
The Knowledge Engineering Review, Vol. 35, e29, 1 of 21. © Cambridge University Press, 2020
doi:10.1017/S0269888920000077

Improving trust and reputation assessment
with dynamic behaviour

CAROLINE PLAYER and NATHAN GRIFFITHS

Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
e-mails: c.e.player@warwick.ac.uk, n.e.griffiths@warwick.ac.uk

Abstract

Trust between agents in multi-agent systems (MASs) is critical to encourage high levels of cooperation.
Existing methods to assess trust and reputation use direct and indirect past experiences about an agent to
estimate their future performance; however, these will not always be representative if agents change their
behaviour over time.

Real-world distributed networks such as online market places, P2P networks, pervasive computing and
the Smart Grid can be viewed as MAS. Dynamic agent behaviour in such MAS can arise from seasonal
changes, cheaters, supply chain faults, network traffic and many other reasons. However, existing trust
and reputation models use limited techniques, such as forgetting factors and sliding windows, to account
for dynamic behaviour.

In this paper, we propose Reacting and Predicting in Trust and Reputation (RaPTaR), a method to
extend existing trust and reputation models to give agents the ability to monitor the output of interactions
with a group of agents over time to identify any likely changes in behaviour and adapt accordingly.
Additionally, RaPTaR can provide an a priori estimate of trust when there is little or no interaction data
(either because an agent is new or because a detected behaviour change suggests recent past experiences
are no longer representative). Our results show that RaPTaR has improved performance compared to
existing trust and reputation methods when dynamic behaviour causes the ranking of the best agents to
interact with to change.

1 Introduction

Multi-agent systems (MASs) are decentralized environments in which agents must communicate and
coordinate with their neighbours to achieve tasks. Trust between agents is a vital component to ensure
agents interact with competent and cooperative agents to complete tasks to a high standard (Castelfranchi
& Falcone 1998). We adopt as the definition of trust the expectation an agent has in another to achieve
a task satisfactorily (Gambetta 2000). Methods to assess trust and reputation have been developed for
domains including P2P networks (Kamvar et al., 2003; Tahta et al., 2015; Xiong & Liu, 2004), pervasive
computing (D’Angelo et al., 2017; Klusch & Gerber, 2002), the internet of things (Chen et al., 2016)
and many more. While existing trust models are often tailored to particular contexts or require domain-
dependent information, recent trust models increasingly use machine learning to generalize trust models
(Liu et al., 2014; Taylor et al., 2018). However, two main challenges remain, namely, how to assign
a trust value in the face of no evidence and how to capture and detect dynamic behaviours (Traverso
et al., 2017). Some trust and reputation literature states how adapting to changes in agent behaviour is an
essential requirement of a trust and reputation model (Fullam et al., 2005; Salehi-Abari & White, 2012);
however, existing techniques used to address this, namely, sliding windows and forgetting factors, are
limited in highly dynamic and distributed environments, which we discuss further in Section 2.3.

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077
https://orcid.org/0000-0001-5907-5750
https://doi.org/10.1017/S0269888920000077

2 C . P LAYER AND N. GR I F F I TH S

Examples of context-dependent causes of behaviour change in MAS include smart grid demand shifts
from seasonal changes, device faults, malicious behaviour (Hales & Edmonds, 2003; Salehi-Abari &
White, 2012; Srivasta et al., 2005) and phenomena such as inflation rate fluctuations which go on to
affect behaviour (Harries et al., 1998). Some of these changes can be random and unpredictable, whereas
others may be cyclical patterns. Additionally, agent behaviours may change as a result of being in a group
(Griffiths, 2006; Nguyen & Bai, 2018). Group and coalition formation can improve the scalability and
robustness of a network by improving task delegation amongst a smaller set of trusted agents. Traditional
static coalition formation algorithms are not appropriate in MAS because of their dynamic, decentralized
nature, and therefore trust and reputation have proven important in dynamic coalition formation (Klusch
& Gerber, 2002). Groups in an MAS impact on trust assessment because agents rely on other mem-
bers of the group to delegate subtasks to, therefore an individual agent’s reputation may be reflective
of group activity. Tasks are completed to a standard dependent on the behaviour of the whole group,
with individual members’ contributions unknown. Assigning reputation to agents completing subtasks is
considered in group trust literature (Nguyen & Bai, 2014) and is out of the scope of our work, and we
assume that agents from a group have a similar behaviour. Groups can also cause dynamic behaviour
as the relationships between the agents of the group can change due to changes in their motivations, a
changing group population or external factors such as a changing environment (Nguyen, 2017).

In this paper, we propose RaPTaR, a method that sits on top of existing trust and reputation methods
to detect and adjust to behaviour changes to supply the underlying trust and reputation algorithm with
only relevant data by deleting old instances using a modification of the Adaptive Windowing (AdWin)
algorithm. The point of behaviour change is identified by monitoring the window of outcomes from a
group of agents using the Kolmogorov–Smirnov (K-S) statistical test. Furthermore, transitions between
behaviour changes are recorded to learn patterns in group behaviour for future exploitation. RaPTaR also
provides an initial assessment of an agent belonging to a group for any trust model that uses an a priori
trust estimate based on both recent behaviour and any learnt behavioural patterns of the group.

RaPTaR offers several contributions to improving trust and reputation assessment in groups. First,
RaPTaR allows agents to react to any statistically detected changes without a strong dependence on any
prior tuned parameters. RaPTaR has only one input parameter, and we demonstrate RaPTaR is not overly
sensitive to this value. This allows agents to adapt to their situation, which in MAS can vary between
agents. Second, inspired by the Reactive Proactive (RePro) concept drift algorithm (Wu & Zhu, 2005),
agents can learn patterns in behaviour such that any future changes can be predicted. Third, RaPTaR
calculates expected behaviour considering all known behaviours weighted by the probability that they
are active, which addresses a limitation of RePro which can only predict the most likely behaviour at the
time. Fourth, RaPTaR learns how long agents spend acting with a particular behaviour, with the intuition
that if the behaviour occurs again, it may have a similar duration, and therefore a change in behaviour
can be anticipated. Finally, RaPTaR includes a probability that the agent will switch to an unknown
behaviour. We compare our work to sliding windows and forgetting factors, the techniques commonly
used by trust and reputation models to account for changes in behaviour. We also evaluate RaPTaR with
different trust algorithms, to demonstrate its performance with continuous and discrete inputs.

Our results show that RaPTaR is significantly more robust to dynamic behaviours than existing meth-
ods. If a group of agents change their behaviour such that they are no longer the most trustworthy group,
RaPTaR adapts quickly. The extent of RaPTaR’s improvement increases as the frequency of change in the
ranking of agents increases. When behaviour is static, RaPTaR will perform equally to other methods as
they all converge on learning the true behaviour of an agent. However, we show that in general, RaPTaR
offers statistically significant improvements over other techniques for managing agent information, for
all values of α in RaPTaR demonstrating.

The remainder of this paper is organized as follows. In Section 2, we describe the related work, includ-
ing existing trust and reputation models, techniques to manage interaction data in trust and reputation
models, and methods for concept drift detection. The RaPTaR algorithm is described in Section 3. We
present the evaluation environment in Section 4 and our results in Section 5. Finally, Section 6 concludes
the paper.

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

Improving trust and reputation assessment with dynamic behaviour 3

2 Related work

In this section, we introduce the use of trust and reputation to assess agent behaviour, techniques
for coping with dynamic behaviour and mechanisms for detecting concept drift which inspire our
approach.

2.1 Trust and reputation

Selecting the most appropriate trust and reputation model depends on what information is available,
including representations of outcomes, task decomposition, agent connectivity and social connections
amongst others. Additionally, some algorithms require information about the environment either in
advance or at run-time, to accurately tune the parameters of the model. RaPTaR is a complimentary
method to existing trust and reputation models, which improves their estimates by managing agents’
experience data to adapt to dynamic behaviours. Therefore, we include a brief review of relevant trust
and reputation literature to understand the application of RaPTaR, the models we evaluate it with and
why they are limited in coping with dynamic behaviours.

An agent assessing a potential interaction partner with a trust algorithm uses their direct past experi-
ences with them to estimate how they will behave in the future (Keung & Griffiths, 2010). Reputation
mechanisms are similar, but additionally collect, aggregate and distribute feedback about agents’ past
behaviour from witnesses (Resnick et al., 2000). In the remainder of this paper, we refer to trust and repu-
tation interchangeably as we use aggregated witness reports in our trust assessments. Trust and reputation
literature is extensive and addresses a variety of problems, which arise in trust and reputation assessment.
Biased reputation sources can be statistically altered to account for liars or perception bias using models
such as FIRE, TRAVOS and BLADE (Huynh & Jennings, 2004; Regan et al., 2006; Teacy et al., 2006).
Similarly, HABIT is a Bayesian inference system, which addresses the need for a general behaviour rep-
resentation and improves computational efficiency (Teacy et al., 2012). Stereotyping techniques improve
assessments of newcomers or agents for whom there is no past experience (Burnett et al., 2010; Sensoy
et al., 2016). More recently, trust assessment has been viewed as a machine-learning problem with a trust
model including a learning component and a predictive component (Lu & Lu, 2017; Taylor et al., 2018).

There are no existing reputation systems that focus on statistically identifying whether witness
reports are representative of the target agent’s current behaviour given that it may have changed. The
main contribution of RaPTaR is to provide this feature to existing trust and reputation models, and
in this paper we select Beta Reputation System (BRS) (Jøsang & Ismail, 2002), Dirichelet Reputation
System (DRS) (Josang & Haller, 2007) and TRAVOS (Teacy et al., 2006) as representative trust
mechanisms.

A trustor agent, tr, using BRS to assess a trustee, te, can perceive interaction outcomes as good or bad
and collects the sum of good and bad experiences with te, rte and ste, respectively. All the past interactions
tr has had with trustees are stored in a history, Otr. These are the input parameters to a beta probability
density function (PDF), whose expected value is the estimate of the trustee’s behaviour, trust(te). An
agent can aggregate witness reports from available agents to improve the accuracy of the assessment. For
now, we assume that these values are relevant data about the current behaviour of te. The belief , bte, in
te is their expected behaviour based solely on their previous interactions, as calculated below:

bte = rte
rte + ste + 2

(1)

BRS weights older interactions less according to a forgetting factor, described below in Section 2.3. To
account for uncertainty in this belief, an a priori, a, is weighted by an uncertainty factor, ute:

ute = 2

rte + ste + 2
(2)

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

4 C . P LAYER AND N. GR I F F I TH S

which decreases as more interaction experiences are collected, signifying a higher confidence in the belief
factor. The default value for the a priori, a, is 0.5, which assumes that an agent is neither good nor bad,
unless the default can be replaced by the output of another model:

ate =
⎧⎨
⎩
x, if a model is available

0.5 otherwise
(3)

This is discussed further in Section 2.2. The overall expected behaviour according to BRS, trust(te), is
calculated using subjective logic, namely:

trust(te)= bte + ute × ate (4)

The values of rte and ste are an aggregation of good and bad interactions with te from all available
trustors known as opinion providers, op ∈Atr, defined as:

rte =
Atr∑
op

ropte , ste =
Atr∑
op

sopte (5)

In BRS, the witness reports are assumed to be honest, and therefore both direct and indirect experi-
ences are weighted equally (Burnett et al., 2010; Jøsang & Ismail, 2002). If it is not possible to assume
that reputation providers will be honest or unbiased, then TRAVOS can be used. TRAVOS expands on
BRS, by altering witness reports to weight opinions which have statistically proven to align with the
trustor’s true experiences in the past. The accuracy of a witness is calculated from tr’s perspective by
comparing the beta distribution of the opinion provider’s reports about any te, and the beta distribution
of the actual outcomes tr ultimately received. However, this is computationally expensive because it
requires collating witness reports from all trustors whenever reputation information is needed.

DRS is a generalization of BRS, which divides interaction outcomes into k possible values. While
BRS is a prominent, mathematically rigorous model, the limitation of only two possible outcomes from
an interaction can be unrealistic. For example, if k= 5, interactions might fall into one of the following
categories: 1-bad, 2-mediocre, 3-average, 4-good or 5-excellent (Josang & Haller, 2007). When tr cal-
culates the reputation of te at time t using DRS, the set of tr’s past interactions with te, Ote

tr ⊂Otr, are
each labelled with one of k values to become the input parameters to a multivariate Dirichlet PDF. From
a Dirichlet distribution, a reputation value can be calculated using point estimate representation, which
is easily computable and human understandable. Generalizing storing interaction outcomes from BRS,
agents have an evidence vector,

−→
R te = (Rte(i)|i= 1...k), where Rte(i) indicates the number of interactions

from Ote
tr that were rated in the ith category. Each category i is given a point value, v(i)= i−1

k−1 , such that
the values are evenly distributed in the range [0,1]. An overall reputation value is a weighted average
calculated as reputation(te)=∑k

i=1 v(i)S(i) given that:

−→
S te : (Ste(i)= Rte(i)+Ca(i)

C+∑k
j=1 Rte(j)

; |i= 1, ...k) (6)

where each element, Ste(i), in the vector
−→
S te describes the multinomial probability reputation of the ith

element given the aggregate reports in
−→
R te, and the value of C weights the importance of the a priori. The

literature this work is proposed in, recommend a value of C= 2, but optionally a higher value for C will
lower the importance of the a priori (Josang & Haller, 2007). The a priori, a(i), is the prior probability
of the ith category. Without any other information, all k intervals are given an equal probability of the
a priori. Stereotype techniques can provide a more informative a priori value, a ∈ [0, 1] for an agent,
which is substituted into DRS by assigning a(i)= 1 to the ith category that a falls into, i.e. �a× k�, and
all other a(i)= 0:

a(i)=
⎧⎨
⎩
a(i) ∈−→a if a priori model available

1
k otherwise

(7)

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

Improving trust and reputation assessment with dynamic behaviour 5

A disadvantage of using point estimates is that no standard deviation is calculated, and so an agent
who behaves well half the time but badly otherwise, will have an equally good reputation compared to
an agent who consistently performs averagely.

2.2 Groups

Trust and reputation models are data-based approaches that may perform poorly when assessing a new
agent for which there are no previous interactions. This is a reoccurring problem in dynamic groups where
agents may have had past interactions with other agents who were previously in their neighbourhood, but
none with agents who they are now connected to. One possible solution is to provide the trust algorithm
with an a priori value for behaviour, until the agent can collect direct experiences to learn from Burnett
et al., (2010), Teacy et al., (2012), and Nguyen & Bai (2018). This may be a base value representing aver-
age performance, or an inferred value based on interactions with other agents. Grouping agents together
by how they appear and behave was initially proposed in the Swift Trust algorithm (Debra et al., 1995).
This method is known as stereotypes and uses the assumption that agents who are observably similar may
act similarly. For example, a decision tree can be trained on past experience data, learning correlations
between agents’ observable features and the trust they have in that agent (Burnett et al., 2010). The a
priroi is given less precedence as direct experiences become available. HABIT uses the average value
of the first interactions with other agents in the group the trustee is associated with. This represents the
notion that if previously interacting with an agent in that group for the first time was typically bad, the
trustee might also be bad. StereoTrust assigns agents an a priori assessment of their behaviour based on
the trust they have in other agents who are observably similar, weighted by the extent of that similarity
(Liu et al., 2009). If agents of a group can be assumed to have the same static behaviour, we extend this
to assume their behaviour at any time point is similar, given that it can change.

2.3 Dynamic behaviour

Dynamic behaviour is a challenge to trust assessment because behaviour can change at a variety of speeds
and times for the agents in an MAS, rendering traditional methods of forgetting old data at a constant rate
ineffective. Despite this limitation, prominent trust and reputation models still rely on techniques such as
sliding windows and forgetting factors (Huynh & Jennings, 2004; Jøsang & Ismail, 2002; Liang & Shi,
2005; Regan et al., 2006; Teacy et al., 2006). While other literature mentions the importance of coping
with dynamic behaviour, it remains an open challenge (Anders et al., 2016).

A sliding window of size n retains the most recent n experiences. The intuition is that the most recent
n instances capture an agent’s current behaviour, and older interaction records that are no longer relevant
are deleted. For a new instance, ot, at time t and a window, W, of size n the window is updated as
follows.

W← (W/W[n])+ ot (8)

A forgetting factor, also referred to as a longevity factor, forgets at a constant rate with all instances
being retained and more recent interactions weighted higher. An interaction from time t at the current
time, t’, which can be used in trust assessment is weighted as:

ot,t
′ = λm × ot (9)

where m is the elapsed time since ot was recorded, that is, m= t′ − t. Forgetting factors can be imple-
mented recursively by storing one value which is updated over time instead of storing all values,
reweighting and collating them at every time point. This improves on both time and space efficiency
as older interactions do not need to be searched or saved. However, not saving old data loses potentially
useful information, especially about behaviour change over time.

Unfortunately, several issues impact on the generality of using sliding windows or forgetting factors to
aggregate information. First, choosing the window size or the rate of forgetting is problematic. If an agent

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

6 C . P LAYER AND N. GR I F F I TH S

forgets old instances too quickly, they will lose relevant data that could help them make more accurate
calculations. Conversely, if too much information is retained, then agents will make assessments based
on data that no longer represents current behaviours. The optimal values will depend on the application.
Second, the optimal values for window sizes or forgetting factors can vary over time. For example,
behaviours may change frequently for a period and then remain static, and this would require using very
recent data initially and then a larger window size. Third, agents may not change their behaviour at the
same rates, and so a global window size or forgetting factor will not suit all agents. Finally, sliding
windows and forgetting factors are only effective in coping with gradual change rather than sudden
changes, which may occur at different times for different agents.

Existing MAS literature outside of the scope of trust and reputation has looked at identifying the best
behaviour policy to use from a set of policies, by identifying other agents’ behaviours and responding to
that. Part of this task involves identifying when other agents have changed their own policy (Hernandez-
Leal et al., 2016). One reason we do not compare against policy change literature is in our context, agent
behaviours are not a series of static policies that are swapped between, but rather are continuous values
that can change gradually or suddenly. Agents need to learn behaviours through outcome rewards and
cannot identify discrete action choices of other agents immediately. Identifying agent behaviour changes
through analyzing a continuous variable is a different problem to policy detection, and this depends on
the information available in the environment (Hernandez-Leal et al., 2017). Finally, as discussed with
all existing techniques on estimating agent behaviour, work on reacting to policy changes also does not
discuss the probability of an upcoming change.

In this paper, we propose a method that uses concept drift techniques to identify changes in behaviour.
Machine learning models find correlations between a feature set, X, and a class value, Y , typically
assuming that the joint probability of the features and the target remains static over time, that is,
Pt(XY)= Pt′(XY) for all times t and t’ (Webb et al., 2016). Concept drift techniques aim to detect
when such relationships change over time, meaning Pt(Y|X) 	= Pt′(Y|X) (Tsymbal, 2004). In stereotyp-
ing, agents are grouped based on their observable features, and the correlation between those features
and agent behaviour is learned. In this paper, we address the problems that arise from agent behaviour
changing over time meaning that the correlation between features and behaviour may change.

A concept is a learned correlation between the features and the target, or class value, which in our
context is the trust value. If the correlation between a set of feature values and a class value instantly
changes to a new class value, then sudden drift has occurred. A slow progression of one concept becoming
less prevalent while another becomes more prevalent is known as gradual drift. Gradual drift is harder to
detect, especially if the differences between the two concepts are not empirically large but are important
(Hoens et al., 2012). Sliding windows and forgetting factors will have an optimal size or value to handle
only one speed of change; however, agents may change behaviour at different times and rates and a single
window size or forgetting factor may be insufficient. The method proposed in this paper handles agent
behaviours changing at different speeds or at different times without requiring parameter tuning.

In our approach, we draw upon concept drift techniques that can identify the point of change in the
data, allowing the agent to update its interaction history. The Adaptive Windowing (AdWin) model uses
a variable window size which expands with new, incoming data if that data is statistically assessed to
be drawn from the same distribution as the rest of the data in the window (Bifet & Gavaldà, 2007). If
there is a split of the window such that it is believed the two subsets come from different distributions,
then change has been detected and data from the oldest subset is forgotten, which is synonymous with
shrinking the window. The method we propose in this paper uses a similar adaptive window as part of its
reactive component. Once AdWin deems a concept to have ended, the data from that concept is forgotten
forever. RePro retains such information with the aim of improving predictions in an environment where
concepts might reoccur (Wu & Zhu, 2005). Once a concept has changed, RePro remembers the concept
and records the transition to it from the previous concept. If the concept reoccurs in future, it can be
proactively predicted given the concept which came before it, without being relearned from scratch,
therefore saving time and improving predictive accuracy. RePro was designed for categorical predictions;
however, we present a simple adaptation for continuous predictions. RePro can also only predict one

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

Improving trust and reputation assessment with dynamic behaviour 7

concept at a time, as the proactive mode selects the concept that most frequently follows the current
concept and there is no consideration of unknown concepts. The proactive mode requires a trigger, such
as detecting a small amount of error, to determine whether a different concept has taken over. Work on
detecting concept drift in the error of agent behaviour estimates exists (Hernandez-Leal et al., 2017);
however, in the context of trust and reputation, estimates of behaviour can be highly inaccurate but not
affect the ability to choose good partners. We find it more prudent to analyze interaction outcomes for
concept drift, which have not been biased by agents’ potentially inaccurate trust estimates, which allows
RaPTaR to detect changes effectively regardless of which trust algorithm is being used.

3 Reacting to dynamic agent behaviours and predicting trust and reputation

In this section, we propose a method, RaPTaR (Reacting and Predicting in Trust and Reputation), to
detect and adapt to changes in agent behaviour such that trust assessment is as relevant as possible to
an agent’s current behaviour. By improving the accuracy of trust assessment and identifying the current
best partner to interact with given that agents’ behaviours can change, we aim to improve the average
utility agents receive. The following assumptions are made regarding the environment in which agents
are situated. First, we assume that agent behaviour can change at any rate or time. Second, we assume
that agents may interact with a subset of the population, as determined by an underlying network topol-
ogy. An agent’s connectivity limits its ability to gather reputation information and its choice of available
partners. Third, we assume that agents belong to a group, G, such that members of the group have the
same behaviour. If some factor causes an agent to change its behaviour, then we assume that the behaviour
changes for all members of the group. Fourth, we assume that agents provide accurate reputation informa-
tion because they are honest and unbiased. In principle, because RaPTaR is used alongside an underlying
trust assessment mechanism, this assumption is mitigated by trust techniques that cope with dishonest
agents. In this paper, our focus is on the mechanism for selecting appropriate information on which to
assess reputation, rather than addressing dishonesty.

In the remainder of this section, we describe our method that improves trust assessment in two ways.
First, statistically detecting changes in recent outcomes from interactions and updating the data used in
trust assessment, accordingly enables agents to assess trust appropriately for others’ behaviour. Second,
RaPTaR produces an estimate of an agent’s behaviour based on its group by exploiting any learned
patterns.

An agent uses RaPTaR to monitor the outcomes of a subset of agents, G⊂A, to account for how a
group may change its behaviour at different times and speeds compared to other groups. Each identifi-
able group in the population is monitored separately. Groups may represent some known coalitions but, if
groups are not explicitly identifiable, it may be possible to group agents using techniques such as stereo-
types (Player & Griffiths, 2018). Our previous work showed how we can react to dynamic behaviours of
stereotypes. In this paper, we build on this idea, to also consider how we can predict behaviour changes.
We found in our previous work that the level of noise prevented accurately identifying change; therefore,
we aim to reduce the noise to study more complex agent behaviours. Therefore, in this paper, we assume
that groups are identifiable. RaPTaR aims to make use of past learned behaviour information after the
agent has changed behaviour, which is not something considered by previous methods. An agent stores
the outcome of its interactions in a history, O, which is divided into subsets representing the outcomes
of interactions with agents from each group they have encountered, OG ⊂O. RaPTaR can then monitor
OG for behavioural changes within each group G. In presenting RaPTaR, we use the notation in Table 1.

RaPTaR has a learning component and a predictive component. When the outcome of an interaction
is saved, it will either be assumed to come from the same distribution as other recent outcomes or from a
different distribution if a change in behaviour is detected. For the learning component, we use a modified
version of the AdWin algorithm to detect change and remove irrelevant data. If a change is detected, the
behaviours on either side of the change are learned. Agents record how long a behaviour was believed
to be active for and which behaviour succeeded it, to learn behavioural patterns and improve predictions
of future behaviour changes. Some trust and reputation algorithms will accept an a priori as input to
improve trust estimates when there is little experience data. Similar to stereotype models, the predictive

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

8 C . P LAYER AND N. GR I F F I TH S

Table 1 RaPTaR notation

Notation Description

G⊂A An identifiable group of agents assumed to behave similarly, and therefore
monitored using RaPTaR.

ot ∈ [0, 1] The outcome of an interaction that occurs between a trustor, tr and trustee, te, at
time t.

W An adaptive window of recent interaction outcomes that a trustor has had with a
group of trustees.

tW[x] The time that the interaction indexed at x in window W occurred.
α Input parameter to set the sensitivity of the K-S test. The confidence in the decision

made by the K-S test is 1− α.

c ∈−→C A concept in the list of known concepts for G which have been learnt from
interactions with members of G. In our context, the value of a concept is an
estimated behaviour value.

cc ∈−→C The currently active concept that estimates the values currently in W. This will
either be a concept from the history if such a concept exists that predicts W well
or a new concept otherwise.

cet The conceptual equivalence threshold, used to determine if the values inW are
similar enough to an already known concept in the concept history.

TM A transition matrix to maintain statistics about behaviour changes, recorded as
concept transitions, which are used for future predictions of agent behaviour.

[cx, cy] ∈ −→C Variables to keep track of the two concepts preceding cc in order to record
transition cx→ cy in TM.

s The stable learning size, which is the minimum length of time a concept should be
active for to consider it a well learned and established concept.

L[cx, cy] A list containing the duration of time it was detected that agents spent with learned
behaviour cx before transitioning to their next behaviour, learned as cy. Such a
list exists in every cell of the TM, for every possible transition of the known
concepts.

tlcx The length of time cx is believed to have been active before transitioning to cy, a
value stored in the list L[cx, cy].

component of RaPTaR produces an a priori estimate based on experiences from members of the group
who are assumed to behave similarly. RaPTaR uses the adaptive window of recent interactions to estimate
the current behaviour, how long it has been active for and possible successor behaviours to assess an
overall expected utility. We discuss the learning and predictive components in Sections 3.1 and 3.2,
respectively.

3.1 Learning component

The learning component comprises two parts: the first detects changes in agent behaviour using
interaction outcomes and the second learns patterns in changes of behaviour.

RaPTaR maintains a window, W, of outcomes from interacting with the agents of a group, G, such
that after an interaction the outcome, ot, is appended to the end of W. For every split of W into W0 and
W1, we perform the K-S test to determine whether the null hypothesis, ‘the data in the two sets is drawn
from the same distribution’ can be rejected, that is, there has been a change in the agents’ behaviour. The
K-S test is appropriate because the data is continuous (Press et al., 2007). There is only one parameter in
the K-S test, α ∈ [0, 1], where the confidence in the decision of accepting or rejecting the null hypothesis

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

Improving trust and reputation assessment with dynamic behaviour 9

Table 2 Transition Matrix

Successor concept, cy

Previous concept, cx Unknown 1 2 3 . . .

1 L[1,1] . . .

2 . . .

3 . . .

. . .

is 1− α. Therefore, for a high level of confidence in this decision, α should be a low value. We show in
Section 5, that in our results the efficacy of RaPTaR does not fluctuate with differing values for α.

In the original AdWin algorithm, W is iteratively split into all combinations of W0 and W1 starting
from isolating the oldest instance and incrementally moving the oldest element of W1 into W0, until
either change is detected or all the instances in W are assumed to be from the same distribution. We
identified that there is a performance difference in the AdWin algorithm if W is split into W0 and W1 in
reverse order, such that the most recent instance is isolated first into W1 with all other instances in W0,
then iteratively moving the last instance ofW0 intoW1. To keep the retained data as relevant as possible,
conducting the split starting at the most recent instance is more effective. This is because if there is
a gradual change in the distribution over data, which does not have one clearly defined time point of
change, the null hypothesis could be rejected at any of several consecutive split points. By identifying the
most recent split point, the most relevant data is retained inW1. Alternatively, starting the tests from older
instances will result in the change being detected closer to the start of the window and thus retaining more,
possibly irrelevant, data inW1. Algorithm 1 describes how RaPTaR learns behavioural patterns, splitting
W intoW0 and W1 by starting to check for behaviour change at the end and then working backwards.

If there exists a split ofW intoW0 andW1 such that a change in behaviour is detected, RaPTaR stores
information about the change for future predictions about behaviour. When a change is detected, the
instances in W0 can be learnt as a concept. The currently active concept, cc, which best estimates W1,
is still active and may still change, so we cannot record a transition to it yet. Therefore, transitions are
recorded between the two concepts that were active prior to cc. Concept cy represents the behaviour in
W0 and cx was the concept learned before cy, learned from data which has since been removed from
W. Concept cx is initialized to the unknown concept, and then updated at the end of this process as
cx← cy, ready to record the next transition. The form of the transition matrix is depicted in Table 2.
The first column of TM, index 0, is for the unknown concept, to show how frequently other concepts are
followed by a new concept. When a change in behaviour is detected, as described above, the concept
cy that describes the behaviour in W0 needs to be identified as either a concept seen before or be learnt

as a new concept. The value of all the known concepts in
−→
C is compared to the mean of the instances

in W0, μW0 , and if there exists a concept c ∈−→C such that |μW0 −μc|< cet, where cet is the conceptual
equivalence threshold, then cy← c. Storing mean values is a simple approach, and future work might
consider storing more complex agent policies. If no concept is equivalent, a new concept is learnt with
the value μW0 . If the length ofW0 is less than a stable learning size, s, then it is not considered substantial
to record a transition for. The previous concept, cx, is remembered even though the data for it has since
been deleted, and we can now record the transition between cx and the newly learned cy. The list, L[cx,cy],
records the length of time spent at cx, tlcx, before moving to cy, for every occurrence of the transition. The
time at cx is initialized to 0 for the first recording. The reactive and learning component is summarized in
Algorithm 1.

3.2 Predictive component

For any trust and reputation model that accepts an a priori trust estimate, RaPTaR calculates an expected
utility based on the value of each concept, μc ∈−→C , in the concept history for a group, and the probability

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

10 C . P LAYER AND N. GR I F F I TH S

Algorithm 1 Learning Concepts by Updating TM

function UPDATE(otte)
W←W + otte
for (i= |W| − s; i> s; i− 1) do
 iterates backwards through W

 where s is the stable learning size
W0←W[0, i]
W1←W[i, |W|]
if KS− Test(W0,W1) < α then
cy← LearnConcept(W0)

TM[cx, cy, L]← TM[cx, cy, L+ {tlcx}]
 cx initiated to unknown concept

 tlcx initiated to 0

cx← cy
tlcx← tW0[|W0|] − tW0[0]
 Length of time cx was active
W←W1
 Shrink window to recent relevant data
return

end if
end for

end function
function LEARNCONCEPT(W0)

cy← null
μW0← avg(W0)

for c ∈−→C do
if |μc −μW0 |< cet then
cy← c

end if
end for
if cy == null then
 new concept

TM[cx, 0, L]← TM[cx, 0, L+ {tlcx}]
 unknown concept is indexed at 0 in TM
cy←|TM| + 1
μcy←μW0

expand TM to include new concept
end if
return cy
 After return, transition recorded as normal

end function

it may currently be active, p(c). The expected utility draws upon the information recorded in TM by the
learning component and is calculated as:

EU =∀c∈−→C μc × p(c) (10)

First, tr identifies if any of the known concepts, c ∈−→C , could be the currently active concept, cc, by
evaluating the difference between the concept values, μc, and the mean of the values currently inW, μW ,
if |μcc −μW |< cet. The trustor assesses the length of time this concept has likely been active, tcc , as the
current time, t, minus the time the first outcome inW was recorded:

tcc = t− tW[0]
The first known occurrence of the currently active concept should be in the first element of the adaptive
window, W[0], as the reactive component statistically readjusted the window to contain data believed to
be generated by the same underlying distribution.

The next step is to calculate the probability, p(c), that each concept c ∈−→C will succeed cc given that
cc is assumed to have been active for tcc . A PDF is built with a Gaussian Kernel Density Estimator using

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

Improving trust and reputation assessment with dynamic behaviour 11

the lengths of time spent at cc in the past before it was succeeded by c. These times were recorded in TM,
illustrated in Table 2, ∀tlcc,c ∈ L[cc,c]. A PDF interprets the probability of the length of the concept, which
is advantageous because the reactive component may not identify the time of change perfectly, but the
PDF will combine all the times to give an estimate. As |L[cc,c]| increases, the PDF will get more accurate
at pinpointing the time. The probability, ˙p(c), that c succeeds cc after tcc time at cc is:

˙p(c)= PDF(tcc)× |L[cc,c]|
where |L[cc,c]| is the length of the list, and therefore the number of times c has succeeded cc. Multiplying
by the frequency of transitions turns the probability into a frequency distribution estimate which will give
precedence to the concepts which more frequently succeed cc when the probabilities are normalized.

To normalize the probabilities of each possible next concept (including the possibility that cc is
followed by cc at this time), the probabilities must sum to one,

∑
c∈−→C p(c)= 1. Therefore, p(c) is

given as:

p(c)=
˙p(c)∑

cn∈−→C
˙p(cn)

(11)

If no known concept is active, the currently active concept is assumed to be new and it takes on the
value μW and probability 1. No other concept has a probability of being active as we have no information
about what or when another behaviour might follow the currently active concept.

3.3 Integrating RaPTaR with trust and reputation models

RaPTaR has two points of integration with trust and reputation algorithms. First, RaPTaR detects changes
in the behaviour of agents in a group, G, and deletes any records believed to be irrelevant from O.
The effect is that the trust and reputation model draws upon records in O which are believed to be
representative of current behaviours. This contrasts with use of a fixed size sliding window that can only
delete the oldest interaction record to accommodate space for the newest interaction record, regardless of
the relevance of either the newer or older record. Second, RaPTaR outputs an expected utility which can
be used as an a priori estimate in trust and reputation models which incorporate such a value when there
are no, or few, direct experiences with an agent on which to otherwise base a decision.

4 Experimental methodology

In this section, we describe the evaluation environment used in this paper. RaPTaR is an extension to trust
assessment requiring minimal parameter tuning, and therefore RaPTaR is applicable in multiple domains.
We describe general environmental parameters that can be altered to model a variety of application types.

An interaction between two agents can represent an exchange of goods or services between producer
and consumer. A trustor agent, tr, makes a trust assessment about a trustee agent, te, and if they are
the most trustworthy available agent, they have an interaction. Agents interact over time steps and gain
experiences with other agents which they use to assess their future performance. Agents behave as both
trustors and trustees. In a round, a trustor chooses a partner to execute their task, but they can also be
selected as a trustee by other agents. In our evaluation, an agent can act as a trustee in up to 10 requests
per time step. This mimics evaluations from existing literature where there are more trustees than trustors,
as well as enabling agents to multi-task (Nguyen & Bai, 2018). When there are more possible partners
to choose from, trustors have a more difficult task of identifying the best partner; therefore, the results
showcase which partner selection technique is more successful.

An agent is described by the tuple 〈ID,G, b(t)〉 where ID is the agent’s identifier, G is the agent’s
groups and b(t) ∈ [0, 1] describes agents’ behaviour which is dependent on time t and their group. The
behaviour at any time point is described below. An agent maintains a set of historical records of their
past interactions,O, where each tuple represents one interaction in the form: 〈j, ot, t〉 where j is the ID of
their interaction partner and ot is the value of the interaction at time t.

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

12 C . P LAYER AND N. GR I F F I TH S

Figure 1 Example of groups’ dynamic behaviours

4.1 Dynamic behaviours

The trustor, tr, receives an outcome as a result of interacting with a trustee te, ot ∈ [0, 1], dependent
on the behaviour of te at time t. This value can be seen as the extent to which, or the probability that,
te cooperates or defects. Static agent behaviour, b, is typically defined within a range of values where
the bounds are application dependent. Trust and reputation algorithms then normalize these bounds such
that b ∈ [0, 1], where 0 indicates defective behaviour, whereas a value tending towards 1 indicates a
cooperative agent. We extend this to define dynamic behaviours, b(t) ∈ [0, 1], as a function dependent
on time. These functions are randomly generated in each experiment, so that the length of time concepts
are active for, and the speed of transitions vary. Our evaluation then shows how each method copes
given there is no advance information about agent behaviours. The outcome of an interaction is then
drawn from a Gaussian distribution with mean b(t) and standard deviation 0.2, to represent that an agent
will not always perform exactly the same, or that agents sharing the behaviour from that group behave
uniformly. Examples of dynamic behaviours are given in Figure 1. These functions could be repetitive
patterns over time as seen in Figure 1(a), or be random dynamic behaviour as depicted in Figure 1(b). An
agent’s behaviour is defined by the group they belong to.

4.2 Groups

In the model assumptions stated in Section 3, agents are identifiable by group, and their behaviour is
dictated by their group. Figure 1 illustrates how a groups’ behaviour can change over time. Groups may
be explicit, as we have assumed in this paper, but they may represent profiles of entities in the application.
For example, Smart Grid users might be classified into groups including a single person living alone, or
large houses with multiple occupancy, or industrial offices. As smart meters become more advanced and
prevalent in the electricity grid, they can provide more information to improve these classifications using
stereotype techniques when group identities are not explicit. For the evaluation in this paper, we use
3 groups, and agents do not change between groups. Agents are randomly assigned to a group at the
beginning of their lifetime.

4.3 Network topology

To demonstrate that RaPTaR is appropriate in many domains, we consider agents being connected in
different network structures (Anderson et al., 2013). The network topology affects which agents are
connected to which other agents, and the consequences to trust and reputation models include limit-
ing available interaction partners and witnesses. Our evaluation considers three common structures. The
Kleinberg small-world network where agents are grouped in hubs with few links connecting each hub,

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

Improving trust and reputation assessment with dynamic behaviour 13

Figure 2 RaPTaR more quickly adapts its trust estimates (EU) to reflect the true behaviour compared to other
methods. Agents use BRS in a fully connected network with an exploration rate of 0.2

the Barabási-Albert scale-free network which uses the preferential attachment property, often used to rep-
resent social networks, where agents have a higher probability of being attached to an agent who already
has a higher degree, and a fully connected network. When we use the small-world or scale-free networks
in our evaluation they are populated with 100, 200 or 500 agents, but the fully connected network is only
populated with 20 or 40 agents as the increased number of edges means it is significantly less scalable
and simulations become too long to run. We include results with a fully connected network because this
represent a portion of the network or a group rather than the whole population. Additionally, a fully con-
nected network represents a scenario where agents have sparse data because of the high degree but many
possible interaction partners. Small-world networks in the experiments are generated with a clustering
coefficient of 0.5.

4.4 RaPTaR variables

The conceptual equivalence threshold, cet, is set to 0.1 in our evaluation. Trust models can have low
accuracy and so a value of cet as high as 0.1 helps to group together interactions with trustees whose
outcomes were generated by the same behaviour but have a margin of discrepancy between their assess-
ment. Additionally, this is low enough that any true behaviours that are different but are assessed to be
the same concept are not too different. Previous experiments show that perfect accuracy for estimating
agent behaviour is not important but that the ranking of agents needs to be correct (Player & Griffiths,
2017). If cet= 0.1, this bins trust into 10 categories (assuming that trust is in the range [0,1]), providing
enough granularity to rank behaviour from good to bad. The stable learning size, s, is set as low as 3
to encourage learning brief periods of behaviour which occur during transitions between longer periods
of static behaviour. We do not consider this an input parameter to RaPTaR because we recommend the
value to be small in a dynamic noisy agent-based environment.

5 Results and evaluation

In this section, we present experimental results of RaPTaR applied to three trust and reputation algo-
rithms: BRS, DRS and TRAVOS. The results demonstrate that RaPTaR is an effective alternative to
sliding windows and forgetting factors when the dynamic nature of the environment is unknown. All
results are averaged over 100 runs and are statistically significant with a p-value less than 0.001 using
a paired t-test. The only exceptions to this are in Figures 2 and 3(a) where the results demonstrate how
RaPTaR works in a single experiment. RaPTaR aims to improve an agent’s ability to assess another
agent’s behaviour, and thereby select better partners for interactions. Differences in results obtained
from using RaPTaR with different α values are not statistically significant, demonstrating there is lit-
tle dependence on this parameter. To illustrate this, the results show the average utility agents receive for

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

14 C . P LAYER AND N. GR I F F I TH S

Table 3 Average utility per agents per time step in network topologies using different trust models with either a
fixed window size (ws), forgetting factor (λ) or RaPTaR, averaged over 1000 rounds and 100 runs.

Fully
Network type connected Small-world Scale-free

|A| 20 40 100 196 484 100 200 500

BRS ws 50 0.564 0.564 0.550 0.553 0.553 0.541 0.540 0.539
100 0.552 0.553 0.543 0.543 0.543 0.534 0.533 0.532

λ 0.9 0.578 0.580 0.558 0.565 0.565 0.552 0.550 0.549
0.95 0.573 0.574 0.560 0.561 0.561 0.549 0.547 0.545
0.99 0.564 0.566 0.553 0.553 0.553 0.542 0.540 0.539

RaPTaR α 0.05 0.590 0.591 0.573 0.573 0.573 0.556 0.554 0.553
0.2 0.593 0.595 0.575 0.575 0.575 0.558 0.556 0.554
0.3 0.596 0.596 0.576 0.577 0.577 0.559 0.557 0.555
0.4 0.597 0.598 0.578 0.578 0.578 0.559 0.557 0.555
0.5 0.599 0.599 0.579 0.579 0.579 0.560 0.558 0.556
0.6 0.599 0.599 0.579 0.580 0.579 0.560 0.558 0.556
0.7 0.599 0.600 0.579 0.580 0.579 0.560 0.559 0.556
0.8 0.599 0.600 0.580 0.580 0.580 0.561 0.559 0.557

DRS ws 50 0.564 0.566 0.550 0.554 0.554 0.542 0.540 0.539

100 0.552 0.553 0.542 0.544 0.544 0.535 0.534 0.532
λ 0.9 0.557 0.558 0.549 0.546 0.546 0.539 0.537 0.536

0.95 0.554 0.556 0.544 0.544 0.545 0.537 0.536 0.534

0.99 0.559 0.561 0.549 0.549 0.549 0.539 0.538 0.537
RaPTaR α 0.05 0.596 0.597 0.578 0.578 0.579 0.560 0.558 0.556

0.2 0.602 0.603 0.582 0.582 0.582 0.563 0.561 0.559
0.3 0.605 0.606 0.584 0.585 0.584 0.564 0.562 0.560
0.4 0.605 0.606 0.584 0.584 0.584 0.564 0.562 0.560
0.5 0.606 0.607 0.584 0.585 0.585 0.564 0.562 0.560
0.6 0.606 0.607 0.584 0.585 0.585 0.564 0.562 0.560
0.7 0.607 0.607 0.585 0.585 0.585 0.564 0.562 0.560
0.8 0.607 0.607 0.585 0.586 0.585 0.564 0.562 0.560

Figure 3 Quick adaptations to behaviour change lead to short term large utility benefits which are substantial enough
to be significant improvements to average utility over 100 runs

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

Improving trust and reputation assessment with dynamic behaviour 15

Figure 4 Varying α values in the K-S Test of RaPTaR does not affect its performance

interactions. For both trust models, BRS and DRS, we have put in bold the evaluation results which are
best. Table 3 shows the average utility, or outcome, an agent receives across all rounds and runs. RaPTaR
outperforms all sliding windows with various window sizes (ws) and forgetting factor values (λ), where
the improvement varies between 2% and 5%. This average improvement demonstrates RaPTaR is robust
and consistent, but RaPTaR provides larger improvements in times of dynamic behaviour and performs
equally well as existing techniques during periods of static behaviour, thus reducing the average improve-
ment. The extent of the improvement can vary depending on the network topology, which is discussed
below. Agents dynamic behaviour is patterned in all evaluations unless otherwise stated, where we show
that RaPTaR is effective for random dynamic behaviour as well.

To visualize why and how RaPTaR performs well we analyze a single run. In this example, we use a
fully connected network to emphasize how agents behave when they have a lot of choice for partners and
sparse data, which demonstrates the efficacy of the behaviour assessment model. We compare how BRS
performs with RaPTaR compared to a sliding window. Figure 2 shows trustors’ average trust estimate of
agents from each group at every time period. We can see that first, RaPTaR adjusts to changes as they
occur, and second, RaPTaR makes more accurate assessments of all the groups, not just the best one.
Figure 3(a) depicts the average outcome that agents receive in this experiment. At times 500–550 and
850–900, there are substantial improvements from using RaPTaR. This is not a constant improvement
across all rounds because during static periods of behaviour, the sliding window eventually tends towards
accuracy. However, as soon as the dynamic behaviour of the groups causes the best group to change,
RaPTaR’s ability to adapt helps agents select a better partner sooner. This analysis can be verified by
observing the accuracy of the trust estimates at those times in Figure 2. Additionally, RaPTaR can predict
cyclical behaviour before the change has occurred, as well as react, while existing methods take a period
of time to relearn behaviours even though they may have been seen before.

To test if these improvements occur for dynamic behaviours which change at different times and
speeds across multiple runs, Figure 3(b) compares the average utility over 100 runs using the same
experimental parameters as the example. RaPTaR shows a constant average improvement, demonstrating
it is robust to dynamic behaviours.

Using different values of forgetting factor or fixed window size does not make these techniques more
successful against RaPTaR, as demonstrated in Table 3 where any value of α for RaPTaR performs
better. The values of window size and forgetting factor have been chosen based on existing literature,
and the intuition that any smaller values are too small to learn accurately from, while larger values would
prevent these models from adapting to newer circumstances. One reason these methods do not perform
well is because a single forgetting factor or sliding window size will be inappropriate for adapting to
every agents’ dynamic behaviour.

Varying α has limited effect on RaPTaR’s efficacy as seen in both Table 3 and a visualization of
the average utility agents receive over time for different α values in Figure 4(a). Further analysis in
Figure 4(b) shows that lower values of α, which require agents to have an extremely high level of con-
fidence to believe there has been a behaviour change, result in more data being retained compared to a

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

16 C . P LAYER AND N. GR I F F I TH S

Figure 5 Average utility per agent given random dynamic behaviour in a scale-freenNetwork, agents use BRS

higher value of α. Figure 4(b) shows the average window sizes over 100 runs; however, in each run, the
adaptive windows monitoring each group will have varied according to the dynamic situation, which is
why RaPTaR outperforms fixed window sizes.

Figure 5 shows that RaPTaR still performs well when behaviours are not repetitive. An example of
non-repetitive, random behaviour was depicted in Figure 1(b). However, there is a drop in performance
compared to when behaviour is cyclic. This shows that the predictive component of RaPTaR is effective,
but that improvements could be made by learning when the predictive component is not successful to
reduce any inaccurate biased influences it may cause.

Previous work has demonstrated how the accuracy of a trust model to estimate a partner’s exact
behaviour is not crucial, but that the trust model should be accurate enough to correctly rank the best
agents (Player & Griffiths, 2017). If a group of agents is consistently the best, other techniques which
forget at a constant rate will converge on the correct ranking of agents and perform equally compared to
RaPTaR. However, with dynamic behaviours, it is unlikely that one group is consistently better than the
others over time. Therefore, how consistently accurate the trust assessment is indicates how quickly the
trust model adapts to changing situations. The measure of accuracy we use is the root mean squared error
(RMSE) at each time point:

RMSE=
√∑

a∈A(τtr,te − b(t)te)2
n

(12)

where n is the total number of interactions of all agents in that round, τtr,te is the trust estimate between
agent tr and trustee te and b(t)te is the trustee’s true behaviour at time t.

Figure 6 demonstrates that while sliding windows are sufficient in static circumstances, they are not
effective with dynamic behaviours. RaPTaR can handle both static and dynamic circumstances by adapt-
ing as necessary. Additionally, using an adaptive window means that RaPTaR does not require any prior
knowledge of behaviours. Agents in this evaluation and the results from here onwards use DRS instead of
BRS, such that interaction outcomes have more granularity. We show that RaPTaR has similar increase
in performance and can handle nominal outcomes as well as binary, which was a motivating factor for
using the K-S test for behaviour change detection using interaction outcomes.

The network topology affects agents’ neighbourhood size, limiting the number of available partners.
Table 4 shows the mean degree of an agent (i.e. its neighbourhood size) in the respective network topolo-
gies1 and the standard deviation of that mean across all the agents in the network. The standard deviation
of the degree in a small-world network is considerably lower than in a scale-free network, so almost all
the agents in a small-world network have a selection of 5 to 7 agents to partner with and collect witness
reports from. In a scale-free network, most agents have only one or two possible partners, while a small

1 Small-world topologies are defined as n× n lattices in the implementation and are therefore square numbers.

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

Improving trust and reputation assessment with dynamic behaviour 17

Table 4 Network topology mean degree and standard deviation.

Total agents in Mean neighbourhood
network size (Agent degree) Standard Deviation

Fully Connected 20 19.0 0.0
40 39.0 0.0

Small World 100 6.0 1.00995
196 5.98980 0.92024
484 6.0 0.99378

Scale Free 100 5.86 4.33594
200 5.93 5.4877
500 5.9720 5.86372

Figure 6 Error in small-world network, where agents use DRS and an exploration rate of 0.2

minority of agents will have an extremely high degree. From Table 3, it can be seen that there is little
improvement in a scale-free network because most agents are forced to interact with one of their few
neighbours regardless of their behaviour (and therefore also regardless of how accurately they assess
trust). A fully connected network best showcases RaPTaR, as agents have a wide variety of choice and it
is the assessment technique which most affects an agent’s average outcome. In a fully connected network,
we can see that RaPTaR offers the highest improvement, regardless of the trust algorithm it is applied to.

In a dynamic environment, it is necessary to continually monitor for updates otherwise agents’ views
of the world become outdated. However, agents face an exploration–exploitation trade-off. Exploration
is the probability of interacting with a random partner. The necessary extent of exploration depends on
how extreme the changes are. Each run of our experiments generates different dynamic behaviours for
each group, and therefore runs can vary from being extremely dynamic to relatively static and there is no
knowledge of this in advance. Figure 7 illustrates how different exploration rates affect RaPTaR, sliding
windows and forgetting factors. The results presented are from a fully connected network because agents
have a large choice of partners, giving them the opportunity to exploit the knowledge they gain from
exploration.

When agents do not explore, as in Figure 7(a), all models are equally blind to changes in the envi-
ronment and perform poorly. When all models use higher exploration levels, RaPTaR performs the best
because it has the capability to learn about the environment and exploit the knowledge it gains from
exploration. Once exploration is as high as 30%, the forced exploration with so many suboptimal partners
slightly decreases the average utility of interactions to below 0.6 without having gained any more useful
knowledge.

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

18 C . P LAYER AND N. GR I F F I TH S

Table 5 Average utility per agents per time step in different network topologies when agents use TRAVOS with
either a fixed window size (ws), forgetting factor (λ) or RaPTaR.

Network type Fully connected Small-world Scale-free

|A| 20 100 100

ws 50 0.589 0.555 0.543
100 0.577 0.546 0.536

λ 0.9 0.621 0.586 0.565
0.95 0.612 0.577 0.558
0.99 0.584 0.556 0.543

RaPTaR α 0.05 0.613 0.577 0.560
0.2 0.617 0.579 0.561
0.3 0.618 0.579 0.562
0.4 0.619 0.580 0.562
0.5 0.619 0.581 0.563
0.6 0.620 0.581 0.563
0.7 0.621 0.581 0.563
0.8 0.620 0.582 0.563

Figure 7 Average utility per agent improves with a small amount of exploration, agents use DRS and are in a fully
connected network

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

Improving trust and reputation assessment with dynamic behaviour 19

To demonstrate that RaPTaR can be applied to trust models with continuous representations of out-
comes, we present results of agents using the TRAVOS trust algorithm in Table 5. One value of forgetting
factor, λ= 0.9, appears to perform equally to RaPTaR; however, differences between the averaged results
from RaPTaR and a forgetting factor of 0.9 are not statistically significant. Additionally, not all values
of λ as a forgetting value are good, and selecting this value would require advance knowledge of the
application, whereas all values α are comparable. We present fewer results here because TRAVOS is a
time-consuming trust algorithm due to its reputation collation method. TRAVOS also relies on a large
amount of data, and that agents share many interaction partners so that witnesses can provide many
reports from which to statistically assess their accuracy as opinion providers. Due to the time constraints
from TRAVOS, we present a subset of results in Table 5 using fewer agents and fewer rounds.

6 Discussion and conclusion

In this paper, we described the necessity for more intelligent data selection techniques in trust and repu-
tation assessment in MAS. We presented RaPTaR, a method that improved trust assessment by reacting
to behaviour changes in groups of agents to provide trust and reputation algorithms with past experience
data that is statistically assessed to be representative of an agent’s current behaviour. RaPTaR can also
learn from the past behaviour of a group to predict an a priori estimate of an agent’s behaviour. Our
method exploits repetitive behaviour of agents but is also shown to be effective when agent behaviour is
dynamic but changing randomly.

Selfish agents cause biased data collection by only interacting with agents they have known to be good
in the past. This may mean they only identify and interact with slightly above average partners in a static
environment, but when agents have dynamic behaviour, this can also prevent trustors from observing
improvements in the behaviour of other agents, and ultimately causes suboptimal partner selection. If
there is less interaction data collected from a group of agents, it affects RaPTaR’s accuracy to assess
the behaviour of that group. Therefore, repeat interactions with partners assessed to be suboptimal must
be forced either through the network structure which limits available partners or through exploration.
Exploring to collect data sacrifices a possible higher utility in the short term; however, it improves trust
assessment in the long term. Exploration is necessary in a dynamic MAS (Carmel & Markovitch, 1999),
and this remains true when agents have dynamic behaviour.

The average utility agents receive during a period of static behaviour, or static ranking of the best
agents gives sliding windows and forgetting factors time to identify the best group and then they perform
equally as well as RaPTaR. Once dynamic behaviour causes a change in the ranking of agent behaviour,
RaPTaR adapts quickly, potentially predicting it and offers significant improvements for the time period it
takes the other models to catch up. This difference can be substantial and is robust, as average results over
100 runs show improvements. The improvements RaPTaR offers on existing methods are statistically
significant in a paired test using a p-value less than 0.001, though not statistically significant between
itself with different values of the input parameter α, where we have demonstrated throughout the results
that there is little dependence on selecting the value for this input.

The computational complexity of RaPTaR scales with the size of an agent’s history of interactions
which it must search through after every interaction to statistically detect change using the AdWin algo-
rithm. The K-S test that is undertaken with every split of the window can is done in linear time. Therefore,
RaPTaR’s time complexity isO(W2), whereW is the size of the window of instances. The amortized run-
time can be reduced using the AdWin 2 algorithm, which uses an exponential histogram data structure to
store the window, as opposed to an array as described in this work for illustrative purposes. This algo-
rithm does not require testing every possible split of W, reducing the number of times the K-S test is
performed (Bifet & Gavaldà, 2009). The additional computation RaPTaR performs to learn behaviours
when change is detected is constant. As α decreases, change is detected less frequently, and we saw in
Figure 4(b) that this increases the window size. This means that the trust and reputation algorithm the
agent is using requires more computation because such algorithms scale with the number of records they
have to search through.

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

20 C . P LAYER AND N. GR I F F I TH S

6.1 Future work

RaPTaR’s predictive component will not be accurate if behaviour changes are not cyclical. Our results
show that RaPTaR’s ability to detect and react to random dynamic behaviour is still useful; however, this
could be improved upon by integrating error detection and handling, to prevent overfitting to behaviour
changes which are not reoccurring. This would make RaPTaR flexible in giving more or less precedence
to the predictive component depending on how successful it is.

Exploration can give agents important information, but can also be redundant and costly by interacting
with sub-optimal partners. RaPTaR might perform better if agents could adjust the exploration rate in
real-time by sensing the level of dynamic change in the environment, similar to WoLF’s ability to learn
quicker when its performance decreases, and slower while it is performing well (Bowling & Veloso,
2001). Other options include a threshold of minimum trust to veto interactions with agents below the
level, or exploring by an algorithm such as simulated annealing.

References

Anders, G., Seebach, H., Steghöfer, J.-P., Reif, W., André, E., Hähner, J., Müller-Schloer, C. & Ungerer, T. 2016.
The social concept of trust as enabler for robustness in open self-organizing systems. In Trustworthy Open Self-
Organising Systems. Springer.

Anderson, K., Lee, S. H. & Menassa, C. 2013. Impact of social network type and structure on modeling normative
energy use behavior interventions. Journal of Computing in Civil Engineering 28(1), 30–39.

Bifet, A. & Gavaldà, R. 2007. Learning from time-changing data with adaptive windowing. In Proceedings of the
2007 SIAM International Conference on Data Mining, 443–448.

Bifet, A. & Gavaldà, R. Adaptive learning from evolving data streams. In International Symposium on Intelligent
Data Analysis. Springer.

Bowling, M. & Veloso, M. 2001. Rational and convergent learning in stochastic games. In International Joint
Conference on Artificial Intelligence, 17, 1021–1026. Lawrence Erlbaum Associates Ltd.

Burnett, C., Norman, T. J. & Sycara, K. 2010. Bootstrapping trust evaluations through stereotypes. In Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent Systems, 241–248.

Carmel, D. & Markovitch, S. 1999. Exploration strategies for model-based learning in multi-agent systems:
Exploration strategies. Autonomous Agents and Multi-Agent Systems 2(2), 141–172.

Castelfranchi, C. & Falcone, R. 1998. Principles of trust for MAS: Cognitive anatomy. social importance, and
quantification. In Proceedings of the International Conference onMulti Agent Systems, 1998, 72–79. IEEE.

Chen, R., Guo, J. & Bao, F. 2016. Trust management for SOA-based IoT and its applications to service composition.
IEEE Transactions on Services Computing 9(3), 482–495.

D’Angelo, G., Rampone, S. & Palmieri, F. 2017. Developing a trust model for pervasive computing based on apriori
association rules learning and bayesian classification. Soft Computing 21(21), 6297–6315.

Debra, M., Weick, K. E. & Kramer, R. M. 1995. Swift trust and temporary groups. Trust in Organizations: Frontiers
of Theory and Research 166.

Fullam, K. K., Klos, T. B., Muller, G., Sabater, J., Schlosser, A., Topol, Z., Suzanne Barber, K., Rosenschein, J. S.,
Vercouter, L. & Voss, M. 2005. A specification of the agent reputation and trust (art) testbed: experimentation
and competition for trust in agent societies. In Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, 512–518. ACM.

Gambetta, D. 2000. Can We Trust Trust? Trust: Making and Breaking Coooperative Relations, 13, 213–237.
Griffiths, N. 2006. A fuzzy approach to reasoning with trust, distrust and insufficient trust. In International Workshop
on Cooperative Information Agents, 360–374. Springer.

Hales, D. & Edmonds, B. 2003. Evolving social rationality for MAS using tags. In Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems, 497–503. ACM.

Harries, M. B., Sammut, C. & Horn, K. 1998. Extracting hidden context. Machine Learning 32(2), 101–126.
Hernandez-Leal, P., Taylor, M. E., Rosman, B., Enrique Sucar, L. & De Cote, E. M. 2016. Identifying and tracking

switching, non-stationary opponents: A Bayesian approach. In Workshops at the Thirtieth AAAI Conference on
Artificial Intelligence.

Hernandez-Leal, P., Zhan, Y., Taylor, M. E., Sucar, L. E. & de Cote, E. M. 2017. Efficiently detecting switches
against non-stationary opponents. Autonomous Agents and Multi-Agent Systems 31(4), 767–789.

Hoens, R. T., Polikar, R. & Chawla, N. V. 2012. Learning from streaming data with concept drift and imbalance: An
overview. Progress in Artifical Intelligence 1(1), 89–101.

Huynh, T. D. & Jennings, N. 2004. Fire: An integrated trust and reputation model for open multi-agent systems. In
ECAI 2004: 16th European Conference on Artificial Intelligence, August 22–27, 2004, Valencia, Spain: Including
Prestigious Applicants [sic] of Intelligent Systems (PAIS 2004): Proceedings, 110, 18.

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

Improving trust and reputation assessment with dynamic behaviour 21

Jøsang, A. & Ismail, R. 2002. The beta reputation system. Proceedings of the 15th Bled Electronic Commerce
Conference 5, 2502–2511.

Josang, A. & Haller, J. 2007. Dirichelet reputation systems. In The Second International Conference on Availability,
Reliability and Security, ARES 2007, 112–119. IEEE.

Kamvar, S. D., Schlosser, M. T. & Garcia-Molina, H. 2003. The eigentrust algorithm for reputation management in
p2p networks. In Proceedings of the 12th International Conference on World Wide Web, 640–651. ACM.

Lim Choi Keung, S. N. & Griffiths, N. 2010. Trust and reputation. Agent-Based Service-Oriented Computing,
189–224.

Klusch, M. & Gerber, A. 2002. Dynamic coalition formation among rational agents. IEEE Intelligent Systems 3,
42–47.

Liang, Z. & Shi, W. 2005. Pet: A personalized trust model with reputation and risk evaluation for P2P resource
sharing. In Proceedings of the 38th Annual Hawaii International Conference on System Sciences.

Liu, X., Datta, A., Rzadca, K. & Lim, E. 2009. Stereotrust: A group based personalized trust model. In Proceedings
of the 18th ACM Conference on Information and Knowledge Management, 7–16.

Liu, X., Tredan, G. & Datta, A. 2014. A generic trust framework for large-scale open systems using machine learning.
Computational Intelligence 30(4), 700–721.

Lu, G. & Lu, J. 2017. Introduction to the investigating in neural trust and multi agent systems. In Examining
Information Retrieval and Image Processing Paradigms in Multidisciplinary Contexts, 269–273. IGI Global.

Nguyen, D. T. 2017. Trust Management for Complex Agent Groups. PhD thesis, Auckland University of Technology.
Nguyen, T.D. & Bai, Q. 2014. Accountable individual trust from group reputations in multi-agent systems. In Pacific
Rim International Conference on Artificial Intelligence, 1063–1075.

Nguyen, T. D. & Bai, Q. 2018. A dynamic Bayesian network approach for agent group trust evaluation. Computers
in Human Behavior.

Player, C. & Griffiths, N. 2017. Bootstrapping trust and stereotypes with tags. In Proceedings of the 19th
International Workshop on Trust in Agent Societies (Trust at AAMAS).

Player, C. & Griffiths, N. 2018. Addressing concept drift in reputation assessment. In Proceedings of the 10th
International Workshop on Adaptive Learning Agents (ALA@AAMAS).

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 2007. Statistical description of data: Are two
distributions different. Numerical Recipes: The Art of Scientific Computing, pages 730–740.

Regan, K., Poupart, P. & Cohen, R. 2006. Bayesian reputation modelling in e-marketplaces sensitive to subjectivity,
deception and change. In Proceedings of the National Conference on Artificial Intelligence.

Resnick, P., Kuwabara, K., Zeckhauser, R. & Friedman, E. 2000. Reputation systems. Communications of the ACM
43(12), 45–48.

Salehi-Abari, A. & White, T. 2012. Dart: A distributed analysis of reputation and trust framework. Computational
Intelligence 28(4), 642–682.

Sensoy, M., Yilmaz, B. & Norman, T. J. 2016. Stage: Stereotypical trust assessment through graph extraction.
Computational Intelligence 32(1), 72–101.

Srivasta, M., Xiong, L. & Liu, L. 2005. Trustguard: Countering vulnerabilities in reputation management for
decentralized overlay networks. In Proceedings of the 14th International Conference on World Wide web,
422–431.

Tahta, U. E., Sen, S. & Can, A. B. 2015. Gentrust: A genetic trust management model for peer to peer systems.
Applied Soft Computing 34, 693–704.

Taylor, P., Barakat, L., Miles, S. & Griffiths, N. 2018. Reputation assessment: A review and unifying abstraction.
The Knowledge Engineering Review, 33.

Teacy, L., Patel, J., Jennings, N. & Luck, M. 2006. Travos: Trust and reputation in the context of inaccurate
information sources. Autonomous Agents and Multi-Agent Systems 12(2), 183–198.

Teacy, L., Luck, M., Rogers, A. & Jennings, N. 2012. An efficient and versatile approach to trust and reputation
using hierarchical bayesian modelling. Artificial Intelligence 193, 149–185.

Traverso, G., Cordero, C. G., Nojoumian, M., Azarderakhsh, R., Demirel, D., Habib, S. M. & Buchmann, J. 2017.
Evidence-based trust mechanism using clustering algorithms for distributed storage systems. IACR Cryptology
ePrint Archive.

Tsymbal, A. 2004. The problem of concept drift: Definitions and related work.Computer Science Department, Trinity
College Dublin 106(2).

Webb, G. I., Hyde, R., Cao, H., Nguyen, H. L. & Petitjean, F. 2016. Characterizing concept drift. Data Mining and
Knowledge Discovery 30(4), 964–994.

Yang, Y., Wu, X. & Zhu, X. 2005. Combining proactive and reactive predictions for data streams. In Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 710–715. ACM.

Xiong, L. & Liu, L. 2004. Peertrust: Supporting reputation-based trust for peer-to-peer electronic communities. IEEE
Transactions on Knowledge and Data Engineering 16(7), 843–857.

https://doi.org/10.1017/S0269888920000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000077

	Introduction
	Related work
	Trust and reputation
	Groups
	Dynamic behaviour
	Reacting to dynamic agent behaviours and predicting trust and reputation
	Learning component
	Predictive component
	Integrating RaPTaR with trust and reputation models
	Experimental methodology
	Dynamic behaviours
	Groups
	Network topology
	RaPTaR variables
	Results and evaluation
	Discussion and conclusion
	Future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

