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Abstract
When deriving a demographic basis from experience data it is useful to know (i) what uncertainty
surrounds that basis, and (ii) the financial impact of that uncertainty. Under the Solvency II regime in
the EU, insurers must hold capital against a number of risks. One of these is mis-estimation risk,
i.e. the uncertainty over the current rates of mortality and other biometric risks experienced by a
portfolio. We propose a general method for assessing mis-estimation risk, and by way of illustration
we look at how mis-estimation risk can be assessed for a portfolio of pensions in payment from a UK
pension scheme. We find that the impact of mis-estimation risk varies according to the risk factors
included in a model, and that the inclusion of some necessary risk factors increases the financial
impact of mis-estimation risk. In particular, the inclusion of risk factors which improve the model’s
fit and financial applicability can lead to an increase in the mis-estimation risk. We also find that a
full-portfolio valuation is preferable to using model points when assessing mis-estimation risk.
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1. Introduction

1.1. In this paper, we will consider mis-estimation risk in setting a demographic basis, i.e. the risk
that the current estimate of biometric risk is incorrect. We will leave to one side the question of
projecting future rates and the uncertainty therein, as this is usually dealt with separately.
The methodology in this paper applies to bases for any demographic risk which can be modelled
statistically. However, for simplicity we will illustrate our points with reference to a single-decrement
example, i.e. the mortality rates for a portfolio of pensions in payment.

1.2. The methodology presented in this paper requires that the basis is derived from the portfolio’s
own experience. There are, of course, other techniques available where the portfolio has insufficient
amount of its own data. However, techniques which do not use a portfolio’s own experience data
introduce basis risk, i.e. the risk that the rating method fails to capture some portfolio-specific
characteristics. As a result, it is usually preferable to use a portfolio’s own experience data wherever
it is both available and credible. What counts as “credible” will be partly quantitative (number of
lives and deaths, total exposure time) and partly qualitative (are the data free of obvious
corruption?), so judgement will have to be on a case-by-case basis.
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1.3. When setting a basis using experience analysis, there are two natural questions to ask:
“what other bases could be credibly supported by the data?” and “what would be the financial
impact of using those other bases?”. In this paper, we will demonstrate a method for answering
both of these questions. Besides the obvious use of such answers in pricing and risk management,
some regulatory regimes require that insurers itemise the capital held against specific risks, including
mis-estimation risk. Examples include the former Individual Capital Assessment (ICA) regime in the
United Kingdom and the Solvency II regime in the EU. Richards et al. (2014) give a stylised list of
sub-risks for longevity, which is reproduced in Table 1. One of these is mis-estimation risk, i.e. the
risk that an insurer has got its current estimate of risk rates wrong. In territories with this kind of
itemised approach, it is implicit that the capital requirements be calibrated probabilistically.
The method demonstrated in this paper is based on a well-specified statistical model. In the
United Kingdom, insurers currently use a wide variety of ad hoc methods for assessing
mis-estimation risk, but this paper is not a review or summary of these methods. Instead, this paper
proposes an objective method for calculating an allowance for mis-estimation risk based on robust
statistical foundations.

Table 1. Sample Itemisation of the Components of Longevity Risk

Component Diversifiable? Comment

Model risk No It is impossible to know if the selected model is correct. Capital must
be held in respect of the risk that one’s chosen model is wrong.
Model risk applies not only to the projection model, but also to the
risk factors included in a model of current differentials

Basis risk No Models are sometimes calibrated to population or industry data, not
the data of the portfolio in question. This is particularly the case for
some projection models. However, there are cases where pension
schemes in particular have mortality bases set without reference to
the portfolio’s own experience. Capital must be held for the risk
that the lives in a portfolio are different from those of the
population used to calibrate the model

Trend risk No Even if the projection model is correct and there is no basis risk, an
adverse trend may result by chance which is, nevertheless, fully
consistent with the chosen model

Volatility Yes? Over a 1-year time horizon, capital must be held against the case of
unusually light mortality experience from seasonal or environmental
variation, such as an unusually mild winter and lower-than-normal
deaths due to influenza and other infectious diseases. Note that this
risk may not be wholly diversifiable, as one year’s light mortality
experience may equally be the start of an adverse trend

Idiosyncratic risk Yes Over a 1-year time horizon, capital must be held against the case of
unusually light mortality experience from random individual variation.
See Plat (2011) and Richards & Currie (2009) for examples

Mis-estimation risk Yes Uncertainty exists over the portfolio’s actual underlying mortality rates,
as these can only be estimated to a degree of confidence linked to the
scale and richness of the data. This is the subject of this paper. As our
approach involves using a parametric model, mis-estimation risk here
is synonymous with parameter risk for current mortality rates

A diversifiable risk can be reduced by growing the size of the portfolio and benefiting from the law of large
numbers. Reproduced from Richards et al. (2014).
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1.4. At a high level our approach is to use the variance–covariance matrix to explore consistent
alternative parameter vectors. This makes mis-estimation risk synonymous with parameter risk.
A full-portfolio valuation is performed with each new parameter vector, and this gives rise to a
distribution of possible expected portfolio values. We use this distribution to set the allowance
for mis-estimation risk, typically by using a particular quantile such as 99.5% or calculating a
conditional tail expectation (CTE). In this paper, we will illustrate our approach to setting the capital
for mis-estimation risk with reference to a portfolio of annuities or pensions in payment. The basic
principles also apply to other types of insurance risk.

1.5. Other authors have looked at the subject of mis-estimation risk. For example, Hardy & Panjer
(1998) used a credibility approach based around A/E ratios against a standard table. However, in
this paper, we will use a parametric model with risk factors. The conversion of the results into a
percentage of a standard table is covered in Appendix 4.

1.6. The plan of the paper is to first define the components of a longevity-risk module in section 2.
Having defined what is and is not covered by mis-estimation risk, we give a short introduction
to one-parameter mortality modelling in section 3, which includes a demonstration of the key
properties of maximum likelihood estimates (MLE). This is followed in section 4 by an illustration of
how these maximum likelihood properties can be used to assess the impact of mis-estimation risk on
an insurance liability. Section 4 also demonstrates how simulation can be used to assess
mis-estimation risk in place of an analytical, stress-test approach. In section 5, we extend the
mortality model to include an arbitrary number of parameters, and in section 6 we look at assessing
mis-estimation risk for a basic two-parameter model. Section 7 looks at the benefits of using data
which span multiple years, and how these benefits can be more modest than might be expected where
there is a time trend. Section 8 considers the minimum requirements of a model for financial
applications, and the resulting impact on mis-estimation risk. Section 9 considers the impact of
portfolio size and some pitfalls to guard against, while section 10 concludes the paper.

1.7. In this paper, we will denote a single parameter by θ and a vector of multiple parameters
by θ. The unknown underlying value of a parameter will be marked with an asterisk (*), while an
estimate of that parameter will be marked with a circumflex (^). A stressed estimate of a parameter
will be marked with ′. All numerical examples are based on the actual data for a pension scheme in
England and Wales, details of which are given in Appendix 1.

2. Components of Longevity Risk

2.1. In modern insurance work, it is often necessary to quote a single capital amount or percentage
of reserve held in respect of a risk such as longevity. This single figure is usually made up of sub-risks,
such as those itemised in Richards et al. (2014) and reproduced in Table 1.

2.2. Table 1 is not intended to be exhaustive and, depending on the nature of the liabilities, other
longevity-related elements might appear. In a defined benefit pension scheme, or in a portfolio of
bulk-purchase annuities, there would be uncertainty over the proportion of pensioners who were
married, and whose death might therefore lead to the payment of a spouse’s pension. Similarly, there
would be uncertainty over the age of that spouse. Within an active pension scheme, there might be
risk related to early retirements, commutation options or death-in-service benefits. These risks might
be less important to a portfolio of individual annuities, but such portfolios would be exposed to
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additional risk in the form of anti-selection from policyholder behaviour. An example of this would
be the existence of the enhanced annuity market in the United Kingdom.

2.3. This paper will only address the mis-estimation component of Table 1, so the figures in
Tables 3, 4 and 5 can only be minimum values for the total capital requirement for longevity risk.
Other components will have to be estimated in very different ways: reserving for model risk requires
a degree of judgement, while idiosyncratic risk can best be assessed using simulations of the actual
portfolio. For large portfolios, the idiosyncratic risk will often be diversified away almost to zero in
the presence of other components. In contrast, trend risk and model risk will always remain,
regardless of how large the portfolio is.

3. A One-Parameter Primer in Mortality Analysis

3.1. Before we illustrate the full multivariate approach in section 5, we begin with a one-parameter
primer to establish the basics. This section looks at the model behind the mortality analysis, while
section 4 looks at how it can be applied to the task of assessing mis-estimation risk. We assume for
simplicity that we have a risk which can be modelled with a single parameter, θ. We further assume
that we have a log-likelihood function, ‘ðθÞ, which can be differentiated at least twice. ‘ is maximised
at θ̂, i.e. where equations (1) and (2) are satisfied:

∂
∂θ

‘ðθ̂Þ= 0 (1)

∂2

∂θ2
‘ðθ̂Þ< 0 (2)

3.2. θ̂ is then the MLE of the unknown true parameter, θ�. The maximum likelihood theorem states

that θ̂ has a normal distribution with unknown mean θ� and unknown variance σ2 (Cox & Hinkley,

1996, page 296). As θ̂ is an estimate for θ�, and as the curvature in equation (2) is inversely related to

the variance of θ̂, we can use the approximation θ̂ � Nðθ̂; σ̂2Þ, where σ̂2 = � ∂2
∂θ2 ‘ðθ̂Þ

h i�1
.

3.3. To illustrate this, consider a simplistic example assuming constant mortality between the ages
of 60 and 65. We assume that θ represents the logarithm of the constant force of mortality, i.e.
μx = eθ for all ages x 2 ½60; 65�. Past experience of the scheme in Appendix 1 observes d = 122
deaths out of Ec = 16,586.3 life-years lived by 6,439 pensioners between 2007 and end of 2012.
Assuming a Poisson-distributed number of deaths, the likelihood function, L, is given in the
following equation:

Lðθ jd;EcÞ / e�Eceθ ðEceθÞd
d !

(3)

and so the log-likelihood simplifies to the following equation:

‘ðθ jd;EcÞ = logeL=�Eceθ + dθ + constant (4)

3.4. Equations (3) and (4) are maximised at θ̂= loge
d
Ec. A plot of the log-likelihood function is shown as

the solid line in Figure 1, where the function is seen to be maximised at θ̂= loge
122

16;586:3 =�4:9123. The

curvature around this value is ∂2
∂θ2 ‘=�Eceθ, and so the approximate standard error of θ̂ is

σ̂ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEceθ̂Þ�1

q
=0:09054. The near-quadratic form of the log-likelihood function is consistent with θ̂

having an approximately Normal distribution with mean θ̂ and variance σ̂2, the log-likelihood for which
is shown as the dashed line in Figure 1. Thus, the log-likelihood gives us an estimate for θ and an idea of
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what other estimates would be consistent with the data. We also have a close approximation for the
log-likelihood, which can simplify the generation of likely alternative values that are consistent with
the data. We can now assess the impact of these plausible alternative estimates on the value of a liability,
i.e. to assess mis-estimation risk, which we do in section 4.

4. A One-Parameter Primer in Mis-Estimation Risk

4.1. Although θ is the parameter describing the mortality risk in section 3, actuaries have to value a
monetary liability based on that risk. This can be described as a function of the risk parameter, say a(θ).
a(θ) could be a valuation function for a single policy or, more usefully, the valuation of the liability for
an entire portfolio. The best estimate of the liability in our simplistic mortality model would therefore
be aðθ̂Þ. However, to allow for mis-estimation risk we would calculate something like aðθ0Þ,
where θ′ was a stressed alternative value to θ̂ which was less likely but nevertheless consistent with the
observed data. For example, in Figure 1 an approximate 99.5% stress value for low mortality would be
around θ′ = 5.1455 (see section 4.4 for derivation of θ′).

4.2. We can see from Figure 1 that the log-likelihood for θ is nearly quadratic and thus that θ̂ has an
approximate Normal distribution. This means that we can generate alternative values to θ̂ which are
consistent with the data by drawing values from a Normal distribution with mean θ̂ and variance σ̂2.
In other words, we can generate θ0 = θ̂ + σ̂Z, where Z represents a value from the cumulative
distribution function for a N(0,1) variable, ΦðÞ. For finding a specific, consistent-but-stressed value
for θ′ at a given p-value, we would calculate either Z=Φ�1ðpÞ or Z=Φ�1ð1�pÞ, depending on whether
increasing or decreasing θ raises or lowers the liability function, a(θ).

4.3. To illustrate this, assume that we want to value a temporary pension from age 60–65 years.
The survival curve for our simple model is given by tp60 = e�teθ . Ignoring discounting for simplicity,
the valuation function for a continuously paid 5-year temporary annuity is given in the following
equation:

aðθÞ= 1�e�5eθ

eθ
(5)

4.4. In our example from section 3.4, the best-estimate liability is aðθ̂Þ= a ð�4:9123Þ=4:9092.
If we then wanted to find the 99.5th percentile for mis-estimation risk, we would use

l(θ
)

−5.2 −5.1 −5.0 −4.9 −4.8 −4.7

−726

−725

−724

−723

−722

θ

θ= –4.9123
^

θ’= –5.1455

Quadratic (Normal) approximation
Actual log−likelihood

Figure 1. Log-likelihood in equation (4) with d = 122 and E = 16,586.3.
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Z=Φ�1ð0:005Þ=�2:5758 (Lindley & Scott, 1984, page 35), as lowering θ increases the liability.
The value of the liability allowing for mis-estimation risk at the 99.5% level is then
aðθ̂ + σ̂ZÞ= a ð�5:1455Þ= 4:9279, i.e. 0.38% higher than the central estimate. Our 99.5% allowance
for mis-estimation risk would then be 0.38% of the best-estimate reserve.

4.5. An implicit assumption in section 4.1 is that a(θ) is a monotonically increasing or decreasing
function of θ (which is the case in equation (5)). If the liability function a(θ) is not simple or neatly
behaved, then we can use simulation to generate values of Z. Specifically, we can repeatedly draw Z from
theN(0,1) distribution, use Z to calculate θ′ and thus a(θ′), then add the value of a(θ′) to a set, S. We can
then calculate the appropriate percentile of S as an estimate for the liability allowing for mis-estimation
risk. A short R script for doing this with our simplistic temporary annuity example is given below:

set.seed(−1) # Set random-number seed
Z = rnorm(10,000) # Generate 10,000 N(0,1) values
thetaprime = −4.9123 +0.09054*Z # Calculate parameter values
S = (1− exp(−5*exp(thetaprime)))/exp(thetaprime) # Evaluate equation (5)
Q = quantile(S,0.995) # Calculate 99.5th percentile
round(Q, 4) # Display rounded percentile

which gives a value of 4.9275 for the 99.5th percentile, i.e. close to the analytical value in section 4.4.
A more efficient estimate of the 99.5th percentile can be obtained by using the estimator from Harrell
& Davis (1982), as shown in the R script below:

which produces a value of 4.9278 for the 99.5th percentile, i.e. even closer agreement with the
analytical approximation in section 4.4. In subsequent sections, we will see why correlations between
parameters mean that, in most practical situations, we will invariably have to use the simulation
approach of section 4.5. Appendix 3 considers methods for assessing mis-estimation risk which do
not require large numbers of simulations.

4.6. In section 5, we will describe the general, multi-parameter case involving simulation, then in
section 6 we will return to a simple two-parameter example for illustrative purposes.

5. The Multi-Parameter Case

5.1. We now assume a more realistic case where there are multiple parameters in a vector, θ. As in
section 3, we have a log-likelihood function, ‘ðθÞ, which we assume we can differentiate at least
twice. The vector θ is the analogue of the scalar θ in section 3, while the analogue of σ2 is the
variance–covariance matrix of θ, say V. As in section 3.2, we have an unknown true parameter
vector, θ�, and an unknown true variance–covariance matrix, V*.

library(Hmisc) # Library for Harrell-Davis
Q = hdquantile(S, 0.995, se = TRUE, names = FALSE) # Calculate 99.5th percentile
round(Q, 4) # Display rounded percentile
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5.2. Unlike in the one-parameter case in section 4.3, there is no easy analytical option to calculate
the liability value allowing for mis-estimation. This is because the analogue of the scalar σ2 in
section 4.3 is a matrix, V, i.e. the parameters in θ will have various positive and negative correlations
with each other. A visual example of this is given in Figure 4, where changing the value of the
intercept (α0) leads to a changed value for the slope (β0). Thus, to assess the impact of mis-estimation
risk we have to perform repeated valuations of the entire portfolio using a series of consistent
alternative parameter vectors, analogous to the procedure in section 4.5. We repeat this process of
valuation, which gives rise to a set, S, of portfolio valuations. S can then be used to set a capital
requirement to cover mis-estimation risk. For example, Solvency II regime in the EU demands that
this calculation takes place at the 99.5th percentile, and so the capital requirement would be given by
the following formula:

99:5th percentile of S
mean of S

�1

 !
´ 100% (6)

5.3. The question then is how we generate those consistent alternative parameter vectors. To do
this we use the same result from the theory of maximum likelihood as in section 3.2, which states
that the joint estimate at the MLE is distributed as a multivariate Normal random variable with
mean θ� and a variance–covariance matrix, V* (Cox & Hinkley, 1996, page 296). As in the
one-parameter case, the true value of θ� is unknown, and so we substitute θ̂, the vector of MLE.
We now seek a similar substitute for the unknown V*.

5.4. In some software packages, an estimated variance–covariance matrix is available directly. For
example, in R (R Core Team, 2012) an estimate of V* is returned from using the vcov() function on a
model object. However, actuaries often need to fit models which are unavailable in such software
(Richards, 2012), so it is useful to outline the general principle for estimating V* from knowledge of
‘ðθÞ alone.

5.5. Let HðθÞ be the Hessian, i.e. the matrix of second-order partial derivatives of the
log-likelihood function (McCullagh & Nelder, 1989, page 6). Let I=�Hðθ̂Þ, i.e. the negative
Hessian evaluated at the MLE θ̂. I is the observed information matrix (sometimes also called the
observed Fisher information). The diagonal elements of I�1 are the Cramer–Rao lower bounds
for the diagonal elements of V* (Cox & Hinkley, 1996), and for practical purposes we substituteI�1

for V*.

5.6. We thus have a multivariate Normal distribution for the MLE vector with mean θ̂ and
variance–covariance matrix I�1, i.e. MVN(θ̂; I�1) in place of MVN(θ�; V�). We can use this to
simulate consistent vectors of alternative parameters as a means of investigating parameter risk and
thus mis-estimation risk. To do this we calculate the expression in the following formula:

θ̂ +Az (7)

where z is a vector of independent, identically distributedN(0,1) variates with the same length as θ̂. The
matrix A represents the “square root” of I�1, of which there are generally several non-unique possi-
bilities. However, the variance–covariance matrix I�1 is a non-negative, definite matrix, and it is
positive-definite apart from some trivial cases – see Lindgren (1976, page 464) for more details.
We therefore set A to be the Cholesky decomposition of I�1, i.e. A is a lower-triangular matrix such
that AAT =I�1 – see Venables & Ripley (2002, pages 62 and 422). From this we can use equation (7)
to simulate parameter error consistent with the data, and thus use these perturbed parameter vectors to
value the portfolio and explore mis-estimation risk.
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5.7. We then only require to calculate (i) the first derivatives of ‘ for finding the joint MLE, and
(ii) the second partial derivatives to calculate I. These derivatives can be either worked out analy-
tically or else approximated using finite differences. Appendix 2 considers these two approaches, and
finds that analytical derivatives are strongly preferred for mis-estimation risk. We therefore use
analytical derivatives throughout the main body of this paper.

6. A Two-Parameter Case: The Importance of Acknowledging Correlations

6.1. In section 3, we had a simple one-parameter model behind the log-likelihood function, while the
liability function in section 4 was not particularly realistic. In this section, we illustrate the calculation
of mis-estimation risk for a pension paid throughout life and calibrate the mortality model using a
wider age range from the pension scheme data in Appendix 1. Although the mortality model only
contains two parameters, the example is sufficient to demonstrate the critical importance of
acknowledging correlations between parameters when assessing mis-estimation risk.

6.2. We start by building ‘ðθÞ using a survival model for the force of mortality, μx, which is defined
in the following equation:

μx = lim
h!0 +

1
h
Pr death before age x + h jalive at age xð Þ= lim

h!0 +

hqx
h

(8)

and where the survival probability from age x to age x+ t, tpx, is given by the following equation for
any form of μx:

tpx = exp �
ðt
0
μx + sds

� �
(9)

6.3. By using survival models we will therefore be modelling mortality at the level of the
individual, rather than the group-level modelling of section 3. For further details of actuarial
applications of survival models to pensioner and annuitant mortality the reader can consult Richards
et al. (2013).

6.4. In this section, we use a simple, two-parameter Gompertz (1825) model for each life in the
following equation:

μxi = eα0 + β0xi (10)

6.5. The model in equation (10) is a simple model in age only, i.e. ignoring gender or any of the
other known relevant risk factors (inclusion of other risk factors is considered in section 8). The
results of fitting the model to the pension scheme experience data described in Appendix 1 are shown
in Table 2, while Figure 2 shows the essentially quadratic profile of the log-likelihood for the two
parameters. Note that we are applying a deliberately over-simple model to a fraction of the available
data in order to reveal some important basic features. In section 8, we will make the model more
realistic and practical.

6.6. Figure 3 shows the fitted mortality hazard from Table 2 against the crude mortality hazard for
the pension scheme. We will not get sidetracked with questions of quality of fit or adequacy at this
point, as our aim is to demonstrate mis-estimation risk. However, we note that section 8 introduces
the concept of a financially suitable model as a critical foundation for assessing mis-estimation risk,
together with a test for determining financial suitability.
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Table 2. Summary of Simple Gompertz (1825) Model Fitted to 2012 Mortality Experience of the Pension
Scheme Described in Appendix 1

Parameter Estimate s.e. Z-value Pr(> |z|) Significance Lives Deaths

Age (β0) 0.122872 0.00564083 21.78 0 *** 13,085 365
Intercept (α0) −12.972 0.466992 −27.78 0 *** 13,085 365

Data for ages 60 years and over, males and females combined.
Parameter significance is labelled according to the same scheme used in R (R Core Team, 2012),
i.e. * for 5%, ** for 1% and *** for 0.1%.
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Figure 2. Log-likelihood profiles for model in Table 2. These profiles demonstrate the quadratic
shape around the maximum likelihood estimates (MLEs), which is consistent with the
multivariate Normal distribution for the estimates used in equation (7).
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Figure 3. loge (crude mortality hazard) and 95% confidence intervals for fitted model for ages
60 year and over. Data and model from Table 2. The crude mortality hazard is the actual
number of deaths in the age interval [x,x + 1) divided by the time lived in that interval.
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6.7. In our model in Table 2 we have the MLEs α̂0 =�12:972 and β̂0 =0:122872. If we define our
MLE vector as θ̂= ðβ̂0; α̂0Þ0, then the estimated variance–covariance matrix using the approach
defined in section 5.4 is as follows:

β̂0

α̂0

β̂0

3:18189 ´ 10�5

�0:00261762

α̂0

�0:00261762
0:218081

0
BB@

1
CCA

6.8. The correlation between α̂0 and β̂0 is −99.4% �99:4% = �0:00261762ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:18189 ´10�5 ´0:218081

p ´ 100%
� �

(see Table 9 for further illustration of this). In other words, if α̂0 is mis-estimated then β̂0 changes
in the opposite direction by an almost perfectly known amount (and vice versa). This is illustrated in
Figure 4, where we stress the intercept by 1.96 s.e. and re-estimate the age slope. Due to the strong
correlation, a change in one parameter is accompanied by an important offsetting change in another.
This is why a simple parallel shift in mortality table is not in general a correct statement of
mis-estimation risk: the level of mortality (as represented by α0) and the increase with age
(as represented by β0) are highly negatively correlated. A downward shift in level would result in an
upward shift in the rate of increase by age, as shown in Figure 4. Mortality levels and rates of change
by age are generally negatively correlated, as demonstrated later in Table 9, and this topic is explored
in some detail for various risk factors in Richards et al. (2013). Appendix 5 considers how to
restructure a model to reduce parameter correlation, but this only works for the very simplest
models. It is therefore important that any assessment of mis-estimation risk should acknowledge
these correlations.

6.9. However, there are further consequences of the variance–covariance matrix in section 6.7, namely
that the impact of mis-estimation risk varies by age. Figure 3 shows the 95% confidence interval for the
fitted mortality hazard, which forms a bowed shape courtesy of the correlation in section 6.8. Within
the model structure, the relative uncertainty is greatest at the youngest and oldest ends of the age range.
The reason for this is that we are fitting a straight line, which must go through the data in the central
age range. As a consequence, any mis-estimation of α0 will cause a change in the estimation of β0.
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Figure 4. loge (crude mortality hazard) with best-estimate fit and alternative line with stressed
intercept (α0) and re-estimated age slope (β0). Ages 60 years and over, data and model from
Table 2. The crude mortality hazard is the actual number of deaths in the age interval [x,x +1)
divided by the time lived in that interval.
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As with a child’s see-saw, the change in fit near the centre will be much smaller than at either end. This
same see-saw phenomenon will have major consequences for using multi-year data, as covered in section 7.

6.10. It is therefore important that any assessment of mis-estimation risk should acknowledge the
age-related distribution of liabilities as well as the parameter correlations. To demonstrate this,
assume that the liability function is for a single annuity at outset age x, i.e. aðθÞ is defined as in the
following equation:

aðθÞ= ax =
ð1
0

tpxvðtÞdt (11)

where v(t) is the continuous-time discount function. We use a constant net annual discount
rate of 1% in this paper – UK government gilts with a maturity of 14–18 years yield around
3% at the time of writing and the Bank of England has a 2% inflation target (defined-benefit
pensions in payment in the UK have compulsory indexation). However, it could also be argued that
index-linked gilt yields are relevant for valuing pension scheme cashflows, and the yields for these are
all negative at the time of writing. Using the model in Table 2, and a 1% net discount rate in the
liability function in equation (11), the procedure described in section 4.5 yields the mis-estimation
capital requirements shown in Figure 5. The mis-estimation capital required increases rapidly with
age, which emphasises the importance of allowing for the age-related distribution of liabilities. The
choice of discount rate (or yield curve) is obviously also important, as demonstrated in Figure 6,
where a lower effective discount rate leads to a higher mis-estimation capital requirement.

6.11. A selection of the mis-estimation capital requirements from Figure 5 is listed in Table 3.
The average age of the 12,720 survivors at 1 January 2013 was 71.9 years (71.2 years weighted by
annualised pension). Using a single model point would therefore suggest a mis-estimation capital
requirement somewhere in the interval (4.90%, 5.22%).

6.12. However, it is doubtful whether a single model point, or even a handful of model points,
can capture the impact of mis-estimation risk on an entire portfolio. It would obviously be more
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Figure 5. Mis-estimation risk capital requirement at 99.5% level as percentage of best-estimate
reserve (with 95% confidence interval using Harrell & Davis (1982) estimate). The liability is a
single-level lifetime annuity from each stated age at outset, valued as in equation (11). Estimated from
10,000 simulations using model from Table 2 and discounting a level annuity at 1%/annum.
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accurate to perform an entire portfolio valuation instead. This is relatively straightforward to do,
and we therefore redefine the valuation function as in the following equation:

aðθÞ=
Xn
i=1

wiaxi (12)

for all n survivors in the pension scheme. This automatically allows for not only the age distribution
via the individual ages, xi, but also the liability distribution via the individual pensions, wi. Using the
full-portfolio valuation function in equation (12) and the procedure in section 4.5 we get a 95%
confidence interval for the mis-estimation capital of (4.57%, 4.90%). We can see that the range of
mis-estimation capital requirements using the full-portfolio valuation is lower than would be
implied by using a specimen model point at the average age and looking up Table 3. To show
the impact of the distribution of the wi, setting all the pensions to the same value and redoing the
full-portfolio valuation with section 4.5 yields a 95% confidence interval for the
mis-estimation capital range of (4.64%, 5.00%). A full-portfolio valuation of individual liabilities
yields a more accurate value for the mis-estimation capital requirement, which in this case also
meant a lower requirement.
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Figure 6. Mis-estimation risk capital requirement at 99.5% level as percentage of best-estimate
reserve under various discount rates. The liability is a single-level lifetime annuity from each
stated age at outset, valued as in equation (11). Estimated from 10,000 simulations using model
from Table 2 with varying discount rates.

Table 3. Specimen Mis-Estimation Capital Requirements from Figure 5
(95% Confidence Intervals Using the Method of Harrell & Davis (1982),
Calculated from 10,000 Valuations of a Single Annuity Discounted at a Net
Rate of 1%/Annum)

Annuity Outset Age Mis-Estimation Capital Requirement (%)

69 4.61–4.83
70 4.76–4.99
71 4.90–5.22
72 5.09–5.45
73 5.33–5.66
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6.13. However, the model in Table 2 is implausibly simple: it does not contain enough relevant risk
factors and only uses 1 year’s experience when more data are available. In section 8, we will fit
models with more risk factors and consider other mortality laws, but we first need to consider the
impact of using multi-year data.

7. The Impact of Using Multi-Year Data

7.1. The mis-estimation capital requirements in Figure 5 and Table 3 are based on only a single
year’s mortality experience. In practice, most portfolios have experience data spanning several years,
and this extra data contributes to improved estimation of parameters. This extra data also con-
tributes to significantly reduced mis-estimation risk, as illustrated by comparing the first two rows in
Table 4.

7.2. However, an implicit assumption in the simple age-only model is that mortality is
a stationary process in time. As many studies have shown, such as Willets (1999), mortality
rates of pensioners and annuitants have been continuously falling for decades. We can allow
for the fact that mortality is a moving target by including a time-trend parameter, δ, as in the
following equation:

μxi;y = eα0 + β0xi + δðy�2000Þ (13)

where µx,y is the instantaneous force of mortality at exact age x and calendar time y. The offset of
−2,000 keeps the parameters well scaled. The δ parameter could obviously be used to project
mortality rates into the future as well as measuring the recent changes in mortality levels. However,
we are concerned in this paper with mis-estimation risk of current rates, so to keep things com-
parable in Table 4, we generate static mortality rates as at 1 January 2010, i.e. using equation (13)
the fitted rates used in the mis-estimation assessment will be µx,2010.

7.3. One consequence of including this time-trend parameter is that it offsets a large part of the
benefit of having the extra data, as shown in the third row of Table 4. This is an example of a
phenomenon which occurs repeatedly with mis-estimation risk: enhancing the model’s fit can lead to
an increase in mis-estimation risk. In the case of Table 4, there is little doubt that the model including
time trend is a better fit: the Akaike information criterion (Akaike, 1987) is 15,801.3 with the time
trend and 15,808.1 without it, while the log-likelihood profiles in Figure 7 confirm the validity of
including each parameter as none of their plausible ranges includes 0. However, the better-fitting of

Table 4. 99.5% Mis-Estimation Capital Requirements as Percentage of Best-Estimate Reserve

Mis-Estimation Capital

Data Range Model (a) Central Estimate (%) (b) 95% Interval (%)

2012 only Age 4.73 4.57–4.90
2007–2012 Age 2.12 2.06–2.19
2007–2012 Age +Time 3.97 3.83–4.10

Results for various models and time periods calculated from 10,000 simulations. The 95% confidence intervals
were calculated using the method of Harrell & Davis (1982). Models calibrated using data for ages 60 years and
over. For models including a time trend, the rates fitted are for 1 January 2010, i.e. µx,2010.
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the two models results in a higher mis-estimation capital requirement. Indeed, the inclusion of the
time-trend parameter has added back over two-thirds of the reduction in mis-estimation capital
requirements from the extra data.

7.4. As this phenomenon might strike some readers as counter-intuitive, it is worth
explaining it in more detail. At its heart we have the same see-saw phenomenon as in Figure 4,
but here operating in calendar time. The time-trend parameter, δ, will be forced to pass through
the “average” level of mortality across the period of observation, but it will be much less constrained
at either end. This was the case in Figure 4 when looking at the behaviour of β0 in response
to changes in α0. Thus, there is more uncertainty over the level of mortality at either end of
the exposure period than there is over the mid-point of the period. In the presence of a time-varying
mortality process, it is this see-saw effect which is offsetting much of the extra estimating power
from using multi-year data.

7.5. This can be thought of more figuratively. Leaving aside the fact that mortality increases
with age, if mortality were a static process in time then more experience data over a longer period
of time will validly reduce mis-estimation risk. If there is no time trend, then the experience data
of 5 years ago (say) will help inform you about mortality levels now: there is more relevant data
on a process which is not changing in time. This is illustrated by comparing the first two
rows of Table 4. However, if there is a time trend, then the experience data of 5 years ago is of less
use in estimating current levels of mortality. While the time trend can be estimated, there is still
uncertainty over its precise value, and it is this uncertainty which is undoing some of the benefit of
the multi-year data. This is illustrated by comparing the last two rows of Table 4. Thus, where
risk levels vary in time, as with pensioner and annuitant mortality, using experience data spanning
multiple years will only yield modest reductions in mis-estimation risk. This is illustrated by
comparing the first and last rows of Table 4. Other necessary improvements to the model will also
increase the mis-estimation capital requirements, but for quite different reasons, and we will see why
this is so in section 8.

8. A Minimally Acceptable Model for Financial Purposes

8.1. So far we have considered a simple two-parameter Gompertz model, which works well enough
for ages above 60 years. However, Figure A1 shows an important amount of unused experience data
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Figure 7. Log-likelihood profiles for Age +Time model in Table 4. These profiles demonstrate the
quadratic shape around the maximum likelihood estimates (MLEs), which is consistent with the
multivariate Normal distribution for the estimates in equation (7).
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in the age range 50–60 years, while Figure A2 shows that the data in this range will not fit the
straight-line Gompertz assumption on a logarithmic scale. We solve this problem by using the
mortality law in equation (14), which includes a constant component as per Makeham (1860):

μxi =
eϵ + eα0 + β0xi

1 + eα0 + β0xi
(14)

As before, we can also define a time-varying version of equation (14):

μxi;y =
eϵ + eα0 + β0xi + δðy�2000Þ

1 + eα0 + β0xi + δðy�2000Þ
(15)

8.2. The models in equations (14) and (15) do not allow for many risk factors, however. We can
extend our model’s capabilities as follows:

μxi;y =
eϵ + eα0 +

P
jαjIi;j + β0xi + δðy�2000Þ

1 + eα0 +
P

jαj Ii;j + β0xi + δðy�2000Þ
(16)

where αj represents the effect of risk factor j and Ii,j is an indicator function taking the value 1 when
life i possesses risk factor j and 0 otherwise. In this section, we will consider gender and pension size
band as additional risk factors, but there is no practical limit to the number of risk factors which can
be considered when modelling individual-level mortality. The benefits of individual- over group-level
modelling are discussed in Richards et al. (2013).

8.3. For a model to be useful for actuarial purposes we additionally require that all financially
significant risk factors are included. To test whether a model achieves this we use the process of
bootstrapping described in Richards et al. (2013), i.e. we sample from the data and calculate the ratio
of the actual number of deaths in the sample to the predicted number according to the model. The
results of this are shown for two models in Table 5, where the ratios for the lives column are close to
100%. This means that both models have a good record in predicting the number of deaths, as one
would expect for models fitted by the method of maximum likelihood. However, we can see that the
model in the first row has a poor record when the ratio is weighted by pension size. This is because
those with larger pensions have a lower mortality rate, thus leading the first model to over-state
pension-weighted mortality. The first model in Table 5 is therefore unacceptable for financial purposes.

8.4. The second row in Table 5 shows that the addition of a three-level risk factor for pension size
makes a material improvement in the amounts-weighted bootstrap ratio. Although the median
bootstrap ratio is not quite as close to 100% as we might like, it is a clear improvement on the first
model and could therefore be regarded as a minimally acceptable model for financial purposes.

Table 5. Bootstrapping Results for Two Alternative Models

Median Bootstrap Ratio Weighted By

Model
(i) Lives
(%)

(ii) Amounts
(%)

95% Interval for Mis-Estimation Risk
Capital (%)

Age +Gender +Makeham+Time 99.8 91.7 3.75–3.96
Age +Gender +Makeham+Time+ Size 99.8 98.8 4.40–4.68

Calibrated to 2007–2012 mortality experience of pension scheme described in Appendix 1 (ages 50 years and over).
Bootstrap sample size is 1,000 (sampling with replacement) and 1,000 samples are taken. Mortality rates are as at
1 January 2013, i.e. we are using µx,2013 without projection. Model notation follows that of Baker & Nelder (1978).
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We can also see that the inclusion of a necessary risk factor (pension size) has increased the capital
requirement for mis-estimation risk. The reason for this is the concentration of risk demonstrated
in Table A2 – the bulk of the total pension is paid to a small proportion of the overall lives, yet
these same lives experience lower mortality rates, as shown in Table 6. In effect, the liability of the
scheme is driven by a much smaller effective number of lives than a simple headcount would imply,
and the mortality level of these lives is lower. This concentration of risk makes it very important that
(i) the model reflects these dynamics, and (ii) that the mis-estimation valuation function aðθÞ reflects
the impact of these lives. Using a valuation function which performs a valuation of the whole
portfolio will do this.

8.5. In practice, an actuary would use a more sophisticated model than the one in Table 6. Risk
factors like gender and pension size would normally be allowed to vary by age, for example, and
most portfolios have scope for additional rating factors such as early retirement indicators or
postcode-based profiling – see Richards (2008) for further details (Figure 8).

9. Discussion

9.1. Before using the mis-estimation method described in this paper, it is important that the analyst
check three items. The first requirement is that the independence assumption must hold: data must be
deduplicated and the model must be well specified. Data with duplicates will give a falsely low
estimate of mis-estimation risk, but a bigger risk comes from badly specified models. One example is
the still-encountered practice of chopping up the experience of individuals into non-overlapping
annual pieces and fitting a qx model with a generalised linear model. Such models will understate
mis-estimation risk capital if applied in the manner described in this paper.

9.2. The second requirement is that the model allows for all financially significant risk factors.
A model which does not contain these will give an erroneously low estimate of mis-estimation risk, as
illustrated in Table 5. This is because the financial impact of each life is not the same – those with
larger pensions have a much larger influence than those with smaller pensions. This is compounded
by the fact that those with larger pensions usually live longer, as shown by the lower mortality of the
Size.3 group in Table 6. Thus, both the overall reserves and the associated mis-estimation
risk are largely driven by a small proportion of the overall portfolio membership. The bootstrapping
procedure of section 8.3 can test whether a model has included all financially relevant risk
factors.

Table 6. Summary of Age +Gender +Makeham+Time+ Size Model Using Equation (16)

Parameter Estimate s.e Z-value Pr(> |z|) Significance Lives Deaths

Age (β0) 0.148372 0.00534602 27.75 0 *** 15,698 2,076
Gender.M (αmale) 0.479342 0.0603327 7.94 1.94235e−015 *** 5,956 901
Intercept (α0) −14.7313 0.490689 −30.02 0 *** 15,698 2,076
Makeham (ϵ) −5.41968 0.15372 −35.26 0 *** 15,698 2,076
Size.2 (αSize.2) −0.180133 0.0778913 −2.31 0.0207435 * 3,140 362
Size.3 (αSize.3) −0.313053 0.108229 −2.89 0.00382173 ** 1,567 164
Time (δ) −0.0463558 0.0162836 −2.85 0.00441649 ** 15,698 2,076

Calibrated using experience data for ages 50 years and over. Parameter significance is labelled according to the
same scheme used in R (R Core Team, 2012), i.e. * for 5%, ** for 1% and *** for 0.1%.
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9.3. The third requirement for multi-year data is to check that the model includes a time-trend parameter,
if one is needed. An additional useful check is that the log-likelihood function is approximately quadratic
around each MLE, i.e. that the multivariate Normal assumption behind Formula 7 holds.

9.4. Mis-estimation risk is portfolio dependent. Different portfolios, and models with different risk
factors, will produce different mis-estimation capital requirements. By and large, the more experience
data there is, the lower the mis-estimation risk will be. We can illustrate this by using a large
population of German pensioners. A comparison of the scale of the data sets is given in Table 7,
where the German data set is a factor of around 15 times larger.

9.5. A comparison of Tables 5 and 8 shows that the same minimally acceptable model does a
reasonable – but not perfect – job of explaining financially weighted mortality variation in the UK
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Figure 8. Log-likelihood function in profile for each of the seven parameters in Table 6, showing
the essentially quadratic nature of the function, and thus the validity of the multivariate normal
assumption in section 5.3.
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scheme and amongst the German pensioners. However, although the German data set is around 15
times larger, the mis-estimation capital requirement is only reduced by three quarters.

9.6. More data can come from the portfolio being larger or from a longer exposure period,
although the benefit of multi-year data is tempered when a time trend exists. The mis-estimation
capital requirements also vary according to the discount rate or yield curve, as shown in Figure 6,
so such calculations will need to be regularly updated as the interest rate environment changes.

9.7. The capital requirements produced by this method should also be taken as a lower bound, and
actuarial judgement will need to be applied as to the extent of any additional allowances which might
be necessary. For example, if a portfolio were growing quickly, a larger addition would be needed than
if the portfolio were growing slowly. A still-larger adjustment might be required if the portfolio were
growing due to a new business source. For example, consider a life office that historically wrote internal
vesting annuities, but then made a decision to write open-market annuities or bulk-purchase annuities.
This would create extra mis-estimation risk that could not be captured in a procedure calibrated using
only the internal-vesting mortality experience. Such circumstances would require additional capital to
be held for mis-estimation risk, and this can only be determined by actuarial judgement.

9.8. We note also that a matrix of correlations between parameters, C, can be derived from the variance–
covariance matrix, V, by setting ci;j = vi;j=

ffiffiffiffiffiffiffiffiffiffiffi
vi;ivj;j

p , where ci,j and vi,j are the values in row i and column j of
the matrices C and V, respectively. C is symmetric around the leading diagonal, as is V, and the leading
diagonal of C is composed of 1s, as each parameter is perfectly correlated with itself. All entries in C lie
between −1 and +1 (which represent perfect negative and perfect positive correlation, respectively).
An example of correlation matrix is given in Table 9, calculated according to the steps outlined above.

9.9. One item worth noting in Table 9 is that the time-trend parameter has little correlation with
any parameter apart from the intercept, with which it is negatively correlated. This is different from

Table 7. Comparison of UK Pension Scheme from Appendix 1 and a German Pensioner Population

Data set Years Lives Deaths Time Lived (Years)

UK pension scheme from Appendix 1 2007–2012 15,698 2,076 711,62.9
German pensioners from Richards et al. (2013) 2007–2011 244,908 31,546 1,008,739.0
Ratio of German: UK metric n/a 15.6:1 15.2:1 14.2:1

Table 8. Bootstrapping Results for German Pensioner Data

Median Bootstrap Ratio Weighted By

Model
(i) Lives
(%)

(ii) Amounts
(%)

95% Interval for Mis-Estimation Risk
Capital (%)

Age +Gender +Makeham+Time+ Size 99.4 98.3 1.10–1.19

Calibrated to 2007–2011 mortality experience of pension scheme described in Richards et al. (2013) (ages
50 years and over). Bootstrap sample size is 1,000 (sampling with replacement) and 1,000 samples are taken.
Mortality rates are as at 1 January 2012, i.e. we are using µx,2012 without projection. Model notation follows that
of Baker & Nelder (1978).
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the model for the German pensioner data set in Richards et al. (2013), where the time-trend para-
meter was not strongly correlated with any of the other parameters. This has potential application to
the correlation matrix used by insurers when allowing for diversification of risks under the Solvency
II regime. The correlation between the time-trend parameter and the others could be used to support
the assumed correlation between mis-estimation risk and mortality improvements. This would have
to be assessed on a portfolio-by-portfolio basis, however, and would require actuarial judgement. In
the case of this portfolio, however, the negative correlation between the time trend and the intercept
could perhaps be used to justify a negative correlation between mis-estimation risk and trend risk.
If so, this would bring an overall indirect capital benefit from using multi-year data, despite the
modest reduction in mis-estimation capital in section 7 from including a time trend in the model.

10. Conclusions

10.1. Mis-estimation risk for a portfolio can be straightforwardly assessed using the portfolio’s own
experience data and some basic results for MLEs. An approximation for the variance–covariance matrix
is required, but this can be quickly derived from the log-likelihood function for any statistical model.
Increased portfolio size leads to better estimation and thus lower mis-estimation capital requirements,
but section 9 shows that there is a diminishing return. Similarly, experience data spanning multiple years
provide only a modest reduction in mis-estimation capital requirements where risk rates are changing
in time, as shown in section 7. However, larger portfolio size or a longer exposure period could
bring indirect capital benefits from examining the matrix of parameter correlations, as in section 9.9.

10.2. Parameters estimated from any statistical model are correlated to some extent, and these
correlations need to be acknowledged in assessing mis-estimation risk. Furthermore, uncertainty over
fitted rates varies by age and some of the greatest parameter uncertainty applies to the lives with the
largest concentration of liabilities. The concentration of liabilities in a small subset of lives is one
reason why an improved model fit can lead to higher mis-estimation risk. A full-portfolio valuation
using appropriately perturbed model parameters will therefore allow for all of these aspects when
assessing mis-estimation risk.
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Table 9. Percentage Correlations Between Coefficients in the Model from Table 6, i.e. ci,j×100%

Age Gender.M Intercept Makeham Size.2 Size.3 Time

Age 100 23 − 94 72 − 7 −2 − 2
Gender.M 23 100 − 26 17 − 17 − 19 0
Intercept −94 −26 100 −70 5 2 −32
Makeham 72 17 −70 100 −10 −2 −1
Size.2 −7 −17 5 −10 100 13 −1
Size.3 −2 −19 2 −2 13 100 0
Time −2 0 −32 −1 −1 0 100

As with the variance–covariance matrix, the correlation matrix is symmetric about the leading diagonal.
The leading diagonal is 100% because a parameter value is perfectly correlated with itself.
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preparation for modelling were done using Longevitas (Longevitas Development Team, 2014),
which was also used to fit all the models and assess mis-estimation risk. Graphs were done in
R (R Core Team, 2012). Any errors or omissions remain the sole responsibility of the author.
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11. Appendix 1: Details of Scheme Used to Illustrate Results

11.1. The data used to illustrate results in this paper are for a medium-sized, local-authority pension
scheme in England and Wales. The data fields available were as follows: date of birth, gender, com-
mencement date, total annual pension, end date, postcode, National Insurance number and whether
the pensioner was a child, retiree or widow(er). The end date was determined differently for deaths,
temporary pensions and survivors to the extract date. For deaths, the end date was the date of
death. For children’s pensions and trivial commutations, the end date was the date the pension ceased
or was commuted. For other survivors, the end date was the date of extract in early 2013. The
experience data beyond 31 December 2012 were not used to avoid bias from delays in death reporting.

11.2. There were 17,068 benefit records available before deduplication, of which one was rejected
for having an end date inconsistent with the commencement date. Of the remaining 17,067 records,
2,265 were marked as deaths.

11.3. Annuitants and pensioners often have multiple benefit records. It is particularly common in
annuity portfolios for people to have multiple annuities, as demonstrated in Richards (2008).
The phenomenon is less common for pension schemes, but multiple benefit records for the same
individual can still arise. The first scenario is where an individual accrues two or more benefits from
separate periods of service. The second scenario is where an individual receives a pension in respect
of their own service and also a spouse’s pension if they were a widow(er) of a deceased pensioner in
the same scheme. Administratively, it is usually easier to handle these multiple benefits separately,
even though they are paid to the same person, and so duplicate records arise.

11.4. It is essential in any statistical model that the assumption of independence is valid, so we
must perform deduplication, i.e. the identification of individuals with multiple benefit records.
Following Richards (2008) we use two different deduplication schemes based on matching individual
data items on each record. Each matching rule forms a deduplication key based on verified
data items; if all items of the deduplication key match, then the two or more matching records
are merged and the pension amounts added together. The details of this procedure are summarised
in Table A1. The two records with conflicting life statuses were rejected, leaving 16,131 records
(16,131 = 17,068−1−934−2).

11.5. The number of duplicates may seem modest in relation to the overall number of records, but
it is important to deduplicate for a number of reasons. For example, if an individual received two
pensions of £4,000 each, this should be recognised as one individual in group S09 in Table A2 and
not two records in group S07. Failure to deduplicate leads to bias in mortality models and to falsely
comforting estimates of parameter variance, and thus under-statement of mis-estimation risk.
The resulting data volumes are shown in Figure A1.

Table A1. Deduplication Results for Medium-Sized Pension Scheme in England and Wales

Deduplication Key Duplicates Eliminated Conflicting Statuses

Date of birth, gender and postcode 891 2
Date of birth, gender and National Insurance number 43 0
Total 934 2
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11.6. One issue with pension schemes is that pensions are usually increased from year to year. This
creates a bias problem for cases which terminate early, i.e. deaths and temporary pensions. To put all
pension values on the same approximate financial footing, therefore, the annual pension amounts for
early terminations were revalued by 2.5%/annum to the end of the period of observation (the Retail
Price Index increased by a geometric average of 2.68% over this period, while the Consumer Price Index
increased by 2.90%). A more accurate approach would have been to establish the actual scheme
increases over the period, together with their timing and split between different types of benefits.
However, this level of detail would not have made any material change to the results in this paper.

11.7. Table A2 shows the breakdown of the deduplicated data by revalued annual pension. The
pension scheme shows considerable concentration of risk, as the top 20% of lives account for 58.7%

Table A2. Data by Pension Size Band

Revalued Pension
Per Annum (£)

Exposure Pensions Percentage of Total
Size Band From To Lives Deaths (Years) (£ Million) Scheme Pension

S01 0 537.62 1,571 175 6,766.9 0.5 0.7
S02 537.62 954.22 1,570 235 6,989.4 1.2 1.6
S03 954.22 1,397.90 1,570 238 6,902.9 1.8 2.5
S04 1,397.90 1,962.39 1,570 259 7,110.7 2.6 3.5
S05 1,962.39 2,686.70 1,570 227 7,066.5 3.6 4.9
S06 2,686.70 3,616.08 1,570 213 7,083.6 4.9 6.6
S07 3,616.08 4,958.15 1,570 203 7,265.7 6.7 9.0
S08 4,958.15 7,025.51 1,570 178 7,291.6 9.3 12.5
S09 7,025.51 115,64.99 1,570 184 7,287.2 14.0 18.9
S10 115,64.99 756,28.38 1,567 164 7,398.5 29.5 39.8
Total 15,698 2,076 71,162.9 74.1 100.0

Pensions for deaths and early terminations are revalued at 2.5%/annum to the end of 2012.
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Figure A1. Deaths and time lived at ages 50 years and over for 2007–2012, males and females
combined. In the given age and date range there were 2,076 deaths among 15,698 lives, with a
total exposure time of 71,162.93 years. Exposure time and deaths before 1 January 2007 were
not used and exposure times and deaths after 31 December 2012 were discarded to reduce the
influence of delays in death reporting.
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of the total pension. This phenomenon is common in the United Kingdom, as demonstrated for other
portfolios in Richards (2008).

11.8. Figure A2 shows the crude mortality hazard on a logarithmic scale for males and females
combined. There is no obvious evidence of a data problem, with the mortality hazard approximately
log-linear above age 60 years. A further useful check on the validity of the data is to plot the Kaplan–
Meier curves (Kaplan & Meier, 1958). We have encountered other portfolios where there is not a
clear separation between survival curves for males and females. This is sometimes evidence of a data-
corruption problem, which can be related to the processing of benefits for surviving spouses.
However, Figure A3 shows that females have a consistently higher probability of reaching any given
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Figure A2. Crude mortality hazard for males and females combined in medium-sized UK pension
scheme. Data cover ages 50 years and over for the period 2007–2012. The crude mortality
hazard is the actual number of deaths in the age interval [x,x + 1) divided by the time lived in that
interval. The falling mortality rate over the age range 50–60 years is caused by excess mortality
from ill-health retirements (the gender mix in this age range is broadly constant, with females
accounting for variable 42%–53% of exposure at individual ages).
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age, leading us to conclude that the data here do not suffer from any obvious corruption. Table A3
contains the mortality ratios for the deduplicated scheme data, which suggest falling mortality levels
with a large degree of volatility in the annual experience.

12. Appendix 2: Analytical Derivatives Versus Numerical Approximations

12.1. When fitting mortality models, the foundation of modern statistical inference is the log-
likelihood function, ‘. The point at which the log-likelihood has its maximum value gives you the
joint MLEs of the parameters, while the curvature of the log-likelihood gives information about the
uncertainty of those parameter estimates. The key to both is the calculation of derivatives: gradients
(first derivatives) for maximising the log-likelihood function and curvature (second partial deriva-
tives) for estimating the variance–covariance matrix. In each case, we require either the analytical
derivatives themselves, or else numerical approximations of them.

12.2. Numerical approximations to derivatives can be obtained relatively straightforwardly by
using difference quotients. This involves perturbing a parameter by a small value, say h, and then
expressing the change in function value relative to h. For example, a central difference quotient of the
single-parameter log-likelihood function, ‘ðθÞ, will yield a numerical approximation of the first
derivative, as in the following equation:

∂‘
∂θ

� δh½‘�ðθÞ
h

=
‘ðθ + h =2Þ�‘ðθ�h=2Þ

h
(A1)

and a similar central difference quotient can be used to approximate the second derivative, as in the
following equation:

∂2‘
∂θ2

� δ2h½‘�ðθÞ
h2

=
‘ðθ + hÞ�2‘ðθÞ + ‘ðθ�hÞ

h2
(A2)

12.3. For the multi-parameter case, equation (A1) must be applied to each parameter in turn, with the
other parameters unperturbed. A simple extension of equation (A2) is used for second partial derivatives.
In theory, the smaller the value of h, the closer the numerical approximation will be to the actual
derivative. Such numerical approximations have the advantage that they avoid the need to work out
large numbers of analytical derivatives for each mortality law. However, there are drawbacks in terms of
stability and accuracy, and this is most evident for estimating the curvature. By way of illustration,
Table A4 shows the estimates and approximate standard errors for one of the parameters in a simple
two-parameter Gompertz model using numerical approximations for the derivatives.

Table A3. Actual Deaths Against S2PAWithout Adjustment, Weighted by Lives and Revalued Pension Amounts

Weighting Gender 2007 (%) 2008 (%) 2009 (%) 2010 (%) 2011 (%) 2012 (%)

Lives Males 112 119 120 102 108 104
Females 125 112 98 101 88 100

Amounts Males 93 92 113 82 92 88
Females 110 97 83 100 79 89

The denominator of the mortality ratio is calculated by summing μx + 1
2
Ec
x + 1

2
, where Ec

x+ 1
2
is the central exposed-to-

risk or time lived at average age x + 1
2. μx+ 1

2
is approximated from the published table by − log(1− qx). Pensions for

deaths and early terminations are revalued at 2.5%/annum to the end of 2012.
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12.4. The MLE of the intercept parameter in Table A4 is consistent to five significant figures for
values of h = 10−4 and smaller, with a degree of convergence apparently achieved for values of
h = 10−5 and smaller. However, there is no such obvious convergence for the approximate standard
error, with the estimate becoming unstable for very small values of h. This is not an isolated result –
similar work with other schemes and other models produces the same finding. Furthermore, although
the value of h = 10−4 looks like the best compromise in Table A4, this is not the case for other models
and other data sets. Our conclusion therefore is that while numerical approximations are often fine for
finding the MLEs, they are not reliable enough for estimating the variance–covariance matrix.

12.5. For reliability one simply has to do the maths and find the expressions for the analytical
derivatives. This has the additional advantage that points of possible arithmetic underflow can be
identified and handled – see Richards (2012) for a list of some problematic expressions and how to
cope with them. Another advantage is that using the analytical derivatives typically results in faster
fitting times. Using analytical derivatives the values for the parameters in Table A4 are −12.972 for
the intercept and 0.467 for s.e. (see Table 2). From this we can deduce that h = 10−4 was indeed the
best-performing approximation step in Table A4. There is of course a degree of irony in having to
calculate the analytical derivatives to find out which numerical approximation performs best – one
might as well just use the analytical derivatives. However, it is useful to be able to do both as a means
of checking one’s mathematics.

12.6. The methodology in this paper requires the accurate estimation of the variance–covariance
matrix, which we estimate from the inverted matrix of second partial derivatives. The best way to
accurately estimate the latter is to work out the analytical derivatives. This is admittedly more work
than using difference quotients like equations (A1) and (A2), but, as demonstrated in Table A4, using
analytical derivatives is the most reliable way to fit the model parameters and to estimate their
variance–covariance matrix.

13. Appendix 3: Number of Simulations Required

13.1. In the main body of this paper we used 10,000 simulations of equation (7), followed by full-
portfolio valuations in section 8. The simulations can be done quickly enough, but the portfolio
valuations which accompany them can be computationally demanding. It is worth commenting on
two practical methods to speed things up.

Table A4. Estimated Value and Approximate Standard Error for the Inter-
cept (α̂0) Parameter in the Simple Gompertz Model for Mortality in Table 2

h Intercept (α̂0) s.e.

10−3 −12.9491 0.502297
10−4 −12.9718 0.467319
10−5 −12.972 0.459947
10−6 −12.972 0.193068
10−7 −12.972 0.020153

Numerical approximation is used with varying values of h.
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13.2. The first method is to exploit the fact that each simulation in equation (7) is independent of
all the others, as are the associated portfolio valuations. We can therefore use parallel processing to
perform the same work in a much shorter period of time. The mis-estimation algorithm in this paper
is highly scaleable, i.e. spreading the work over u CPUs means the work can be done in 1

u of the
elapsed time. This was the method adopted for this paper, where calculations were spread over
seven CPUs.

13.3. The second method is to see whether there is an appropriate distributional assumption which
can be made for the portfolio valuations in S (as defined for equation 6). The number of simulations
could be curtailed if it were found that the values in S followed, say, a Normal distribution, as the
mean and variance could be robustly estimated and all higher-order moments are a function of these.
This approach was considered by Richards et al. (2014), where the much larger number of para-
meters in projection models – and the greater variance in the estimates – made an approach like
equation (7) trickier. However, the distribution of the values in the resulting set S in Richards et al.
(2014) was only Normally distributed for a subset of projection models, so this second method could
not be universally used. That said, the mis-estimation approach in equation (7) is very different and
the number of parameters is much smaller, so it is worth considering if this second method might
apply here.

13.4. The Normal distribution is fully characterised by its mean and variance, i.e. the first two
moments of the distribution. Higher-order moments are merely a function of the first two. In general,
if a distribution has mean µ, then the coefficient of skewness (standardised third moment) is given by
the following formula:

Eðs�μÞ3
½Eðs�μÞ2�32

(A3)

where E denotes expectation – see Wetherill (1982, page 88). Formula A3 is zero for the Normal
distribution. Similarly, adjusting the coefficient of kurtosis (standardised fourth moment) given in
Wetherill (1982, page 88) we get the following formula:

Eðs�μÞ4
½Eðs�μÞ2�2 (A4)

which is 3 for the Normal distribution. Thus, if the skewness coefficient of the data in S is close to 0
and the kurtosis coefficient of the same data is close to 3, then it would be appropriate to use the
Normal distribution as a means of finding the percentiles of S. The skewness and kurtosis of the
valuations in S for the models used in the main body of this paper are given in Table A5.
For comparison we also show the skewness and kurtosis of 10,000 simulations from the N(0,1)
distribution using the R script below:

library(moments) # Load library of statistical functions
set.seed(−1) # Initalise seed for random-number generator
Z = rnorm(10,000) # Generate 10,000 N(0,1) variates
skewness(Z) # Caclulate and display coefficient of skewness
kurtosis(Z) # Calculate and display coefficient of kurtosis
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13.5. The results in Table A5 show that the portfolio valuations in S have a skewness close to 0 and
a kurtosis close to 3. In each case the distribution of S can therefore be closely approximated by a
Normal distribution. Thus, for these models and this particular portfolio at least, one could calculate
the mis-estimation capital requirements from the mean and standard deviation of S, together with the
appropriate value of Φ�1ðÞ. Indeed, one could arguably use far fewer than 10,000 simulations, as the
mean and standard deviation of Normally distributed data can be reliably estimated with fewer data
points.

14. Appendix 4: Conversion to Published Tables

14.1. It is one thing to be able to fit a bespoke model with multiple risk factors. However, actuaries
also need to express their bespoke bases in terms of a published table for communication purposes.
Examples include reserving bases, communication with third parties (such as regulators and
auditors) and of course circumstances where one wants to keep one’s bespoke basis private
(as in competitive pricing).

14.2. A good way to convert mortality bases is by equating reserves, the so-called “equivalent-
annuity method” – see Willets (1999) and Richards et al. (2013) for examples. This involves solving
an equation where the only difference on each side is the mortality basis being used. For example,
two mortality bases B and T would be deemed equivalent for a given annuity portfolio if the
following equation held:

Xn
i= 1

wi€aTxi =
Xn
i=1

wi€aBxi (A5)

where wi is the annual pension paid to life i and €axi values an immediate level lifetime annuity paid to
a life aged xi. Without loss of generality we can think of B as the bespoke, multi-factor basis and T as
the much simpler one based on the published table. In the case of gender-differentiated rates in T,
which is usually the norm, equation (A5) is generally applied separately to males and females.
For example, the equivalent percentages of S2PA (CMI Ltd., 2014) for the model in Table 6 are given
in the first row of Table A6, where the values are consistent with the 2012 column of Table A3.

14.3. Alternatively, the actuary can solve for a target reserve value, as in the following equation:

Xn
i=1

wi€aTxi = Sp (A6)

Table A5. Skewness and Kurtosis of Portfolio Valuations and simulated N(0,1) variates

Model Skewness Kurtosis

Age model for 2012 data 0.03 3.01
Age model for 2007–2012 data 0.04 2.96
Age +Time model for 2007–2012 data 0.01 2.98
Age +Time+Gender +Makeham model for 2007–2012 data −0.01 3.04
Age +Time+Gender +Makeham+Size model for 2007–2012 data 0.01 2.96
Simulated N(0,1) variates 0.03 3.05

There are 10,000 observations in each data set.
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where Sp would be the appropriate percentile of the set of mis-estimation valuations carried out
with similar €a functions. For example, an approximate 95% confidence interval for the best-estimate
basis could be obtained by solving for S2.5% and S97.5%. This is done in the second row of
Table A6, where we note that the confidence interval is not symmetric around the best-estimate
percentages. One important point to note is that for gender-differentiated rates we would
have to solve equation (A6) separately for males and females. Alternatively, we could solve for the
aggregate male and female reserves combined and use the same percentage of table for both genders.
Bearing in mind the similar percentages for males and females in Table A6, this would be an
option here.

14.4. Finally, we can also express our 99.5% mis-estimation stress in terms of a standard
table by using S99.5% in equation (A6). This is given in the third row of Table A6. One
reason for doing this might be if one needed a rough-and-ready approximation for daily stress
testing.

15. Appendix 5: Orthogonality and Parameter Correlation

15.1. In section 6.8, we noted a high correlation between the estimates of the intercept (α̂0) and age
parameter (β̂0). In the case of the simple two-parameter Gompertz model, this is a direct result of the
choice of parameterisation in equation (10). However, we can attempt to orthogonalise α̂0 and β̂0 by
re-parameterising the model as in the following equation:

μxi = eα0 + β0ðxi�oÞ (A7)

where o is an offset constant. In a model for grouped mortality counts, Cairns et al. (2006) used
o= x, i.e. the mean of the age range. However, in equation (A7) setting o to the mid-point of the age
range is not enough to eliminate the correlation between α̂0 and β̂0 – the distribution of time lived
and deaths is not even, as shown in Figure A1. We can calculate the correlation between α̂0 and β̂0 in
equation (A7) for various values of o, as shown in Figure A4. We see that o = 82 delivers a
correlation of −3%, while a value of o slightly >82 will give zero correlation.

15.2. In practice, it would be necessary to determine o afresh for each portfolio (or for each altered
age range for the same portfolio) if one wanted to eliminate the correlation between α̂0 and β̂0 in
equation (A7). This alone might argue for the simplicity of equation (10). However, the offset o also

Table A6. Equivalent Percentages of S2PA for the Model in Table 6

Percentage of S2PA

Mortality Basis (i) Males (%) (ii) Females (%)

Best-estimate model in Table 6 88.50 87.19
95% confidence interval for best estimate 78.73–99.54 79.31–96.11
99.5% stress 75.98 77.04

The basic S2PA mortality table is effective for 2007 and is unadjusted for improvements of any kind. As the
mortality model fits the hazard for 1 January 2013, the table percentages are below 100% because of the
improvements between 2007 and 2013.
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needs to be changed whenever the model changes. For example, we can introduce gender as a risk
factor as in the following equation:

μxi = eα0 + αmaleIi;male + β0ðxi�oÞ (A8)

where Ii,male is an indicator variable taking the value 1 for males and 0 for females. Table A7 shows
the correlations between the parameters, and the correlation between α̂0 and β̂0 has strengthened due
to the change in model. Furthermore, the correlation between α̂0 and α̂male is large and cannot be
easily eliminated. In fact, setting o = 83 reduces the correlation between α̂0 and β̂0 to −1%, but
leaves the correlation between α̂0 and α̂male almost unchanged at −64%. Thus, our mis-estimation
methodology must take account of parameter correlations as they cannot be avoided. We therefore
prefer to use the simpler model structure of equation (10) without the orthogonalising constant in
equation (A7).
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Figure A4. Correlation between α̂0 and β̂0 for various values of offset age, o, in equation (A7).
Data as in Table 2.

Table A7. Percentage Correlations (cij×100%) Between Coefficients in
Equation (A8) with o = 82

β̂0 α̂male α̂0

β̂0 100 12 −10
α̂male 12 100 −65
α̂0 −10 −65 100

The data are the same as in Table 2. As with the variance–covariance matrix,
the correlation matrix is symmetric about the leading diagonal. The leading
diagonal is 100% because a parameter value is perfectly correlated with itself.
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