is taken to be the
global optimum.

5.2. Achievable goal prediction

In order to generate training data to test our techniques in
the airframe domain, we performed a ten-point random mul-
tistart CFSQP optimization for each of the 100 random mis-
sions. We found that for many of these missions CFSQP
was unable to find a feasible design in any of the ten runs—
that is, it was unable to design a plane that could fly the
mission. It occurred to us that it would be valuable if we
could predict in advance whether a given mission was achiev-

13CFSQP stands for “C code for Feasible Sequential Quadratic
Programming.”

14A quadratic programming problem consists of a quadratic objective
function to be optimized and a set of linear constraints.

15Some randomly generated designs, which we call “unevaluable points,”
cannot be simulated, either because the designs are meaningless or be-
cause of limitations of the simulator.

Table 7. Mission specification for aircraft in Figure 5

Altitude

Phase Mach m ft Duration (min) Comment

1 0.227 0 0 5 “takeoff”
2 0.85 12192 40000 50 subsonic cruise (over land)
3 2.0 18288 60000 225 supersonic cruise (over ocean)

Capacity: 70 passengers.
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able, so that we could avoid attempting to synthesize pro-
totypes for infeasible missions. We hypothesized that C4.5
would be able to make this prediction, and that it would be
able to do so with greater accuracy than MFC.

To test this newachievable goal predictionidea, we trained
C4.5 on a set of training examples showing whether each of
our 100 airframe domain missions was feasible.16 It pro-
duced the decision tree in Figure 6, which shows that mis-
sions are infeasible if they are very long or if they are
moderately long and have a significant portion over land.
Further analysis revealed that building a plane to fly such a
mission would require an engine larger than the largest en-
gine that we allowed. Our upper bound on engine size can
be considered to be representative of the largest commer-
cially available engine.

Tenfold cross-validation showed that C4.5 has a 4% er-
ror rate on this learning task, compared with 50% for ran-
dom guessing and 24% for most frequent class. The decision
tree in Figure 6 can be used to predict, without doing any
simulation or optimization, whether a new proposed mis-
sion is feasible.

5.3. Prototype synthesis

In order to map the new mission into the numerical design pa-
rameters that define a prototype, we needed to usecontinuous-
class induction(which is also known as regression). We used
CART (Classification And Regression Trees), which builds
a “regression tree” that has a numerical constant at each leaf
(Breiman, 1984).We trained CARTon the 100 randomly gen-
erated training goals as follows: For each design parameter
we gave CART a set of training data, where each item in the
training data included the goal and the “optimal” (according
to the optimizer) value of the design parameter. CART thus
generated a set of trees to map the design goal into a set of de-
sign parameters that we hoped would be near the optimal val-
ues for that goal. Table 8 shows the root mean squared error
(RMSE) in CART’s prediction of each design parameter,
relative to the error of “constant regression,” which always
uses the mean of the training data.Avalue less than one in this
table indicates that CART’s prediction was more accurate than
that of constant regression. Our expectation that these rela-

tive errors would be low was confirmed for all of the param-
eters except fuel annulus width.

We performed a set of experiments to test whether using
these trees to do prototype synthesis would produce better
optimization performance than using the mean prototype or
a random prototype. We used 25 randomly generated test-
ing goals.17 Table 9 compares using the prototypes synthe-
sized by CART with using a one-, two-, or three-point
random multistart or always using the prototype that is the
mean of all the optimized prototypes in the training data. Of
the 25 randomly generated test goals, 16 were feasible. The
“success” column shows the number of optimizations that
came within 1% of the point that we believe to be the global
optimum.18 Some of the failures occurred because the learn-
ing method produced an unevaluable prototype that could
not be simulated and therefore could not be optimized. Other
failures occurred because the optimizer, when started from
the synthesized point, failed to get within 1% of the appar-
ent global optimum. The “cost” column shows the total num-
ber of simulations used in the 16 optimizations. Using the
mean prototype instead of a single random prototype re-
sulted in much greater success, at 33% lower cost. Using
CART produced a success rate that was about the same as
the one using the mean prototype, with an additional 38%
cost reduction. Using a two-point random multistart pro-
duced the same success rate as the one using CART, but it
required more than four times as many simulations.

To test the significance of the result that CART per-
formed better than one random probe, we repeated the one-
random-probe test ten times with ten different seeds to the
random number generator. The mean and standard devia-
tion of the success rate and cost are shown in Table 10.
CART’s success rate was more than two standard devia-
tions higher than that of one random probe, and its cost was
more than two standard deviations lower than that of one
random probe.

16We did not test achievable goal prediction in the yacht domain, since
almost all goals (within our goal space) in that domain are achievable,
making the prediction unnecessary.

17Again, the number of testing goals was limited by available CPU
resources.

18Because CFSQP failed to find a feasible point in some of these op-
timizations, it was not possible to compute the average design quality.

Fig. 6. Learned decision tree for deciding if a mission is feasible.

Table 8. Accuracy of CART in predicting each design
parameter in the airframe domain

Design parameter Relative RMSE

Engine size 0.65
Wing area 0.59
Wing aspect ratio 0.06
Fuselage taper length 0.07
Effective structural thickness over chord 0.08
Wing sweep over design Mach angle 0.08
Wing taper ratio 0.21
Fuel annulus width 1.02
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6. FORMULATION SELECTION

Besides the selection of a starting prototype, another im-
portant decision in setting up an optimization is the deci-
sion on how to formulate the search space. This decision
can substantially affect the performance of the optimizer in
two ways. First, using a lower dimensional formulation of
the search space makes optimization faster, since each gra-
dient computation requires fewer runs of the simulator and
the distance in design space from the starting point to the
optimum is smaller. Second, different formulations of the
search space can result in different degrees of “smooth-
ness” of the search space, which can impact not only the
speed of the optimizer, but also the ability of the optimizer
to get to the optimum, and therefore the quality of the re-
sulting designs.

We present a method of reformulation called “constraint
incorporation,” which reduces the dimensionality of the
search space and increases its smoothness by incorporating
constraints into the search space.

Traditionally, numerical optimization has dealt with ex-
plicit, “hard” constraints. The optimizer assumes that these
constraints can never be violated. A hard constraint can be
expressed as

f ~x1,x2, . . . ,xn! # k.

(Here,x1,x2, . . . ,xn are thedesign parametersthat repre-
sent the design.) The constraint is said to beinactive if
f ~x1,x2, . . . ,xn! , k, active if f ~x1,x2, . . . ,xn! 5 k, andvi-
olated if f ~x1,x2, . . . ,xn! . k. Hard constraints can result
from the laws of physics, for example.

Another type of constraint is the “soft” constraint, for
which there is some sort of known penalty for violating the
constraint. A soft constraint can be expressed as

IF: f ~x1,x2, . . . ,xn! . k
THEN: apply penaltyP~x1,x2, . . . ,xn!.

These usually arise from human-written laws, such as reg-
ulations specifying a monetary penalty for exceeding a cer-
tain noise level. In either case, if it is known that the
constraint will be active at the optimal design point, and
that the constraint functionf is invertible, then the con-
straint can beincorporatedinto the search space by using
the inverse off to eliminate one of the design parameters.
This incorporation is done by making the inequality con-
straint into an equality constraint and then solving for one
of the design parameters in terms of the other design pa-
rameters. Papalambros and Wilde (1988) describe how
monotonicity knowledge can be used to determine whether
certain constraints will be active at the optimum. Incorpo-
rating these constraints produces a new search space with
lower dimensionality, since the incorporation eliminates a
design parameter, and greater smoothness, since the incor-
poration eliminates the “ridge” (or nonsmoothness) in the
search space caused by the “if” statement in the constraint.
If there aren constraints that can be incorporated in this
way, then there are 2n possible formulations that can be pro-
duced by incorporating different subsets of constraints.

Constraint activity depends on the goal (some constraints
are active at the optimum for only some design goals), for
two reasons: First, the constraint thresholds are part of the
design goal. Second, different design goals will result in dif-
ferent optimal values of the design parameters on which the
constraint functions depend.

Because constraint activity depends on the goal, differ-
ent formulations of the search space are appropriate for dif-
ferent design goals. We describe a way in which inductive
learning can be used to map the design goal into the appro-
priate formulation.

To use inductive learning to form formulation-selection
rules, we take as training data a collection of design goals,
each labeled with the set of constraints that are active (within
a threshold) at the optimal design point. We then run the
inductive learner once for each constraint, producing for each
constraint a set of rules that can be used to predict whether
the constraint will be active for new design goals.

The training data can be generated in an automated fash-
ion. For example, one can choose a set of training goals and
perform an optimization for each goal. One can then eval-
uate each constraint function for each optimal design, and
then construct a table that records which constraints were
active (within a threshold) for each training goal. This table
can be used by the inductive-learning algorithm to generate
a set of rules for each constraint, mapping the space of all
possible goals into a prediction of whether or not that con-
straint will be active at the optimal design point for that goal.
If learning is successful, these mappings can be extrapo-
lated from the training data and used successfully in future
design sessions to map a new goal into an appropriate
formulation.

Table 9. Comparison of prototype-synthesis methods

Method Success Cost (number of simulations)

CART 13/16 7394
mean 14/16 11963
1 random 8/16 16893
2 random 13/16 33883
3 random 14/16 47395

Table 10. Performance of one random probe averaged
over ten trials

Measure Success Cost (number of simulations)

Mean 8.8/16 15062
Standard Deviation 1.9/16 3102
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6.1. Formulation selection results in yacht domain

We performed some experiments to test the performance of
formulation selection in the yacht domain. In the experi-
ments described in this subsection, we used CFSQP as the
optimizer, withcourse time, computed by RUVPP, as the
objective function and with one explicit, nonlinear, “hard”
model constraint. This constraint specifies that the mass of
the yacht, before adding any ballast, must be less than or
equal to the mass of the water that it displaces. (In other
words, the boat must not sink.)19

Yachts entered in the 1987 America’s Cup race had to sat-
isfy a hard constraint known as the 12-Meter Rule (IYRU,
1985). Instead of using this rule as an explicit constraint,
we incorporated it into the search space. (How we incorpo-
rated it is described below.) The basic formula in the rule is

length2 freeboard1 #sailarea

2.37
# 12 m.

In addition to the basic formula, the rule contains several
soft constraints, along with associated penalties for violat-
ing these constraints. These soft constraints are

• draft constraint,

• beam constraint,

• displacement constraint,

• winglet span constraint.

For example, thebeam constraintstates that

IF: beam, 3.6 m,
THEN: add four times the difference tolength.

While constructing the simulator, we used a reasoning pro-
cess similar to that described in Papalambros and Wilde
(1988) to determine that the constraint described by the ba-
sic formula of the 12-Meter Rule will always be active, since
the objective function being minimized,course time, is
monotonically nonincreasing insailarea,20 and the left-
hand side of the constraint is monotonically increasing in
sailarea. We thereforeincorporatedthis constraint into the
simulator by solving forsailarea in terms of the other de-
sign parameters. Therefore, for example, when the opti-
mizer makeslengthbigger,sailarea is automatically made
smaller. In addition, because we also implemented the soft
constraints as penalty functions, reducingbeambeyond

3.6 m causes the quantitylengthin the formula to increase,
which causessailareato decrease.21

Because the beam constraint contains an “if” statement,
this incorporation causes a nonsmoothness incourse time
as a function ofbeam. That is, there is a discontinuity in the
first derivative ofcourse timewith respect tobeam. Fig-
ure 7 illustrates this nonsmoothness by showing the cross-
section of the search space corresponding to thebeamdesign
parameter.22 This nonsmoothness can cause a gradient-
based optimizer such as CFSQP to get stuck, and to fail to
get to the optimum.

For many design goals, the optimal design is directly on the
constraint boundary. The optimal beam is often 3.6 m. If we
expect the optimal beam to be 3.6 m, then we can incorporate
the beam constraint into the operators. In the case of the beam
constraint, this incorporation is trivial—we simply setbeam
to 3.6 m and leave it there. For other constraints, the incor-
poration is more complicated. For example, there is a con-
straint that specifies a penalty ifdisplacementdoes not vary
with a certain cubic polynomial inlength.Displacementis not
a design parameter; rather, it is a quantity computed from all
of the design parameters. In order to incorporate the displace-
ment constraint, we used Maple (Char et al., 1992), a sym-
bolic algebra package, to invert the displacement formula, and
created a new set of operators that vary certain parameters
while maintainingdisplacementat the minimum displace-
ment allowed by the constraint. For still more complicated
constraints, it might not be possible to invert the constraint
function using Maple; it might therefore be necessary for the
operators to contain numerical solvers that find the correct val-
ues of the incorporated design parameters so as to put the de-
sign on the constraint boundary.23

We created operators to incorporate all four of the above-
listed 12-Meter Rule constraints: the draft constraint, the
beam constraint, the displacement constraint, and the wing-
let constraint. Using these operators, we were able to either
incorporate or not incorporate each of these four constraints
independently. We thus defined a set of 16 (24) possible
formulations of the search space. From our initial experi-
ments with these operators, we determined empirically that
incorporating the draft constraint substantially improved the
reliability and speed of optimization for any design goal.
We therefore decided to always incorporate the draft con-
straint, leaving us with a space of eight possible formula-
tions that we used in the experiments described below.

Having defined eight formulations of the search space,
we used inductive learning to decide, based on the design

19Actually, the mass of the yacht mustequal the mass of the water it
displaces. SQP can more easily use inequality constraints than equality
constraints, and we determined that the inequality constraint specifying
that the mass of the yacht must be greater than or equal to the mass of the
water it displaces would be inactive, so we used only the “less than or
equal” constraint.

20The simulator assumes that there is perfect reefing, so additionalsail-
areacan never hurt the yacht’s performance.

21Because we incorporated the 12-Meter Rule into the simulator, we
did not need to use it as an explicit constraint.

22Although this figure shows only a “snapshot” of the search space for
specific values of the other design parameters, we believe that the trend
shown in the figure is generally applicable.

23Operators containing numerical solvers would probably be more com-
putationally expensive than operators containing the algebraic solutions of
the constraint functions, so the CPU time savings from reformulation would
probably be smaller.
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goal, which formulation to use. As training data, we used
100 previous optimizations. The optimizer failed for one of
these goals, so we used the remaining 99 goals as training
data in the results that follow. For each previous optimiza-
tion, we evaluated each 12-Meter Rule constraint function
at the optimum and determined whether the constraint was
active (within a tolerance). Each of these previous optimi-
zations had as its design goal minimizing course time for a
single-leg race course, which can be represented using two
numbers: the wind speed and the heading (the angle be-
tween the yacht’s direction and the wind direction). The de-
sign goal therefore can be represented using these two
numbers. We ran the inductive learner once for each of the
three constraints. Each time, the inductive learner was pro-
vided with a set of triples: the wind speed, the heading, and
a ternary value indicating whether the constraint was inac-
tive, active, or violated. One of the constraints was violated
at the optimum in ten of these optimizations. Figure 8 gives
an example of a decision tree output by C4.5. This decision
tree predicts whether the displacement constraint will be ac-
tive at the optimum, based on the design goal. By running a
new design goal down three decision trees, one for each of
the three constraints that can be incorporated, the system
can make predictions of whether each constraint will be ac-
tive at the optimum. These three yes/no predictions directly
map into one of the eight (23) formulations of the search
space.

We used C4.5 to perform tenfold cross-validation and ob-
tained the error rates shown in Table 11. Here we compare
the error rates of C4.5 with and without pruning, and of
C4.5rules, a variant of C4.5 that extracts rules from the trees,
with the expected error rate of random guessing (which is
two-thirds, since there are three classes from which to guess),
and the error rate of the most frequent class (MFC) learn-
ing method. MFC always chooses the class that occurs most
frequently in the training data, which in this case means that
it always chooses the same formulation, namely the one that
is most often the best formulation in the training data.

Fig. 7. The nonsmoothness in the search space caused by the beam constraint.

Fig. 8. Learned decision tree for the displacement constraint.
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As Table 11 shows, C4.5 with pruning performed slightly
better than C4.5 without pruning or C4.5rules (and so in
our further experiments reported below we use only C4.5
with pruning), and all three substantially outperformed MFC,
which in turn substantially outperformed random guessing.

These results are for error rates, the proportion of cases
where learning makes an incorrect guess. A more important
question in this domain is how learning affects the overall
problem-solving task, namely, how does it improve the speed
and reliability of the design optimization process? Does
learning make the design process faster or slower? Are the
resulting designs better or worse? To measure these effects,
we performed optimizations for 25 new, randomly gener-
ated goals using the formulations suggested by each learn-
ing method. Table 12 shows the effect that C4.5 (with
pruning) and MFC had on the average course time (the qual-
ity of the design) and the average number of evaluations
(the speed of the optimization), as compared with the “old
way” of doing optimization, without incorporating any of
the three constraints into the operators. The first column in
the table shows the percentage difference between the op-
timized course timeproduced with the standard formula-
tion that does not incorporate constraints, and the optimized
course timeproduced with the specified formulation. The
second column shows the percentage difference between the
cost of performing the optimization with the standard for-
mulation and the cost of performing it with the specified
formulation.

Also included in this table is the performance of several
other methods. A hypothetical “omniscient” problem solver
always magically guesses the best possible choice (the one
that results in the best course time).24 No learning method
will enable results superior to this. The “exhaustive” opti-
mization method performs eight optimizations for each goal,
using all eight possible formulations, and then chooses the
best resulting design. Incorporating “all” constraints all the
time results in the fastest possible optimization within this
set of formulations (at the cost of quality loss).

C4.5 produced a significant speedup in optimization with
no quality loss. In fact, it produced a small quality increase.
(This quality increase suggests that, with the standard for-
mulation, the optimizer gets “stuck” on the “ridges” that the
constraints cause the search space to have, and therefore
sometimes fails to get to the optimum). MFC produced a
slightly smaller speedup and a slightly smaller quality im-
provement. The difference between C4.5 and MFC in qual-
ity change was, however, statistically significant at the 99%
confidence level, according to the pairedt-test. Both learn-
ing methods performed substantially better than random
guessing. C4.5 performed almost as well as the hypotheti-
cal omniscient learner, which means that it performed al-
most as well as any learner could possibly do.25

Incorporating all of the constraints all of the time re-
sulted in a very large speedup with a modest quality loss.
This method may be appropriate for a quick and approxi-
mate optimization. It might, for example, be used in the early
stages of design, when the engineer wants to get a feel for
the search space by asking “what–if” questions.

One question that these results raise is how training-data
quantity affects performance. If one does not have results
from a large number of previous optimizations available,
then one can either run some extra optimizations to gener-
ate training data (which is expensive) or do the learning with
less training data (which is likely to produce higher error
rates and lower optimization performance). We ran some
experiments to determine how C4.5’s performance varies
with training-set size, and how its performance compares
with that of MFC for various training-set sizes. We applied
our learning approach to datasets of varying sizes, with the
error rates shown in Figure 9. For each training-set size in
the figure, we randomly chose ten different subsets of our
training data of that size and performed tenfold cross-
validation on each subset. The figure shows the averages.
The three symbols at the right side of the figure show MFC’s
performance on the full training set. C4.5 outperformed MFC
for every training-set size, but C4.5’s error rate on smaller

24We simulated the omniscient learner by performing optimizations using
all eight formulations for each goal (as in the “exhaustive” method), and
then ignoring the cost of the seven optimizations that turned out not to be
best.

25Interestingly, according to thet-test, the difference between C4.5 and
the omniscient method was not statistically significant, but this only illus-
trates a limitation of thet-test, since we know that the omniscient method
really is better, on average, than C4.5.

Table 11. Cross-validated error rates for predicting whether
each constraint will be inactive, active, or violated

Method Beam Displacement Winglet

C4.5 w/pruning 11.1% 15.1% 7.0%
C4.5 w/o pruning 11.1% 15.1% 10.0%
C4.5rules 11.1% 15.1% 10.0%
MFC 33.3% 53.5% 13.1%
Random 66.7% 66.7% 66.7%

Table 12. Effect of using formulations chosen by learner on
optimization performance. A positive quality change indicates
an improvement in quality (which is a reduction in course time)

Method Quality change CPU time change

Omniscient 10.085% 236%
Exhaustive 10.085% 1384%
C4.5 10.080% 235%
MFC 10.029% 232%
None 0 0
Random 20.276% 240%
All 20.599% 274%
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training sets was significantly larger than C4.5’s error rate
for larger training sets (with performance reaching an as-
ymptote for training sets of about 60 cases or more).

6.2. Formulation selection results
in airframe domain

We believe that our formulation-selection technique is ap-
plicable to a broad range of design optimization problems.
To test the domain independence of the formulation-selection
technique, we performed additional experiments in the air-
frame domain and compared the impact on optimization per-
formance of C4.5 with that of MFC.

In the airframe domain there are eight design parameters,
each of which can have an upper and lower bound. The op-
timal design sometimes lies at the bounds of some of these
parameters, depending on the mission.

We used CFSQP as the optimizer, and we used the same
simulator and the same space of missions as in Section 5.
We used the same C4.5 decision tree described in that sec-
tion to predict which missions are feasible. As training data,
we used the same 100 ten-point random multistart CFSQP
optimizations, 76 of which were feasible.

We used the 76 feasible missions to train C4.5 for formu-
lation selection. Of the eight design parameters, four were
never at their upper or lower bounds at the apparent optima
for any of the 76 missions. The other four had optima at

their lower bounds for some missions. We trained C4.5 to
predict whether these four design parameters would be at
their lower bounds, depending on the mission. C4.5 pro-
duced a separate decision tree for each of these four design
variables. For example, Figure 10 shows the decision tree
for wing taper ratio. This decision tree says that the wing
taper ratio will be at its lower bound of zero, unless the mis-
sion includes a takeoff phase and is almost entirely over land.
The four decision trees can be used to select among 16 (24)
possible formulations.

Table 13 compares the cross-validated error rates of C4.5
with those of the most frequent class method and random
guessing for each of the four design parameters. For the first
three parameters, C4.5 did much better than the most fre-
quent class method. For the fourth parameter, fuel annulus
width, C4.5 did much worse than the most frequent class
method, violating our expectations. In this case, only 4 of
the 76 training examples were positive. We suspect that C4.5

Fig. 9. Effect of training-set size on learner performance.

Fig. 10. Learned decision tree for predicting if the taper ratio will be at its
lower bound of zero.
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would need more training examples to be more accurate.
Interestingly, in our prototype synthesis experiments, CART
had difficulty predicting the optimal value of fuel annulus
width (see Section 5).

To determine the impact of using the formulations se-
lected by the various methods on optimization perfor-
mance, we randomly generated 25 new missions. Table 14
compares the performance of the various methods of for-
mulation selection when doing optimizations for these
new missions. For the methods that used C4.5, we used
the decision tree of Figure 6 to predict whether each new
mission was feasible, and only performed optimizations
for those missions that were predicted to be feasible. For
the other methods, we performed optimizations for all 25
missions. Each optimization was a ten-point multistart. The
“success” column indicates for how many of the missions
the specified method came within 1% in takeoff mass of the
best design found.26 The “time change” column shows the
change in total number of simulations used in all of the op-
timizations performed, compared with not incorporating any
constraints.

Because cross-validation showed that C4.5 underper-
forms MFC for predicting whether to incorporate fuel an-
nulus width, we did not use C4.5 to decide whether to
incorporate this parameter. We used C4.5 to decide whether
to incorporate the other three parameters, and then used two
different methods to decide whether to incorporate fuel an-
nulus width. The first method used MFC to decide whether
to incorporate the fuel annulus width, which resulted in it
always being incorporated. The results of this method are
labeled “C4.5/MFC” in Table 14. For the second method,
we decided to play it safe and did not incorporate fuel an-
nulus width, since cross-validation suggests that we are not
able to accurately predict when this parameter will be at its
bound. The results of this method are labeled “C4.5/none”
in Table 14. We compare these methods with the most fre-
quent class method, with the exhaustive method that does
optimizations for all 16 (24) formulations, with the omni-
scient method that magically guesses the best formulation,
and with always incorporating all of the constraints (“all”)
or never incorporating any of the constraints (“none”).

The first interesting thing to note aboutTable 14 is that there
is one mission for which CFSQP failed to reach the optimum
without reformulation.The only way to reach the optimum for
this mission is to use the “omniscient” method (which does
not exist) or the “exhaustive” method (which is extremely ex-
pensive). The next thing to note is that using the formula-
tions selected by C4.5 for the first three parameters, while not
incorporating fuel annulus width (“C4.5/none”), reduces cost
by 36% compared with not incorporating any constraints
(“none”) without any loss of quality. Using C4.5 for the first
three parameters and MFC for fuel annulus width (C4.5/
MFC), causes CFSQP to fail to find the optimum in two ad-
ditional cases. Using MFC for all parameters causes the same
number of missed optima, at a higher cost. Incorporating all
of the parameter bounds all of the time results in CFSQP al-
most always failing to get to the optimum.

The airframe domain results are surprisingly similar to
the yacht-domain results. In the yacht domain, using the for-
mulations selected by C4.5 reduced the cost of optimiza-
tion by 35% (Table 12), while in the airframe domain the
speedup was 36%. In the yacht domain, using C4.5 also re-
sulted in a small quality increase, while quality remained
the same in the airframe domain. The reason for this differ-
ence may be that the yacht-domain reformulations increase
the smoothness of the search space (by eliminating the 12-
Meter Rule penalties), while the airframe domain reformu-
lations do not. Another interesting thing to note is that while
the difference between MFC and C4.5 was small (but sta-
tistically significant) in the yacht domain, it was much larger
in the airframe domain.

7. RELATED WORK

Cerbone (1992) has reported work that applied machine
learning techniques to a problem similar to our prototype-
selection problem. His design space, in the domain of truss
design, has an exponential number of disconnected search
spaces. He uses inductive learning techniques to learn rules
for selecting a subset of these search spaces for further ex-
ploration. In contrast, our system has a smaller number of
prototypes (each of which defines a search space) from which

26Because CFSQP failed to find a feasible point in some of these op-
timizations, it was not possible to compute the average design quality.

Table 13. Cross-validated error rates for selecting whether to
incorporate each lower bound in the airframe domain

Design parameter C4.5 MFC Random

Wing taper ratio 2.7% 14.5% 50.0%
Wing sweep 2.5% 27.6% 50.0%
Fuselage taper length 3.9% 22.4% 50.0%
Fuel annulus width 13.6% 5.3% 50.0%

Table 14. Effect of using formulations chosen by learner on
optimization performance in airframe domain

Method Success Time change

Omniscient 16 251%
Exhaustive 16 11206%
C4.5/none 15 236%
None 15 0
C4.5/MFC 13 257%
MFC 13 221%
All 3 255%
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to choose, and it chooses only one of them. Cerbone uses an
ad-hoc utility function to combine solution quality and search
time when evaluating his learning methods, while we only
consider solution quality in this paper. Cerbone also presents
two learners that incorporate background knowledge by in-
corporating the objective function into the learner.

Research on prototype-retrieval strategies for hill-climbing
design optimization is reported by Ramachandran et al.
(1992), who investigated a number of library-based meth-
ods for finding starting points for the DPMED iterative
parameter-design system. These included a nearest-neighbor
method, a curve-fitting method, and a hybrid method. The
curve-fitting method is similar to our prototype-synthesis
method. It uses regression to find a function that maps goal
parameters to initial design parameters, whereas our ap-
proach uses inductive learning to find a regression tree that
maps goal parameters to initial design parameters. Ram-
achandran et al. compared their retrieval strategies in terms
of the number of iterations needed to carry out the hill-
climbing design-optimization process. They showed that
starting points obtained by curve-fitting led to fewer itera-
tions than were required when the nearest-neighbor method
was used. In contrast to this, our work evaluates retrieval
strategies in terms of the quality of the resulting designs, in
addition to the number of iterations needed to find them.

There has been much work oncase-based reasoning
(Kolodner, 1993). Our prototype selection system can be seen
as a case-based reasoning system, in which the prototype-
selection method is theretrieval process and the optimiza-
tion method is theadaptationprocess.27Researchers in case-
based reasoning have investigated the use of library-retrieval
techniques for case-based design (Sycara & Navinchandra,
1992) but have not used them to initialize an iterative design
process. Bhatta and Goel (1995) describe a system that learns
to retrieve a starting point for the design of a high-acidity sul-
furic acid cooler. They evaluate the performance of this in-
dexing system based on its effect on retrieval time, rather than
on its impact on optimization performance.

Burns (1989) presents a graphical representation that can
be used to compare different design optimization pro-
cesses. He uses the technique to show that small changes in
the starting prototype can result in large differences in the
final design. Gelsey et al. (1996a) describe a Search Space
Toolkit, which assists in determining properties of the search
space that can be used for reformulation. Choy and Agog-
ino (1986) describe a system that automates Papalambros’s
and Wilde’s (1988) method of using monotonicity analysis
to detect constraint activity.

WilliamsandCagan (1994)presentactivityanalysis, a tech-
nique inspired by monotonicity analysis. Their technique is
similar to the formulation-selection techniquedescribed in this

paper, except that they use qualitative reasoning instead of ma-
chine learning to determine which constraints will be active
at the optimum. Advantages of this technique are that it does
not require training data and that the reformulation is guar-
anteed not to lose the global optimum. The disadvantage of
this technique is that it requires that the objective function and
constraint functions be symbolically differentiable and com-
posed of simple arithmetic operations; it would therefore not
be applicable to the complex simulators used in the experi-
ments described in this paper.

A number of research efforts have combined AI tech-
niques with numerical optimization. Ellman et al. (1993)
describe a method for switching between a less expensive,
less accurate simulator, and a more expensive, more accu-
rate simulator during optimization, based on the magnitude
of the gradient. Bouchard et al. (1988) describe ways in
which expert systems could be applied to the parametric de-
sign of aeronautical systems. Hoeltzel and Chieng (1987)
describe a system for digital chip design in which design is
done at an abstract level, using machine learning to esti-
mate the performance that would be obtained if the design
were carried out at a more detailed level. Orelup et al. (1988)
describe a system called Dominic II, which uses an expert
system to switch among various strategies during numeri-
cal optimization. None of these efforts is focused directly
on the problems of prototype selection and formulation se-
lection addressed in this paper.

Simulated annealing (SA) and genetic algorithms (GA)
are able to deal with certain pathologies, such as nonsmooth-
ness, but they tend to be much slower than gradient-based
optimization. They tend to require thousands, or even tens
of thousands, of simulations, and thus are not practical when
each simulation is expensive.

Powell (Powell, 1990;Tongetal., 1992;Powell&Skolnick,
1993) has built a module called Inter-GEN, part of the
ENGINEOUS system (Tong, 1988), that seeks to combine the
ability of genetic algorithms to handle multiple local optima
with the speed of numerical optimization algorithms. It con-
tains a genetic algorithm and a numerical optimizer, and uses
a rule-based expert system to decide when to switch between
the two. Powell has tested his system on a realistic jet-engine
design problem. He does not, however, address the issues of
prototype selection or formulation selection.

8. FUTURE WORK

One area for future work is the application of our tech-
niques to harder problems. For example, we need to study
how our prototype selection approach scales up as the li-
brary size increases. Also, the yacht-domain results pre-
sented here apply to a constrained class of yacht-design goals,
those comprised of a fixed number of legs. Applying this
approach to courses with a variable number of legs would
raise an interesting machine learning question, since de-
scribing a multileg race course requires a variable number
of attributes, and thus traditional learners such as C4.5 do

27We use the wordprototypeto refer to a complete design, not an in-
complete prototype. The optimization process modifies the retrieved de-
sign to satisfy the new goal. Our system is thus best viewed as a case-
based design system, rather than as a prototype-based design system.
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not directly apply. Learning methods operating on more ex-
pressive representations, such as inductive logic program-
ming systems like FOIL (Quinlan, 1990), may enable going
beyond the simple representation of goals used here and han-
dling more complicated goals. Further, in the results pre-
sented here, we assume that the only change between the
previous design sessions and the current design session is
the design goal [for example, expressed as a (wind speed,
heading) pair for formulation selection in the yacht do-
main]. An interesting question is, what would happen if, in
addition to changing the goal, we also changed the con-
straints, or the simulator, or the form of the goal? We would
need to find a way to encode whatever had changed as a set
of attributes for the learner.

Other more difficult problems might involve a less smooth
search space, a higher dimensional goal space, or a less re-
liable optimizer. Such problems may arise when we test this
method in still other domains.

It would be interesting to see if learning performance could
be improved by using neural networks, nearest-neighbor
methods, statistical regression, or an “oblique” decision tree
learner [such as OC1 (Murthy et al., 1994)]. Another ap-
proach to improving learning performance is to integrate
background knowledge into the learning process. One form
of background knowledge that is often available ismodality
constraints. This is knowledge that expresses the modality
of the learned class with respect to the attributes. For ex-
ample, in the yacht-design domain, we believe that optimal
beamis monotonically increasing in wind speed, and mono-
tonically decreasing in heading. We also know that the ac-
tivity of any constraint of the formf ~x1,x2, . . . ,xn! # k must
be monotonic ink; therefore, for example, the activity of a
cost constraint must be monotonic in the cost threshold. One
open question is how such knowledge could be integrated
into learning. One approach would be to use such modality
constraints to remove from the training data points that vi-
olate the constraints (on the assumption that these points
are noise). A second approach is to modify the tree induc-
tion algorithm so that it will never construct a tree that vi-
olates the constraints. A similar approach was used to
constrain decision lists in Clark and Matwin (1993).

Finally, even after our learning approach is applied, ev-
ery additional future optimization can serve as an addi-
tional training point for the learning. Thus, learning methods
that can work in an incremental fashion might also prove
useful for this task. In addition, it may prove useful to de-
velop methods that select suitable data prior to learning. For
example, when there are not enough existing optimizations
to achieve adequate learning results, additional optimiza-
tions can be performed to generate further training data.
Rather than performing these new optimizations for ran-
dom goals or for a set of goals that span the goal space, one
could allow the learner to choose the goals to be used in the
new training data. Background knowledge—such as modal-
ity constraints—could prove particularly useful in select-
ing such goals.

We have applied inductive learning to several decisions
that must be made when setting up an optimization, includ-
ing choosing a starting prototype and a formulation of the
search space, and predicting whether a design goal is achiev-
able. There are other parts of the setup process to which
inductive learning might be applicable. For example, one
might try to use inductive learning to choose an optimiza-
tion algorithm, a good value of the optimizer’s stopping tol-
erance, a good step size to use in gradient computation, a
good box within which to randomly generate starting pro-
totypes, a good number of random starting prototypes to
generate, or the right level of accuracy to use in the simu-
lator. For each of these decisions, it would need to be de-
termined whether the best choice depends on the design goal.
Finally, more experiments need to be done to explore the
impact on optimization performance of using inductive learn-
ing to simultaneously make multiple choices within the op-
timization setup problem.

9. DIMENSIONS OF MACHINE LEARNING
IN DESIGN

This section attempts to categorize our work on using ma-
chine learning to initialize an optimization in terms of the
“dimensions” of machine learning in design presented in
Grecu and Brown (1996).

9.1. What can trigger learning?

In the experiments described in this paper, we ran the learner
manually when we felt that we had data from enough opti-
mizations to learn something useful. The decision on when
to run the learner was thus one of human judgment. Learn-
ers that are invoked manually should be added to Grecu and
Brown’s (1996) taxonomy. We envision a system that uses
our techniques to learn incrementally (see Section 8). In such
a system, learning would be triggered every time an opti-
mization is completed. It would learn both from successful
optimizations and from unsuccessful optimizations. Hence,
in Grecu and Brown’s taxonomy, learning would be trig-
gered by both success and failure.

9.2. What are the elements supporting learning?

When learning to initialize an optimization, our system learns
from the results of previous optimizations. These results in-
clude the design goal, the design parameters of the optimal
design, and the output of the simulator when applied to the
optimal design. In Grecu and Brown’s taxonomy, these re-
sults could be characterized as “feedback provided after com-
pleting the design task.” However, the “feedback” is provided
by the system’s simulator rather than by a person or some-
thing else that is external to the system.

9.3. What might be learned?

Our system learns rules that it uses to initialize future opti-
mizations. In Grecu and Brown’s taxonomy, this knowl-
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edge might be described as “preferences in selection tasks”
or “design rules.”

9.4. Availability of knowledge for learning

Our system learns from the stored results of previous de-
signs. In Grecu and Brown’s taxonomy, it learns from “re-
positories of design and interaction histories.”

9.5. Methods of learning

Our system uses induction; specifically, it uses decision tree
induction.

9.6. Local versus global learning

Our system does not currently use a multiagent approach to
learning; it thus does local learning according to Grecu and
Brown’s taxonomy.

9.7. Consequences of learning

The learning in our system can result in both improvement
in the quality of the resulting designs (“design improve-
ment” in the taxonomy) and in decreases in the amount of
CPU time needed to produce those designs (“improvement
of the design process” in the taxonomy).

9.8. Critique of the taxonomy

We suggest two additions to the taxonomy. First, we would
add the following new dimension: To what type of design
process are the learning techniques applied? Is it, for exam-
ple, a numerical optimization process (as in our case), a
search through a discrete space of designs, or a rule-based
procedure to produce a new design without any search?

Second, for inductive learning systems, it is important to
ask whether the system does discrete-class learning (as in
our prototype selection work) or continuous-class learning
(as in our prototype synthesis work). This distinction could
be added to the taxonomy by substituting “discrete induc-
tion” and “continuous induction” for “induction” in the
“methods of learning” section of the taxonomy.

10. CONCLUSION

Gradient-based methods do not perform well when optimiz-
ing designs using simulators that have pathologies. We de-
scribed and demonstrated the utility of four techniques that
improve optimization performance in such situations by
using inductive learning to make decisions when setting up
the design optimization. Two of these techniques are meth-
ods of choosing an initial prototype for optimization. Pro-
totype selection is especially appropriate in domains such
as the yacht domain in which there is a database of previous
designs available and the available simulators are noisy. Pro-

totype synthesis is especially appropriate in domains such
as the aircraft domain, in which finding a feasible design is
difficult. The third technique, feasible goal prediction, is sim-
ilarly useful in such a domain.

We tested the fourth technique, formulation selection, in
both the yacht domain and the aircraft domain. We showed
that using this technique can make design optimization faster,
because the reformulation reduces the dimensionality of the
search space, and more reliable, because the reformulation
can make the search space smoother.
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