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Approximate Coherentism and Luck
Boris Babic*y

Approximate coherentism suggests that imperfectly rational agents should hold approx-
imately coherent credences. This norm is intended as a generalization of ordinary coher-
ence. I argue that it may be unable to play this role by considering its application under
learning experiences. While it is unclear how imperfect agents should revise their be-
liefs, I suggest a plausible route is through Bayesian updating. However, Bayesian up-
dating can take an incoherent agent from relatively more coherent credences to relatively
less coherent credences, depending on the data observed. Thus, comparative rationality
judgments among incoherent agents are unduly sensitive to luck.
1. Introduction. Glauber De Bona and Julia Staffel argue that the cre-
dences of nonideal Bayesians ought to be approximately coherent, where
coherence is evaluated by an appropriate measure of divergence, such as
normed distance or Kullback-Leibler divergence, from the closest coherent
credence function (Staffel 2015; De Bona and Staffel 2017, 2018). I will
call this norm approximate coherence (and define it appropriately in sec. 3).
It says that from a (third-person) evaluative perspective, if B’s credences
are closer to coherence than A’s credences, then B’s credences are to that
extent more rational than A’s credences. By third-person evaluative perspec-
tive I simply mean, to paraphrase Pollock (1987), norms we use to evaluate
the rationality of others’ beliefs. This may be contrasted with first-person
norms, which tend to be described as action guiding.
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DeBona and Staffel show that for every incoherent credence function there
exists an accuracy-dominating less incoherent one, under fairly general con-
ditions, whereas Joyce showed that for every incoherent credence function
there exists an accuracy-dominating coherent one (under similar conditions;
Joyce 1998, 2009). Accordingly, we can think about De Bona and Staffel’s
notion of approximate coherence as extending Joyce’s ordinary coherence
norm by giving a graded judgment about rationality, rather than a categorical
judgment. I will argue that such graded judgments about rationality can be
misleading when we evaluate credences under updating.

Both coherence and approximate coherence should be distinguished from
what some call final ends in epistemology, like truth or accuracy, which say
that as between two beliefs or credence functions, the one that is in fact true
or more accurate is better. To understand why consider, in ordinary decision-
making, a norm that requires an agent to maximize actual utility. Actual util-
ity is analogous in many respects to actual accuracy in epistemology. It is
possible to be unlucky, so to speak, because which option actually maximizes
utility depends on which world turns out to be true. It may be that at time 1,
my decision procedure for choosing an act is better, and at time 2 the same
decision procedure, given the same acts and states, is worse, because an im-
probable state in which that act does not maximize utility occurs.

Now consider the norm ofmaximizing expected utility. This norm is anal-
ogous in some respects to the role that coherence and approximate coherence
play in epistemology. We ask: Did the agents do the best they could with the
information they had available to them at the time of the decision?We do not
want to render an adverse judgment about their rationality due to factors out-
side their control. More precisely: we ordinarily do not think—at least as (epi-
stemic) decision theorists—that such factors should adversely affect our assess-
ment of the relative quality of their choices from an evaluative perspective.
Similarly, we typically suppose (as a convenient fiction, perhaps) that agents
can choose their credences, and we evaluate their internal consistency or ra-
tionality—an assessment that should likewise not be susceptible to luck or
misfortune. In this sense, coherence and approximate coherence are different
from truth or accuracy norms.

I attempt to capture, for our purposes here, this notion of immunity to luck
or misfortune, in the context of updating credences, through a principle I call
comparative consistency. I then argue that while coherence is comparatively
consistent, approximate coherence is not. Its verdicts regarding relative ratio-
nality between two agents (or, rather, their credence functions) can depend on
factors outside the agents’ control. In particular, it is possible to have the fol-
lowing: two agents,A andB, are such thatB is currently less coherent. They per-
form a simple experiment (e.g., toss a coin) and update their credences about
the coin’s bias. If the coin lands on tails, A becomes less coherent than B,
whereas if it lands on heads,B remains less coherent. Therefore, it is possible
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to observe an ‘unfortunate’ sequence of data, so to speak, which adversely
affects our evaluative assessment of the relative quality of an agent’s doxastic
state. A can go from doing relatively better to doing relatively worse, solely
due to the outcome of the coin toss.

The article proceeds as follows. In section 2, I explore the normative status
of accuracy and coherence/approximate coherence. In section 3, I define both
norms in the context of a simple example—credences about a coin’s bias. In
section 4, I motivate and explain the notion of comparative consistency. I then
show that while ordinary coherence is comparatively consistent, approximate
coherence is not. In section 5, I consider several potential objections. By way
of conclusion, I suggest that what really matters under updating in ordinary
Bayesian epistemology is the binary question of whether the posterior distri-
bution can be identified. And since approximate coherentism likely requires
us to give up updating along ordinary Bayesian lines, I suggest an important
line of further research—namely, the nature of belief updating norms for im-
perfectly rational agents.

2. Background: Accuracy and Coherence. I develop the argument to
follow within the general framework of Bayesian epistemology or epistemic
utility theory (Joyce 1998, 2009). In this framework, minimizing expected in-
accuracy plays a similar role that maximizing expected utility plays in ordi-
nary decision theory. Themain difference is that we replace the utility function
with an appropriate measure of accuracy, or scoring rule. The relevant details
of the scoring rule framework will be introduced below—fortunately, most can
be omitted, because the conditions required for De Bona and Staffel’s (2017)
results are similar to those required for Joyce’s (2009) results.

De Bona and Staffel give two types of arguments for approximating coher-
ence. One is a pragmatic defense—namely, that reducing one’s degree of in-
coherence decreases the extent of one’s vulnerability to dutch books. I will not
address that argument here. Indeed, I find it compelling. However, there re-
mains a question about whether approximating coherence can be defended
on nonpragmatic grounds. This is a natural question to ask with respect to
norms inBayesian epistemology. For example, Joyce (1998, 2009) gives a non-
pragmatic defense of probabilism, whereas Greaves andWallace (2006) give
nonpragmatic defenses of updating by Bayesian conditioning. Fittingly, De
Bona and Staffel also offer a nonpragmatic defense for approximating coher-
ence—namely, that approximating coherence improves one’s accuracy out-
comes. This is the issue I take up in this article.

Joyce (1998) introduces the guiding ideal for epistemic utility theory,
namely, the norm of graded accuracy. The norm of graded accuracy implies that
as between two credence functions, the one that is closer to the truth, where
closeness is evaluated by a suitable measure of accuracy, is better. Accuracy
is ordinarily assessed using a scoring rule, which maps a pair of values—a
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credal assignment and the true state of the world—to a positive real number.
For example, if someone forecasts the probability of rain tomorrow to be 0.8,
a simple way to measure their accuracy would be the squared distance from
the true outcome, (Iv20:8)2, where Iv is an indicator variable that takes the
value 1 if it rains and 0 otherwise. This score, known as the Brier score, maps
credences to [0, 1], where 0 denotes perfect accuracy and 1 denotes maxi-
mum inaccuracy (Brier 1950).

Graded accuracy is similar to Goldman’s (2002) notion of veritism in or-
dinary epistemology (Pettigrew 2016). For most subjective Bayesians, it is
a feature of primary epistemic value regarding an agent’s credal state. It is
better to be closer to the truth than to be further away from it. However,
when we evaluate the rationality of an agent’s credences under conditions
of uncertainty, we do not use graded accuracy on its own—we recognize it
is possible for an agent to formulate her credences diligently but end up in-
accurate because of misfortune.

For example, suppose Alice is making a forecast about the weather tomor-
row in a rainy city during a rainy season—Seattle in November, say. She esti-
mates the probability of rain to be 0.7. This is consistent with her evidence, in-
cluding professional forecasts and the November benchmark for Seattle. We
can further suppose that she updated her estimates by Bayes’s rule, that she
is perfectly coherent, and so on. In otherwords, she has done everything aswell
as we can expect. But in those possible (albeit relatively improbable) worlds
where it does not rain in Seattle tomorrow, Alice will be substantially inaccu-
rate. Ordinarily, we do not hold such misfortune against an agent’s epistemic
rationality.

Rather, we use graded accuracy, together with an appropriate decision rule,
in order to identify certain evaluative norms for the assessment of an agent’s
credal state. For instance, Joyce (1998, 2009) defends coherence (the relevant
norm) by showing that every incoherent credence function is dominated (the
decision rule) by some coherent credence function with respect to the under-
lying measure of accuracy (the feature of primary epistemic value). If agents
are incoherent we say they are to that extent epistemically irrational. Likewise,
Greaves andWallace (2006) defend Bayesian updating (the relevant norm) by
showing that under relatively general conditions, updating by Bayes’s rule
maximizes the expected value (the decision rule) of the underlying measure
of accuracy (the feature of primary epistemic value). Similarly, De Bona and
Staffel defend approximate coherence (the relevant norm) by showing that
every incoherent credence function is dominated by some less incoherent
credence function (the decision rule) with respect to the underlying measure
of accuracy (the feature of primary epistemic value).

3. Coherence and Approximate Coherence. In this section, I make the
relevant notions of coherence and approximate coherence more precise
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and explain that approximate coherence, as De Bona and Staffel character-
ize it, is intended to be a graded generalization of its categorical relative—
that is, a notion that can help us make comparative rationality judgments on
the basis of accuracy considerations. I consider cases in which we are for-
mulating a credence about a single, continuous parameter—the unknown
bias v of a certain coin. One can also think about the stylized objective chance
of rain tomorrow, the unknown mean of a normally distributed random var-
iable, and so on. I define the relevant concepts accordingly.
1. Th
union
linea

86/7139
Coherence Norm. Let Q denote our parameter space containing all possi-
ble values of the true unknown quantity v ∈ R. A credence function of v,
p(v), is coherent if (1) p(v) ≥ 0 and (2) ∫Qp(v)dv 5 1.1 A coherent credence
function is (from an evaluative perspective) better than (more rational
than) an incoherent one.
Coherence, as noted, is valuable because it guarantees improvements in
accuracy. De Bona and Staffel propose the norm of approximate coherence
as a suitable generalization to ordinary coherence that allows us to make
comparative rationality judgments about Bayesian agents. Since it is unre-
alistic to expect ordinary agents to be coherent, we can evaluate them in
terms of how closely they approximate that ideal. On this approach, approx-
imating coherence similarly promotes the ultimate goal of holding accurate
credences. We define this norm using the same framework as above.
Approximate Coherence Norm. Let Q denote our parameter space con-
taining all possible values of the true unknown quantity v ∈ R. Let f (v) be
a function that violates 1 or 2, from above, and p(v) a probability function.
Let D : f � g→R1 be a measure of divergence between f and g. The in-
coherence of f according toD is measured as ID( f ) 5 arg minpD( f , p). As
between two credence functions f and g, if ID( f ) < ID(g), then f is (from an
evaluative perspective) to that extent better than (more rational than) g.
This says that we should evaluate the degree of incoherence by looking at
the divergence of the incoherent credence function from its closest coherent
credence function and that as between two incoherent credence functions
we should judge the less incoherent one to be relatively more rational or,
as De Bona and Staffel (2017) put it, epistemically better.

Note that for the purpose of this project, we will not look at violations of
additivity, which add a further layer of complication. Similarly, De Bona
e two conditions commit us to countable additivity since the density of a countable
of disjoint regions is the sum of the densities of the individual regions due to the

rity of integration.
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and Staffel illustrate incoherence in terms of violations of normalization. For
instance, in section 3 of De Bona and Staffel (2017), the working example is
of two agents, Clara and Jane, whose credences about a tripartite partition are
incoherent in the sense of adding up to more than 1 and less than 1, respec-
tively. For agents who are incoherent in the sense of violating additivity, Gil-
boa and Schmeidler (1993) argue for a generalization of Bayes’s rule for up-
dating such beliefs using the notion of Choquet expected utility—an approach
to computing expectations with respect to nonadditive functions.

De Bona and Staffel defend approximate coherence by relying on the prop-
erty of final epistemic value, accuracy, in the same way that Joyce defends co-
herence. In particular, De Bona and Staffel (2018) show that as between two
incoherent credence functions, the one that is closer to coherence guarantees
improvements in accuracy, as measured by a suitable measure of divergence
(proposition 2). In general, a divergence measure is suitable if its associated
scoring rule satisfies the conditions required by Joyce (2009)—continuity,
truth directedness, and strict propriety—and it is additive.2 A scoring rule is
additive if we evaluate the inaccuracy of a credal assignment by adding up
(not necessarily in equal weight) the inaccuracies of the credences assigned
to every possible outcome in the relevant partition or algebra of events.

4. Coherence and Comparative Consistency. To begin, I want to high-
light a basic insight that I think is generally accepted in epistemic utility the-
ory, insofar as the field is itself a type of decision theory, where the rationality
of epistemic acts is evaluated in terms of their expectations under conditions
of uncertainty. The insight, to paraphrase Wedgwood (2002), is that the ratio-
nality, from an evaluative perspective, of a credence function should generally
not depend on facts about the world outside the agent’s control. The clearest
illustration of this guideline is the focus on expected (as opposed to actual)
epistemic utility in evaluating the rationality of a credence function.3

4.1. A Metanormative Principle for Epistemic Norms. The above gen-
eral insight is underspecified for our purposes, however. To apply it here,
2. A scoring rule s(Iv, p) that measure the inaccuracy of credence p given that the true state
is Iv is a measure of divergenceD(q, p), where q is a credence function that puts all prob-
ability mass/density on the true outcome—i.e., q is the omniscient credence function.
That is, a scoring rule is a special kind of divergence; thus, when we say ‘a measure of
divergence and its associated scoring rule’, what is meant is a measure of divergence be-
tween two credence functions and that same measure of divergence between a credence
function and the omniscient credence function. For a recent discussion of the structure of
scoring rules and their relationship to divergence measures, see Babic (2019).

3. Perhaps one can put this in terms of the distinction between internalist and externalist
norms. I have tried to avoid this distinction as it may distract from what is a fairly
straightforward point about norms in decision-theoretic epistemology.
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we will articulate a metanormative principle that captures its spirit in the
context of evaluating the rationality of credences as the agent obtains new
evidence. I am interested in whether our relative assessment about a cre-
dence function is appropriately consistent, either over time or under equiv-
alent representations of the agent’s doxastic state. In particular, consider
what follows. If we render a verdict about the rationality of A’s credences,
relative to B’s credences, at time 1, and between time 1 and time 2 the only
relevant aspect of the situation that changes is that a new piece of evidence is
obtained, and A and B both update their beliefs diligently to account for the
new evidence, then this much seems clear: at time 2, it does not seem appro-
priate for our assessment of the relative rationality of A and B’s credences to
shift. In other words, sinceA andB have both diligently updated their beliefs,
the verdict rendered at time 2 should be consistent with the verdict rendered
at time 1. For lack of a better term, I will call this principle the requirement
of comparative consistency.
4. In
plain
incoh

86/7139
Comparative Consistency. Suppose A and B have credences about an un-
known quantity v. Evidence about v comes from experiments whose out-
comes are denoted by X. If A’s priors about v are less incoherent than B’s,
then, for any value X 5 x that might be observed, A’s posteriors about v
should not be more incoherent than B’s.
In short, if A’s priors are less incoherent than B’s, then, for any observa-
tion, A’s posteriors should not be more incoherent than B’s.4 In some re-
spects, comparative consistency is like a stability condition on norms of ep-
istemic rationality. It says that if you now believe A’s credences to be more
rational than B’s credences, you should not change that assessment unless
you have an appropriate reason to do so—such as a new piece of evidence
suggesting that one of them acted irrationally (or less rationally) in some
way. In other words, the verdict about comparative rationality should not shift
arbitrarily. While this is only a bare-bones sketch of the notion, the goal of
this project is not to fully articulate and argue for a metanormative theory.
Rather, I hope the principle is sufficiently plausible for now.

4.2. Updating Incoherent Credences. I will show through a simple ex-
ample that approximate coherence is not comparatively consistent. The up-
dating situation is ordinary. There are no issues of uncertain evidence that
would trigger Jeffreys’s rule or some alternative to it or of misleading evi-
dence, and so on. Further, our agents will indeed diligently update. The
sec. 5, I take up potential objections to the Bayesian updating assumption. I also ex-
, in sec. 4.3, that under some fairly modest assumptions, the only updating strategy for
erent agents that satisfies reflection and the martingale principle is Bayesian.
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notion of comparative consistency prohibits a verdict that deems one of
them more rational before the update and less so following the update.

Suppose we have two agents, A and B, who have opinions about the un-
known bias of a certain coin, which may take any value v ∈ ½0, 1�. These
opinions are expressed by their credence functions for v, denoted by pA(v)
and pB(v), respectively. A and B may not be coherent, which means that
pA(v) and pB(v) can fail to be probability distributions. However, in the case
we will consider, these functions remain additive. This is similar to the kind
of incoherence that De Bona and Staffel use to describe graded incoherence
(violations of normalization). Suppose for illustration that A and B will per-
form a simple experiment. In particular, they are going to toss the coin once.
The assumption that our agents will toss the coin once is adopted for ease of
exposition. It will be clear that the problem can arise for any finite number of
tosses. We will denote the result of the coin toss with the random variable X,
which can take the value 0 (for heads) or 1 (for tails). After observing the result
theywill update byBayes’s rule to get the posterior credence functions pA(vjx)
and pB(vjx). For ordinary coherent priors, updating would be straightforwardly
accomplished through the familiar expression of Bayes’s rule, as follows:

p(vjx) 5 f (xjv)p(v)
m(x)

, (1)

where

m(x) 5

ð1

0

f (xjv)p(v)dv (2)

is the marginal credence function for X 5 x over all possible values of the
unknown quantity v and f (xjv) is the data-generating distribution.

For incoherent agents, however, m(x) may or may not be a valid proba-
bility function. In ordinary Bayesian inference, this is usually not an issue
because the functionm is not a function of the unknown quantity of interest,
v, but is instead a function of the data, x. Accordingly, we would proceed as
usual, treating this function as a pseudomarginal distribution, focusing on
the components that are functions of v, and taking the posterior to be pro-
portional to the prior times likelihood:

p(v x) ∝ f (xj jv)p(v): (3)

This is indeed what I will do.
But whereas for ordinary credences we might, if desired, normalize the

posterior so as to rescale the resulting distribution into [0, 1], for our purposes
here doing so is not innocuous. Ourmain subject of interest is the incoherence
in the agent’s credence function. Accordingly, I do not want to automatically
rescale because I am taking it for granted, as De Bona and Staffel do, that
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there is something noteworthy about the agent’s imperfect doxastic state, and
I want to preserve that aspect of the situation under updating. Accordingly, I
want to take the prior distribution to a posterior distribution as faithfully as
possible without arbitrarily wiping out the initial incoherence and thereby
changing the agent’s subjective representation of uncertainty. Since the agent’s
beliefs remain additive, theBayesian posterior is a faithful posterior thatmain-
tains prior proportions of probabilities while reflecting the new evidence. Fur-
ther, inferences on v and predictions aboutX remain the samewhether we nor-
malize or not. After updating, I want to compare relative incoherence under
different possible observations X 5 x to see whether the ranking is stable.
That will be the strategy in the next section.

Ultimately, however, we will see what it takes to normalize each cre-
dence function. Rather than hiding the ball, so to speak, we will do things
one step at a time. Recall that for a fixed value of X 5 x, the quantity m(x)
is a constant. The core of the problem will be that for credence functions
that can be normalized, it is a finite normalizing constant, whereas for cre-
dence functions that cannot be normalized, the problem we identify persists
for any real number assigned to this quantity.

Comparative consistency requires that our normative assessment of the
quality of A and B’s new credence functions should not depend on whether
the coin lands on heads or tails. Since their mental states are the same in all
relevant respects in both the heads world and the tails world, and their updat-
ing behavior is the same, and neither has done anything to suggest a change in
our verdict regarding their relative rationality, our postexperiment normative
assessment about the rationality of their credences should not depend on the
observed outcome. It should be consistent with our preexperiment verdict.

4.3. Reflection and Expectation. The updating strategy in equation (3)
is far from arbitrary. Rather, it is a more general expression of the ordinary
statement of Bayes’s rule as given in equation (1). Huttegger (2014, 2017)
argues that in order for an update rule to count as a reasonable response to a
learning experience it must satisfy the principle of reflection or, more spe-
cifically, the martingale principle. And drawing on Zabell (1982), he further
shows that, given some fairly modest assumptions (called exchangeability,
regularity, and sufficientness), the general expression in equation (3) is the
only one that does so for the kind of case we are considering (single param-
eter inference for an unknown proportion; see Huttegger 2017, chaps. 5 and
6). This remains true whether the agents are coherent or not, provided their
credences remain additive.

In our context, the martingale principle requires that the conditional ex-
pected value of the probability of heads/tails on the n 1 1th toss, given the
result on the nth toss, is equal to the probability of heads/tails on the nth
toss. We can show that the update rule in equation (3) indeed satisfies the
86/713905 Published online by Cambridge University Press
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martingale principle, as follows. To simplify, I will express the point using
the first and second tosses.

First, we need to define the predictive distribution of an as yet unob-
served outcome of X, which we will denote as ~X , given the outcomes of
X that have so far been observed, which we will denote with the lowercase
x. This prediction takes the following form:

Pr(~X 5 1jx) 5
ð1

0

Pr(~X 5 1 x,v)p(vj jx)dv 5

ð1

0

vp(v x)dv 5 E½vj jx�: (4)

That is, the probability that ~X 5 1 (the coin lands on tails) is given by the
posterior mean of v after conditioning on the tosses that have been observed.
Before any tosses have been observed, we would simply use the prior mean
for v, given by E[v]. This would be the predicted probability that X1 5 1. Un-
der the above assumptions, both the prior and the posterior mean can be com-
puted from the kernel of the prior/posterior distribution—that is, we do not
need to determine the normalizing constant. Now we want to show that the
expected value of the probability that the second toss lands on tails, given
the result of the first toss, is equal to the probability that the first toss lands
on tails. That is,

E½Pr(X2 5 1)jX1 5 1� 5 Pr(X1 5 1): (5)

We know from equation (4) that the quantity Pr(X2 5 1)jX1 5 1� is given
by the posterior mean; that is, E½vjX1 5 1�. And by the law of iterated ex-
pectation, we know that E½E½vjX1 5 1�� 5 E½v�. The same point holds for
any sequence of outcomes X1, ... Xn.

Thus, both expressions of Bayes’s rule (eqq. [1] and [3]) remain faithful to
the martingale principle and more generally reflection. This has to be true be-
cause they are proportional to each other, and as a result inferences on v and
associated predictions about X remain unchanged. The constant, c5 m(x),
rescales the distribution of v, but the scale is irrelevant to inference.Whatmat-
ters is the relative density assigned to different regions of the parameter space.
But, if wemove to someother non-Bayesian update rule, it is not clear howwe
could satisfy the martingale principle. I discuss the Bayesian updating as-
sumption further in section 5.2 and the normalization point in section 5.3.

4.4. A Counterexample. Suppose that A and B’s credence functions be-
fore the experiment are given by

pA(v) 5
1

1 2 v
,  pB(v) 5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(1 2 v)

p : (6)

These credences are not coherent. It is not entirely clear how we should in-
terpret incoherent credence functions. If we assume that they indeed encode
5 Published online by Cambridge University Press
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an agent’s partial beliefs, as De Bona and Staffel suggest, then the interpre-
tation of agent A would be that A is very confident the coin is tails biased,
whereas the interpretation of agent B would be that B is just as confident
that the coin is biased but indifferent as to which direction it is biased to-
ward. However, for any plausible measure of divergence, B’s credence func-
tion is more rational (better) because A’s credence function is a nonfinite
measure over the parameter space [0, 1] whereas B’s credence function is
an unnormalized probability. Specifically,

ð1

0

1

1 2 v
dv 5 1∞,  

ð1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(1 2 v)

p dv 5 p: (7)

Suppose we assess the degree of A and B’s incoherence by applying the
well-knownKullback-Leibler divergence. Between pi(v) and pj(v), it is defined
as

KL( pijj pj) 5

ð
Q

pi(v) log
pi(v)

pj(v)
dv: (8)

Nothing in this argument depends on KL divergence being the ‘right’measure
of divergence. I use this measure for illustration, as it is well known and cor-
responds to the Shannon measure of information entropy (Shannon 1948a,
1948b) and to the strictly proper logarithmic scoring rule (Gneiting andRaftery
2007). Applying this expression to the bias of the coin and rearranging, we
have

KL( pijj pj) 5

ð1

0

pi log pidv 2

ð1

0

pi log pjdv: (9)

For any coherent candidate credence function pC, KL( pAjj pC) is either unde-
fined or∞, since the left-hand side of the difference is∞ and the right-hand side
is either ∞ or 0 (if C’s credences are uniform on v, pC 5 1). Meanwhile,
KL( pBjj pC) is a finite number. For example, ifC’s credences are uniform, then
KL( pBjj pC) 5 4:35. Therefore, our initial assessment must be that B’s cre-
dences are better. A’s credences are not coherent, and they cannot be made co-
herent—there is no finite normalizing constant that would turn A’s credence
function into a valid probability distribution. If instead we use simple absolute
value distance (or squared distance, for that matter), then the divergence be-
tweenA and the closest coherent distribution (indeed, any coherent distribution)
is likewise ∞ since x=(1 2 x) is not bounded above on [0, 1]. To summarize,

Verdict, according to approximate coherence, of the rationality of A and B’s credences:
At time 1,
A is awful, and B is better. In short, B > A.
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Consider, next, what happens after our agents perform a simple experi-
ment. The distribution of the coin is given by vx(1 2 v)12x. Accordingly,
when the coin lands on tails, the posterior density is proportional to the prior
density multiplied by v, and when the coin lands on heads, the posterior
density is proportional to the prior density multiplied by 1 2 v.

Case 1: The coin is tossed and it lands on tails.—If the coin lands on
tails, we obtain the following posterior credences:

pA(v jX 5 1) 5
v

1 2 v
,  pB(vjX 5 1) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v

1 2 v
:

r
(10)

In this case, A’s credences are given by the odds for heads, whereas B’s cre-
dences correspond to their square root. As a result,

ð1

0

v

1 2 v
dv 5 1∞,  

ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
v

1 2 v

r
dv 5

p

2
: (11)

Approximate coherence gives the verdict that A remains awful and B re-
mains better. To use the shorthand from above: B > A. This is consistent
with the verdict rendered before the coin was tossed. So far so good—ap-
proximate coherence is comparatively consistent. Now consider what hap-
pens if the coin lands on heads.

Case 2: The coin is tossed and it lands on heads.—If the coin lands on
heads, we obtain the following posterior credences:

pA(v jX 5 0) 5 1,  pB(vjX 5 0) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 v

v
:

r
(12)

In this case, A’s credences are uniform. The density is a straight line at
y 5 1 for every value of v between 0 and 1. Meanwhile, B’s credences cor-
respond to the odds for tails—that is, they are reciprocal to B’s credences
when the coin lands on heads. As a result,

ð1

0

1dv 5 1,  

ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 v

v

r
dv 5

p

2
: (13)

A has become perfectly coherent, whereas B remains as incoherent as B
would be if the coin landed on tails. The verdict according to approximate
coherence is now the reverse: A’s credences are better and B’s credences are
worse. Approximate coherence is no longer comparatively consistent. Inso-
far as approximate coherence is a standard for making comparative rational-
ity judgments between agents—or between their credence functions—then
B is in effect punished for being unlucky. The possible results after updating
on a single coin toss are summarized as follows:
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Verdicts, according to approximate coherence, of the rationality of A and B’s credences:
At time 2,
If the coin lands on tails, then B is better, and

A is awful. (B > A)
If the coin lands on heads, then A is perfect,

and B is worse. (A > B)
86/713905 Published online by Cambridge University Pr
The verdict according to approximate coherence, as between whether A has
more rational credences than B, depends on whether the coin lands on heads
or tails, a feature of the problem that is external to both agents and over
which they have no control.

In short, we have what follows: if credences that sum to 1 are less inco-
herent than those that do not, and posteriors that can be normalized by a (fi-
nite) constant are less incoherent than those that cannot be, then approximate
coherence violates comparative consistency. This problem is guaranteed to
occur for any finite number n of tosses if we observe a sequence of n heads
or tails. In particular, if we observe a sequence of n tails, then approximate
coherence will give the verdict that B is better and A is awful, whereas if we
observe a sequence of n heads, approximate coherence will give the verdict
that A is better (although not necessarily perfect) and B is worse. So while the
problem is increasingly improbable as n increases, it is a problem nonethe-
less and can occur for any finite n.

5. Objections. In this section, I try to preempt certain potential miscon-
ceptions and consider several more general objections.

5.1. Misleading Evidence. First, it is worth emphasizing that the issue
is not about misleading evidence—that is, a situation in which the agent re-
ceives some evidence about the outcome of the coin toss that may or may not
correspond to what actually happened. The outcomes of the toss in either
case are by hypothesis accurately observed and recorded. Rather, the con-
cern is that if a credence function about the bias of a coin is said to be rela-
tively more rational/irrational conditional on heads, it should be equally ra-
tional/irrational conditional on tails. There is no relevant distinction to be
made between the heads state and the tails state that would motivate a shift
in the evaluative verdict regarding the agents’ comparative rationality.

5.2. Bayesian Updating. Second, andmore importantly, onemight ques-
tionwhether incoherent agents should update alongBayesian lines. The updat-
ing strategy adopted here is a standard application of Bayes’s rule for single
parameter inference in the case of an unknown proportion with an improper
prior (e.g., Lindley and Phillips 1976). I presuppose that the agents’ update
should be a reasonable response to a learning experience, and thus the update
rule should satisfy the martingale principle (Huttegger 2017). It is possible, of
ess
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course, to insist that for subideally rational agents, everything goes out thewin-
dow—they cannot update along Bayesian lines, and more generally they vio-
late the martingale principle and reflection. One might defend this on the
ground that when you deviate from rationality in one respect, it is overall better
to deviate from rationality in other respects as well, in the spirit of the theory of
the second best (Lipsey and Lancaster 1956). But the very idea of approximate
coherence suggests thatwhen one is not ideal, it is better to be closer to the ideal
than to be further away from it.

Further, the prior I have used is one with a distinguished history in Bayes-
ian statistics—it is the Jeffreys’s prior (for person B) and its transformation
(for person A; Jeffreys 1946). Both are closely related to the uninformative
(and incoherent) Haldane prior (Haldane 1932). It is fair to say, then, that this
project starts from the observation that incoherent priors are an important part
of the Bayesian paradigm. Indeed, in many types of problems, both invariant
(in the sense of Jeffreys) and uninformative priors are often incoherent. For
example, a conventional uninformative prior for the mean (m) and variance
(j2) of a normal likelihood is a prior that is uniform on (m, log j) ( Gelman
et al. 2013, eq. [3.2]). This prior is incoherent.

However, one might insist that an incoherent agent ought not update before
making the prior coherent. While this might seem like a reasonable request, it
would arbitrarily restructure the agent’s representation of uncertainty in the ab-
sence of new evidence and significantly limit the scope of Bayesian inference.

In some cases, the request might be feasible. In particular, when the prior
integrates to a finite constant, the position would be that we must normalize
before updating. Even here, the demand is not innocuous. It would create
substantial impediments to inference. Often, we normalize after updating
in order to avoid computing the marginal distribution of the data (in our
case x), which is not a function of the parameter of interest (in our case
v). This request would make inference less tractable in difficult problems.
But suppose we grant that this is what rationality requires of imperfect
agents, so to speak. There is a further problem still.

Sometimes, the prior is incoherent in such a way that its integral does not
converge (i.e., is improper). For example, the prior I used for person A. If we
demand that this prior must be made coherent, the request is impossible to
meet. As a result, if we took this position, it would commit us to prohibiting
the use of improper priors, such as the Jeffreys’s and Haldane priors for in-
ference involving proportions. Suppose we grant this too. There is yet a fur-
ther problem, which is that proper priors on one space are often improper on
simple transformations of that space. So it is not clear how we should under-
stand such a request—that is, the request that improper priors must not be
used in Bayesian inference.

For example, instead of reasoning about our problem using a prior for the
unknown parameter v, it is often useful in Bayesian inference to reason
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about such a problem using a prior for the natural parameter of the expo-
nential family representation of the data-generating process. In our case, that
would be the log odds for v, J 5 log(v=(1 2 v)), because vx(12v)12x 5
exp½log(v=(1 2 v))x 2 log(1 2 v)�, which is of the form exp½Jx 2 A(J)�
for A 5 log(1 1 eJ). In the absence of information about J, a natural start-
ing point would be a prior that is uniform for all its possible values. How-
ever, using the change of variable formula, a uniform prior for J would lead
to a prior for v that is proportional to 1=(v(1 2 v)), which is not integrable
(i.e., is improper). Yet the two distributions should be equivalent in terms of
corresponding to the same representation of uncertainty. In other words, if
we insist that no updating can be done until the prior is made proper, then
making the prior proper on the transformed space will often imply an im-
proper prior on the original space. Thus, whether one is permitted to apply
Bayes’s rule will then be sensitive to the parameterization of the problem.
Yet it is the same underlying inference problem. Consistent with these re-
marks, Robert justifies the use of improper priors as follows: “the inclusion
of improper distributions in the Bayesian paradigm allows for a closure of
the inferential scope (figuratively as well as topologically)” (2007, 28).

Perhaps it will be helpful to explain by analogy the strategy adopted in this
article. Suppose we have an imperfectly rational agent, not in the sense we are
currently considering (imperfect coherence) but in the sense of imperfect pre-
cision. When agents are imprecise, we can identify their upper and lower
probabilities for an event and thus compute their interval estimate for the
event. Seidenfeld and Wasserman (1993) describe a phenomenon where an
agent starts with an interval estimate for an event, obtains some evidence, up-
dates the initial set of priors byBayesian conditioning, and ends upwith a pos-
terior interval that strictly contains the prior interval. This is the well-known
phenomenon of probabilistic dilation. By identifying this phenomenon, Sei-
denfeld and Wasserman (1993), among others, suggested there is a problem
either with imprecise probability models or with the assumption that one
should update them by Bayes’s rule because, intuitively, one’s interval should
become narrower—or, at least, not wider—after undergoing a learning expe-
rience. By framing the problem in terms of this potential incompatibility—
made explicit by the occurrence of dilation—they encourage us to think carefully
about how the imprecise framework fits with the standard Bayesian updating
picture. Since then, there have been many proposed solutions of the apparent
conflict. My goal in this article is to highlight something similar for approx-
imate coherence—that is, to identify a potential conflict between the approx-
imate coherence framework and standard Bayesian updating, but whereas
Seidenfeld andWasserman’s (1993) underlying normative principle for inter-
val estimates is that they should not dilate under updating, my underlying
normative principle is that comparative judgments about rationality should
be consistent under updating.
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5.3. To Normalize or Not? Third, one might question why I do not au-
tomatically normalize the agent’s credences as part of the update. Instead,
I break up the analysis as follows. First, I derive the posterior, taken to be
prior times likelihood, then I show what it would take to normalize it. For
example, in equation (10), pA is A’s nonnormalized posterior and PB is B’s
nonnormalized posterior. In the next step, equation (11), I show just how in-
coherent they are by highlighting what it would take to normalize them—pB
sums to p=2, and pA is nonconvergent. Thus, pB can be normalized by divid-
ing by the marginal probability, which is equivalent here to the integral of
the unnormalized posterior treated as a function of x. That is, 1=(p=2)�
(p=2) 5 1. But for pA, there is no finite normalizing constant, which is what
makes it epistemically “worse.”

I do this in order to be faithful to De Bona and Staffel’s project and create
room for evaluating deviations from coherence across updates. In other
words, I do not normalize because our starting point is that there is some-
thing interesting about the doxastic state of an agent whose credences vio-
late normalization. Another way to put the point is as follows: if we take
incoherent priors and normalize them automatically as part of the update
rule, then we erase the agent’s incoherence by the same stroke. No matter
how incoherent one is, the update rule wipes it all out. In that case, approx-
imate coherentism under updating would only apply to violations of addi-
tivity, and one could only violate the normalization axiom in one’s ur-prior
(the stylized prior that we take to exist at the very beginning of agents’
doxastic life and before they collect any evidence). Moreover, normalizing
as part of the update rule would make my own conclusion somewhat circular.
I would suggest that there is not much room for approximate coherence judg-
ments under updating because my update rule eliminates any incoherence.

Now, we could normalize right away and draw a similar overall conclu-
sion. The conclusion would be that credences that cannot be normalized by
a finite constant are beyond repair, whereas those that can be normalized are
all essentially on the same footing from the perspective of epistemic ratio-
nality. The fact that one normalizable credence is closer to coherence than
another normalizable credence is epistemically insignificant. Thus, the spirit
of the conclusion would be the same: what really matters under updating is
the binary question of whether the posterior can be normalized, not the graded
question of how far from coherence it happens to be. This is what I have tried
to show.

One might still object: Could not the same type of problem arise for or-
dinary coherence if we do not normalize as part of the update? It could, but
this would be the result of forcing the approximate coherence model into the
ordinary coherence framework. In other words, it is not a problem for the
ordinary coherentist. The ordinary coherentist is not interested in ranking
credence functions in terms of their degrees of incoherence. As a result,
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it is not problematic for the ordinary coherentist to normalize as part of the
update—normalizing does not jeopardize the relevance of coherence as a
normative principle for evaluating the epistemic rationality of a person’s
credences. The same is not true for approximate coherence because, as
mentioned, normalizing wipes out precisely that feature of the person’s dox-
astic state that approximate coherence is designed to help usmodel and evaluate.

For the ordinary coherentist, being incoherent is epistemically bad be-
cause one’s credence function is then accuracy dominated. But the ordinary
coherentist is not in the business of telling us how to move to a coherent cre-
dence function. Thus, if we ask the ordinary coherentist should the incoher-
ent agent update and normalize, the answer ought to be yes. And if we ask,
should the coherent agent update and normalize, the answer should likewise
be yes. And neither answer undermines the role of ordinary coherence as an
evaluative norm for the rationality of an agent’s credences.

But suppose that in the ordinary coherence framework we have one co-
herent agent, who updates and normalizes, and one incoherent agent, who
updates but does not normalize. Is this a problem for the ordinary coherent-
ist? It is not because in this case they are doing different things. Still, we can
take note that the coherent agent will remain coherent. And the incoherent
agent will be sometimes coherent and sometimes not. Thus, the nonideal
agent will never become epistemically better, and the ideal one will remain
ideal. It is the graded nature of the approximate coherence framework that
suggests itself to making ongoing comparisons under updating, but as I hope
to have shown, these ongoing comparisons can be misleading.

5.4. Synchronic or Diachronic Norms? One might further object to
the concerns articulated here on the ground that De Bona and Staffel only
assess the rationality of a credence function at a time. To what extent, then,
should they be persuaded by this notion of comparative consistency over
time? Note, as I flagged in section 4, that while I articulate comparative con-
sistency in terms of what happens before, and after, a learning experience,
the temporal framing is a heuristic for illustrating the problem. The notion
of comparative consistency is at a minimum a relation among a person’s do-
xastic attitudes. In the preceding paragraphs, I suggested that it would be dif-
ficult to banish improper priors from the Bayesian landscape because a proper
prior under one representation of a problem commits an agent to an improper
prior under a slightly different representation of the same problem. Here, a
similar suggestion is appropriate: comparative consistency applies between
a prior (unconditional) credence function and a posterior (conditional) cre-
dence function. While the prior/posterior language suggests a temporal per-
spective, we can also understand the notion in terms of the agent’s conditional
commitments. My current credence function commits me to a certain cre-
dence function in a heads world and to a certain credence function in a tails
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world. That is, our commitments can be understood from a time-slice-centric
perspective of rationality, to borrow Hedden’s (2015) andMoss’s (2015) ex-
pression. From an evaluative perspective, the heads and tails worlds, or the
estimates conditional on heads and the estimates conditional on tails, are in-
distinguishable.Yet approximate coherentism’s assessment differs among them.

In the large literature pertaining to the proper scope of the requirements
of rationality, Broome (2007) argues that they should be understood as state
requirements. In the epistemic context, state requirements require the agent’s
doxastic attitudes to be a certain way at a given time (by comparison, Ko-
lodny [2005] argues for a process interpretation). The notion of comparative
consistency suggested here can be understood within a state-based picture of
the requirements of rationality. It is a notion of consistency between uncon-
ditional doxastic attitudes and the conditional doxastic attitudes one is thereby
committed to. The concern on this framing would be that comparative judg-
ments about relative rationality at a time are sensitive to normatively innocu-
ous features of a state (i.e., one’s conditional credence given the event heads
vs. one’s conditional credence given the event tails). Note that this is a min-
imalist conception of comparative consistency. It is of course possible to un-
derstand the concept diachronically, in terms of the temporal framing. I only
wish to highlight that such a conception is not necessary in order to find the
idea compelling.

6. Concluding Remarks. The Bayesian version of the likelihood princi-
ple suggests that the only relevant ingredient for drawing inferences should
be the posterior distribution. Therefore, whether the prior is approximately co-
herent or, indeed,whether it converges is not especially important.What really
matters is a categorical question: Can the posterior be normalized? If it can be,
then Bayesian inference proceeds as usual. If it cannot be, then one cannot
make inferences because the posterior distribution is not identifiable. There-
fore, while it is tempting to take a graded approach to evaluating Bayesian
agents, perhaps the question that really matters is categorical: a Bayesian
agent’s behavior is either rational or not. If it is not, it can bemisleading to rank
degrees of irrationality because any such ranking can depend on luck.

The lessons of this article, therefore, can be summarized as follows: in
the standard Bayesian framework, approximate coherence may not be a help-
ful guide for evaluating comparative rationality, and in the partial coherence
framework, updating should not proceed along Bayesian lines. It remains to
be seen what a non-Bayesian updating policy for incoherent agents might
look like, how it would compare to Bayesian updating, and on what grounds
it might be justified. It would be especially interesting to see future work in
this area—that is, on belief updating norms for imperfectly rational agents.
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