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SUMMARY
In this paper we propose a tracking adaptive impedance
controller for robots with visual feedback. It is based on a
generalized impedance concept where the sensed distance is
introduced as a fictitious force to the control in order to
avoid obstacles in restricted motion tasks. The controller is
designed to compensate for full non-linear robot dynamics.
Robot parameters adjustment is introduced to reduce the
sensibility of the controller design to dynamic uncertainties
of the robot and the manipulated load. It is proved that the
vision control errors are ultimately bounded in the image
coordinate system. Simulations are carried out to evaluate
the controller performance.

KEYWORDS: Robot control; Visual feedback; Adaptive imped-
ance; Image system.

1. INTRODUCTION
The automation of tasks in the industry, those in which the
robot interacts with the environment, needs the incorpora-
tion of sensors and the generation of control strategies
which use this sensory information. Among controllers for
constrained robot motion, impedance control1 is designed to
regulate the manipulator’s mechanical impedance, that is
the dynamic relationship between the applied force and the
motion error. Force sensors are required for sensing the
interaction force.

The present work is related to the generalized impedance
robot control using visual feedback in which a strategy of
adaptive control is presented to deal with the problem of
uncertainties in the manipulator’s dynamics. Previous work2

considered the concept of elasticity related to the distance
sensing. In this work, the concept of impedance is
generalized and the sensed distance is introduced like a
fictitious force to the impedance control. The distance is
assumed to be measured by means of the vision sensor. The
tasks of the robotic manipulator with constrained motion
can be classified into: with contact (force sensor) and
without contact (distance sensor). Tasks without contact are
emphasized, the first ones being reserved for the robot’s
eventual mechanical contacts with the environment. In tasks
without contact, attractive surfaces (e.g. useful for profiles
tracking) and refractory surfaces (e.g. to avoid obstacles)
can be generated.

The use of visual information in the feedback loop
represents an attractive solution to motion control of
autonomous manipulators evolving in unstructured environ-

ments. In this context, motion robot control uses direct
visual sensory information to achieve a desired relative
position between the robot and –possible moving– object in
the robot environment. Some solutions to this problem have
been proposed3,4 in which non-linear robot dynamics has not
been considered for the controller design. These controllers
can result in unsatisfactory control under high performance
requirements, including high speed tasks and direct-drive
robot actuators. In such cases, the robot dynamics has to be
considered in the controller design, as partially done in
reference [5] or fully including in reference [6]. These
schemes assume an exact knowledge of robot dynamics, and
may result, in general, to be sensitive to robot model
uncertainties as is presented in reference [7].

This paper presents an adaptive impedance robot con-
troller in which signals are backfed directly from internal
position and velocity sensors and visual information. The
tracking impedance control errors are proved to be ulti-
mately bounded.8 The controller is based on inverse
dynamics, the definition of a manifold in the error space,9 a
desired impedance and a �-modification type parameters
update law. The control system proves useful to avoid
obstacles when tracking an external object based on visual
information.

2. DISTANCE SENSORY FEEDBACK
To regulate the robot’s mechanical impedance, it is
necessary to measure the interaction force in the physical
contact between the robot’s end effector and the environ-
ment. In some applications this contact is not desirable. This
is the case of obstacle avoidance or the follow contours. The
robot should react with a compliant movement when an
obstacle exists in the desired motion trajectory, without
causing any physical contact. This can be achieved by using
the impedance control, if it is considered a fictitious force F
defined as a function of the sensed distance between the end
effector and the surface. For example2 it is defined as,

F=�k(d�r) (1)

with �=0 if � d � > � r � or �=1 if � d � < � r �, where d is
the sensed distance vector between the end effector and the
obstacle. The distance d is calculated through an artificial
vision algorithm. k is a constant with appropriate dimension
and r � IRn is a colinear vector with d representing the
smaller acceptable approach from the robot to the surface.
The definition given in equation (1) is adapted to develop a
strategy to avoid collisions, because a refractory area is
generated around the object. Other definitions of fictitious
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force are possible according to the particular application.
For contour tracking, equation (1) should be used without
the commutation function �. This generates an appropriate
fictitious force to define an attractive surface at �r� distance.

3. ROBOT AND CAMERA MODELS
In the absence of friction and other disturbances, the joint-
space dynamics of an n-link manipulator can be written as,

H(q)q̈+Cq,q̇)q̇+g(q)=� (2)

where q is the n� 1 vector of joint displacement, � is the
n� 1 vector of applied joint torques, H(q) is the n� n
symetric positive definite manipulator inertia matrix,
C(q, q̇)q̇ is the n� 1 vector of centripetal and Coriolis
torques, g(q) is the n� 1 vector of gravitational torques.

The robot model (2) has some fundamental properties
that can be exploited in the controller design.10

Property 3.1. Using a proper definition of matrix C(q, q̇)
(only the vector C(q, q̇)q̇ is uniquely defined), matrices H(q)
and C(q, q̇) in (2) satisfy

zT[
d
dt

H(q)�2C(q, q̇)]z=0 �z � IRn (3)

Property 3.2. A part of the dynamic structure (2) is linear
in terms of a suitably selected set of robot and load
parameters, i.e.

H(q)q̈+Cq,q̇)q̇+g(q)=�(q, q̇, q̈)� (4)

where �(q, q̇, q̈) is an n� p matrix and � is an p� 1 vector
containing the selected set of robot and load parameters.

It is assumed that the robot is equipped with joint position
and velocity sensors and a vision camera mounted in the
robot hand. Following reference [6], let the camera and the
and the object positions be, sc � IRn and so � IRmO. For an
ideal perspective, the position of the object point in the
image plane is,

�=�x
y�=��

f
czo
� cxo

cyo
�= i(sc, so) (5)

with f the focal length of the camera lens, � is the scaling
factor in pixels/m and [cxo

cyo
czo]

T the relative position
vector of the object with respect to the camera coordinate
system (czo <0). This model can be extended to multiple
feature points of the object to obtain an extended imaging
model of the camera,

�= i+ (sc,so) (6)

with �=[x1y1 . . . xmym]T.
Noting that sc depends on q, differentiating (6) it yields,

�̇=J(q, so)q̇+Jo(q, so)vo (7)

where J � IR2m�n is the Jacobian matrix obtained as,

J(q, so)=JI(sc,so) �Rc(q)
0

0
Rc(q)�Jgeo

where JI is the image Jacobian matrix, Jgeo is the geometric
Jacobian matrix of the robot.11 Also, Jo � IR2m�mO is the
Jacobian matrix obtained as Jo(q, so)=�i+ (sc, so)/�so and �o

is the target velocity.

4. ADAPTIVE CONTROLLER
The following assumptions are considered, similar to those
in references 6 and 12:

Assumption 4.1. There exists qd(t) such that the desired
features vector �d is achievable,

�d = i+ (sc(qd(t)),so(t)).

Assmuption 4.2. For the target path so(t) there exists a
neighborhood of qd where J is bounded and invertible.

Assumption 4.3. The target velocity �o is bounded.

Now, we can formulate the tracking adaptive control
problem for the robot with visual feedback.

4.1. Tracking control problem
Considering assumptions 4.1–4.3, desired features vector
�d, initial estimates of dynamic parameters � in (3.2), initial
estimates of target velocity �̂o and its derivative d�̂o/dt, find,
a control law,

�=T(q, q̇, �, �̂, �̂o, d�̂o /dt,t), (8)

and a parameter update-law,

d

dt
�̇= 	(q, q̇, �, �̂, �̂o, d�̂o/dt,t) (9)

such that the control error in the image plane �d ��(t) is
ultimately bounded by a sufficiently small ball Br.

4.2. Generalized impedance control problem
The problem presented in the above subsection can be
modified to include generalized impedance control objec-
tives. An asymptotic impedance control objective can be
defined as,

�d ��(t) → � (Mm p2 +Bb p+Kk)
�1F(t) (10)

with t → 	 , where p=
d(.)
dt

is the derivative operator, Mm, Bb

and Kk are positive definite diagonal design matrices of
order 2m� 2m. F(t) is a fictitious force defined in the image
plane.

The impedance error is defined now as,
~
�=(�d +�o(t))��(t)=�r(t)��(t) (11)

with �o(t)=� (Mm p2 +Bb p+Kk)
�1F(t) and �r(t)=�d +�o(t).

In this paper, instead of the ideal asymptotic convergence to
zero (10), ultimately boundedness of 

~
�(t) is considered as

the control objective.
When there is no interaction between the robot and its

environment, this problem reduces to the tracking one
defined in subsection 4.1.
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4.3. Control and update laws
A manifold 
 is defined9 in the image error space as,


=
d
~
�

dt
+�

~
�. (12)

Target velocity �o and its derivative 
d�o(t)

dt
can be estimated

by means of a second order filter,

�̂o(t)=
bo p

p2 +b1p+bo

so(t)

d�̂o

dt
=

b o p2

p2 +b1p+bo

so(t). (13)

Using �̂o instead of �o in equation (7), an estimate of the
target velocity in the image plane �̇ is given as,

d�̂

dt
=Jq̇+Jo�̂o. Now, by substituting in (12), an estimate of 


is obtained,


̂=
dˆ̃�

dt+

~
�

. (14)

The following control law is proposed,

�=K
̂�+�
^
� (15)

with,


̂�=J�1
̂=J�1�̇o(t)� q̇�J�1Jo�̂o +J�1�
~
�, (16)

where, �̇o(t)=�p(Mm p2 +Bb p+Kk)
�1F(t) and

�(q, q̇, 
, �̂o,
d�̂o

dt
)^
�

�
^
�= ^H(q){J̇�1
̂�J�1J̇q̇�J�1J̇o�̂o +J�1�̈o

�J�1Jo

d�̂o

dt
�J�1�Jq̇�J�1�Jo�̂o (17)

+J�1��̇o}+ ^C(q,q̇){�J�1Jo�̂o

+J�1�
~
�+J�1�̇o}+ ĝ(q),

where: K and � are positive definite gain (n� n) matrices,
^H(q), ^C(q, q̇) and ĝ(q) are the estimates of H(q), C(q, q̇) and
g(q), respectively. Parameterization of (15) is possible due
to property 3.2.

To estimate �, the following parameter update-law is
considered, which is the �-modification type,13

d
dt

^
�=�T(q,q̇,
̂,�̂o,

d�̂o

dt
)
̂��L^

�, (18)

with  and L positive definite adaptation gain p� p
matrices.

5. STABILITY ANALYSIS

Proposition 5.1. Consider the control law (15) and the
update law (18) in closed loop with the robot and camera

models (2) and (6) with the assumptions 4.1–4.3. Then,
there exists a neighborhood of qd such that,

a)
~
�=��

^
��Lp

	 .

b) 
̂��Ln
	

⋂
Ln

2.

c)
~
�(t)=(�(t)��(t)) is ultimately bounded.

Proof: The closed-loop system is obtained by combining
(2) and (15),

K
̂�+�
^
�=Hq̈+Cq̇+g (19)

Using ^
�=��

~
� and equations (12) and (18) it yields,

K
̂���
~
�+H ^D
�+C
̂�=0 (20)

where ^D
� is the estimate of the 
� time derivative. But,
^D
�=D
̂�+��, with ��=J�1�Jo(�o ��̂o), �o ��̂o =�o the
estimate error, and D
̂� the time derivative of 
̂�.

Then,

HD
̂�=� (K+C)
̂�+�
~
��� (21)

where, �=H��.
Considering the local non-negative function of time,

V=
1
2


̂�TH
̂�+
1
2

~
�T�1~� (22)

whose time derivative along the trajectories of (21), consider-
ing the parameter update-law (18), is

V̇= 
̂�T[� (K+C)
̂�+�
~
���]

+
1
2


̂�TḢ
̂�+
~
��1[��T
̂+L�̂]. (23)

Considering property 3.1, it results,

V̇=� 
̂�TK
̂��
~
�T�1L

~
�� 
̂��+

~
�T�1L�. (24)

Using the expressions,

�~� � �� �≤
1
2

1
�2�

~
� �2 +

�2

2
�� �2

�
̂�T � �� �≤
1

2�2 �
̂� �2 +
�2

2
�� � 2 (25)

with �, ��IR+ , the equation (24) can be expressed as,

V̇≤����
̂�� 2 ����1L �~� � 2

+ �
̂� � �� �+	��1L�� �~� � (26)

with �
 =�min(K), ���1L =�min(
�1L) and 	��1L =�max(

�1L),
where � denotes singular value.

Also,

V̇=��1�
̂�� 2 ��2 ��̃ �2 + (27)

where,

�1 =�
 �
1

2�2 >0

�2 =���1L �
	��1L

2�2 >0 (28)

=	��1L

�2

2
�� � 2 +

�2

2
�� � 2.
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Equation (22) can be upper bounded by,

V=�1�
̂�� 2 +�2�
~
� � 2 (29)

where, �1 =
1
2

	H, with 	H =supq[�max(H)] and 	��1 =�max(
�1).

Then,

V̇≤�	V+ (30)

with, 	=min{
�1

�1

,
�2

�2

).

As  is bounded, equation (30) implies 
̂� � L2n
� , 

~
� � Lp

�

which proves (a) and (b). Also, x=(
̂�,
~
�)T is ultimately

bounded inside a ball B(0, r). Now, from (12), 
̂=J
̂� and by
assumption 4.2, 
̂� � L2m

� . Note that, 
̂ can be expressed in
terms of 
 as,


̂=
d
~
�

dt
+�

~
�+Jo(�o ��̂o)=
+Jo�o. (31)

As Jo�o is bounded, it means that 
 is ultimately bounded.14

From the last equation, 
~
�=O(
) where, O(�) is a linear operator

with finite gain. Therefore, �~
� �= �O � �
 � then, as 
 is

ultimately bounded 
~
� is also ultimately bounded, which proves

(c). Consequently, �r(t)��(t) is ultimately bounded. The last,
implies that if the object is placed at a distance greater than
� r � (�o � 0) it is verified that �o ��(t) is ultimately bounded,
which implies that the tracking control objective is satisfied.

Remark 1: If more features than degrees of freedom of the
robot are taken, a non-square Jacobian matrix is obtained. In

this case a redefinition of 
 as, 
=
d(JT~�)

dt
+�(JT~�), must be

used. Reasoning in a similar way as in proposition above, it is
possible to reach the same conclusions about the behaviour of
the control system.

Remark 2: It is possible to calculate a bound for the
ultimately behaviour of the control errors. This bound of
control errors depends on controller gains, the object velocity
estimation error and the inertia matrix of the robot.

6. SIMULATIONS
Computer simulations have been carried out to show the
stability and performance of the proposed tracking adaptive
impedance controller. The manipulator used for the simula-
tions is two-degree-of-freedom manipulator, as shown in
Figure 1. The meaning and numerical values of the symbols
are listed in Table I.

The elements Hij(q)(i, j=1, 2) of the inertia matrix H(q)
are,

H11(q)=m1l
2
c1 +m2(l

2
1 + l 2

c2 +2l1lc2 cos(q2))

+I1 +I2

H12(q)=m2 l 2
c2 + l1lc2 cos(q2))+I2

H21(q)=m2(l
2
c2 + l1lc2 cos(q2))+I2

H22(q)=m2l
2
c2 +I2.

The elements Cij(q, q̇)(i, j=1, 2) from the centrifugal and
Coriolis matrix C(q, q̇) are,

C11(q, q̇)=�m2l1lc2 sin(q2)q̇2

C12(q, q̇)=�m2l1lc2 sin(q2) (q̇1 + q̇2)

Fig. 1. Direct drive 2 d.o.f. manipulator.

Table I. Manipulator parameters

notation value units
Length link 1 l1 0.45 m
Length link 2 l2 0.55 m

C. of G., link 1 lc1 0.091 m
C. of G., link 2 + camera lc2 0.105 m

Mass link 1 m1 23.9 kg
Mass link 2 + camera m2 4.44 kg

Inertia link 1 I1 1.27 Kg m2

Inertia link 2 + camera I2 0.24 Kg m2

Fig. 2. End-effector trajectory in the work space.
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C21(q, q̇)=m2l1lc2 sin(q2)q̇1

C22(q, q̇)=0.

The entries of the gravitational torque vector g(q) are given
by,

g1(q)=(m1lc1 +m2l1)g sin(q1)
+m2lc2g sin(q1 +q2)

g2(q)=m2lc2g sin(q1 +q2).

The numerical values of the camera model are focal
length f = 0.008m and the scale factor � = 72727 pixels/
m.

The linear parameterization of equation (15) leads to a
parameter vector

�=[m1l
2
c1 m1lc1 m2l

2
c2 m2lc2 m2 I1 I2]

T.

For controller design it is assumed that the values are
known with uncertainties of about 40%. Simulations are
carried out using the following design parameters
� = diag (), i = 15, K = diag (k), ki = 100 and
 = diag (�), �i = 0.9 and L = diag (li), li = .00025.

The robot initial conditions are q1(0) = 30°,
q2 = 45°, q̇1 = 0 and q̇2 = 0. The parameters of desired
impedance are Mm = diag (0.01), Bb = diag (1) and
Kk = diag (30).

The trajectory of the object is a circle with radius
rd = 0.2m, angular velocity � = 1.05rad/sec and the
parameters of the second order filters are, bo = 4 104,
b1 = 400.

The desired image feature point was set to �d = [0 0]T.
The obstacle is considered circular and its center in
[0.67m �0.6m]T within work space of the robot. The
distance to which the fictitious force begin to act is
r = 0.1m.

Simulation results are shown in Figures 2 to 5. Figure 2
shows the end-effector trajectory in the work plane. Figure
3 shows evolutions of the control errors 

~
�. Finally, in the

Figures 4 and 5 are shown the parameters of the robot.

7. CONCLUSIONS
In this paper, we presented a tracking adaptive impedance
controller for robots with camera-in-hand configuration
using visual feedback, in which a generalized impedance
concept has been used in order to avoid obstacles. Full non-
linear robot dynamics has been considered in the controller
design. The control errors are proved to be ultimately
bounded. Simulations illustrate the ability of the proposed
controller to attain accurate control under dynamics uncer-

Fig. 3. Evolution of the control error. Fig. 4. Evolution of the parameters.

Fig. 5. Evolution of the parameters.
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tainties. Future work will solve the possible Jacobian
singularities when an object moves along a singular
direction so that it is not detectable by the camera.
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