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Abstract

The Stanley Miller experiment suggests that amino acid-based life is ubiquitous in our uni-
verse, although its varieties will not have followed the particular, highly contingent and
path-dependent, evolutionary trajectory found on Earth. Are many alien organisms likely
to be individually conscious in ways we would recognize? Almost certainly. Will alien con-
sciousness require a ‘sleep cycle’? A strong argument suggests it will. Can some species
develop analogs to culture and high-order technology? Less likely, but still fairly probable.
If so, will we be able to communicate with them? Only on a basic level, and only with pro-
found difficulty. The reasoning is fairly direct and involves convolution of a learned heritage
system with individual and collective consciousness.

Introduction

In spite of a popular social construction as such (e.g. Penrose, 1994; Tononi, 2012; Tegmark,
2015), individual consciousness is no great mystery, constituting a basic adaptation likely a
half-billion years old representing a straightforward evolutionary exaptation of the crosstalk –
signal leakage – that bedevils all information transmission, biological or not (Wallace and
Wallace, 2009; Wallace, 2012). Bernard Baars’ global workspace/global broadcast model – the
current front-runner in the Darwinian competition between consciousness theories (Dehaene
and Naccache, 2001) – is itself nearly a generation old and accounts, in a qualitative manner,
for much of what we know about individual consciousness (Baars, 1988, 2005):

1. The brain can be viewed as a collection of distributed specialized networks (processors).
2. Individual consciousness is associated with a global workspace in the brain – a fleeting memory capacity

whose focal contents are widely distributed (broadcast) to many unconscious specialized networks.
3. Conversely, a global workspace can also serve to integrate many competing and cooperating input networks.
4. Some unconscious networks, called contexts, shape conscious contents, e.g. unconscious parietal maps

modulate visual feature cells that underlie the perception of colour in the ventral stream.
5. Such contexts work together jointly to constrain conscious events.
6. Motives and emotions can be viewed as goal contexts.
7. Executive functions work as hierarchies of goal contexts.

Although this basic approach has been the focus of work by many researchers for two decades,
scientific consciousness study has only recently, in the context of a deluge of empirical results
from brain imaging experiments, begun digesting the perspective and preparing to move on
(Baars, 2005).

A first point in developing a quantitative theory of individual consciousness based on
Baars’ model is to recognize Dretske’s central argument (Dretske, 1994) that high level mental
process of any nature inevitably involves the generation and transmission of information, both
of which are constrained by the asymptotic limit theorems of information theory: Shannon
Coding, Shannon–McMillan Source Coding, and the Rate Distortion theorems (Khinchin,
1957; Cover and Thomas, 2006).

The next stage is to recognize that cognitive process, in the sense of Atlan and Cohen
(1998), involves comparison of a perceived signal with an internal picture of the world, and
then, on that comparison, the choice of a response from a large repertoire of those possible,
causing a reduction in a formal measure of uncertainty. It is then easy to show (Wallace,
2000, 2005, 2010, 2012) that a substantial class of such cognitive phenomena is necessarily
associated with a well-behaved information source.

Extension to less well-behaved systems is via the formalism outlined in Wallace (2018a).

Cognition as an information source

Cognitive pattern recognition-and-selected response, following the model of Atlan and Cohen
(1998), proceeds by convoluting an incoming external ‘sensory’ signal with an internal
‘ongoing activity’ – which includes, but is not limited to, a learned or inherited picture of
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the world – and, at some point, triggering an appropriate choice
of an action from a larger set of those available based on a deci-
sion that the pattern of sensory activity requires a response. It is
not necessary to specify how the pattern recognition system is
trained, and hence possible to adopt a weak model, regardless
of learning paradigm, that can be more formally described by
the Rate Distortion Theorem that dictates the minimum channel
capacity necessary to keep the average distortion in a transmitted
signal below some fixed limit (Wallace, 2012). Fulfilling Atlan and
Cohen’s criterion of meaning-from-response, it is possible to
define a language’s contextual meaning entirely in terms of system
output.

Most directly, cognition involves choice, choice reduces uncer-
tainty, and the reduction of uncertainty directly implies the exist-
ence of an information source ‘dual’ to that cognition. This
argument is breathtakingly sufficient, and places cognition and
consciousness within the statistical regularities imposed by the
asymptotic limit theorems of both information and control theor-
ies, and certain constraints imposed by physical theory through
the recognition of information as a form of free energy (e.g.
Feynman, 2000). However, a more formal model, a conceptual
simplification of the standard neural network, can be made as
follows.

A pattern of ‘sensory’ input – incorporating feedback from the
external world – is expressed as an ordered sequence y0, y1,….
This is mixed in a systematic (but unspecified) algorithmic man-
ner with internal ‘ongoing’ activity, a sequence w0, w1, …, to cre-
ate a path of composite signals x = a0, a1, …, an, …, where aj =
f( yj, wj) for some function f. This path is then fed into a similarly
unspecified decision function generating an output h(x) that is an
element of one of two sets B0 and B1. We take B0≡
{b0, …, bk}, B1≡ {bk+1, …, bm}.

The model permits a graded response, supposing that if h(x)∈
B0 the pattern is not recognized, and if h(x)∈ B1 the pattern is
recognized and some action bj, k + 1≤ j≤m takes place.

The principal focus is on those composite paths x triggering
pattern recognition-and-response. Given a fixed initial state a0,
such that h(a0)∈ B0, we examine all possible subsequent paths
x beginning with a0 and leading to the event h(x)∈ B1. Thus
h(a0,…, aj)∈ B0 for all 0≤ j <m, but h(a0,…, am)∈ B1. The yj,
the ‘sensory’ input convoluted with the internal wj, contains feed-
back from the external world, i.e. how well h matches intent with
observation. Wallace (2012) uses this comparison to define a Rate
Distortion Function and an associated average distortion charac-
terizing the ‘goodness-of-fit’ between what a cognitive entity per-
ceives and what exists.

For each positive integer n let N(n) be the number of gram-
matical and syntactic high probability paths of length n that
begin with some particular a0 having h(a0)∈ B0 and lead to the
condition h(x)∈ B1. Call such paths ‘meaningful’ and assume
N(n) to be considerably less than the number of all possible
paths of length n – pattern recognition-and-response is compara-
tively rare. The essential assumption is that the longitudinal finite
limit

H = lim
n�1

log[N(n)]
n

(1)

both exists and is independent of the path x. Call such a cognitive
process ergodic. The essential idea surrounding an ergodic system
is that time averages converge on ensemble averages.

Disjoint partition of state space is done according to sets of
states which can be connected by meaningful paths from a par-
ticular base point, leading to a natural coset algebra of the system
defining a groupoid (Wallace, 2012). A groupoid is an algebraic
structure having a product that is not necessarily defined between
all elements. The most simple example is a disjoint union of
groups (e.g. Brown, 1987).

It is thus possible to define an ergodic information source X
associated with stochastic variates Xj having joint and conditional
probabilities P(a0,…, an) and P(an|a0,…, an−1) such that appro-
priate joint and conditional Shannon uncertainties may be defined
which satisfy the standard relations (Cover and Thomas, 2006).

H[X] = lim
n�1

log[N(n)]
n

= lim
n�1H(Xn|X0, . . . ,Xn−1)

= lim
n�1

H(X0, . . . ,Xn)
n

(2)

where the Shannon uncertainties H are defined in terms of cross-
sectional sums of the form H = −∑

Pk log[Pk]. Again, the Pk
constitute probability distributions, summing to 1 (Khinchin,
1957; Ash, 1990; Cover and Thomas, 2006).

This information source is taken as dual to the ergodic cogni-
tive process.

Different quasi-languages will be defined by different divisions
of the total universe of possible responses into various pairs of sets
B0 and B1. Like the use of different distortion measures in the Rate
Distortion Theorem, however, the underlying dynamics will all be
qualitatively similar. Again, the Rate Distortion Theorem man-
dates R(D) as the minimum channel capacity needed to ensure
that average distortion in a transmitted signal is below the fixed
real positive value D, and will vary according to the nature of
the channel studied.

Meaningful paths – creating an inherent grammar and syntax –
have been defined entirely in terms of system response, as Atlan
and Cohen (1998) propose.

In sum, if there are N(n) possible behavioral – and hence tem-
poral – output paths of that information source having length n,
then there will be a path-independent limit H such that equation
(1) holds.

This is the Shannon uncertainty of the (stationary, ergodic)
information source dual to the cognitive process.

Extension to path-dependent ‘nonergodic’ systems, for which
the time average is not the same as the ensemble average, can
be made using the fact that, for individual sequences xn =
{a0, a1, …, an}, a path-wise uncertainty limn�1 H(xn) = H(x)
can always be defined, although it will not be given by a simple
Shannon ‘entropy’ (Khinchin, 1957 p. 72). See Wallace (2018a)
for details.

Cognitive phase transitions: constructing global
workspaces

We envision the evolution of a broad set of unconscious cognitive
modules within a reproducing organism that serves a number of
independent purposes, ranging from the search for food and habi-
tat, and the avoidance of predation, to modalities of reproduction.
Thus even a simple organism will have a large network of
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unconscious cognitive modules that, necessarily, interact, if only
by crosstalk information leakage.

Evolution can then take this interaction and run with it, across
multiple physiological systems at different temporal scales, processes
including wound healing, immune response, tumour control, gene
expression, sociocultural cognition and so on (Wallace, 2012). The
argument is direct.

Given a network of interacting (unconscious) cognitive mod-
ules of any sort, we can construct an interacting network of
dual information sources, linked by crosstalk – a kind of inevit-
able information leakage between them.

That is, the information sources dual to an organism’s set of cog-
nitive modules are not independent, but are correlated, so that a
joint information source can be defined as having the properties

H(X1, . . . ,Xn) ≤
∑n
j=1

H(Xj) (3)

This is the information chain rule (Cover and Thomas, 2006) and
has implications for metabolic energy consumption and regulation
ina biological process. Recall Feynman’s description of how infor-
mation and free energy have an inherent duality. Feynman, in
fact, defines information precisely as the free energy needed to
erase a message. The argument is again direct, and for very simple
systems it is easy to design an (idealized) machine that turns the
information within a message directly into usable work – free
energy. Information is a form of free energy (Feynman, 2000)
and the construction and transmission of information within living
things – the physical instantiation of information – consume con-
siderable free energy, with inevitable massive losses via the second
law of thermodynamics.

Suppose an intensity of available metabolic free energy is asso-
ciated with each defined joint and individual information source
H(X, Y), H(X), H(Y), e.g. rates MX,Y, MX, MY.

Again, although information is a form of free energy, there is a
great entropic loss in its actual expression, so that the probability
distribution of a source uncertainty H might be written in the
standard Gibbs form (e.g. Landau and Lifshitz, 2007; Pettini,
2007) as

P[H] = exp[−H/kM]�
exp[−H/kM]dH (4)

assuming κ, the ‘translation rate’ of metabolic free energy into
information, is very small.

To first order, then,

Ĥ =
∫
HP[H]dH ≈ kM (5)

and, using equation (3),

Ĥ(X,Y) ≤ Ĥ(X) + Ĥ(Y)
MX,Y ≤ MX +MY

(6)

Thus, as a consequence of the information chain rule, allowing
crosstalk consumes a lower rate of metabolic (or other) free
energy than isolating information sources. That is, in general, it
takes more free energy – higher total cost – to isolate a set of cog-
nitive phenomena than it does allow them to engage in crosstalk,

a signal interaction that, under typical circumstances, grows as the
inverse square of the separation between circuits. This is a well-
known problem in electrical engineering that can consume con-
siderable attention and other resources for proper address.

For a given underlying network topology of n interacting
information sources representing cognitive submodules of an
organism – necessarily without isolated subcomponents – the
average crosstalk between them, say ϵ(n), will be a monotonic
increasing function of n. For that given network topology, there
will be some critical value ϵC at which a giant component
emerges. That is, at ϵC, a very large number of cognitive processes
become suddenly linked into a joint ‘giant component’ informa-
tion source. For random networks, this phenomenon has been
fully studied, and the conditions under which a giant component
occurs are well understood (e.g. Spenser, 2010). While other top-
ologies impose different detailed conditions, the sudden emer-
gence of a giant component is virtually universal, covering a
very large class of networks. Thus, for any ϵC, there will be a crit-
ical number of dual information sources nC such that ϵ(n) > ϵC if
n > nC.

This phase transition – from isolated individual components
to a single ‘giant component’ – represents the onset of large-scale,
dynamic, global broadcasts acting on a variety of scales of time as
the organism becomes large enough to entertain a sufficient num-
ber of lower level cognitive modules.

The essential point is that this kind of phase transition to a
‘global broadcast’, necessarily involving changes in groupoid sym-
metry, is very general and will occur from the intra-organismal to
societal level of organization in cognitive systems.

One suspects that evolutionary selection has, in fact, acted on
cognitive network topology to favour forms that permit broad-
casts – i.e., the establishment of a ‘giant component’ – at relatively
low values of ϵ, albeit on varying timescales.

It was noted, after equation (1), that disjoint partition of state
space is possible according to sets of states that can be connected
by high probability paths to the same base point, leading to a
groupoid structure characterizing the underlying network top-
ology. Groupoids generalize ideas of both symmetry and equiva-
lence class (e.g. Brown, 1987), and ϵ can be taken as a temperature
analog in a spontaneous symmetry breaking (or making) argu-
ment in Landau’s sense (Landau and Lifshitz, 2007). That is,
increasing ϵ, a measure of crosstalk – information leakage –
between cognitive submodules, leads to a punctuated transition
to a higher groupoid symmetry representing a global broadcast.

Nothing in this realization of the Baars model seems restricted
to terrestrial biological entities. Indeed, even on Earth, we know of
widely different brain structures that instantiate conscious beha-
viours, ranging from familiar mammalian and avian forms to rep-
tiles, cephalopods, and perhaps insect colonies (Cartmill, 2000;
Griffin et al., 2004; Edelman et al., 2005).

The essential point, from an astrobiological perspective, is that
any organism evolving a sufficiently large set of unconscious cog-
nitive submodules is likely to undergo an evolutionary exaptation
of the crosstalk (information leakage) between them into some-
thing having a shifting, tunable, global workspace/broadcast mech-
anism. Those broadcasts operating in the realm of a few hundred
milliseconds would be analogous to consciousness-as-we-know-it.

The rate of cognition

We know that physiological global broadcasts, where underlying
cognitive modules come together to address patterns of threat
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or opportunity, operate across very different timescales. Wound
healing can take 18 months, while high-order animal conscious-
ness operates in the realm of a few hundred milliseconds. How
can consciousness be so fast? Here, we adapt the arguments of
(Wallace, 2016a,b).

Recall the argument above, that in the cognitive process, an
internal picture of the world is compared with incoming sensory
data. Such comparison, involving transmission of information
along with a ‘sensory/cognitive’ channel, permits definition of
an average distortion between what is happening and what is per-
ceived, and, via the Rate Distortion Theorem (Cover and Thomas,
2006), permits estimation of the minimum channel capacity
needed to keep that average distortion below some limit. That
is, to survive ‘real time’ challenge, the organism must maintain
a good ongoing estimate of the external real world so that cogni-
tive choices can be made, also in real time.

What are we to do with such a biological Rate Distortion
Function? The approach is via Arrhenius’ law (Laidler, 1987),
which predicts an exponential rise in reaction rate withthe rise
in temperature. Here, however, the ‘temperature’ is the rate of
supply of metabolic free energy to the cognitive system of interest.

The energetics of terrestrial biological reactions are remark-
able. At 300 K, molecular energies represent something like
2.5 KJ /mol−1 of available free energy. The basic terrestrial bio-
logical energy reaction – the hydrolysis of adenosine triphosphate
(ATP) to adenosine diphosphate – at 300 K, produces some
50 KJ /mol−1, implying a ‘reaction temperature’ of 6000 K. A
high rate of ATP delivery thus provides enough energy for very
rapid biocogniton, given that neural tissues in higher animals con-
sume an order of magnitude more metabolic free energy per unit
time than other tissues.

A calculation

Given a simple chemical reaction of the form aA + bB→ pP + qQ,
the rate of change in the concentration of chemical species P –
written [P] – is typically determined by an expression

d[P]/dt = k(T)[A]n[B]m (7)

where n and m are constants depending on system structure. The
reaction rate k is expressed by the Arrhenius relation as

k = a exp[−Ea/kT] (8)

where α is another characteristic constant, Ea is the reaction acti-
vation energy, T is the Kelvin temperature and κ a universal
constant.

Note that exp[−Ea/κT] is, using the Boltzmann distribution,
the fraction of molecular interactions having energy greater
than Ea.

The basic idea can be adapted to cognitive physiological pro-
cesses. Above, we have associated cognition with a dual informa-
tion source (Wallace, 2012). High level cognition is usually an
all-or-nothing phenomenon (Sergeant and Dehaene, 2004) so
that an incoming signal must exceed a threshold before becoming
entrained into a characteristic general broadcast of large-scale
developmental selection, very much akin to a slow form of con-
sciousness (Wallace, 2012). Interest focuses on the Rate
Distortion Function associated with the channel connecting the
cognitive organism with an embedding and embodying ‘real
time’ environment. Again, R(D) defines the minimum rate of

information transmission needed to ensure that the average dis-
tortion between what is sent and what is received is less than or
equal to D≥ 0, according to an appropriate distortion measure.
Assuming a threshold R0 for the perception of an incoming envir-
onmental signal, following Feynman (2000) identification of
information as a form of free energy, it is possible to write a
Boltzmann-like probability as

P[R ≥ R0] =
�1
R0
exp[−R/vM]dR�1

0 exp[−R/vM]dR = exp[−R0/vM] (9)

where M is the rate at which metabolic free energy is provided to
the cognitive process. Figure 1, showing exp (−1/M), follows. Also
shown is the energetic efficiency measure exp (−1/M)/M. Peak
efficiency – likely to be strongly selected for by evolutionary pro-
cess – takes place at R0/ωM = 1.

In sum, cognition rate first increases exponentially sharply
with the rate of free energy supply M, but rapidly tops out, so
that highest efficiency is at an intermediate value of M.

For terrestrial higher animals, nervous system tissues, operat-
ing with time constants of about 100 ms, do so by requiring an
order of magnitude greater metabolic energy support than
other tissues. High-level cognition in other astrobiologies may,
in fact, operate with time constants shorter than 100 ms if they
can evolve to supply metabolic free energy at sufficiently high
rates.

A very general statistical model of the punctuated accession-
to-consciousness involving the sudden formation of the global
workspace that takes place when an incoming ‘sensory’ signal
reaches threshold is given in the Mathematical Appendix.

Are ‘sleep cycles’ inevitable in rapid biocognition?

We have now developed enough formal machinery to address the
question raised in the title, adapting, somewhat, the arguments of
Wallace (2016a).

As Maturana and Varela (1980) argue, the cognition is ubiqui-
tous at all scales and levels of organization of the living state. Gene
expression mechanisms at the cellular level must choose when
and how to activate, and are closely regulated as to time, place,
and manner. Failure of regulation results in developmental disor-
ders of varying severity. Blood pressure must not only change to
meet metabolic and other demands, but it must be closely regu-
lated to prevent explosive organic damage. Similarly, in higher
animals, the ‘stream of consciousness’ must be closely regulated
by ‘riverbanks’ that constrain it to realms useful to the animal
and its social groupings (Baars 1988; Wallace, 2005, 2012). We
must, then, envision consciousness and its regulatory system as
a paired dyad under a constraint on the maximum rate at
which metabolic free energy is available.

Letting the subscript C represent consciousness and R its regu-
latory system, we thus seek to maximize an efficiency scalarization

exp[−KC/MC]
MC

+ exp[−KR/MR]
MR

(10)

subject to the constraint

M = MC +MR (11)
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This leads, most simply, to a standard Lagrangian optimization
on

L ;
exp[−KC/MC]

MC
+ exp[−KR/MR]

MR
− l(M −MC −MR) (12)

where λ represents a ‘cost’ variable dual to M. Under sufficiently
pathological conditions, the ‘cost’ cannot be met (Jin et al., 2008).

The Lagrange optimization condition is

∇MC,MR,lL = 0 (13)

The resulting equation for solution pairs MC, MR implies the
existence of several different possible optimization points for
the system, strongly parameterized by the overall energy rate M.
This expression represents an index theorem relating solutions
of an analytic equation to underlying topological modes: increas-
ing the number of systems to be optimized – adding terms of the
form exp[−KJ/MJ]/MJ – increases the number of possible
non-equilibrium quasi-stable states.

Making the first approximation to a sleep cycle, there will be
only a small number of stages to the normal pattern. On Earth,
these are NREM (non-rapid eye movement) sleep, which involves
low rates of blood flow to the brain – low M – and REM sleep
which can rival or exceed conscious state blood flows. Sleep states
must, like all other neural processes, be highly regulated.

Taking the rate constants KC≈ KR = K in equation (10), calcu-
lation shows a symmetric efficiency curve with one or two peaks,
depending on the magnitude ofM =MC +MR, as in Fig. 2. Taking
K = 1, MC +MR =M = 1→ 3.6, we obtain a maximum efficiency
index, (about 0.74) at MC =MR≈ 1 for M≈ 2, or along symmetric
ridge points for larger M. The maximum value of 3.6 for M is

chosen from Madsen and Vorstrup (1991), who found a 44%
decline in cerebral metabolic rate during deep, slow-wave,
NREM sleep.

The highest efficiency peak is at the quiescent NREM-analog
mode. At higher M there are two symmetric greatest efficiency
points that suggest waking/active sleep modes in which REM
‘sleep’ seems to represent a parsimonious assumption of essential
maintenance duties by systems otherwise dedicated to the regula-
tion of awake consciousness. This appears to be similar to the
immune system that, when not coping with infection, wound
healing and malignancy, is committed to processes of routine cel-
lular maintenance (Cohen, 2000).

Sleep deprivation may be very serious indeed.
As Harris et al. (2012) put it,

Increasingly, sleep is thought to play an energetically restorative role in the
brain… [D]uring sleep there is a transient increase in ATP level in cells of
awake-active regions of the brain … suggested to fuel restorative biosyn-
thetic processes in cells that, during the day, must use all their energy
on electrical and chemical signalling. This implies an energy consumption
trade-off; a high use of ATP on synapses during awake periods is balanced
by more ATP being allocated to other tasks during sleep.

Energy use in the awake state also increases due to synaptic potenti-
ation… compared to sleep…

These changes are reversed during sleep, presumably because of homeo-
static plasticity… Thus sleep is essential for adjusting synaptic energy use.

It is known that the normal route from waking, the W point in
Fig. 2, to REM sleep, the point R, is from W to N, and then down
the other ridge from N to R. Direct transition from R to W does

Fig. 1. ‘Arrhenius’ relation for the rate of a cognitive physiological process as a func-
tion of the rate of metabolic free energy consumption. The rate of cognition – dotted
line – at first increases exponentially witha supply of metabolic free energy but
then tops out. The highest efficiency – solid line – occurs at the intermediate
value M = R0/ω.

Fig. 2. Following Wallace (2016a), consciousness-and-regulator efficiency as a func-
tion of the metabolic free energy consumed by consciousness, MC, for KX = 1, M =
MC +MR = 1→ 3.6. A single maximum dominates the low energy mode, suggesting
NREM sleep, denoted N, representing a 44% decline from the maximum M. The max-
ima at higher energies are ridges, suggesting REM sleep/awake modes, denoted R, W.
Normal transitions are from W to N, followed by N-R oscillation. During sleep modes,
‘regulator’ systems for consciousness may perform routine maintenance, as does the
immune system when not coping with infection, wound healing, or malignancy.
NREM sleep then becomes a transition path between the two more active states.
Changing the values of the KX markedly shifts the relative heights and widths of
the peaks, suggesting an added control mode. Some work produces the sorts of
models described in Booth and Diniz Behn (2014). The progression W1→W2→W3

would indicate increasing degrees of wakeful attention, requiring sequentially greater
supplies of metabolic free energy. More convoluted evolutionary (or cultural) histor-
ies might impose other intermediate points for cycles on such energy/efficiency
surfaces.

400 Rodrick Wallace

https://doi.org/10.1017/S1473550418000289 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550418000289


occur, and cycling between N and R is normal. In addition, occa-
sional, culturally-dependent ‘trance states’ are known to exist that
seem intermediate (e.g. Hubbard, 2003).

The progression W1→W2→W3 in Fig. 2 could be taken as
representing different degrees of attention within the waking
state, each requiring a higher overall rate of metabolic free energy
supply.

Note that higher values of KC = KR generate much broader
symmetric curves with far less well-defined peaks, while lower
values generate surfaces that are much more sharply peaked.
Unequal values raise or lower one or the other ridge. Thus ‘tun-
ing’ these parameters individually would provide significant
added system control, causinga transition from ‘waking’ to various
forms of ‘sleep’ states.

This model is consistent with Hobson’s (Hobson (2009), figure
4) picture of the Western sleep cycle, where the normal progres-
sion is from waking to low-energy NREM sleep, followed by oscil-
lation between NREM mode and the high-energy REM state.
Note that, in other cultures, other patterns have been observed
(e.g. Wallace, 2017 Section 5.10 and references therein).

Figure 2 is also consistent with the observations of Hudson
et al. (2014) on the punctuated recovery to consciousness from
anesthesia. See their figure 4C which identifies three hubs between
which there is directed transition during recovery.

REM sleep is now understood as another state of consciousness
that, compared to alert waking, is deficient in neuromuscular func-
tion, analytic ability, and transient episodic memory, while particu-
larly rich in emotional cognition. Both waking and falling asleep
involve complicated physiological processes to effect a transition
between states. For some considerable time, researchers recognized
the importance of the reticular activating mechanism in the change
from sleep to waking (Evans, 2003). Recently, an arousal inhibitory
mechanism – a thalamo-cortical process – has been recognized
which transfers the body from waking to sleep (Evans, 2003).
Other work (Saper et al., 2005; Lu et al., 2006) has identified a
neural flip-flop switch structure which controls REM sleep.

The standard phenomenological model for sleep-as-we-
know-it is the ‘two-process’ approach of Borbely (1982) and
Daan et al. (1984). As Skeldon et al. (2014) put it, the homeostatic
process takes the form of a relaxation oscillator that results in a
monotonically increasing ‘sleep pressure’ during the wake that
is dissipated during sleep. Switching from wake to sleep, and
vice versa occurs at upper and lower threshold values of the
sleep pressure respectively, where the thresholds are modulated
by an approximately sinusoidal circadian oscillator. Skeldon
et al. (2014) go on to show that the two-process model is essen-
tially the same as the slow-time dynamic of the neurologically-
based Phillips and Robinson (2007) model.

We argue, then, that under Darwinian selection pressure for
high rates of waking-state consciousness, patterns of transition
analogous to Fig. 2 must be seen. These might perhaps involve
adding one or more efficiency terms to Eq. (10), or more
intermediate transition points on the plateau, generalizing the
N− R −W and/or W1→W2→W3 progressions.

Intelligent aliens likely dream, although perhaps not in the
ways we do, or of what we would call sheep.

Indeed, as Worthman and Melby (2002) put the matter for
humans,

…[P]hysical, social, and temporal factors generating variation in human
sleep ecology … may be paralleled by variation not only in sleep behav-
iour but also in its physiology…

…[A]ssociations of cultural ecologies of sleep to such ‘basic’ physiological
regulatory systems as sleep biology, chronobiology, state regulation and
emotion regulation would imply that these systems are partially influenced
or organized through cultural ecologies operating developmentally and
across the life-span.

In many respects, cultural differences already make us ‘aliens’
among ourselves. The intransigent difficulties of human inter-
cultural communication should stand as a singular warning for
scenarios involving ‘alien’ contacts. Recall that genetic differences
between human populations are far less than those between chim-
panzee populations.

We briefly explore this question further.

Consciousness and culture intertwined

The evolutionary anthropologist Robert Boyd has asserted that
‘Culture is as much a part of human biology as the enamel in
our teeth,’ (Richerson and Boyd, 2004) and, while many other
animals on Earth display some measure of culture as learned
and transmitted behaviour (Avital and Jablonka, 2000), nothing
defines humans quite like the interpenetration of mind and self
with the embedding cultural milieu. Technology and its artefacts
are, of course, one part of that milieu.

It is not difficult to extend the Baars model to include inter-
action with an embedding culture and with a hierarchical set of
institutions within that culture seen as a generalized transmissible
language associated with a nested set of information sources
(Wallace, 2013, 2015). This includes both a form of niche con-
struction (Wallace, 2010) and distributed cognitive institutions
acting on various scales (Wallace and Fullilove 2008). This is
most easily done by invoking the set of interacting information
sources dual to cognitive process via network information theory
(El Gamal and Kim, 2010, p. 2–26): Given a basic set of such dual
information sources, say (X1, …, Xk), that can be partitioned into
two ordered sets, say X(J ) and X(J ′), then the splitting criterion
of the larger system becomes H(X(J )|X(J ′)). Generalization to
three or more such ordered sets seems direct and leads to a
Baars-like theory of collective consciousness in which different
global workspaces act at different scales of size and time
(Wallace and Fullilove, 2008; Wallace, 2015).

As the anthropologists will attest, an astounding variety of
culturally-driven institutions, associated forms of mind and self,
and dynamics of interaction, graces the world. Typically, humans,
whose overall genetic structure is more uniform than that of
chimpanzee populations, do not communicate well across the
many different cultural modes. Wallace (2015) and Wallace and
Fullilove (2008) suggest that stabilizing complex systems of inter-
acting cognitive institutions is exceedingly difficult, given that
canonical inability to communicate, and the planet seems to be
facing a serious crisis of sustainability.

More relevant, perhaps, are recent studies of the role of culture
in ‘basic biological’ aspects of human perception, matters that
‘should’ be independent of culture.

They are not. We loosely follow the arguments of Wallace
(2018b).

Most particularly, Nisbett et al. (2001), continuing a long line
of research (Markus and Kitayama, 1991; Heine, 2001), review an
extensive literature on empirical studies of basic cognitive differ-
ences between individuals raised in East Asian and Western cul-
tural heritages, which they characterize, respectively, as ‘holistic’
and ‘analytic’, finding that tools of thought embody a culture’s
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intellectual history, that tools have theories built into them, and
that users accept these theories, albeit unknowingly, when they
use these tools.

Matsuda and Nisbett (2006) observed that, whereas East
Asians view the world holistically, attending to the entire field
and relations among objects, Westerners view the world analytic-
ally, focusing on the attributes of salient objects. Compared to
Americans, East Asians were more sensitive to contextual changes
than to focal object changes, These results strongly imply signifi-
cant cultural variation in what may seem to be basic perceptual
processes.

Similarly, Nisbett and Miyamoto (2005) argue that fundamen-
tal perceptual processes are influenced by culture, establishing a
dynamic relationship between the cultural context and perceptual
processes. The central implication is that for humans, who have
relatively little genetic variability across populations, basic percep-
tion can no longer be regarded as consisting of processes that are
universal across all people at all times.

Wallace (2007) explores analogous dynamics involving inat-
tentional blindness and culture.

The inference, then, is that ‘alien’ species will have cognitive
modalities also synergistic and intertwined with learned or inher-
ited culture and that understanding and relating to such mutual-
istic constructs will be difficult indeed.

Quantum systems

The theory above is purely classical and produces Baars’ results
directly. Wallace (Wallace, 2005, Chapter 5, Section 6), however,
does examine how quantum versions of the asymptotic limit the-
orems of information theory (e.g. Bjelakovic et al., 2003, 2004)
might be used to generalize the model. Unfortunately, the quan-
tum results are not well characterized, and an exact treatment is
lacking, Nonetheless, it becomes quite clear that consciousness
in quantum systems – at least those supporting relatively large
coherence lengths – would be to consciousness-as-we-know-it
much as a flask of superfluid helium is to a glass of water.

Tegmark (2000), in contrast to his later work, has convincingly
argued the impossibility of macroscopic quantum treatments of
consciousness at normal biological temperatures. Quantum effects
at such temperatures are, of course, fully and strongly manifest at
the molecular and neural levels as ‘chemistry’.

Since information is a form of free energy, even quantum sys-
tems having large coherence lengths will suffer second law heating
through information transmission and transformation that will
inherently limit the possible size of quantum-conscious struc-
tures. Typically 109–1011 interacting components are needed for
high level mental function, involving large-scale information
transfer. This scale of activity is likely to generate much heat
and unlikely to be attained in quantum domains by an evolution-
ary process in the natural world, even if far smaller numbers of
qubits are envisioned as sufficient for rapid lower level cognition.

The inference is, then, that the designs for ‘conscious quantum
systems’ are likely to remain in the realm of perpetual motion
machines of the second kind for some time. Indeed, proposals
of this nature rapidly enter the notorious physics realm of ‘not
even wrong’ (e.g. Penrose, 1994; Tegmark, 2015).

Conclusions

Life in the cosmos seems likely to be ubiquitous. Organisms that
must react on timescales of a few hundred milliseconds should

host many ‘neural-like’ structures that, in the presence of suffi-
cient crosstalk fuelled by a sufficient rate of metabolic (or
other) free energy, provide an evolutionary process with the
basic material to produce adaptive tunable/shifting global work-
space/broadcast/phase transition phenomena that become fixed
in reproduction and that we would likely recognize as conscious.
Such systems, we argue, must also be highly regulated, leading to
evolutionarily selected modes in which the regulatory machinery
will have been given ‘off duty’ tasks of maintenance that will likely
require some recognizable form of ‘sleep cycle’.

A significant number of alien organisms, or their social or
mutualistic composites, will, over sufficient time, become syner-
gistic with learned, transmissible, language-like patterns of adap-
tation analogous to a culture that include collective structures of
various forms acting under distributed cognition and that are cap-
able of large-scale cooperative activity. Assuming some few of
these creatures able to stabilize the resulting systems of collective
consciousness, the emergence of high technology seems likely,
although communication with them would probably be limited
to exchanges of Balmer series symbols and schematics for
amino acids: recall the notable and continuing difficulties of
human inter-cultural communication, beyond the most basic
level of automatic language translation.

In summary, a cellular/molecular astrobiology and, with reser-
vations, a limited kind of astropsychology, appear relatively
straightforward. Cultural astroethology – understanding alien sys-
tems of learned heritage transmission and their role in astrobio-
logical processes – by contrast, would be a profound intellectual
challenge, far more daunting than the still-unmet difficulties of
understanding different cultures and their shifting norms within
human populations.

Mathematical appendix

Activation of the rate-of-cognition expression from Fig. 1, F =
exp [−K/M], first requires recognition that an incoming ‘sensory’
signal – in a large sense – deserves response. For working coali-
tions of low-level cognitive modules, we have argued that there
is a topologically-defined threshold for such detection, depending
on the wiring of the crosstalk. Most generally, we can write a sto-
chastic differential equation of the form

dFt = (dF/dM × dM/dt)dt + FtdBt

= Ft
K
M2

t
Mt

.
( )

dt + dBt

[ ]

= FtdYt

(14)

where Bt is a ‘noise’ that may not be simple Brownian, and Yt is a
very general stochastic process.

Equation (14) is in precisely the form required by the
Doleans-Dade exponential (Protter, 2005), having an expectation
in F that converges in probability as

E(F) � / exp Yt − 1
2
[Yt,Yt]

[ ]
(15)

where [Yt, Yt]≥ 0 is the quadratic variation of the stochastic pro-
cess Yt (Protter, 2005). Heuristically, by the Mean Value
Theorem, if (1/2)d[Yt, Yt]/dt > dYt/dt, then E(F) � 0 in probabil-
ity, and the ‘switch’ is not activated.
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Thus [Yt, Yt] can be taken as the noise-to-signal ratio of the
incoming ‘sensory’ information, tuned according to the shifting
topological configuration of the underlying network of ‘low
level’ cognitive modules. For Brownian noise, d[Yt, Yt]/dt≡ σ2,
and the noise-to-signal ratio has clear meaning. For ‘colored’
noises more characteristic of real neural processes, matters are
more complicated but still, fall within the treatment.

The basic result can be extended to more general cognition
rate expressions than F = exp[−K/M] as follows.

We have, from eqations (9) and (10), leading to the expres-
sions of equations (14) and (15), imposed a particular functional
form for the effectiveness, efficiency, and the stochastic dynamics,
of a tunable, cognitive ‘global broadcast’ network system respond-
ing to sensory challenge. More comprehensive results are available
(Appleby et al., 2008).

We suppose that, instead of the specific form leading to equa-
tions (14) and (15), we can express the stochastic dynamics of a
generalized measure F(M) as

dF t = g(F t)dt + h(F t)dWt (16)

where dWt is taken as Brownian noise, subject to the Lipschitz
condition that, for a positive constant C, and for all F(M2) suffi-
ciently near to some fixed point F(M1),

|g(F(M1)) − g(F(M2))| ≤ C|F(M1) − F(M2)| (17)

We further assume that F(0) = 0, ‘no excitation of the global
broadcast’ as above, is an ‘unstable equilibrium state’.

Then, Appleby et al. (2008) show that, in one dimension, a func-
tion h can always be found that stabilizes an unstable equilibrium,
i.e., keeps F(M, t) at zero. This generalizes the Doleans-Dade expo-
nential of Eq. (15) to a much broader class of functions. On the
one hand, sufficient ‘noise-to-signal’ ratio, measured by the function
h, can keep a global broadcast from occurring, on the other, the
function h itself is a tunable means of ensuring that, when incoming
sensory signal is sufficiently large under the conditions defined by h,
such a global broadcast can indeed take place.
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