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SEASONALITY IN ECONOMIC
MODELS

BJARNE BRENDSTRUP, SVEND HYLLEBERG,
MORTEN ØRREGAARD NIELSEN, LARS SKIPPER,
AND LARS STENTOFT
University of Aarhus

Seasonality has been a major research area in economics for several decades. The paper
assesses the recent development in the literature on the treatment of seasonality in
economics, and divides it into three interrelated groups. The first group, pure noise
models, consists of methods based on the view that seasonality is noise contaminating the
data or, more correctly, contaminating the information of interest for the economists. The
second group, time-series models, treats seasonality as a more integrated part of the
modeling strategy, with the choice of model being data driven. The third group, economic
models of seasonality, introduces economic theory, that is, optimizing behavior, into the
modeling of seasonality.
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1. INTRODUCTION

Seasonality has been a major research area in economics for several decades. Start-
ing with Sims (1974) and Wallis (1974), continuing with two conferences organized
by Arnold Zellner in 1976 and 1981 [see Zellner (1978, 1983)], the foundation
was created for an upsurge in the interest of economists and econometricians in the
proper treatment of seasonality within economics. The literature on the treatment
of seasonality in economics can be divided into three interrelated groups. The first
group, pure noise models, consists of methods based on the view that seasonality
is noise contaminating the data or, more correctly, contaminating the information
of interest for the economists—a view dating back at least to Jevons (1862, 1884)
[see Hylleberg (1986)]. The second group, time-series models, treats seasonality
as a more integrated part of the modeling strategy, but in a time-series fashion, that
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is, with the choice of model being data driven. The third group, economic models
of seasonality, introduces economic theory, that is, optimizing behavior, into the
modeling of seasonality. Obviously, the three groups are interrelated, and several
of the subgroups could be placed differently.

The most prominent methods in the first group, and methods that are not treated
here, are the methods applied to create official seasonally adjusted data published
by the statistical offices. The applications in economics of seasonally adjusted time
series published by the official data-gathering statistical offices are widespread.
For many years the most commonly applied official seasonal adjustment procedure
has been the X-11 method developed at the U.S. Bureau of the Census; see Shiskin
et al. (1967). The X-11 procedure is described in Hylleberg (1986, 1992). The
procedure has now been replaced in some places by X-12, which no doubt is a
major improvement over X-11. X-121 is described by Findley et al. (1998) in the
Journal of Business and Economic Statistics, which also published discussions by
Cleveland, Maravall, Morry and Chhab, Wallis, Ghysels, and Hylleberg. In some
countries and in the EU statistical office Eurostat, TRAMO/SEATS developed by
Victor Gomez and Augustin Maravall [see Gomez and Maravall (1996)] are applied
as well.2 In the following we will not discuss the officially applied procedures,
but refer to the excellent treatment in the recent book by Ghysels and Osborn
(2001).3

A much simpler filter often applied to clean up the data in empirical econometric
work is seasonal dummy variables, which are added to the regression equations [see
Lovell (1963)] or the seasonal difference filter applied by Box and Jenkins (1970).
The filtering may also take place in the frequency domain, that is, after a Fourier
transformation of the data, as in the band spectrum regression method suggested
by Engle (1974, 1980), and discussed by Hylleberg (1977, 1986), and Bunzel
and Hylleberg (1982). Obviously, the general idea of band spectrum regression is
almost identical to the now fashionable idea of the application of band pass filters,
see Baxter and King (1999).

The second group consists of five interrelated modeling approaches. The first
approach was basically suggested by Box and Jenkins (1970) and the basic model
is a multiplicative extension of the ARIMA model. The second approach, the
unobserved components models, specifies ARIMA models for the additive trend
cycle component and seasonal ARIMA models for the additive seasonal compo-
nent, and may be considered a restricted version of the general seasonal ARIMA
model. A third approach is based on the time-varying parameter model presented
and discussed by Hylleberg (1986), and the periodic autoregressive model or PAR
model, introduced into econometrics by Osborn (1988) and Franses (1991). The
fourth and closely related approach is based on the evolving seasonals models,
originally suggested by Hannan et al. (1970), but reintroduced into econometrics
by Hylleberg and Pagan (1997) as a flexible model nesting several of the seasonal
time-series models such as the periodic model and the seasonal unit root model.
The fifth approach is based on the idea that seasonality should be treated in a multi-
variate context, and the concepts of seasonal cointegration, periodic cointegration,
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and seasonal common features become central concepts [see Birchenhal et al.
(1989), Hylleberg et al. (1990), Franses (1993), and Engle and Hylleberg (1996)].

Finally, the third group contains the integration of the concept and treatment
of seasonality in economics, but, before we turn our attention to the three groups,
let us shortly state the definition of seasonality that we apply here. Seasonality in
economic time series is defined as

the systematic, although not necessarily regular, intra-year movement caused by the
changes of the weather, the calendar, and timing of decisions, directly or indirectly
through the production and consumption decisions made by agents of the economy.
These decisions are influenced by endowments, the expectations and preferences of
the agents, and the production techniques available in the economy.

Hylleberg (1992, p. 4)

The definition stresses both the characteristic features of the seasonal compo-
nents, their causes, and the economic contents.

2. APPLIED SEASONAL MODELS

2.1. Pure Noise Models

2.1.1. Seasonal dummies. The use of seasonal dummy variables to filter quar-
terly and monthly time-series data is very popular in econometric applications.
The dummy variable method was promoted by Lovell (1963), and it is designed to
take care of a constant stable seasonal component. The popularity of the seasonal
dummy variable method is partly due to its simplicity and the flexible way it can
be used. By use of the famous Frisch and Waugh (1933) result, extended by Lovell
(1963), it can be shown that the OLS coefficient estimator is the same irrespective
of whether the seasonal dummies have been introduced into the regression as in
the quarterly model

yt = β0 + x′
tβ + δ1d1t + δ2d2t + δ3d3t + εt , t = 1, 2, . . . ., T, (1)

where xt is a vector of explanatory variables observed in period t , and d jt , j = 1,

2, 3, is a seasonal dummy variable with a value of 1 for t = j, j + 4, j + 8, . . .,
and otherwise zero, or whether yt and xt or just xt have been seasonally adjusted
by regressing them on the seasonal dummies and the constant term before running
a regression using the seasonally adjusted data and no seasonal dummies.

The application of seasonal dummies may be justified in some cases. However,
many economic time series exhibit a changing seasonal pattern, implying that the
seasonal dynamics at best show up in the general dynamic specification of the
model, but often are buried in the errors [see Hylleberg et al. (1993)].

2.1.2. Seasonal integration and seasonal fractional integration. A simple fil-
ter often applied in empirical econometric work is the seasonal difference filter
(1 − Ls), where s is the number of observations per year; typically s = 2, 4, 12 or
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52 [see Box and Jenkins (1970)]. The seasonal differencing of Box and Jenkins as-
sumes that there are unit roots at all the seasonal frequencies in the autoregressive
representation, and they recommend that the seasonal difference filter be applied
until the transformed series is stationary. The seasonal difference filter can be writ-
ten as (1 − Ls) = (1 − L)(1 + L + L2 + · · · · · · + Ls−1), where the long-run- or
zero-frequency unit root is in the first factor and the seasonal unit roots are in the
seasonal summation filter S(L) = (1 + L + L2 + · · · · · · + Ls−1). The seasonal
summation filter has the real root −1 if s = 2 (and indeed for any even s), the real
−1, and the two complex conjugate roots ±i if s = 4, and one real and five pairs
of complex conjugate roots if s = 12, etc.

Many empirical studies have applied the so-called HEGY test developed by
Hylleberg et al. (1990) and Engle et al. (1993) for quarterly data and extended to
monthly data by Franses (1991) and Beaulieu and Miron (1993). These tests are ex-
tensions of the well-known Dickey and Fuller (1979) test for a unit root at the long-
run frequency (see also Dickey et al., 1984). Another test where the null is that of
no unit root at the zero frequency is suggested by Kwiatkowski et al. (1992) (KPSS
test) and extended to the seasonal frequencies by Canova and Hansen (1995).

The existence of seasonal unit roots in the data-generating process (DGP) implies
a varying seasonal pattern where “summer may become winter.” In most cases,
such a situation is not feasible and the finding of seasonal unit roots should be
interpreted with care and taken as an indication of a varying seasonal pattern,
where the unit root model is a parsimonious approximation and not the true DGP.
Furthermore, a proper choice of the initial condition may render “summer may
become winter” arbitrarily unlikely in finite samples, thus alleviating this main
criticism on the existence of seasonal unit roots.

Recently, Arteche (2000) and Arteche and Robinson (2000), among others, have
extended the analysis to seasonal long-memory or fractionally integrated models,
for which a seasonal fractional difference filter would be appropriate in the Box-
Jenkins spirit. Their estimation methods rely heavily on previous results from the
analysis of standard (nonseasonal) long-memory or fractionally integrated models
[see Granger and Joveux (1980), Hosking (1981), Geweke and Peter-Hudak (1983),
Robinson (1995a,b)].

One source of such fractionally integrated models is the aggregation of stationary
dynamic models. Granger (1981) showed that aggregating many AR(1) models
with random coefficients leads to a time series with long memory. Long-memory
models may also be the result of aggregation over time. Recently, these ideas have
been extended to the seasonal case by Lildholdt (2001), who considers aggregation
of stationary seasonal AR models and also has an extensive simulation study.
Common examples of such aggregated models are production, price indices, and
many other macroeconomic and financial time series.

Seasonal unit roots. In the standard unit root literature, a time series is said to
be integrated of order d if its dth difference has a stationary and invertible ARMA
representation. Hylleberg et al. (1990) generalized this to seasonal integration and
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defined a real-valued stochastic process {yt , t = 0, ±1, . . .} to be integrated of
order d at frequency ω if its spectral density satisfies

f (ω + λ) ∼ g|λ|−2d as λ → 0, (2)

where g is a positive constant, the symbol “∼” means that the ratio of the left- and
right-hand sides tends to 1, ω is a seasonal frequency, and d is a nonnegative integer.
In case of quarterly data, ω = {0, π, π/2, 3π/2}, where the frequency is measured
in radians. When convenient, the seasonal frequency may also be represented as
a fraction of a total circle, that is, as a fraction of 2π , θ = {0, 1

2 , 1
4 , 3

4 }; hence
ω = 2πθ . A series whose spectral density satisfies (2) with ω = 2πθ is denoted
yt ∼ Iθ (d). An example is the process (1 − L4)yt = εt , εt ∼ i.i.d.(0, σ 2), which is
integrated of order 1 at frequencies θ = {0, 1

2 , 1
4 , 3

4 }.
In general, consider the autoregressive representation

φ(L)yt = εt , εt ∼ i.i.d.(0, σ 2), (3)

where φ(L) is a finite lag polynomial. Suppose φ(L) has all its roots outside the
unit circle except for possible unit roots at the long-run frequency ω = 0 corre-
sponding to L = 1, semiannual frequency ω = π corresponding to L = −1, and
annual frequencies ω = {π/2, 3π/2} corresponding to L = ±i . The standard unit
root literature considers the estimation and testing of hypotheses regarding the
long-run unit root L = 1, and much of this work has now been generalized to
include the seasonal cases L = −1 and/or L = ±i .

Dickey et al. (1984) suggested a simple test [Dickey–Hasza–Fuller (DHF) test]
for seasonal unit roots in the spirit of the Dickey and Fuller (1979) test for long-run
unit roots. In the quarterly case, they suggest estimating the auxiliary regression

(1 − L4)yt = φyt−4 + εt , εt ∼ i.i.d.(0, σ 2). (4)

The DHF test statistic is the t-value corresponding to φ, which is nonstandard
distributed and thus tabulated in Dickey et al. (1984). This test, however, is a joint
test for unit roots at the long-run and all the seasonal frequencies; for instance, the
polynomial (1 − L4) can be written as (1 − L)(1 + L)(1 − i L)(1 + i L) and have
the roots L = {±1, ±i}.

To overcome the lack of flexibility in the DHF test, Hylleberg et al. (1990) refined
this idea. By use of the result that any lag polynomial of order p,φ(L), with possible
unit roots at each of the frequencies ω = 0, π, [π/2, 3π/2], can be written as

φ(L) =
4∑

k=1

ξk�(L)(1 − δk(L))

δk(L)
+ φ∗(L)�(L),

δk(L) = 1 − 1

ςk
L , ςk = 1, −1, i, −i, (5)

�(L) =
4∏

k=1

δk(L),
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where ξk is a constant and φ∗(z) = 0 has all its roots outside the unit circle, it
can be shown that, in the case of a quarterly time series, (3) can be written in the
equivalent form

φ∗(L)y4t = π1 y1t−1 + π2 y2t−1 + π3 y3t−2 + π4 y3t−1 + εt . (6)

This is a generalized version of (4), where

y1t = (1 + L + L2 + L3)yt ,

y2t = −(1 − L + L2 − L3)yt ,
(7)

y3t = −(1 − L2)yt ,

y4t = (1 − L4)yt .

Notice that, in this representation, φ∗(L) is a stationary and finite polynomial if
φ(L) from (3) only has roots outside the unit circle except for possible unit roots
at the long-run, semiannual, and annual frequencies.

The HEGY tests of the null hypothesis of a unit root are now conducted by
simple t-value tests on π1 for the long-run unit root, π2 for the semiannual unit
root, and F-value tests on π3, π4 for the annual unit roots. As in the Dickey-Fuller
and DHF models, the statistics are not t- or F-distributed but have nonstandard
distributions. Critical values for the t-tests are tabulated by Fuller (1976), while
critical values for the F-test are tabulated by Hylleberg et al. (1990). The test for
the complex unit roots may also be conducted by two tests based on the t-value
on π3 and the t-value on π4. The t-value on π3 has a distribution as the DHF
test with lag 2, provided π4 = 0. Hence, the test for complex unit roots using the
t-values on π3 and π4 starts by testing π4 = 0 by the t-value on π4, which, under
the null and φ∗(L) = 1, has a distribution tabulated by Hylleberg et al. (1990), and
continues by testing π3 = 0 as in the DHF case. The F-value can be shown to be
the sum of the squared t-values on π3 and π4. The t-tests are almost never used,
possibly due to the fact that the t-tests cannot be saved by augmenting with lagged
values of y4t in case of autocorrelation, as shown by Burridge and Taylor (2001).
Tests for combinations of unit roots at the seasonal frequencies are suggested by
Ghysels et al. (1994). See also Ghysels and Osborn (2001), who correctly argue
that if the null hypothesis is four unit roots, that is, the proper transformation is
(1 − L4), the test applied should be an F-test of πi , i = 1, 2, 3, 4, all equal to
zero.

As in the Dickey-Fuller case the correct lag-augmentation in the auxiliary re-
gression (6) is crucial. The errors need to be rendered white noise in order for the
size to be close to the stipulated significance level, but the use of too many lag
coefficients reduces the power of the tests.

Obviously, if the DGP contains a moving-average component, the augmentation
of the autoregressive part may require long lags [see Hylleberg (1995)]. As is
the case for the Dickey-Fuller test, the HEGY test may be seriously affected by
moving-average terms with roots close to the unit circle [see, e.g., the Monte Carlo
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analyses of Rodrigues and Osborn (1999) and Ghysels et al. (1994)], but also one-
time jumps in the series, often denoted structural breaks in the seasonal pattern,
and noisy data with outliers may cause problems, as shown by a number of authors
such as Ghysels et al. (1994, 1996), Harvey and Scott (1994), Canova and Hansen
(1995), Breitung and Franses (1998), Franses and Vogelsang (1998), Haldrup et al.
(2000), Taylor and Smith (2001), Kunst and Rutter (2002), Hassler and Rodrigues
(2003), and others.

The sensitivity of the HEGY test to structural breaks has led to extensions,
such as the one suggested by Hassler and Rodrigues (2003). They first examine
the behavior of several seasonal unit root tests in the context of structural breaks,
and show that the HEGY test and an LM variant of the HEGY test [see Breitung
and Franses (1998) or Rodrigues (2002)] are asymptotically unaffected by a finite
seasonal mean shift. However, in finite samples, both tests suffer from severe size
and power distortions. To correct for this, Hassler and Rodrigues (2003) propose
a new break-corrected LM-type test, which has asymptotic distributions already
tabulated in the literature, but is robust to seasonal mean shifts. Furthermore, it is
shown by a Monte Carlo experiment that although the test assumes that the break
point is known a priori, it is robust to misspecification of the break time even in
finite samples.

An alternative procedure was suggested by Canova and Hansen (1995) (CH
procedure), who extended the KPSS test to the seasonal case. The KPSS test for
a unit root at the zero frequency is based on a state-space representation of the
process, often called the structural or unobserved components model, such as

yt = τt + εt ,
(8)

τt = τt−1 + et ,

where et is white noise with variance σ 2
e , and the errors et and εs are independent

for all t and s. The null hypothesis of no unit root is parameterized as H0 : σ 2
e = 0.

Canova and Hansen (1995) extend the test to the seasonal case by constructing
similar models as (8) for the zero-frequency unit roots to each of the seasonal unit
roots [see Section 2.2.3].

The CH test is an LM-type test based on the residuals from the auxiliary regres-
sion

yω = Gα + Xβ + e, (9)

where the regressand, yω, ω = 0, π , or π/2, is a transformation of the observed
variable, leaving only the corresponding potential unit root in the series. The
regressors are deterministic seasonal terms (G) and other nonstochastic terms (X)
present under the null hypothesis. Canova and Hansen (1995) use the first difference
of the series as the regressand in order to remove a unit root at the zero frequency.
However, for the T × 1 error term to be of the form e = u + τCωξ, where u and
ξ are independent white-noise errors, and where the known T × T matrix Cω

projects ξ into a process with a unit root at frequency ω, the regressand must be
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free of unit roots at all frequencies except ω [see Hylleberg (1995) and Hylleberg
and Pagan (1997)].

Then Canova and Hansen (1995) test the hypothesis H0 : τ = 0, i.e., the null is
no unit root at the frequency ω against the alternative of a unit root, and the test
statistic suggested by Canova and Hansen (1995) is

Lω = 1

T σ̂ 2
ê′CωC′

ωê (10)

for frequencies ω = 0, π , or (π/2, 3π/2). Here, ê are the OLS residuals from the
regression (9) and σ̂ 2 is a consistent estimate of the long-run variance of et . The
distribution of the Lω-test is nonstandard but depends only on the number of unit
roots being tested, and is tabulated by Canova and Hansen (1995).

Besides the problems caused by the test being conditional on assumptions about
the integratedness at other frequencies, the introduction of lagged dependent vari-
ables into the auxiliary regression may cause problems for testing for seasonal
unit roots, unless sufficient care is exercised when choosing specific lags in the
augmentation that do not conflict with the seasonal unit roots [see Canova and
Hansen (1995) and Hylleberg (1995)]. Specifically, the use of lag 1 when testing
for a semiannual unit root may ruin the test.

Recently, some authors have begun developing an optimality theory for seasonal
unit root testing. Though no uniformly most-powerful test has been proposed (and
most likely none exists), several attempts have been made applying other optimality
criteria. The CH test is extended by Cancer (1998) who uses a parametric correction
for autocorrelation instead of the nonparametric correction employed by CH. Thus,
he is able to prove that his test is locally best invariant unbiased (LBIU). In a
Monte Carlo study, Caner’s test shows considerable power gains over the CH test.
A related approach is considered by Tam and Reinsel (1997) who develop an
LBIU test and a point optimal invariant (POI) test for a seasonal unit root in the
MA representation, corresponding to seasonal overdifferencing. Thus, their null
hypothesis is that of seasonal trend stationarity. By simulations it is shown that the
LBIU test is approximately uniformly most powerful since its power curve is very
close to the power envelope.

A recent promising addition to the battery of tests is the variance ratio test
suggested by Taylor (2002). The test is an extension of a test for a unit root at
the zero frequency suggested by Breitung (2002). For quarterly data, the null
hypotheses considered are a unit root at the zero frequency, a unit root at the
frequency π , and the complex unit root at the frequency π/2 (and the corresponding
complex conjugate root at 3π/2), against their stationary alternatives. The test
statistic of Breitung is

VR = T −3σ̂−2
T∑

t=1

(
t∑

j=1

ε̂ j

)2

, (11)
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where σ̂ 2 = ∑T
t=1 ε̂2

t , and ε̂t is the residual from a regression of the observed vari-
able xt on deterministic terms such as an intercept, a trend, and seasonal dummies.
The null of a unit root is rejected for small values of V R. The necessary assump-
tions for the test are somewhat weaker than the assumptions for the HEGY test.
Especially, one avoids the problems of finding the right lag augmentation, but pre-
filtering the observed series for possible unit roots at other frequencies is required
and may cause problems in small samples.

Hylleberg (1995) argues that the CH test and the HEGY test complement each
other. Kunst and Reutter (2002) consider the problem of choosing between the
Caner test, the CH test, and the HEGY test, using a Bayesian decision setup,
and Monte Carlo experiments show that the gains of such combinations over just
applying the HEGY test are small in most cases.

Although unit root testing in the case of semiannual and quarterly data is rela-
tively easy to perform in practice, and feasible in case of monthly observations, it
is not possible in practice to handle cases where the auxiliary regressions contain
more than 20 regressors as would be the case for weekly or daily data (even with
several years of weekly or daily data).4

The results of a number of studies testing for seasonal unit roots in economic
data series suggest the presence of one or more seasonal unit roots, but often not all
required for the application of the seasonal difference filter, (1− Ls), advocated by
Box and Jenkins (1970), or the application of the seasonal summation filter, S(L).
Thus, these filters should be modified by applying a filter that removes the unit
roots at the frequencies where they were found, and not at the frequencies where
no unit roots can be detected. Another and maybe more satisfactory possibility
would be to continue the analysis applying the theory of seasonal cointegration,
which is the subject of Section 2.2.5.

Seasonal fractional integration. Recently, Arteche (2000) and Arteche and
Robinson (2000) extended the analysis to include noninteger values of d in the
definition (2) of an Iω(d) process. In particular, let {yt , t = 0, ±1, . . .} be a real-
valued stochastic process with spectral density satisfying (2) for any real number
d ∈ (− 1

2 , 1
2 ). This defines a seasonal fractionally integrated process, which is said

to have strong dependence or long memory at frequency ω since the autocorrela-
tions die out at a hyperbolic rate in contrast to the much faster exponential rate in
the weak dependence case. The parameter d determines the memory of the pro-
cess, and its parameter space d ∈ (− 1

2 , 1
2 ) is chosen to ensure that the process is

stationary and invertible, that is, has a one-sided linear representation. If d = 0, the
spectral density is bounded at ω and the process has only weak dependence. For
proofs of these properties and many more, see, for example, Granger and Joyeux
(1980) or Hosking (1981).

When ω = 0, the process has standard long memory and when ω is a seasonal
frequency the process is said to have seasonal long memory. Many estimators
of the memory parameter d and the scale parameter g have been developed in
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the standard long memory context. Beran (1994), Robinson (1994b), and Baillie
(1996) provide overviews of both theoretical and empirical results in the area
of (standard) long-memory processes in econometrics and time-series analyses
up to about 1995. Basically, there are two dominant estimation methods. The
semiparametric method [developed by Geweke and Porter-Hudak (1983), Künsch
(1987), and Robinson (1995a,b)] assumes only the model (2) for the spectral
density and uses a degenerating part of the periodogram around ω to estimate
the model. It therefore has the advantage of being invariant to any dynamics at
other frequencies; for example, when estimating standard long-memory models
the estimator is invariant to short-run dynamics. Some estimators based on fully
specified parametric models have also been developed [e.g., Fox and Taqqu (1986),
Dahlhaus (1989), Robinson (1994a), and Nielsen (2004)], which are much more
efficient using the entire sample, but will be inconsistent if the parametric model
is specified incorrectly.

One of the two commonly used semiparametric estimators is the log-periodo-
gram estimator originally introduced by Geweke and Porter-Hudak (1983), ex-
tended to seasonal long memory by Porter-Hudak (1990), and analyzed in detail
by Robinson (1995b) and Arteche and Robinson (2000). Taking logs in (2) and
inserting sample quantities, we get the approximate regression relationship

ln(I (ω + λ j )) = c + −2d ln(λ j ) + error, (12)

where λ j = 2π j/n are the Fourier frequencies and I (λ) = 1/(2πn)| ∑n
t=1(yt −

ȳ)eitλ|2 is the periodogram of the observed process {yt , t = 1, . . . , n}. The estima-
tor d̂ is defined as the OLS estimator in the regression (12) using j = ±1, . . . ,±m,
where m = m(n) is a bandwidth number that tends to infinity as n → ∞. Under
suitable regularity conditions, including {yt } being Gaussian and a restriction on
the bandwidth, Arteche and Robinson (2000) showed consistency and asymptotic
normality of the estimator.

The Gaussian semiparametric estimator (or local Whittle estimator) is attractive
because of its nice asymptotic properties and very mild assumptions. The estimator
is defined as the pair (ĝ, d̂) that minimizes the (local Whittle likelihood) func-
tion

Q(g, d) = 1

m

m∑
j=1

{
ln

(
gλ−2d

j

) + λ2d
j

g
I (ω + λ j )

}
. (13)

One drawback compared to log-periodogram estimation is that numerical opti-
mization is needed. However, this estimator does not require the Gaussianity
condition, and Arteche (2000) and Arteche and Robinson (2000) showed that√

m(d̂ − d)
d→ N (0, 1/4). An extremely simple asymptotic distribution facilitat-

ing easy asymptotic inference.
The problem with the semiparametric approach is that only

√
m-consistency

is achieved in comparison to
√

n-consistency in the parametric case. Thus, the
semiparametric approach is much less efficient than the parametric one since it
requires at least m/n → 0.
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A more practical difficulty with the application of seasonal long-memory models
or seasonal fractional models is caused by estimating several d parameters. Even
in the standard long-memory model with only one d parameter, difficulties may
arise, but in case of quarterly data where there are three possible d parameters, the
testing procedure becomes very elaborate, with a sequence of clustered tests as in
Gil-Alana and Robinson (1997); see also Robinson (1994a) and Nielsen (2004).

2.1.3. Band spectrum regression and band pass filters. A natural way to
analyze time series with a strong periodic component seems to be in the fre-
quency domain, where the time series is represented as a weighted sum of cosine
and sine waves. Hence, the time series are Fourier transformed and time-domain
tools as autocovariance functions and cross-covariance functions are replaced by
frequency-domain counterparts such as spectra and cross-spectra. The spectrum is
the Fourier transformation of the autocovariance functions, and the autocovariance
is the inverse Fourier transformation for the spectrum.5

In the so-called real-business-cycle literature, it has become common practice
to filter out components such as the trend and also components with short periods
such as the seasonal component, and concentrate on the so-called business-cycle
component. This is done by applying band-pass filters, which ideally should leave
only the business-cycle component in the series. For a recent discussion of band-
pass filters, see Baxter and King (1999). However, application of such filters dates
back a long time [see Hannan (1960)]. The application of band spectrum regression
was further developed and analyzed by Engle (1974, 1980) and extended to the
seasonal case by Hylleberg (1977, 1986) and Bunzel and Hylleberg (1982).

Band spectrum regression. Band spectrum regression is based on a frequency-
domain representation of the time series. Let us assume that we have data series
with T observations in a T × 1 vector y and a T × k matrix X related by y = Xβ
+ ε, where ε is the disturbance term and β is a k × 1 coefficient vector. The finite
Fourier transformations of the data series are obtained by premultiplying the data
matrices by a T × T matrix Ψ, with the k + 1 row equal to

Ψk = 1√
T

{
1, e

2π ik
T , e

2π i2k
T , . . . , e

2π i(T −1)k
T

}
. (14)

The Ψ matrix is complex and a Hermitian unitary matrix; that is, Ψ=Ψ† and
Ψ†Ψ= I , where Ψ† is the transposed complex conjugate matrix of Ψ. Hence, the
OLS estimate in the regression of the transformed series

Ψy = ΨXβ + Ψε (15)

is the same as the original OLS estimate. Let us premultiply the transformed model
by a diagonal T × T matrix A with zeros and ones on the diagonal to obtain

AΨy = AΨXβ + AΨε. (16)
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The effect of having zeros along the diagonal of A is to take out the correspond-
ing frequency components in the Fourier-transformed data series.6 Hence, by
an appropriate choice of zeros in the main diagonal of A, the exact seasonal
frequencies,7 that is, in the quarterly case the (k + 1)th diagonal element of A,
where (2πk)/T = π/2, π , and 3π/2 for k = 0, 1, . . . . , T −1, may be filtered from
the series. In case of a varying seasonal pattern, frequencies in a band around the
exact seasonal frequencies may be filtered from the series as well [see Hylleberg
(1977, 1986) and Bunzel and Hylleberg (1982)].8

One of the advantages of the band spectrum regression is that it is possible to
test directly for the appropriate filtering, as argued by Engle (1974).

Band-pass filters. Most of the literature on the use of band-pass filters is con-
nected to the real-business-cycle literature, following Hodrick and Prescott (1980),
Prescott (1986), and Kydland and Prescott (1990). The focus of that literature is
the business-cycle component, and the ideal band-pass filter is a filter that leaves
out all the components not connected to the business cycle.

Obviously, similar procedures could be applied to leave out only the seasonal
components. The ideal seasonal band-pass filter is a filter that leaves out the non-
seasonal components of the economic time series.

Following Baxter and King (1999), for instance, it can be shown that an ideal
seasonal band-pass filter that passes through only the frequencies ω ≤ ω ≤ ω has
frequency response function β(ω) = 1 for ω ≤ ω ≤ ω and β(ω) = 0 elsewhere, has
the form b(L) = ∑∞

h=−∞ bh Lh , where

bh =
{

ω − ω

π
for h = 0

sin(ωh) − sin(ωh)

hπ
for h = 1, 2, . . .

(17)

However, the filter b(L) = ∑∞
h=−∞ bh Lh is an infinite moving average, and in

practice, we are forced to apply an approximate finite moving-average filter, such
as aK (L) = ∑K

k=−K ak Lk .
If the optimization criteria are based on minimizing (1/2π)

∫ π

−π
|β(ω) −

αK (ω)|2 dω, it can be shown that the optimal approximate band-pass filter is
aK (L) = ∑K

k=−K bk Lk for a given truncation K . Hence, the optimal approximating
band-pass filter aK (L) is constructed from the ideal band-pass filter b(L) by letting
the weights be equal within the truncation lag, that is, ak = bk for k = 0, ±1, .. ±K .

The effect of the truncation with lag length K is to lose K observations at each
end of the sample. However, a large K implies a better approximation. In fact, a
small K may result in admitting substantial components just above ω and below
ω, an effect called leakage, whereas the frequency response may be both below the
unit frequency response (compression) and above it (exacerbation). Hence, there
exists a trade-off between large and small K ’s for a given sample size T .

Whether one applies filtering in the frequency domain as in band spectrum
regression or in the time domain as in band-pass filtering, the actual success of the
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filtering depends on the choice of bandwidth K , and the spectral characteristics
of the series at hand. Even a small leakage in the filter may give rise to severe
disturbances if the spectrum of the filtered series has mass at particular frequencies.

2.2. Time-Series Models

2.2.1. The Box-Jenkins model. In the traditional analysis of Box and Jenkins
(1970), the time series were made stationary by application of the filters (1 − L)
and/or (1 − Ls) = (1 − L)(1 + L + L2 + L3 + · · · · · · Ls−1), as many times as was
deemed necessary from the form of the resulting autocorrelation function. After
having obtained stationarity, the filtered series were modeled as an autoregressive
moving-average, or ARMA, model. Both the AR and the MA part could be modeled
as consisting of a nonseasonal and seasonal lag polynomial. Hence, the so-called
Seasonal ARIMA model has the form

φ(L)φs(Ls)(1 − Ls)D(1 − L)d yt = θ(L)θs(Ls)εt , (18)

where φ(L) and θ(L) are invertible lag polynomials in L , while φs(Ls) and θs(Ls)

are invertible lag polynomials in Ls .
In light of the results mentioned in the section on seasonal unit roots, the model-

ing strategy of Box and Jenkins may easily be refined to allow for situations where
the nonstationarity exists only at some of the seasonal frequencies.

The model in (18) lends itself to a straightforward extension to the multivariate
case but, unless constraints are invoked, the model will not be identified in the
traditional econometric sense of the word. In Zellner and Palm (1974), the Box-
Jenkins model and the traditional econometric modeling techniques are combined,
and Plosser (1978) extends the approach to the seasonal case. The simultaneous
modeling of both the seasonal and the nonseasonal components applying time
series as well as econometric techniques is further developed by Hylleberg (1986),
which also contains a long list of references.

2.2.2. The “structural” or unobserved-components model. When modeling
processes with seasonal characteristics, complicated and high-order polynomials
must be applied in the ARIMA representation [see Hylleberg (1992)]. As an alter-
native to this, the unobserved-components (UC) model was proposed. In its most
general form, the model can be specified as

Yt = µt + γt + εt , (19)

where µt is the trend-cycle component, γt is the seasonal component, and εt is an
irregular component. It is assumed that µt and γt can be modeled as two distinct
ARMA processes,

AC(L)µt = BC(L)vt and
(20)

AS(L)γt = BS(L)wt ,
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where the processes vt , wt , and εt are assumed to be independent, serially uncorre-
lated processes with zero means and variances σ 2

v , σ 2
w, and σ 2

ε . This class of models
is also called unobserved-components autoregressive integrated moving-average
models (UCARIMA) by Engle (1978).

Substituting (20) into (19), it is seen that the UC model can be equivalently
specified as

AC(L)AS(L)Yt = BC(L)AS(L)vt + BS(L)AC(L)wt + AC(L)AS(L)εt . (21)

From this and the results of Granger and Morris (1976), it is seen that the
UCARIMA model is a general ARIMA model with restrictions on the param-
eters. The restrictions may be derived from the estimated parameters of the un-
constrained ARIMA model. Alternatively, the UC model may be specified as a
so-called structural model following Harvey (1993).

The structural approach is based on a very simple and quite restrictive modeling
of the components of interest such as trends, seasonals, and cycles. The model is
often specified as (19). The trend is normally assumed to be stationary only in first
or second differences, whereas γt is stationary when multiplied by the seasonal
summation operator. In the basic structural model (BSM), the trend is specified as

µt = µt−1 + βt−1 + ηt ,
(22)

βt = βt−1 + ζt ,

where each of the error terms is independent, normally distributed. If σ 2
ξ = 0, (22)

collapses to a random walk plus drift. If σ 2
η = 0 as well, (19) corresponds to a

model with a linear trend. The seasonal component is specified as

S(L)γt =
n−1∑
j=0

γt− j = wt , (23)

where s is the number of periods per year and wt ∼ N (0, σ 2
w).9 This specification

is known as the dummy variable form, since it reduces to a standard deterministic
seasonal component if σ 2

w = 0. The BSM model can also be written as

yt = ξt

�2
+ wt

S(L)
+ εt , (24)

where ξt = ηt − ηt−1 + ζt−1 is equivalent to an MA(1) process. Expressing the
model in form (24) makes the connection to the UCARIMA model in (21) clear.

Estimation of the general UC model is treated by Hylleberg (1986) and fol-
lows the same lines as the Box-Jenkins modeling procedure. Thus, the modeling
procedure may be criticized on grounds similar to those for the general ARIMA
models.

The statistical treatment in the structural approach is based on the state-space
formulation, and the problems of specifying the ARMA models for the components
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are avoided by a priori restrictions. Harvey and Scott (1994) argue that the type
of model above, which has a seasonal component evolving relatively slowly over
time, can fit most economic time series. Nonetheless, the model presupposes a
trend component with a unit root and a seasonal component with all possible
seasonal unit roots present.10

2.2.3. The time-varying parameter models and the periodic models. The pe-
riodic model extends the nonperiodic time-series models by allowing the param-
eters to vary with the seasons. The periodic autoregressive (PAR) model assumes
that the observations in each of the seasons can be described using different au-
toregressive models, and the same goes for the periodic extensions to the MA and
ARMA models. Most of the research undertaken so far has focused on PAR models
[see Franses (1996)].

Consider a quarterly times series yt that is observed for N years. The PAR(h)
model can be written as

yt = µs + φ1s yt−1 + · · · + φps yt−h + εt (25)

for s = 1, 2, 3, 4 and t = 1, 2, . . . , T = 4N , or as

yt =
4∑

s=1

µs Ds,t +
4∑

s=1

φ1s Ds,t yt−1 + · · · +
4∑

s=1

φhs Ds,t yt−h + εt , (26)

where Ds,t are seasonal dummies equal to 1 when t is falling in s and zero other-
wise. The model may be estimated by maximum likelihood or OLS, which yields
equal parameter estimates under normality of the error process and with fixed
starting values. Testing for periodicity in (26) amounts to testing the hypothesis
H0 : φis = φi for s = 1, 2, 3, 4 and i = 1, 2, . . . , p. This hypothesis can be tested
by a likelihood ratio test that is asymptotically χ2

3p under the null, irrespective of
any unit roots in yt [see Boswijk and Franses (1995)]. The order of the PAR(h)
model can be found using an information criterion or using a general-to-specific
approach on (26).11

Osborn (1991) shows that any PAR model can be described by a nonperiodic
ARMA model. In general, however, the orders will be higher than in the PAR
model. For example, a PAR(1) corresponds to a nonperiodic ARMA(4,3) model.
Furthermore, it has been shown that estimating a nonperiodic model when the
true DGP is a PAR can result in a lack of ability to reject the false nonperiodic
model [see Franses (1996)]. Fitting a PAR model does not prevent the finding of
a nonperiodic AR process, if the latter is in fact the DGP. In practice, it is thus
recommended to start by selecting a PAR(h) model, and then tests whether the
autoregressive parameters are periodically varying using the method described
above.

A major weakness of the periodic model is that the available sample for estima-
tion, given by N = n/s where s is the number of seasons, can be small. Furthermore,
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the identification of a periodic time-series model is not as easy as it is for non-
periodic models, since the periodic models have similarities with vector AR(MA)
models. However, the models are easily estimated under the assumptions above,
and standard type tests can be used to test the specification.

The periodic models can be considered special cases of what is referred to as
the time-varying parameter models [see Hylleberg (1986)].12 These are regression
models of the form

yt = x′
tβt + ut

with seasonally varying coefficients, which in the most general form are specified
as

B(L)(βt − β̄) = Aγ t + ξt . (27)

where B(L) is a diagonal matrix with lag polynomials on the diagonal, A a matrix
of coefficients, and γ t is a vector of seasonal variables, while ξt is an error term.
This model can be written in state-space form and estimated using the Kalman
filter. A special case of (27) is the systematic nonrandom time-varying parameter
model where

βt = Aγ t .

This model, in principle, constitutes no estimation problems if γ t is known and
the number of observations for each season is large.13

However, γ t is rarely known and the number of observations for each season
may be small. The latter problem can be addressed by restricting the parameters,
and a sensible assumption is that the parameters vary smoothly over the seasons.
This assumption was used by Gersovitz and MacKinnon (1978) applying Bayesian
techniques. An alternative way to smooth the variation in the coefficients consists
of restricting them to take on values along low-ordered polynomials. Estimation
of this model can be done using a method like the one suggested by Almon (1965)
for distributed lag models.

2.2.4. The evolving seasonals model. The evolving seasonals model was pro-
mulgated by Hannan in several articles in the 1960s [see Hannan et al. (1970)]. The
model was revitalized by Hylleberg and Pagan (1997) and used to nest many of
the most commonly applied seasonal models. Recently, the model has been used
by Koop and Dijk (2000) to analyze seasonal models from a Bayesian perspective.

The evolving seasonals model for a quarterly time series is based on a represen-
tation such as

yt = α1t cos(λ1t) + α2t cos(λ2t) + 2α3t cos(λ3t) + 2α4t sin(λ3t),

yt = α1t + α2t cos(π t) + 2α3t cos(π t/2) + 2α4t sin(π t/2), (28)

yt = α1t (1)t + α2t (−1)t + α3t [i
t + (−i)t ] + α4t [i

t−1 + (−i)t−1],

where λ1 = 0, λ2 = π, λ3 = π/2, cos(π t) = (−1)t , 2 cos(π t/2) = [i t + (−i)t ],
2 sin(π t/2) = [i t−1 + (−i)t−1], i2 = −1, while α j t , j = 1, 2, 3, 4, is a linear
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function of its own past and a stochastic term e jt , j = 1, 2, 3, 4. For instance,

α1t = ρ1α1,t−1 + e1t ,

α2t = ρ1α2,t−1 + e2t ,
(29)

α3t = ρ3α3,t−2 + e3t ,

α4t = ρ4α4,t−3 + e4t .

In such a model, α1t (1)t = α1t represents the trend component with the unit
root at the zero frequency, α2t (−1)t represents the semiannual component with the
root −1, while α3t [i t + (−i)t ] + α4t [i t−1 + (−i)t−1] represents the annual com-
ponent with the complex conjugate roots ±i . Hylleberg and Pagan (1997) showed
that the HEGY auxiliary regression in (6), rewritten as (1 − L4)yt = D(L)εt =∑∞

h=0 dhεt−h , has an evolving seasonals model representation with

e1t = εt

4
D(1) = εt

4

∑
h

dh, (30)

e2t = εt

4
D(−1)(−1)t = (−1)tεt

4

∑
h

dh(−1)h, (31)

e3t = e4t = εt

2(at + bt )

∑
h

(−1)hd2∗h + εt−1

2

∑
h

(−1)hd2∗h+1, (32)

where at = i t + (−i)t and bt = i t−1 + (−i)t−1.
From (28) to (32), it is seen that the HEGY auxiliary regression is an evolving

seasonals model with α3t = α4t and the errors in the models for α j t , j = 1, 2, 3, are
perfectly correlated. A unit root at a given frequency implies that the corresponding
ρ j , j = 1, 2, 3, is one. However, because α j t , j = 1, 2, 3, are not observed, they
must be estimated. Hylleberg and Pagan (1997) showed that

α1t = y1t

4
+ I (0),

α2t = −y2t

4(−1)t
+ I (0), (33)

α3t = −y3t

2(at + bt )
+ I (0),

where y jt , j = 1, 2, 3, is defined in Section 2.1.3 and I (0) means a stationary error.
Inserting these expressions in (29) produces

(1 − L)y1t = y4t = π1 y1,t−1 + I (0),

(1 + L2)y2t = −y4t = π2(−y2,t−1) + I (0), (34)

(1 + L2)y3t = −y4t = π3(−y3,t−2) + I (0),

where π j = ρ j − 1, j = 1, 2, 3.
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Because the terms in the HEGY auxiliary regression are uncorrelated, one can
perform the HEGY test by three regressions y4t = π1 y1,t−1+ I (0), y4t = π2 y2,t−1 +
I (0), and y4t = π3 y3,t−2 + I (0), and testing null of π j = ρ j − 1 = 0, j = 1, 2, 3,
against the alternative that the π ′

j s are less than zero. For j = 3 the test assumes
that π4 = 0; that is, y3,t−1 is not in the HEGY regression.14 However, from (34), it
is seen that these regressions are exactly the regressions produced by the evolving
seasonals model, provided the errors (30)–(32) are perfectly correlated.

The Canova-Hansen test may also be presented in the framework of the evolving
seasonals model as shown by Hylleberg and Pagan (1997). Rewriting (33) and
adding (29) with ρ j = 1, j = 1, 2, 3, produce three state-space models

x1t = y1t

4
= α1t + I (0),

α1t = α1,t−1 + e1t ,

x2t = −y2t

4(−1)t
= α2t + I (0),

(35)
α2t = α2,t−1 + e2t ,

x3t = −y3t

2(at + bt )
= α3t + I (0),

α3t = α3,t−1 + e2t .

Applying a KPSS procedure as in Section 2.1.3 to each of the three state-space
models implies seasonal unit root tests that coincide with the Canova-Hansen tests
under their assumption that no other root exists in the data than possibly at the
frequency under consideration. However, applying the KPSS procedure directly
to (35) has the advantage that potential unit roots at the other frequencies do not
matter, as shown by Hylleberg and Pagan (1997).

The PAR(p) may also be developed within the evolving seasonals model. Con-
sider a simple version of (26) such as

yt =
4∑

s=1

φs Ds,t yt−1 + εt . (36)

Because Ds,t is a seasonal dummy variable taking the value 1 in the sth quarter
and zero elsewhere, we can write the seasonal dummies as

D1,t = [1 + bt − (−1)t ]/4,

D2,t = [1 − at + (−1)t ]/4,
(37)

D3,t = [1 − bt − (−1)t ]/4,

D4,t = [1 + at + (−1)t ]/4,

and it can be shown [see Hylleberg and Pagan (1997)] that (36) implies evolving
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seasonals models such as (28) with α3t = α4t and

α1t = κ1 + κ2at + κ3bt + κ4(−1)t

4
α1,t−1 + εt

4
,

α2t = −κ4 − κ2at + κ3bt − κ1(−1)t

4
α2,t−1 + (−1)tεt

4
,

α3t = κ4 − κ2at − κ3bt − κ1(−1)t

4
α3,t−1 + (−1)tεt

2(at + bt )
, (38)

κ1 = φ1 + φ2 + φ3 + φ4, κ2 = −φ2 + φ4,

κ3 = φ1 − φ3, κ4 = −φ1 + φ2 − φ3 + φ4.

Hence, it is shown that several of the most popular seasonal models may be
represented in the context of an evolving seasonals model.15

Koop and Dijk (2000) apply the evolving seasonals model (28) to nest the HEGY
and CH auxiliary regressions as

φ∗(L)y4t = π1 y1,t−1 + π2 y2,t−1 + π3 y3,t−2 + π4 y3,t−1

+ α1t + α2t cos(π t) + 2α3t cos(π t/2) + 2α4t sin(π t/2) + εt ,

(39)
α j t = α j + a j,t−1 + e jt , j = 1, 2, 3, 4,

σ 2
j = var(e jt ), j = 1, 2, 3, 4,

where a drift term has been added to the state equations.16

2.2.5. Seasonal cointegration, periodic cointegration, and common seasonal
features. The idea that the seasonal components of a set of economic time series
are driven by a smaller set of common seasonal features seems a natural extension
of the idea that the trend components of a set of economic time series are driven
by common trends. In fact, the whole business of seasonal adjustment may be
interpreted as an indirect approval of such a view.

If the seasonal components are integrated, the idea immediately leads to the
concept of seasonal cointegration, introduced in the papers by Engle et al. (1989,
1993), and Hylleberg et al. (1990). In case the seasonal components are stationary,
the idea leads to the concept of seasonal common features [see Engle and Hylleberg
(1996)] whereas so-called periodic cointegration considers cointegration season
by season [see Birchenhal et al. (1989), Franses (1993, 1996), Boswijk and Franses
(1995), Franses and Kloek (1995), and Osborn (2000)].

Seasonal cointegration. Seasonal cointegration exists at a particular seasonal
frequency if at least one linear combination of series, which are seasonally in-
tegrated at the particular frequency, is integrated of a lower order. For ease of
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exposition we concentrate on quarterly time series integrated of order 1, but
the theory is easily extended to daily, weekly, or monthly data and to higher
orders of integration. Quarterly time series may have unit roots at the annual
frequency π/2 with period four quarters, at the semiannual frequency π with
period two quarters, and/or at the long-run frequency 0. The cointegration the-
ory at the semiannual frequency, where the root on the unit circle is real, is a
straightforward extension of the cointegration theory at the long-run frequency.
However, the complex unit roots at the annual frequency lead to the concept of
polynomial cointegration, where cointegration exists if one can find at least one
linear combination, including a lag of the seasonally integrated series, which is
stationary.

In Hylleberg et al. (1990) and Engle et al. (1993), seasonal cointegration was
analyzed along the path set up by Engle and Granger (1987). Consider the quarterly
VAR model

Π(L)Xt = εt , t = 1, 2, . . . . T, (40)

where Π(L) is a p × p matrix of lag polynomials of finite dimension, Xt is a
p × 1 vector of observations on the demeaned variables, while the p × 1 distur-
bance vector is εt ∼ N I D(0,Ω). Under the assumptions that the p variables are
integrated at the frequencies 0, π/2, 3π/2, and π , and that cointegration exists
at these frequencies as well, the VAR model can be rewritten as a seasonal error
correction model

Φ(L)X4t = Π1X1,t−1 + Π2X2,t−1 + Π3X3,t−2 + Π4 X3,t−1 + εt , (41)

Π1 = α1β
′
1,Π2 = α2β

′
2,Π3 = α4β

′
4 − α3β

′
3,Π3 = α4β

′
3 + α3β

′
4,

where the transformed p × 1 vectors X j,t , j = 1, 2, 3, 4, are defined as in (7),
and where Z1t = β′

1X1t and Z2t = β′
2X2t contain the cointegrating relations at the

long-run and semiannual frequencies, respectively, whereas Z3t = (β′
3 + β′

4L)X3t

contains the polynomial cointegrating vectors at the annual frequency. Engle et al.
(1993) analyzed seasonal and nonseasonal cointegrating relations between the
Japanese consumption and income, estimating the relations for Z j t , j = 1, 2, 3, in
the first step following the Granger-Engle two-step procedure.

The well-known drawbacks of this method, especially when the number of
variables included exceeds two, are partly overcome by Lee (1992) who extended
the maximum-likelihood-based methods of Johansen (1995) for cointegration at
the long-run frequency, to cointegration at the semiannual frequency π .

To adopt the ML-based cointegration analysis at the annual frequency π/2 with
the complex pair of unit roots ±i is somewhat more complicated, however.

To facilitate the analysis, a slightly different formulation of the seasonal error
correction model is given by Johansen and Schaumburg (1999). In our notation,
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the formulation is

Φ(L)X4t = α1β
′
1X1,t−1 + α2β

′
2X2,t−1 + α∗β′

∗X∗,t + α∗∗β′
∗∗X∗∗,t + εt ,

2α∗ = α3 + iα4, 2α∗∗ = α3 − iα4, β∗ = β3 + iβ4, β∗∗ = β3 − iβ4,

(42)X∗,t = (Xt−2 − Xt−4) + i(Xt−1 − Xt−3) = −X3,t−2 − iX3,t−1,

X∗∗,t = (Xt−2 − Xt−4) − i(Xt−1 − Xt−3) = −X3,t−2 + iX3,t−1.

The formulation in (42), which is just a reformulation of (41),17 writes the er-
ror correction model with two complex cointegrating relations, Z∗,t = β′

∗X∗,t and
Z∗∗,t = β′

∗∗X∗∗,t , corresponding to the complex pair of roots ±i .
Note that (41) and (42) show the isomorphic between polynomial lags and

complex variables. The general results may be found in Johansen and Schaumburg
(1999) and Cubadda (2001). The relation between the cointegration vector βm and
the polynomial cointegration vector βm(L) is

βm(L) =
{

βm for ωm = 0, π

[Re(βm) − Im(βm)] cos(ωm ) − L
sin(ωm )

for ωm ∈ (0, π).
(43)

Brillinger (1981) extends the canonical correlation analysis to the case of com-
plex variables and illustrates its similarities to the real-valued case. Based on these
results, Cubadda (2001) then applies the usual Johansen (1995) approach based
on canonical correlations to obtain tests for cointegration at all the frequencies of
interest, that is, at the frequencies 0 and π with the real unit roots ±1 and at the
frequency π/2 with the complex roots ±i .

Hence, for each of the frequencies of interest, the likelihood function is concen-
trated by a regression of X4t and X1,t−1, X2,t−1 or the complex pair (X∗,t , X∗∗,t )

on the other regressors, resulting in the complex residual matrices U∗,t and V∗,t

with complex conjugates U∗∗,t and V∗∗,t , respectively. After having purged X4t and
X1,t−1, X2,t−1 or the complex pair (X∗,t , X∗∗,t ) for the effects of the other regressors,
the cointegration analysis is based on a canonical correlation analysis of the rela-
tions between U∗,t and V∗,t . The product matrices are SUU = T −1 ∑T

t=1 U∗,t U′
∗∗,t ,

SV V = T −1 ∑T
t=1 V∗,t V′

∗∗,t , and SU V = T −1 ∑T
t=1 U∗,t V′

∗∗,t , and the trace test of

r or more cointegrating vectors is found as TR = −2T
∑p

i=r+1 ln(1 − λ̂i ), where
λ̂1 > λ̂2 > . . . . . λ̂p are the ordered eigenvalues of the problem∣∣λSV V − SV U S−1

UU SU V

∣∣ = 0. (44)

The corresponding (possibly complex) eigenvectors properly normalized are ν j ,

j = 1, 2 . . . ., p, where the first r vectors form the cointegrating matrix β.
Critical values of the trace tests for the complex roots are supplied by Johansen

and Schaumburg (1999) and Cubadda (2001), while the critical values for coin-
tegration at the real root cases are found in Lee (1992) and Osterwald-Lenum
(1992).
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Furthermore, tests of linear hypotheses on the polynomial cointegration vectors
may be executed as a χ2 test, similar to the test applied in the long-run cointegration
case.

Periodic cointegration. To present some of the important concepts applied in the
literature [e.g., Franses (1996), Osborn (2000), and Ghysels and Osborn (2001), let
us define the observations of the sth quarter in year τ s = 1, 2, 3, 4, τ = 1, 2, . . . ,

N , as ysτ while the 4 × 1 vector Yτ = (y1τ , y2τ , y3τ , y4τ , )
′ contains the observations from

year τ . Consider the VAR model

�4Yτ =  Yτ−1 +
k−1∑
j=1

Φ j�4Yτ− j + Uτ , Uτ ∼ NID(0,ΩU), (45)

where  and ! j are 4 × 4 coefficient matrices, ΩU a 4 × 4 covariance matrix, and
�4 = (1 − L4), where L operates on the seasonal index s and not on τ . Hence,

Lm ysτ , =


ys−m,τ for s − m > 0

for s − m = −4 j − i
y4−i,τ− j−1

i = 0, 1, 2, 3; j = 0, 1, 2, . . . .

s = 1, 2, 3, 4; m = 0, 1, 2, 3, . . . . .

and �4Yτ = (1 − L4)Yτ = Yτ − Yτ−1.
The VAR model in (45) is written in error correction form and the number of

cointegrating relations between the four series, one for each quarter, is determined
by the rank of Π. Following Osborn (2000), we then have the following three
definitions:

yt , t = 1, 2 . . . . ., T = 4N is integrated, yt ∼ I (1), if rank(Π) = 3 and the three cointe-
grating relations are y2τ − y1τ , y3τ − y2τ , and y4τ − y3τ ; i.e., the quarterly changes are
the cointegrating relations.

yt , t = 1, 2 . . . . ., T = 4N is periodically integrated, yt ∼ PI(1), if rank(Π) = 3 and the
three cointegrating relations are y2τ − β1 y1τ , y3τ − β2 y2τ , and y4τ − β3 y3τ with at least
one β j �= 1, j = 1, 2, 3.

yt , t = 1, 2 . . . . ., T = 4N is seasonally integrated, yt ∼ SI(1), if rank(Π) = 0 which
implies Π = 0. Hence, there is no cointegration between the series for the individual
seasons s = 1, 2, 3, 4.18

From Engle and Granger (1987) we have that two integrated series yt ∼ I (1)

and xt ∼ I (1) are cointegrated if there exists a linear combination yt − βxt that is
stationary. The vector (1, −β) is called the cointegration vector. In the notation
above the series yt ∼ I (1) and xt ∼ I (1) are (nonperiodically) Cointegrated if
each pair of annual series ysτ , xsτ is cointegrated with the same cointegration
vector (1, −β) for all s = 1, 2, 3, 4.
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TABLE 1. Cointegration possibilitiesa

Two Processes

x y CIb FSCI ASCI SASCI FPCI PPCI

I (1) I (1) + − − − − −
PI(1) PI(1) + − − − − −
I (1) PI(1) − − − − − −
SI(1) SI(1) + + + + + −
I 1

2
(1) I 1

2
(1) − − − + − −

I 1
4
(1) I 1

4
(1) − − + − − −

Iθ (1) Iθ∗(1) − − − − − −
PI(1) SI(1) − − − − +b +
I (1) SI(1) +c − − − − +
aA “+” indicates a cointegration possibility, a “−” that no cointegration is possible. CI = Long-run cointegration;
FSCI = Full seasonal cointegration; ASCI = Annual cointegration; SASCI = Semiannual cointegration; FPCI = Full
periodic cointegration; PPCI = Partial periodic cointegration.
bFPCI between xsτ and (1 + L + L2 + L3)ysτ , s = 1, 2, 3, 4.
cCI between xsτ and (1 + L + L2 + L3)ysτ , s = 1, 2, 3, 4.

In the subsection on seasonal cointegration, we defined zero-frequency coin-
tegration between two variables integrated at the zero frequency, yt ∼ I0(1) and
xt ∼ I0(1), as existing if the transformed variables y1t and x1t [see (7)] cointegrate.
Similarly, semiannual cointegration between two variables integrated at the semi-
annual frequency, yt ∼ I 1

2
(1) and xt ∼ I 1

2
(1), exists if the transformed variables y2t

and x2t [see (7)] cointegrate, whereas annual cointegration between two variables
integrated at the annual frequency, yt ∼ I1/4(1) and xt ∼ I1/4(1), exists if the trans-
formed variables y3t , x3t , and x3,t−1 [see (7)] polynomially cointegrate. Annual
cointegration may also be expressed in terms of the complex transformations; in
fact, annual cointegration exists if the complex pairs (y∗,t , x∗,t ) and (y∗∗,t , x∗∗,t )

cointegrate.
Full periodic cointegration exists if each pair of annual processes ysτ , xsτ coin-

tegrates with cointegration vector (1,−β
P
s ), but not all β P

s = β P , for s = 1, 2, 3, 4.
Partial periodic cointegration exists if some but not all annual processes ysτ , xsτ

cointegrate for s = 1, 2, 3, 4. See Osborn (2000) for more details.
On the basis of these definitions, Osborn (2000) obtains a series of results that are

summarized in Table 1. Osborn (2000) also suggests a series of tests for choosing
between the different cointegration possibilities.

Common seasonal features. Although economic time series often exhibit non-
stationary behavior, stationary economic variables exist as well, especially when
conditioned on some deterministic pattern such as linear trends, seasonal dummies,
and breaks. However, a set of stationary economic times series may also ex-
hibit common behavior and, for instance, share a common seasonal pattern. The
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technique for finding such patterns, known as common seasonal features, is based
on earlier contributions by Engle and Kozicki (1993) and Vahid and Engle (1993),
defining common features. The common seasonal features were introduced by
Engle and Hylleberg (1996), and further developed by Cubadda (1999).

Consider a multivariate autoregression written in error correction form as

�Yt =
p∑

j=1

B j�Yt− j + Πvt−1 + Γzt + εt , t = 1, 2, . . . . , T, (46)

where Yt is k × 1 vector of observations on the series of interest in period t and the
error correction term is Πvt−1. The vector vt contains the cointegrating relations
in case of cointegration at the zero frequency, and the number of cointegrating
relations is equal to the rank of Π. If no cointegration exists, Π has full rank
equal to k and the series are stationary. In the quarterly case, the vector zt is a vec-
tor of trigonometric seasonal dummies, such as {cos(2πht/4 + 2π j/T ), h = 1, 2;
j ∈ (−δT ≤ j ≤ δT ), sin(2πh4 + 2π j/T ), h = 1, 2; j ∈ (−δT ≤ j ≤ δT ), j �= 0,
when h = 2}. The use of trigonometric dummy variables facilitates the “modeling”
of a varying seasonal pattern, since a proper choice of δ takes care of the neigh-
boring frequencies to the exact seasonal frequencies, see Hylleberg (1986). Note
that if δ = 0, the trigonometric dummies defined above are equivalent to the usual
seasonal dummies as described in Section 2.1.2.

The implication of a full rank of the k × m matrix Γ, equal to min[k, m], is that
different linear combinations of the seasonal dummies in zt are needed to explain
the seasonal behavior of the variables in Yt . However, if there are common seasonal
features in these variables, we do not need all the different linear combinations,
and the rank of Π is not full. Thus, a test of the number of common seasonal
features can be based on the rank of Π [see Engle and Hylleberg (1996)].

The test is based on a reduced rank regression similar to the test for cointegration
described earlier. Hence, the hypotheses are tested using a canonical correlation
analysis between of zt and �Yt , where both sets of variables are purged of the
effect from the other variables in (46).

This kind of analysis has proved useful in some situations, but it is difficult to
apply in case the number of variables is large, and the results are sensitive to the lag
augmentation as in the case of cointegration. In addition, the somewhat arbitrary
nature of the choice of zt poses difficulties.

2.3. Economic Models of Seasonality

Many economic time series have a strong seasonal component, and it is obvious
that economic agents must react to that. Producers know that the demand for their
products varies over the year, and the consumers know that certain products are
only available at some periods or at least are cheaper in some periods than in others.
Hence, the seasonal variation in economic time series must be an integrated part of
the optimizing behavior of economic agents, and the seasonal variation in economic
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time series must be a result of the optimizing behavior of economic agents, reacting
to exogenous factors such as the weather and the timing of holidays.

The fact that economic agents react and adjust to seasonal movements on the
one hand, and influence them on the other, implies that the application of seasonal
data in economic analysis may widen the possibilities for testing theories about
economic behavior. The relative ease at which the agents may forecast at least
some of the causes of the seasonality may be quite helpful in setting up testable
models for production smoothing, for instance.

Apart from what is caused by the ease of forecasting exogenous factors, the type
of optimizing behavior, and the agents’ reactions to a seasonal phenomenon may
be expected not to differ fundamentally from what is happening in a nonseasonal
context. However, the recurrent characteristic of seasonality may be exploited.
Such a recurrent characteristic may have important effects on adjustment cost, etc.,
seen in relation to adjustments to other cyclical, but less regular, phenomena. The
recurrent characteristic may also have effect on the short- and long-run reaction
to seasonal phenomena. In the short run, the farmers may adapt to the weather
conditions in a passive way, but in the long run, investments in more effective
species of grain, irrigation, etc., may change or smooth the effect of the weather.

In the following, we discuss how agents react and interact when faced with
seasonal fluctuations.

There is no real dominating approach found in the literature, although there are
two main branches. The first is the real-business-cycle approach [e.g., Chatterjee
and Ravikumar (1992) or Braun and Evans (1995)]. These all work with a utility-
optimizing consumer faced with some feasibility constraint. However, in most of
this RBC branch, seasonality arises from deterministic shifts in tastes and technol-
ogy, contradicting the empirical evidence that seasonality evolves in a stochastic
fashion [e.g., Hylleberg et al. (1993)]. A few other papers incorporate season-
ality through stochastic productivity shocks; see, for example, Wells (1997) and
Cubbada et al. (2002). Christiano and Todd (2002) also discuss whether this con-
ventional RBC model is sensible to the approximations usually made in the model.

A different approach is taken by Ghysels (1988), Miron and Zeldes (1988),
and Miron (1996), who examine whether firms actually smooth production, and
Beaulieu and Miron (1992a,b), Cecchetti and Kashyap (1996), and Cecchetti et al.
(1997), who investigate whether there are significant connections between the
business cycles and the seasonal cycles, and in general that seems to be the
case.

Often the situation can be seen as though states change in accordance with the
seasons, past actions, etc., whereafter the agents must decide on what to do. The
problem can be made concrete by assuming that we can write the problem as an
expected profit maximization

max
{xt }∞t0

E0

∞∑
t=t0

f (xt , yt )
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subject to some constraints

yt+1 = g(xt , yt , εt+1),

where xt is a vector containing, e.g., sales or production controlled by the firm; yt
is a vector of states such as interest rates, storage capacity, inventory as well as the
direct seasonality (e.g., average temperature); and εt+1 is a stochastic term.

If this problem obeys certain conditions of regularity [see, e.g., Stokey et al.
(1989), it can be rewritten as a recursive problem. For concreteness, let the discount
factor be constant and let the objective function be additively separable. In addition,
let the seasonal shock have a Markov property. We can then rewrite the problem
as a Bellman problem:

V (y) = max
y

[ f (x, y) + βE[V (g(x, y, ε))|x]].

This functional equation almost always has a solution, and we can derive a rule
of how the firm should choose xt , given the state yt . Unfortunately, the problem
is generally too complicated to be given an analytical solution, and it is often
necessary to find the solution by an iterative algorithm [see Rust (1996) and Judd
(1998)].

Todd (1990) provides a framework to obtain analytic solutions using the linear
quadratic approach. The main idea is to have the objective function being quadratic
and the transition equations being linear, and to model seasonality by a periodic
representation. Thus, the linear quadratic approach is quite restrictive.

Nonetheless, this approach is widely used for two main reasons. First, after all,
the procedure is general enough to capture a very broad set of problems. Second,
when the decision is derived from the model, the Euler equations—that is, the first-
order conditions—provide estimable econometric equations. If data are available
for some of the states and the final decisions, it is possible to test whether the
model is compatible with actually observed behavior [Rust (1996)].

In an intertemporal dynamic model, a common result is that the presence of
seasonality in an exogenous variable may induce power in the spectrum of the en-
dogenous variables, both at the seasonal and nonseasonal frequencies. The reason
for this is that agents generally will react to changes in their environment as well as
in their information set, when they know that actions today will affect the future.
An example that describes the intuition behind this result is the adjustment cost
in production; e.g., if there is large cost associated with training workers, which
implies that it may not be a good idea to fire workers in a period with low sales,
or if the sales are expected to rise in the future.

There are several papers illustrating this fact. Ghysels (1988) sets up an in-
tertemporal production model with the above-mentioned adjustment costs and an
exogenous seasonal pattern introduced into the demand. It is then shown that sea-
sonality is affecting the endogenous part of the model, not only at the seasonal
frequencies but at all frequencies. This also illustrates the danger of applying
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prefiltered seasonal adjusted data. In some cases, it is shown that the distortions
may be small, however [see Christiano and Todd (2002)].

Osborn (1988) extends Hall (1978) by including seasonal varying compo-
nents in the utility function. The model is then tested with data from the United
Kingdom, and even though the model is rejected, it still does better than the stan-
dard model.

A production-smoothing model is analyzed by Ghysels (1988), Miron and
Zeldes (1988), and Miron (1996), but the empirical evidence is negative as the
hypothesis of production smoothing is rejected, a finding that could be caused
by the use of too-aggregated data. However, both empirical findings may also be
due to misspecified models. The functional forms may be too restrictive or per-
haps the agents may not have all the information that model builders normally
assume.

A rather new approach, called robust control and advocated by Hansen and
Sargent (2000), attacks this problem. The idea is to allow for the fact that the
agent thinks the model could be misspecified and hence uses the information set
available to him, and allows for the uncertainty. Thus, the agent is assumed to
think of the model as a possibly misspecified model of the real model. It could be
interesting to see this applied to models with seasonal characteristics.

3. CONCLUSIONS

Seasonality has been a major research area in economics for several decades. The
paper assesses the recent development in the literature on the treatment of season-
ality in economics, and divides it into three interrelated groups. The first group,
pure noise model, consists of methods based on the view that seasonality is noise
contaminating the data or, more correctly, contaminating the information of inter-
est for the economists. The second group, time-series models, treats seasonality
as a more integrated part of the modeling strategy, with the choice of model being
data driven. The third group, economic models of seasonality, introduces economic
theory, that is, optimizing behavior into the modeling of seasonality.

The recent development has been quite promising, where increasingly, the treat-
ment of seasonal economic time series in economics is an integral part of the mod-
eling process, and where there is an increased awareness that use of seasonally
adjusted data very easily leads to errors and in addition throws away valuable in-
formation. The next step in the development should be a more elaborate integration
of economic theory into the modeling process, a development that is as needed in
the area of modeling seasonal economic time series as it is in most other areas of
econometrics, if not all.

NOTES

1. X-12 is downloadable from http://www.census.gov/srd/www/x12a/.
2. See also http://www.modeleasy.com/tramosea.htm.
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3. The text book by Ghysels and Osborn treats several of the topics discussed below in detail, and
the book is recommended for those who want a thorough introduction into these areas.

4. Note that sometimes the techniques are used to detect weekly effects in daily data, but here at
most seven “seasons” are considered, not 52 or 365.

5. In practice, estimation of the spectra often takes place as a histogram approximation or smoothing
of the periodogram across adjacent frequencies. The periodogram is obtained as the norm of the Fourier-
transformed time series.

6. Note that A must be symmetric around the southwest-northeast diagonal in order for the coeffi-
cient estimates to be real.

7. In case only the exact seasonal frequencies, i.e, π and π/2 in the quarterly case, are removed,
OLS on (16) will produce coefficient estimates that are identical to those obtained by adding quarterly
seasonal dummies to the regression equation.

8. The fact that some regression programs are unable to handle complex variables as in (16) implies
that the filtered data should be transformed back to the time domain before applying the least-squares
algorithm. The inverse Fourier transformation of the transformed filtered variables in the model is
obtained by premultiplying (16) with ".

9. Specifying the seasonal component this way makes it slowly changing by a mechanism that
ensures that the sum of the seasonal components over any s consecutive time periods has an expected
value of zero and a variance that remains constant over time.

10. The consumption function advocated by Harvey and Scott (1994) and found using the structural
approach, is identical to a consumption function obtained by the seasonal cointegration approach,
provided a common cointegration vector applies at the zero frequency and at all the seasonal frequencies.

11. One problem arises because the testing strategies are prone to detect spurious periodic autore-
gressions [see Proietti (1998)].

12. Hylleberg and Pagan (1997) also note that the PAR models impose certain restrictions on the
evolving seasonals model.

13. The same comment is valid for the PAR model, for which γt is equal to seasonal dummies and
where Xt consists of lagged values of the dependent variable.

14. The HEGY F-test is based on a regression of the form

y4t = π3 y3,t−2 + π4 y3,t−1 + I (0),

where the null is that (1 + L2)y3t is stationary and the alternative is that the model for y3t has the form
(1 ± γ1 L + γ2 L2)y3t = error.

15. From the evolving seasonals model representation of the PAR model it is seen that the PAR
model assumes that the seasonals as well as the stochastic trend evolve as a periodic model.

16. In their empirical work the only drift term allowed is in the state equation containing α1t .
17. Equation (41) is obtained from (42) by inserting the definitions of α∗, β∗, X∗,t , and their

complex conjugates α∗∗, β∗∗, X∗∗,t , and ordering the terms.
18. In Hylleberg et al. (1990) this form of integration is denoted “Integration at frequency 0, 1/4,

1/2” Iθ (1), θ = 0, 1/4, (3/4), 1/2. Hence, a Seasonally Integrated series in the sense of Osborn (2000)
has unit roots at all the frequencies 0, π/2, (3π/2), and π .
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