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Experimental and theoretical study of
wave–current turbulent boundary layers
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An experimental study of turbulent wave–current boundary layer flows is performed
using a state-of-the-art oscillating water tunnel (OWT) for flow generation and a
particle image velocimetry system for velocity measurements. The current velocity
profiles in the presence of sinusoidal waves indicate a two-log-profile structure
suggested by the widely-used Grant–Madsen model. However, for weak currents in
the presence of nonlinear waves, the two-log-profile structure is contaminated or
even totally obliterated by the boundary layer streaming which is produced by the
asymmetry of turbulence in successive half-periods of nonlinear waves. To interpret
experimental results, a semi-analytical model which adopts a rigorous way to account
for a time-varying turbulent eddy viscosity is developed. The model can accurately
predict turbulence asymmetry streaming, which leads to successful predictions of the
mean velocity embedded in nonlinear-wave tests and the current velocity profiles in
the presence of either sinusoidal or nonlinear waves. Since the Longuet-Higgins-type
streaming due to wave propagation is absent in OWT flows and not included in the
semi-analytical model, future work is necessary to extend this study for applications
in the coastal environment.
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1. Introduction

In the coastal environment, surface waves and currents are always simultaneously
present and nonlinearly interact with each other in the near-bottom region, which leads
to a wave–current boundary layer. A thorough understanding of this combined wave–
current boundary layer is a prerequisite for the prediction of currents, i.e. circulation,
as well as sediment transport in coastal waters, as evidenced by the large number of
studies on this topic over the past decades. For typical coastal wave–current flows,
the wave boundary layer is usually much thinner than the current boundary layer, e.g.
the boundary layer of storm-produced surface waves is only a few centimetres thick,
while the current boundary layer can occupy the entire water depth (several metres).
Therefore, in the immediate vicinity of the bottom, the flow is controlled by turbulence
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produced by both waves and currents, but at higher elevations the flow only feels the
turbulence produced by currents since the wave boundary layer vanishes quickly with
elevation. Based on this concept, Grant & Madsen (1979) proposed a time-invariant
two-layer turbulent eddy viscosity model to analytically solve the linearized horizontal
momentum equation. In their model, the turbulent eddy viscosity is scaled with the
combined maximum shear velocity within the wave boundary layer, but is scaled with
the current shear velocity outside the wave boundary layer. They showed that currents
are significantly retarded by co-existing waves, which can be conceptualized by a large
apparent roughness experienced by a current in the presence of waves. This is of
significant importance for modelling nearshore circulations, and the model’s validity is
supported by many field (e.g. Drake & Cacchione 1992) and laboratory (e.g. Mathisen
& Madsen 1996b) measurements. Following the same concept, there are many other
analytical models based on different formulations of a time-invariant turbulent eddy
viscosity, e.g. Dungan Smith (1977), Christoffersen & Jonsson (1985), Myrhaug &
Slaattelid (1989) and Sleath (1991).

Other than this basic wave–current interaction, waves also create a boundary
layer streaming that is added to the co-existing currents. In coastal regions the
spatial inhomogeneity due to surface wave propagation leads to a small vertical
velocity within the bottom boundary layer. The vertical and horizontal velocities
are not completely 90◦ out of phase, so the convective terms in the horizontal
momentum equation have non-zero period-averaged values, producing a mean
horizontal velocity (referred to as progressive wave streaming or PW-streaming
hereafter). Longuet-Higgins (1953) first analytically explained this phenomenon
for laminar flows and showed that the streaming is in the wave direction. In the
appendix to Russell & Osorio (1958), he demonstrated that if turbulence within the
wave boundary layer is modeled with a time-invariant eddy viscosity the conclusions
for laminar flows are also applicable for turbulent flows.

Waves become increasingly nonlinear as they propagate toward the shoreline, so
the time series of the near-bottom flow over a wave period is skewed (peaked crest
and flat trough) and has forward-leaning crests, creating asymmetry of turbulence
in successive half-periods of nonlinear waves. This is another mechanism that
produces a mean horizontal velocity (referred to as turbulence asymmetry streaming
or TA-streaming hereafter). Trowbridge & Madsen (1984a,b) developed an analytical
model for progressive nonlinear waves based on a time-varying turbulent eddy
viscosity. In their model a small first-harmonic turbulent eddy viscosity, arising
from the turbulence asymmetry, interacts with the dominant first-harmonic velocity
to produce a boundary layer streaming that is in the opposite direction to wave
propagation. Similar results are obtained in many numerical studies based on the
linearized wave boundary layer equation (e.g. Davies & Li 1997; Holmedal &
Myrhaug 2006; Scandura 2007; Fuhrman, Fredsøe & Sumer 2009), which is not
surprising since numerical turbulent closure schemes automatically account for a
time-varying turbulent eddy viscosity.

Given their opposite directions, the TA-streaming competes with the PW-streaming.
Holmedal & Myrhaug (2009), Blondeaux et al. (2012) and Kranenburg et al. (2012),
among others, used numerical models to study the co-existence of the two kinds
of boundary layer streaming. Their results confirm the conclusion by Trowbridge &
Madsen (1984b) that the relative importance of one streaming over the other depends
on wave characteristics and bottom roughness conditions. Because the Grant–Madsen
model assumes a horizontally uniform flow and a time-invariant turbulent eddy
viscosity, boundary layer streaming is completely absent in their basic wave–current
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model, and hence can be considered another effect of wave–current interaction.
Gonzalez-Rodriguez & Madsen (2011) extended the analytical model of Trowbridge
& Madsen (1984b) to waves plus weak currents, but their model does not outperform
the Grant–Madsen model for currents in the presence of collinear sinusoidal waves.
Holmedal, Johari & Myrhaug (2013) numerically studied the effects of both PW- and
TA-streamings on the basic wave–current interaction, but were unable to validate their
numerical results due to the lack of suitable experimental evidence.

Most previous experimental studies on wave–current boundary layers were
performed in laboratory wave flumes or wave basins. In wave flumes waves and
currents are collinear, but in real coastal waters they are usually close to orthogonal.
Nevertheless, flume experiments provide valuable measurements for understanding
the fundamentals of wave–current interaction (e.g. van Doorn 1981; Kemp & Simons
1982, 1983; Mathisen & Madsen 1996a,b, 1999; Fredsøe, Andersen & Sumer 1999).
To account for various angles between waves and currents, a limited number of
experiments have been conducted in wave basins (e.g. Bijker 1966; Arnskov, Fredsøe
& Sumer 1993; Musumeci et al. 2006; Fernando, Guo & Lin 2011; Lim, Madsen &
Cheong 2012).

A major problem with these two types of facilities is their inability to produce
prototype flow conditions. Dimensional analysis suggests that wave boundary layers
are controlled by two dimensionless parameters: the amplitude Reynolds number
Re = AbmUbm/ν and the relative roughness Abm/kb, where Ubm is the near-bottom
wave orbital velocity amplitude, Abm is the near-bottom excursion amplitude, ν is
the molecular kinematic viscosity of the fluid and kb is the bottom roughness. For
a surface wave which can induce noticeable amounts of sediment transport Re and
Abm/kb can be up to O(106) and O(103), respectively. Such high values cannot be
achieved in regular laboratory wave flumes or wave basins due to their physical
limitations. Therefore, another type of facility, oscillating water tunnels (OWT), has
been employed for full-scale experimental studies.

OWTs are usually U-shaped enclosed tunnels with a piston located at one end
producing oscillatory motions. It should be noted that boundary layer flows in
OWTs are uniform along the horizontal direction, so they do not exactly mimic
those under progressive waves, i.e. they reproduce the TA-streaming but miss the
PW-streaming entirely. However, this drawback makes OWT experiments perfect for
validating theoretical models based on the linearized boundary layer equations, e.g.
the Grant–Madsen model. Initially, OWTs were used for studying sinusoidal wave
boundary layers, e.g. Jonsson & Carlsen (1976), Sleath (1987) and Jensen, Sumer &
Fredsøe (1989). There are also a few experiments corresponding to nonlinear waves,
e.g. Ribberink & Al-Salem (1995) and van der A et al. (2011) who observed negative
(against the wave direction) boundary layer streaming embedded in two types of
nonlinear waves, Stokes second-order waves and forward-leaning waves, respectively.
These observations directly demonstrate the existence of the TA-streaming, since the
PW-streaming does not exist in OWTs. Only a small number of experimental studies
on combined wave–current flows in OWTs have been reported. Lodahl, Sumer &
Fredsøe (1998) studied combined wave–current flows in smooth pipes placed in an
OWT, Dohmen-Janssen (1999) measured turbulent wave–current boundary layers over
both fixed and movable sediment-covered bottoms, while Wijetunge (2006) considered
a fixed rippled bed. All these studies are based on sinusoidal waves. To the authors’
knowledge, no experiment on nonlinear waves plus currents in OWTs has been
reported to date.

Generally speaking, there is still an urgent need for more experimental data
on wave–current boundary layers, especially for experiments with a well-known
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physical bottom roughness. Since OWTs provide the most controllable experimental
conditions, it is therefore necessary to continue using such facilities to produce
more experimental results, even though the PW-streaming is excluded. Thus, in this
study we conduct a comprehensive experimental study of wave–current boundary
layers using a newly-built OWT for flow generation and a state-of-the-art particle
image velocimetry (PIV) system for velocity measurements. Tests are performed
for both sinusoidal and nonlinear waves combined with collinear currents. We also
perform tests over three different fixed bottom configurations with well-understood
physical bottom roughness. Following Gonzalez-Rodriguez & Madsen (2011), we
develop a theoretical model based on the linearized boundary layer equation and a
time-varying turbulent eddy viscosity to interpret our experimental results. With this
theoretical model, the effect of TA-streaming on wave–current interaction in OWTs
is quantitatively discussed. The experimental setup is introduced in § 2, and some
experimental results are presented in § 3. The theoretical model is outlined in § 4 and
validated against experimental results in § 5.

2. Experimental setup
2.1. Experimental facility

The experimental facility is a newly-built OWT, named the wave–current–sediment
facility (WCS), in the Hydraulic Engineering Laboratory of the Department of Civil
and Environmental Engineering at the National University of Singapore. The facility
has a 10 m long, 50 cm deep and 40 cm wide horizontal test channel and a powerful
piston system which can generate a variety of periodic oscillations corresponding to
full-scale flow conditions along the entire test channel. These oscillatory flows in the
WCS will be simply referred to as ‘waves’ hereafter. A Börger EL1550 Rotary Lobe
pump is connected to introduce collinear currents of up to 60 cm s−1 average velocity
in the test channel. The current direction can be easily reversed by reversing the
pump’s rotation. A two-dimensional PIV system, supplied by the TSI Corporation,
is used to obtain velocity measurements. For most tests in this study, the vertical
resolution is approximately 0.4 mm/grid, which is sufficiently fine to reveal details of
the boundary layer flows. Each measurement is obtained over N wave periods, and the
velocities measured at the same vertical level at M different longitudinal positions, xm,
are effectively homogeneous, so the Reynolds-averaged velocity profiles over a wave
period are obtained by performing both spatial and phase averaging:

〈ξ̂〉(z, t)= 1
MN

M∑
m=1

N∑
n=1

ξ(xm, z, t+ (n− 1)T), 0< t< T (2.1)

where ξ is either the horizontal or vertical component of flow velocity (u,w), t is the
time, and (xm, z) are the horizontal and vertical coordinates. In the following we will,
unless otherwise indicated, for simplicity use ξ(z, t) to denote the double-averaged
quantities. The reader is referred to Yuan & Madsen (2014) (YM14 hereafter) for
more details on the WCS and the PIV system.

2.2. Bottom conditions
In this study, three bottom conditions, a smooth bottom and two fixed rough bottoms,
are included. The smooth bottom is formed by smooth aluminium plates. One fixed
rough bottom is created by gluing 3MTM 710 Safety-WalkTM Slip-Resistant Coarse
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FIGURE 1. Free-stream velocities of nonlinear waves: (a) Stokes wave; (b) forward-
leaning wave.

tapes (physical roughness scale of approximately 1 mm) onto the aluminium plates.
This bottom will hereafter be referred to as the ‘sandpaper’ bottom. The other rough
bottom consists of a mono-layer of 12.5 mm-diameter ceramic marbles glued onto
aluminium plates.

The theoretical bottom location z = 0 and bottom roughness kb were determined
by YM14 for each bottom condition by logarithmic profile fitting the near-bottom
velocity measurements for several pure current and pure sinusoidal wave tests. For the
smooth bottom, z= 0 is directly determined from the PIV images with only 0.1 mm
uncertainty, and the effective bottom roughness formula for steady turbulent flows in
smooth pipes by Nikuradse (1932), kb = 3.3ν/u∗, is found also to be applicable for
smooth turbulent oscillatory flows if the period-averaged magnitude of shear velocity
u∗ is used as the characteristic shear velocity. For the sandpaper bottom, z = 0 is
found to be 0.6 mm ± 0.1 mm below the mean crest level of bottom roughness
elements and the Nikuradse equivalent sand grain roughness kN is 3.7 mm± 0.1 mm.
For the ceramic-marble bottom, z = 0 is 4.0 mm ± 0.4 mm (roughly 1/3 of the
ceramic marbles’ diameter) below the top of the marbles and kN is 20 mm± 3 mm.
For further details on the determination of the bottom conditions summarized above,
including the log-profile fitting analysis, the reader is referred to YM14.

2.3. Flow conditions
Three periodic wave shapes, sinusoidal, Stokes and forward-leaning waves, are
included in this study. The latter two are the sum of two harmonics:

u∞(t)=U∞,1 cos(ωt)+ U∞,1
4

cos(2ωt+ ϕ∞,2). (2.2)

The second-harmonic phase ϕ∞,2 is 0◦ for Stokes waves and 90◦ for forward-leaning
waves. As shown in figure 1, they represent the skewed and forward-leaning nature
of near-bottom flows under nonlinear waves, respectively. For each wave shape, a
variety of wave amplitudes and two wave periods (6.25 and 12.5 s) are considered,
as summarized in table 1. Here the amplitudes are controlled by the first-harmonic
displacement amplitude of the piston s1, so the measured U∞,1 may deviate slightly
(1–5 %) from the nominal values listed in the fourth column of table 1 which are the
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Test ID Wave shape s1 (mm) Approx. U∞,1 (cm s−1) T (s) Re (×106)

SP400a Sinusoidal 400 157.9 6.25 3.1
SP400b Sinusoidal 400 79.0 12.5 1.6
SP250 Sinusoidal 250 98.7 6.25 1.2
SP200 Sinusoidal 200 39.5 12.5 0.4
ST400a Stokes 400 157.9 6.25 3.1
ST400b Stokes 400 79.0 12.5 1.6
ST200 Stokes 200 79.0 6.25 0.4
FL320a Forward-leaning 320 126.3 6.25 2.1
FL320b Forward-leaning 320 63.2 12.5 1.1
FL160 Forward-leaning 160 63.2 6.25 0.5

TABLE 1. Target wave conditions (s1: first-harmonic displacement amplitude of the piston;
U∞,1: approximate amplitude of the first-harmonic free-stream velocity; T: wave period;
Re=U∞,1A∞,1/ν: Reynolds number based on first-harmonic free-stream velocity).

cross-section averaged U∞,1 based on s1. The PIV sampling frequency is 5.12 Hz for
all tests, so the number of samplings per period is 32 for the short-period (6.25 s)
tests and 64 for the long-period (12.5 s) tests. Each test is sampled for 32 wave
periods, which was determined to produce reliable phase averaging. Current generation
is specified by the pump’s working frequencies f . Higher working frequency gives
stronger current. Two currents for which the pump’s frequencies are 13 and 40 Hz are
considered in this study. For various wave conditions the ratio of current bottom shear
stress τcb to maximum wave bottom shear stress τwm varies between 8 % and 60 %.
This range should be sufficient to cover most wave–current flows encountered in the
coastal environment. Since the nonlinear waves have direction dependence, currents
in both positive and negative directions are considered. Here the positive direction is
the direction of positive wave velocity, e.g. the direction of the maximum velocity of
Stokes waves.

A three-part scheme, ‘wave_current_bottom’, is used to identify tests: ‘wave’ is
the wave identifier chosen from the test IDs listed in table 1; ‘current’ is the current
identifier in the form of ‘C’ plus a number indicating f , e.g. C13 denotes a current
with a 13 Hz pump frequency. For currents in the negative direction, a letter ‘r’
(for ‘reverse’) is added to the identifier, e.g. ‘C13r’. Finally ‘bottom’ is the bottom
identifier which is chosen from ‘sm’ (the smooth bottom), ‘sa’ (the ‘sandpaper’
bottom) and ‘ce’ (the ceramic-marble bottom). For example, the test ST400a_C40r_ce
is a combination of the Stokes wave given by the fifth row in table 1 and a 40 Hz
current in the negative direction over the ceramic-marble bottom.

2.4. Evaluation of current generation
YM14 showed that the WCS can generate a desired wave motion with excellent
accuracy, i.e. the amplitude of the oscillatory velocity is produced within 1 % of the
target value, so here only the evaluation of current generation is presented.

To check the pump’s ability to generate steady discharges when operating alone, five
preliminary current-only tests for which the pump’s working frequencies are 13, 26,
40, −26 and −40 Hz are performed over the sandpaper bottom (minus signs indicates
reversed rotation). The current velocity profiles within 10 cm from the bottom are
measured using the PIV system with a 5 Hz sampling frequency. Figure 2(a) shows
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FIGURE 2. Spatial-average velocity of 40 Hz test measured at 90 mm above the
sandpaper bottom: (a) time series; (b) frequency spectrum.

the spatial-averaged velocity of the 40 Hz test measured at 90 mm above the bottom.
The time series shows no visually detectable trend of variation over the entire test
duration. The random fluctuation gives a standard deviation of 2.0 cm s−1 which is
less than 5 % of the mean value (44.3 cm s−1). It is due to the residual turbulence
after spatial averaging and the pulsating nature of the rotary lobe pump’s current
generation. The frequency spectrum shown in figure 2(b) suggests that this random
fluctuation is spread over the entire resolvable frequency range (0–2.5 Hz). For typical
wave–current flows with over 1 m s−1 wave velocity amplitudes and 0.1–0.5 Hz wave
frequency, such noise (generally less than 0.2 cm s−1 in amplitude) will add less than
1 % error to the measured wave velocity. Thus, it should not be a concern for either
current generation or wave velocity measurements.

The total pump discharge should be proportional to the pump’s rotation frequency.
Here the current velocity measured at 250 mm/2.72 = 90 mm above the bottom is
used as a rough estimate of the cross-section average velocity by assuming that (a)
the cross-section average velocity is close to the depth-average velocity of the bottom
boundary layer, (b) the bottom boundary layer thickness is half of the channel working
depth (250 mm) and (c) the current velocity profile within the bottom boundary layer
is logarithmic. The measurements are plotted against the pump rotation frequency f in
figure 3. The signs of reversed currents are changed for easy comparison. Clearly, the
measurements fall nicely on a fitted straight line giving a slope of 1.14 cm s−1 Hz
with a ±8 % 95 %-confidence interval:

ūc (cm s−1)= 1.14 f (Hz). (2.3)

Thus, the average current velocity nominal magnitude is accurately determined from
the pump rotation frequency.
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FIGURE 3. Cross-section average current velocities under different pump rotation
frequencies, showing current in the positive and negative directions and a linear fit).

For current generation, the most important requirement is its stability, i.e. the
pump must be able to produce a steady discharge against the time-varying pressure
produced by the piston oscillatory motion. This can be demonstrated if (a) no
sizeable harmonics other than the intended harmonics exist in the frequency
spectrum of free-stream velocity and (b) the generation of intended harmonics is
as excellent as when waves are generated alone. To evaluate the extent to which
our current-generation system meets these requirements, two preliminary tests of
combined wave–current flows and a baseline pure wave test over the sandpaper
bottom were performed. In the three tests, the piston produces a SP400a wave,
sinusoidal oscillation with approximately 160 cm s−1 first-harmonic free-stream
velocity amplitude and 6.25 s period, while the pump rotation frequencies are 13 and
40 Hz for the two wave–current tests.

To evaluate our current-generation system performance, we should consider the
flow velocity within the free-stream region of the wave boundary layer, so the
spatial-averaged but not phase-averaged measurements at 17 cm above the bottom
are selected in the following analysis. Figure 4 shows the frequency spectrum of
the measurements for test SP400a_C40_sa. For clarity, the frequency is normalized
by the wave frequency (0.16 Hz). The intended first-harmonic velocity and the
mean (current) velocity are obviously much larger than any other harmonic. The
residual noise (mostly less than 0.4 cm s−1) is comparable to the noise in figure 2(b).
Some integer-number harmonics, indicated by the circles, e.g. the second and third
harmonics, are much larger than the residual noise but much smaller than the intended
first harmonic. These higher harmonics are most likely produced by boundary layer
processes related to the temporal variation of the turbulent eddy viscosity as discussed
by YM14. Therefore, no unwanted harmonics in the frequency spectrum are produced
by current generation. The first three harmonics of the measured free-stream velocity
are shown in table 2. The free-stream velocity can also be inferred from the measured
piston displacements based on continuity, and the results (denoted by ‘inferred’) are
listed together with PIV measurements in table 2 for comparison. The excellent
agreement among the three inferred first-harmonic amplitudes (U∞,1) suggests that
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FIGURE 4. Frequency spectrum of spatial-averaged free-stream velocity of test
SP400a_C40_sa (frequency is normalized by the wave frequency 0.16 Hz).

U∞,1 (cm s−1) U∞,2 (cm s−1) U∞,3 (cm s−1)

Inferred PIV Inferred PIV Inferred PIV

SP400a 161.28 160.71 0.28 1.49 1.25 0.23
SP400a_C13_sa 161.52 161.71 0.51 1.67 1.35 0.29
SP400a_C40_sa 161.24 161.54 0.92 2.36 1.26 0.75

TABLE 2. Comparison of measured free-stream velocity to the free-stream velocity inferred
from piston displacement measurements (U∞,1, U∞,2 and U∞,3 are the amplitudes of the
first three harmonics).

the piston oscillatory movement is not affected by current generation. The U∞,1 of
wave–current tests deviate from the inferred values by only 0.2–0.3 cm s−1 (0.2 % of
U∞,1), which is similar to wave-alone tests reported by YM14. The PIV measured
second and third harmonics (U∞,2 and U∞,3) are affected by boundary layer processes
and therefore not in agreement with the inferred values, but they are not intended to
exist and are sufficiently small to be considered negligible. These results, together
with the fact that no unwanted harmonics are observed, demonstrate excellent stability
of the current-generation system.

3. Experimental results
Experimental results for currents in the presence of sinusoidal and nonlinear waves

are discussed separately in this section. For each test, the Reynolds-averaged velocity
profiles obtained from analysing PIV measurements are period-averaged to give a
current velocity profile and Fourier analysed to give significant harmonics of the
oscillatory velocity.

3.1. Sinusoidal-wave–current boundary layers
3.1.1. Velocity profiles

The basic wave–current interaction illustrated by the Grant & Madsen (1979) model
(GM hereafter) is ideal for describing the sinusoidal-wave–current flows in OWTs. In
the GM model, the following two-layer time-invariant turbulent eddy viscosity νt is
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proposed:

νt =
{
κu∗mz, z 6 δcw,

κu∗cz, z> δcw,
(3.1)

where u∗c is the current shear velocity
√
τcb/ρ, u∗m is the maximum shear velocity√

τbm/ρ, δcw is a transition level where wave-produced turbulence vanishes and κ is
the von Kármán constant which is found to be between 0.38–0.42 in various studies
(we simply use 0.40 hereafter). Here τcb and τbm are the current and maximum
combined wave–current bottom shear stresses, respectively. The vertical variation of
the current shear stress τc is neglected by assuming the region of interest is the very
near-bottom part of the entire current boundary layer, so the linearized boundary
layer equation is solved analytically to give a two-log-profile structure for the current
velocity profile:

ū=


u2
∗c

κu∗m
ln
(

z
z0

)
= αu∗c

κ
ln
(

z
z0

)
= u∗c,1

κ
ln
(

z
z0

)
, z 6 δcw,

u∗c
κ

ln
(

z
z0a

)
= u∗c,2

κ
ln
(

z
z0a

)
, z> δcw,

(3.2)

where α = u∗c/u∗m and z0a defines a new roughness scale ka = 30z0a, the apparent
roughness. If waves are present, z0a is always larger than z0 = kb/30, sometimes by
several orders of magnitude, which means that the current velocity profile, except
for the very near-bottom region, experiences a dramatically increased apparent bottom
roughness. The only influence of currents on waves is a slight increase of the turbulent
eddy viscosity due to τcb, so waves effectively do not feel the existence of currents.
The model prediction suggests that the amplitude of the first-harmonic velocity U1
follows a logarithmic profile controlled by z0 in the very near-bottom region:

U1 = u2
∗wm

κu∗m
ln
(

z
z0

)
= u∗w,1

κ
ln
(

z
z0

)
, (3.3)

where u∗wm is the maximum wave shear velocity
√
τwm/ρ with τwm being the maximum

wave bottom shear stress. The predictive abilities of the original GM model are not
always satisfactory due to some oversimplifications, e.g. the proposed discontinuous
two-layer structure is only conceptually correct, so it was further modified several
times (e.g. Madsen 1994). Humbyrd (2012) provided the latest and most consistent
modification based on a continuous three-layer structure for νt (see appendix A for
details). Therefore, we shall use it for quantitative comparisons with our measurements
and hence name it the ‘improved GM model’.

Figure 5 shows the measured current velocity profile and the amplitude profile
of the first-harmonic velocity for a typical test over the ceramic-marble bottom,
SP400a_C40_ce. This test has a sinusoidal wave of approximately 160 cm s−1

free-stream velocity amplitude with 6.25 s period and a cross-section average current
velocity of approximately 46 cm s−1. The current velocity profile clearly exhibits the
two-log-profile structure suggested by the GM model. The lower current profile has
a relatively larger slope, which indicates that it is scaled by a reduced shear velocity,
i.e. α = u∗c/u∗m < 1 in (3.2). The amplitude profile of the first-harmonic velocity can
be well represented by a straight line in the very near-bottom region, which is in
agreement with (3.3).
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FIGURE 5. Velocity profiles of test SP400a_C40_ce: (a) current velocity profile; (b) first-
harmonic amplitude profile (dots: measurements; dashed lines: fitted logarithmic profiles;
crosses: limits for selecting data points for log-profile fitting).

The following data selection rules are applied to select measurements for
log-profile fittings. According to Grant & Madsen (1979), the first-harmonic velocity
amplitude profile is logarithmic in the very near-bottom region. Therefore, to fit the
first-harmonic velocity amplitude profile and the lower current velocity profile which
is supposed to be within the wave boundary layer, an upper data selection limit is
imposed:

z/l< 0.15 (3.4)

where the characteristic wave boundary layer length scale l is

l= κu∗m
ω

. (3.5)

The choice of the 0.15 as the upper limit in (3.4) allows at least 7–10 data points
for tests with thin wave boundary layers. To account for the laminar sublayer and the
buffer layer (Jiménez 2004), a lower data selection limit is imposed for flows over a
smooth bottom:

z> 100ν/u∗m. (3.6)

It is found that PIV measurements are invalid for flows over rough bottoms in the
region very close to the bottom roughness elements due to strong local laser reflection,
so we also apply an alternative lower limit which requires that the percentage of good
PIV measurements at a certain vertical level must exceed 75 %. This usually gives
a lower limit between 0.5 and 1.5 mm above the top of bottom roughness elements.
It should be noted that the spatial inhomogeneity of flow velocity due to individual
bottom roughness elements is negligible at such a lower limit, i.e. the relative
streamwise variation of the first-harmonic velocity amplitude is less than 5 %. The
validity of these data selection limits is demonstrated by YM14. For fitting the upper
current velocity profile, based on the improved GM model the lower limit for data
selection is defined as

z> 1.5δct, (3.7)

where δct is the beginning of the upper logarithmic current profile according to the
improved GM model. It is given by (A 2)–(A 7) using experimental values of Abm/kb
and α = u∗c/u∗m. Here u∗c and u∗m can be experimentally determined in advance by
analysing the instantaneous bottom shear stress inferred from instantaneous velocity
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1− R2 u∗ (cm s−1) ±1u∗/u∗ (%) kb (mm) r1k

Current (lower part) u∗ = u∗c,1 2.4× 10−3 3.3 5.0 18.6 1.14
Current (upper part) u∗ = u∗c,2 5.3× 10−4 8.4 1.0 189.3 1.03
Wave u∗ = u∗w,1 5.2× 10−4 17.9 2.3 19.4 1.06

TABLE 3. Log-profile fitting of the current velocity profile and the first-harmonic
amplitude profile of Test SP400a_C40_ce (1−R2: coefficient of determination; u∗: fitted
shear velocity; ±1u∗/u∗: relative 95 % confidence interval of u∗; kb: fitted bottom
roughness; r1k: 95 % confidence factor of kb).

profiles (see § 3.1.2). The safety factor of 1.5 in (3.7) is applied to account for the
uncertainty in δct. Since the current in the WCS is driven by a depth-invariant mean
pressure gradient, τc should decay approximately linearly from the bottom to the edge
of the bottom current boundary layer z= δc, resulting in the following upper current
velocity profile (with (3.1) for νt):

ū= u∗c
κ

ln
(

z
z0a

)
− u∗cz
κδc

. (3.8)

For all tests in this study, the apparent roughness is in general between 1 and 20 cm,
and current boundary layer thickness, δc, can be roughly estimated to be 250 mm, i.e.
half of the test channel depth. With these representative values, we estimate that the
second term in (3.8) is no more than 7–15 % of the first term below z = 100 mm,
indicating that the measured current velocity profile can be considered in agreement
with the GM model’s prediction. Thus, z= 100 mm is applied as the upper limit for
data selection when analysing current velocity profiles in the outer region.

The results of log-profile fittings for the representative test are shown in table 3. The
quality of log-profile fitting is quantified by the coefficient of determination R2 (R2= 1
indicating a perfect fit). The confidence level for u∗ is given by a normalized 95 %
confidence interval 1u∗/u∗, and the confidence level for kb is indicated by a 95 %
confidence factor r1k > 1, i.e. the true kb is 95 % likely to fall between kb/r1k and
kb r1k. The lower current velocity profile has only 8 data points for log-profile fitting,
so it gives the largest value of 1−R2 (of the order of O(10−3)), and consequently the
largest 1u∗/u∗ (5 %) and r1k (1.14). These confidence intervals are small enough to
be considered acceptable. For collinear wave–current flows, the maximum combined
bottom shear stress τbm is the sum of current bottom shear stress τcb and the maximum
wave bottom shear stress τwm, so the following relationship between shear velocities
is obtained:

u2
∗c + u2

∗wm = u2
∗m. (3.9)

According to (3.2), (3.3) and (3.9), adding the shear velocity inferred from the
lower current profile u∗c,1 = u2

∗c/u∗m = 3.3 cm s−1 and the shear velocity inferred
from the first-harmonic velocity amplitude profile u∗w,1 = u2

∗wm/u∗m = 17.9 cm s−1

gives the maximum shear velocity u∗m = 3.3 cm s−1 + 17.9 cm s−1 = 21.2 cm s−1.
Invoking u∗c,1= u2

∗c/u∗m, we therefore get u∗c=√u∗c,1 u∗m=
√

3.3× 21.2= 8.4 cm s−1.
This is identical to the shear velocity inferred from the upper current profile
u∗c,2 = u∗c = 8.4 cm s−1. As will be discussed in § 3.1.2, the experimental values
of u∗c and u∗m can be directly determined from log-profile fitting instantaneous
velocity profiles. For this test, the direct measurements of u∗c and u∗m are 8.8 cm s−1
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and 21.0 cm s−1, respectively, which are in excellent agreement with the fitted values
(8.4 and 21.2 cm s−1). Therefore, the internal relationship among various shear
velocities suggested by the GM model is validated by this representative test. Other
sinusoidal-wave–current tests yield similar quantitative comparisons.

The first-harmonic velocity amplitude profile and the lower current velocity profile
shown in figure 5(a,b) give values of kb of 18.6 and 19.4 mm. These two values agree
well with the predetermined Nikuradse equivalent sand grain roughness of the ceramic-
marble bottom, kN = 20 mm, so both the lower current velocity and the wave velocity
profiles are controlled by the physical bottom roughness. In most theoretical models,
the no-slip boundary condition is applied at z= z0= kb/30 for both waves and currents.
Our experimental results justify the validity of this choice. The upper current velocity
profile in figure 5(a) gives an apparent roughness ka = 30z0a of 189.3 mm which is
an order of magnitude larger than the physical bottom roughness. The improved GM
model gives the following formula for ka:

ka

kb
= 1
α

(
5δw

ekb

)1−α
, (3.10)

where δw is a characteristic wave boundary layer thickness. Using measured kb and α
and applying (A 3)–(A 5) to give δw, (3.10) predicts ka = 213 mm, which is in good
agreement with the fitted value.

These analyses suggest that the GM model (with the improvements provided by
Humbyrd 2012) has very good ability in predicting collinear sinusoidal waves and
currents in OWTs.

3.1.2. Bottom shear stress
The instantaneous bottom shear stress is obtained by log-profile fitting the

instantaneous Reynolds-averaged velocity profiles. This method assumes that in
the very-near bottom region oscillatory boundary layer flows are quasi-steady, so
instantaneous Reynolds-averaged velocity profiles are logarithmic and controlled by
the physical bottom roughness kb and the instantaneous shear velocities u∗(t). The
validity of this method is supported by Jensen et al. (1989) who directly measured
the bottom shear stress for smooth oscillatory boundary layers using hot-film probes
and found that their direct measurements were in good agreement with the estimates
given by log-profile fittings. YM14 compared this method to other common methods
for inferring bottom shear stress from velocity measurements, and demonstrated
that this is the only valid method for rough-bottom tests in OWTs. To ensure that
the selected data points correspond to near-bottom conditions, we simply use the
bottom-most five data points which satisfy the previously stated data selection rules.
A complete log-profile fitting analysis would take both kb and u∗(t) as unknowns
to be determined, but most theoretical models, including the one presented in § 4,
assume kb as time-invariant. Therefore, here we adopt a modified log-profile fitting
which has a predetermined kb given by preliminary wave-alone and current-alone tests
(see § 2.2), so that it is consistent to compare the experimental results with model
predictions. However, it should be noted that the difference between the modified and
the complete log-profile analyses can be up to 10–15 % for the maxima of bottom
shear stress, which indicates the uncertainty in the experimental results and should be
considered when interpreting potential differences between predicted and measured
net sediment transport rates in the WCS.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

74
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.746


Wave–current boundary layers 493

–150 –100 –50 0 50 100 150 200 250

–150 –100 –50 0 50 100 150 200 250

10–1

100

101

10–1

100

101

(a)

(b)

FIGURE 6. (Colour online) Instantaneous Reynolds-averaged velocity profiles of test
SP400a_C40_sa and the associated modified log-profile fittings with kb = 3.7 mm
(grey crosses (red online): measurements with questionable log-profile fittings; dots:
measurements with good log-profile fittings; dashed lines: fitted logarithmic profiles):
(a) first half-period; (b) second half-period.

Figure 6 shows the instantaneous velocity profiles and the modified log-profile
fittings for every 1ωt = 22.5◦ for a representative test, SP400a_C40_sa (the
strongest sinusoidal waves plus the strongest current over the sandpaper bottom with
kb = 3.7 mm). For most velocity profiles, the fitted logarithmic profiles reasonably
represent the bottom-most measurements, and the coefficient of determination R2 is
>0.99. For two short time windows when the free-stream velocity u∞(t) crosses
zero, i.e. the velocity profiles marked by crosses in figure 6, the fitted logarithmic
profiles cannot reasonably approximate the measurements. As u∞(t) decreases to
zero, ∂p/∂x has the same sign as u∞(t) and generally increases with ωt. Therefore,
the instantaneous flow experiences an increasingly adverse pressure gradient, which
eventually leads to flow separation, e.g. at ωt= 87.8◦ or 245.3◦. The same feature is
also observed for experiments over the smooth and ceramic-marble bottoms, as well
as many previous turbulent wave-alone boundary layers, e.g. Jensen et al. (1989).
Nevertheless, since u∗(t) at these instants is close to zero, it is still acceptable to
apply the modified log-profile fitting to the bottom-most five points and use the fitted
u∗(t), which is also close to zero, as a rough estimate of the actual value. This will
at least give the correct direction of the instantaneous bottom shear stress, e.g. the
fitted profile at ωt = 87.8◦ in figure 6 has a negative slope. The duration when the
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FIGURE 7. The bottom shear stress of test SP400a_C40_sa: modified log-profile fitting
with bottom roughness kb = 3.7 mm, and smoothed time series for modified log-profile
fitting.

log-profile fitting is not good is roughly 20–30 % of the total wave period, so this
method works well for most of a wave period.

Figure 7 shows the time series of bottom shear stress of test SP400a_C40_sa
obtained from the modified log-profile fitting analysis, as well as a smoothed
time series which only contains the mean and first three harmonics of the original
time series. The smoothed time series nicely represents the data points, indicating
that higher-order harmonics are negligibly small and have similar behaviour to
experimental noise, but it does not represent the data points around zero-crossings
very well, which is due to the effect of boundary layer separation. The current bottom
shear stress τcb is obtained by period-averaging, and the maximum bottom shear stress
τbm is obtained from the smoothed time series. The current bottom shear stress, τcb,
is usually considered an input parameter for experiments and theoretical models, so
we shall not discuss it here but use it for model validations in § 5. The difference
between τbm and τcb is considered to be the maximum wave bottom shear stress,
τwm = τbm − τcb, which can be expressed by a wave friction factor fwc:

fwc = 2τwm

ρUbm
2 . (3.11)

The improved GM model developed by Humbyrd (2012) suggests that fwc depends
on the relative bottom roughness Abm/kb and the current condition represented by the
parameter Cµ:

Cµ = τbm/τwm = (1− α2)−1. (3.12)

By approximating the exact analytical solution, Humbyrd (2012) obtained a simple
explicit expression for fwc in the region 10< Xµ < 105:

fwc

Cµ

= exp
{

5.70(Xµ)−0.101 − 7.46
}
, (3.13)
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FIGURE 8. (a) Wave friction factors and (b) phase leads of the maximum wave bottom
shear stress of combined sinusoidal-wave–current flows: smooth-bottom tests, sandpaper-
bottom tests, ceramic-marble-bottom tests and the improved GM model).

where
Xµ =Cµ

Abm

kb
. (3.14)

The maximum wave bottom shear stress τwm leads the free-stream velocity by a phase
lead ϕτwm. For 10 < Xµ < 105, the improved GM model suggests that ϕτwm can be
approximately expressed as

ϕτwm (deg.)= (0.649X−0.160
µ + 0.118) 180/π. (3.15)

With Cµ= 1, (3.13) and (3.15) give the friction factor and phase lead for turbulent
sinusoidal-wave boundary layers. We can plot the measured variations of fwc/Cµ

and ϕτwm against Xµ and compare this with the predictions of (3.13) and (3.15),
as shown in figure 8. The measurements of fwc/Cµ have little scatter and form a
consistent decreasing trend with increasing Xµ. The improved GM model reasonably
captures the observed trend, although it slightly overestimates the friction factors by
roughly 10 %. Such a small error is insignificant compared to the potential uncertainty
in the determination of the bottom roughness, so the model’s performance can be
considered excellent. This is not surprising, since the model’s time-invariant turbulent
eddy viscosity is scaled by the maximum shear velocity u∗m, which works ideally
for predicting the maximum bottom shear stress. The measurements of ϕτwm exhibit
noticeable scatter, especially for the sandpaper-bottom tests (up to 5◦). Nevertheless,
the data points suggest that ϕτwm decreases with increasing Xµ in a manner that is
reasonably represented by the improved GM model, i.e. the data points appear to be
distributed evenly on both sides of the curve. Given the fact that the amplitude is
also well predicted, the performance of the improved GM model for prediction of the
maximum wave bottom shear stress associated with combined collinear wave–current
flows can be considered excellent.

3.2. The effect of wave nonlinearity on wave–current interaction
For pure nonlinear waves in OWTs, YM14 showed that a very weak mean velocity,
the TA-streaming, is present. It is negative (opposing the wave direction) in the very

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

74
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.746


496 J. Yuan and O. S. Madsen

0 5 10 15 200 10 20 30 40 50 60
100

101

102

100

101

102(a) (b)

FIGURE 9. Magnitudes of measured current velocity profiles of the ST400a wave plus
currents over the sandpaper bottom (dots: positive currents (in the wave direction); crosses:
negative currents (against the wave direction): (a) strong (C40) currents; (b) weak (C13)
currents.

near-bottom region, but becomes positive (following the wave direction) at higher
elevations to balance the total volume flux. In this section, we briefly present some
experimental results for nonlinear-wave–current flows in the WCS with focus on the
current velocity profile, since the wave velocity is found to experience little influence
from the superimposed current.

Unlike sinusoidal waves, nonlinear waves have direction dependence, so we consider
collinear currents with different directions. Figure 9 shows measured current velocity
profiles of four typical tests over the sandpaper bottom. They have the same wave
conditions, i.e. the strongest Stokes waves ST400a (first-harmonic velocity amplitude
of approximately 160 cm s−1 and 6.25 s wave period), but different current conditions.
Figure 9(a) shows the current velocity profiles of the strong superimposed current C40
(roughly 46 cm s−1 cross-section average velocity) following or opposing the wave
direction, while figure 9(b) shows the same comparison for the weak superimposed
current C13 (roughly 15 cm s−1 cross-section average velocity). Here the magnitudes
of measured current velocities are shown for easy comparison of currents in the
two directions. The measurements suggest a pronounced difference between currents
following or opposing nonlinear waves. In the very near-bottom region, the negative
currents (shown by crosses) are stronger than the positive currents (shown by dots),
but the discrepancy decreases with increasing elevation z. For the two strong-current
tests, the two current velocity profiles do not intersect within the range of observation,
but there is a clear indication of crossing at a higher level. The GM-type model’s
two-log-profile feature is observed for both of them, but is less pronounced for the
negative current. For the weak-current tests, the two velocity profiles intersect at
approximately z = 65 mm, and the positive current becomes increasingly stronger
than the negative current above this level. The two-log-profile structure is completely
obliterated for the negative current, while according to the GM model this feature
should be very significant for weak currents plus strong waves, as demonstrated by
the velocity profile of the positive C13 current.

The observed differences between currents following and opposing nonlinear waves
agree qualitatively with the numerical results given by Holmedal et al. (2013),
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FIGURE 10. Estimate of the embedded mean velocity of test ST400a_sa (dotted line:
based on C13 currents; dashed line: based on C40 current; solid line: measured mean
velocity of test ST400a_sa).

and can be explained by TA-streaming produced by wave nonlinearity. The mean
velocity profile embedded in the pure wave test ST400a_sa, which indicates the
TA-streaming, is indicated by the solid line in figure 10. Such a mean velocity
profile was first reported by Ribberink & Al-Salem (1995). Thus, if added to the
two-log-profile structure suggested by the GM model, in the very near-bottom region
this mean velocity will enhance a negative superimposed current but suppress a
positive superimposed current, while the situation reverses at higher elevations. As
a confirmation, we subtract the magnitude of the negative current profile from
the magnitude of the positive current profile shown in figure 9(a,b) and divide the
difference by 2. The obtained results shown in figure 10 agree well with the measured
mean velocity embedded in test ST400a_sa, i.e. the three profiles are all negative
in the very near-bottom region and reach minima of comparable magnitudes (−3 to
−4 cm s−1) at approximately the same level z ≈ 10 mm, and the negative values
decrease and eventually become positive at higher elevations.

The GM model is entirely blind to the direction of currents, since it is based on
sinusoidal waves, and it will always give a two-log-profile structure of the current
velocity profile, which is completely absent for the test with a weak negative current,
ST400a_C13r_sa. Therefore, the GM model is incapable of modelling nonlinear-wave–
current flows, especially for a wave with strong nonlinearity plus a weak current. If
one were to blindly apply the GM model to analyse field measurements obtained
in relatively shallow waters where the waves are nonlinear, the obtained results, e.g.
current shear velocity u∗c, apparent roughness ka or physical bottom roughness kb,
would be unreliable. In such situations, it is necessary to have a more elaborate
wave–current boundary layer model which can consider the wave nonlinearity
characterized by a second-harmonic free-stream velocity and a time-varying turbulent
eddy viscosity.
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4. Theoretical model
4.1. Governing equations

Oscillatory flows in OWTs are uniform in the longitudinal direction of the test channel,
so the governing momentum equation is

∂u
∂t
=−∂(p/ρ)

∂x
+ ∂(τzx/ρ)

∂z
, (4.1)

where u is the Reynolds-averaged velocity in the horizontal direction, x and z are the
horizontal and vertical coordinates, t is time, ρ is fluid density, p is pressure and
τzx is the component of the Reynolds stress which can be related to the Reynolds-
averaged velocity through the concept of a turbulent eddy viscosity νt. The pressure
gradient ∂p/∂x is considered depth-invariant, and its oscillatory part is related to the
free-stream flow as

− 1
ρ

∂ p̃
∂x
= ∂ ũ∞

∂t
, (4.2)

where ũ∞ is the oscillatory part of the free-stream velocity. The time-invariant part of
the pressure gradient can be neglected if we only consider the very near-bottom part
of the current boundary layer. For the currents in the WCS, we have discussed that
the mean pressure gradient will not invalidate the logarithmic profile and hence can be
generally neglected in the region less than 100 mm from the bottom. For mathematical
convenience, we define a velocity deficit:

ud = u− ũ∞, (4.3)

so (4.1) can be rewritten as

∂ud

∂t
= ∂

∂z

(
νt
∂ud

∂z

)
. (4.4)

It is customary to split ud into a wave (time-dependent) velocity ũd and a current
(time-invariant) velocity ū as

ud = ũd + ū (4.5)
where ũd is expressed in the following general form:

ũd(z, t)=Re
∞∑

n=1

U(n)
d (z)e

inωt. (4.6)

The wave velocity must converge to the free-stream value asymptotically and satisfy
the no-slip boundary condition which is prescribed at z = z0 = kb/30. Therefore,
the following boundary conditions are prescribed for the complex amplitude of
nth-harmonic velocity deficit U(n)

d (z):

U(n)
d =−U(n)

∞ , z= z0, (4.7)
U(n)

d → 0, z→∞, (4.8)
where U(n)

∞ is the complex amplitude of nth-harmonic free-stream velocity. For ū, the
no-slip boundary condition also applies:

ū= 0, z= z0. (4.9)

The other boundary condition is specified as a reference current velocity ur at a
reference elevation zr:

ū= ur, z= zr. (4.10)
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4.2. Turbulent eddy viscosity
For oscillatory turbulent boundary layers, Trowbridge & Madsen (1984a,b) suggested
that the flow can be considered quasi-steady in the very near-bottom region, so the
following expression for the turbulent eddy viscosity νt, obtained by generalizing the
well-known results for steady turbulent boundary layer flows, is applicable in the
immediate vicinity of the bottom:

νt = κ
√
|τb(t)|
ρ

z= κ|u∗(t)|z. (4.11)

Therefore, the temporal variation of νt is characterized by the temporal variation of
|u∗(t)|, which can be expressed as

|u∗(t)| = ū∗ f (t), (4.12)

where ū∗ is the period average of |u∗(t)| and f (t) is a dimensionless temporal variation
function which is always positive and has an period-averaged value of 1. Thus, (4.11)
can be rewritten as

νt = ν̄t(z) f (t), (4.13)

where ν̄t(z) is the time-averaged turbulent eddy viscosity. Although at higher elevations
the temporal variation of νt may not be synchronized with that in the very near-bottom
region, which means that f (t) also varies with z, Trowbridge & Madsen (1984a,b)
ignored this for mathematical convenience. Such a simplification will certainly
deteriorate the prediction in the upper part of the boundary layer, but the flow
in the very near-bottom region, which is critical for the determination of bottom
shear stress, is still well-predicted. Therefore, in our theoretical model νt is treated as
the product of a temporal variation function f (t) and a mean turbulent eddy viscosity
ν̄t(z) over the entire boundary layer.

We can always express f (t) in terms of a Fourier series:

f (t)= 1+ a1 cos(ωt+ψ1)+ a2 cos(2ωt+ψ2)+ · · ·. (4.14)

For sinusoidal waves, only the even harmonics of f (t) exist since the two half-periods
of |u∗(t)| must be identical. For nonlinear waves, the two half-periods of |u∗(t)| are
asymmetric, e.g. the positive half-period of a Stokes wave will have larger maximum
|u∗(t)| than the negative half period, so odd harmonics of f (t) are produced. The
leading odd harmonic is the first harmonic a1 cos(ωt+ ψ1), which interacts with the
first-harmonic velocity gradient to produce a non-zero period-averaged shear stress.
This is the origin of the TA-streaming (Trowbridge & Madsen 1984b). It should be
noted that a superimposed current can also give rise to odd harmonics of f (t), so
TA-streaming also exists for sinusoidal-wave–current boundary layer flows.

By only retaining the first and second harmonics of f (t), Trowbridge & Madsen
(1984a,b) used perturbation methods to analytically study sinusoidal turbulent wave
boundary layers (first-order analysis) and weakly nonlinear progressive waves (second-
order analysis), but external currents were not considered in their study. Following
their work, Gonzalez-Rodriguez & Madsen (2011) studied nonlinear waves and wave–
current flows in OWTs. Their predictions of TA-streaming for Stokes waves were in
good agreement with measurements, but their predictions for forward-leaning waves
and wave–current flows were not very successful. This is because they assumed that
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(a) (b)

FIGURE 11. Vertical structure of the time-averaged turbulent eddy viscosity for oscillatory
turbulent boundary layer flows: (a) weak current; (b) strong current.

the first and second harmonics of f (t) are very small, i.e. a1, a2� 1 in (4.14), which
is necessary for the neglect of higher-order terms. However, the predicted values of a1
and a2 contradict this assumption, e.g. the value of a2 is around 0.4 which is hardly
a very small number. Therefore, in § 4.3 we will develop a semi-analytical approach
which does not make prior assumptions on the magnitudes of certain parameters.

The three-layer turbulent eddy viscosity of the improved GM model, i.e. (A 1), may
be questionable for very weak currents, i.e. for very small α, the δct given by (A 7)
will be larger than δw, meaning that the wave-produced turbulence still controls the
current even far outside the wave boundary layer, in violation of the basic assumption
of the GM model. To remove this inconsistency, we propose the following four-layer
vertical structure for ν̄t(z):

ν̄t(z)=


κ ū∗z, z0 6 z< δI,
κ ū∗δI, δI 6 z< δJ,

κ ū∗δI exp
{
−γ z− δJ

κ ū∗/ω

}
, δJ 6 z< δK,

κu∗cz, δK 6 z.

(4.15)

A graphical representation of this vertical structure is shown in figure 11. Without
the top-most current-dominated layer, the first three layers collectively give the ν̄t(z) of
a pure wave boundary layer, which approximates a parabolic vertical structure scaled
by the wave boundary layer thickness δw:

ν̄t(z)= κ ū∗z
(

1− z
δw

)
, z0 6 z 6 δw. (4.16)

Here δw is defined as the level where the amplitude of the first-harmonic velocity
deficit reaches 1 % of the amplitude of the free-stream first-harmonic velocity. The
choice of a parabolic structure as the target structure of the approximation is because
this structure is commonly used for modelling steady open-channel turbulent flows.
The transition levels (δI and δJ) and the parameter γ are determined by requiring that
the total area under the parabolic curve is maintained, which gives

δI = 0.21δw, δJ = 0.79δw, γ = 9.5
κ ū∗/ω
δw

. (4.17a−c)

The third layer makes the wave-produced ν̄t(z) decay exponentially with elevation, so
the singularity ν̄t(δw)= 0 of the parabolic structure is avoided. The level δK is where

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

74
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.746


Wave–current boundary layers 501

κu∗cz intersects the underlying three-layer structure. With the exponential-decaying
layer, δK will be generally less than δw for most current conditions, e.g. figure 11(a),
so the possible inconsistency of the improved GM model is avoided. When the
superimposed current is sufficiently strong, i.e. u∗c/ū∗ > δI/δJ = 0.27, the intersection
will be within the second layer, as shown in figure 11(b), so the exponential-decaying
layer does not appear and the three-layer structure of the improved GM model is
reproduced.

4.3. A semi-analytical approach
In this subsection, a semi-analytical approach for solving the governing equation
introduced in § 4.1 with the turbulent eddy viscosity introduced in § 4.2 is briefly
presented. With (4.13) and (4.5), (4.4) can be written as

∂ ũd

∂t
= ∂

∂z

(
ν̄t(z) f (t)

∂ ũd

∂z

)
+ ∂

∂z

(
ν̄t(z) f (t)

∂ ū
∂z

)
. (4.18)

Instead of using the perturbation method as Gonzalez-Rodriguez & Madsen (2011),
we divide all terms by f (t) to get

∂ ũd

f (t)∂t
= ∂

∂z

(
ν̄t(z)

∂ ũd

∂z

)
+ ∂

∂z

(
ν̄t(z)

∂ ū
∂z

)
. (4.19)

Following Lavelle & Mofjeld (1983), we define a new time variable:

τ =
∫

f (t)dt= t+ h(t), (4.20)

where, with f (t) given by (4.14):

h(t)=
∞∑

n=1

an

nω
sin(nωt+ψn). (4.21)

We change the temporal variable of (4.19) to give

∂ ũd

∂τ
= ∂

∂z

(
ν̄t(z)

∂ ũd

∂z

)
+ ∂

∂z

(
ν̄t(z)

∂ ū
∂z

)
. (4.22)

This is the governing equation with a new temporal variable τ . For clarity, we denote
the solution in τ -space by V(z, τ ), and split (4.22) into a wave equation:

∂Ṽ
∂τ
= ∂

∂z

(
ν̄t(z)

∂Ṽ
∂z

)
(4.23)

and a current equation:
∂

∂z

(
ν̄t(z)

∂V̄
∂z

)
= 0. (4.24)

The oscillatory velocity in τ -space can be expressed in terms of a Fourier series:

Ṽ(z, τ )=Re

{ ∞∑
n=1

V (n)(z)einωτ

}
, (4.25)
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where V (n) is the complex amplitude of nth-harmonic velocity in τ -space:

V (n)(z)= Vn(z) exp(iϕvn(z)), (4.26)

with Vn(z) and ϕvn(z) being the amplitude and phase of V (n), respectively. The wave
equation is solved harmonic by harmonic:

inωV (n) = ∂

∂z

(
ν̄t(z)

∂V (n)

∂z

)
, (4.27)

and, with ν̄t given by (4.15), both (4.24) and (4.27) are ordinary differential equations
that can be solved analytically. The general analytical solutions obtained are converted
back to t-space using (4.20), and the conversion requires some simple numerical
Fourier analyses of given time series. It should be highlighted that a mean velocity,
ūV(z), is produced when converting the wave solution from τ -space to t-space, which
essentially represents the origin of the TA-streaming. Matching boundary conditions
in t-space produces a set of linear equations for the unknown constants in the general
solution. The reader is referred to Yuan (2013) for further details on approximately
solving the wave equation using change of temporal variables.

The current equation is analytically solved as introduced in appendix B. The
solution suggests that the total current velocity profile is the sum of the TA-streaming
ūs (related to ūV(z)), i.e. (B 5), and another mean velocity ūc given by solving the
current equation in τ -space, i.e. (B 8). The latter is named the ‘basic current’ hereafter,
because it is shown that the current bottom shear stress is solely produced by this
basic current, while waves in OWTs will not create a mean bottom shear stress,
regardless of the wave shape (see appendix B for details).

Since the solution requires νt which contains parameters given by model predictions,
an iterative solution procedure is developed as follows. With the free-stream oscillatory
velocity, the bottom roughness and the current reference velocity at z = 100 mm
obtained from the measurements, we first apply the improved GM model (appendix A)
to predict the current bottom shear stress τcb and the maximum wave bottom shear
stress τwm, which together give a time series of the bottom shear stress as

τb(t)= τwm cos(ωt+ ϕτwm)+ τcb. (4.28)

We then analyse this time series to give initial values for {an}, {ψn} and ū∗, which
define the mean turbulent eddy viscosity ν̄t given by (4.15) and the temporal variation
function f (t) given by (4.14). The initial value of the boundary layer thickness δw
is also given by the improved GM model. For simulating all tests in this study, this
initiation never results in a divergence of the model results, and the solution converges
quickly.

The governing equations are then solved as introduced above, so the remaining task
is to obtain new estimates of the iterative parameters through a closure hypothesis.
According to (4.12), we have

ū∗f (t)=
√
|τb(t)|
ρ
=
√√√√∣∣∣∣∣κ ū∗z0f (t)

∂u
∂z

∣∣∣∣
z=z0

∣∣∣∣∣. (4.29)

Since ū∗ and f (t) are always positive by definition, this equation can be rewritten as

ū∗f (t)= κz0

∣∣∣∣∣ ∂u
∂z

∣∣∣∣
z=z0

∣∣∣∣∣ . (4.30)
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The right-hand side can be easily calculated from the solution for u, so the time
series of ū∗ f (t) over a wave period is obtained. We numerically Fourier analyse it
to give the mean and the Fourier components which define the values of ū∗, {an} and
{ψn}. In addition, the wave boundary layer thickness δw can also be determined using
the solution of the first-harmonic velocity in t-space. These new values will replace
the previous estimates and the procedure is repeated until the following convergence
criteria are met: ∣∣∣∣xnew − xold

xold

∣∣∣∣< 1 %, x∼ δw, u∗c, ū∗, aneiψn . (4.31)

Most of the iterative algorithms are expressed using matrices and vectors (see Yuan
2013 for details), so the solution procedure can be easily programmed in a manner
that allows us to consider any number of terms of {an}, {ψn} and {U(n)} by simply
changing the sizes of these matrices and vectors. This is the advantage of this
theoretical model over the analytical model of Gonzalez-Rodriguez & Madsen (2011),
because we do not need to make prior assumptions on flow conditions to neglect
higher-order terms, but simply keep adding terms until the predictions for the leading
Fourier components of velocity and bottom shear stress converge. Thus, we essentially
let the model tell us which higher-order terms can be neglected. For modelling the
experimental results in this study, calculations show that it is only necessary to
consider up to the fourth harmonic of νt and the fifth harmonic of velocity, since
adding more harmonics will cause only minor changes to the quantities of primary
interest, e.g. for Stokes waves over the range 10 < Abm/kb < 105 the first three
harmonics of bottom shear stress are changed by less than 0.5 %, 1.5 % and 5.0 %
in amplitude, and less than 0.1◦, 0.3◦ and 5.5◦ in phase, respectively, by adding
higher-order harmonics.

5. Model validation
In this section, we validate the theoretical model for oscillatory turbulent boundary

layer flows developed in § 4 against the experimental results shown in § 3.

5.1. Wave velocity and wave bottom shear stress
For simplicity, the validation of our theoretical model for pure wave boundary layer
flows are presented based on three representative tests, SP400a_sa, ST400a_sa, and
FL320_sa, corresponding to sinusoidal, Stokes and forward-leaning waves, respectively.
These tests are all over the sandpaper bottom and have wave periods of 6.25 s. Their
first-harmonic free-stream velocity amplitudes are the highest among tests with the
same wave shape, i.e. the values of U∞,1 are roughly 160 cm s−1, 160 cm s−1 and
126 cm s−1 for SP400a_sa, ST400a_sa, and FL320_sa, respectively. For sinusoidal
wave boundary layers, the top-most current-dominated layer of the four-layer mean
turbulent eddy viscosity is not considered since no current shear stress exists, and
the model’s algorithm is accordingly simplified. Because the two half-wave-periods
of a sinusoidal wave are symmetric, the even-order harmonics of the velocity vanish,
and therefore the following comparisons are based on the first- and third-harmonic
velocities, as shown in figure 12. The model successfully predicts the first-harmonic
velocity for sinusoidal waves in the immediate vicinity of the bottom (figure 12a,b),
i.e. the logarithmic amplitude profile is predicted with a relative error less than 2 %
below z = 6 mm, and the disagreement for the first-harmonic phase is within 1◦–5◦.
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FIGURE 12. Prediction of the first- and third-harmonic velocities of sinusoidal wave
test SP400a_sa (solid lines: predictions; dots: measurements): (a) first-harmonic amplitude,
|u(1)(z)|; (b) first-harmonic phase, Arg(u(1)(z)); (c) third-harmonic amplitude, |u(3)(z)|;
(d) third-harmonic phase, Arg(u(3)(z)).

The model’s performance at higher elevations, however, is not as good as in the very
near-bottom region, i.e. both the magnitudes and the locations of amplitude overshoots
are not predicted very accurately. This is most likely due to oversimplification of the
mean turbulent eddy viscosity ν̄t, i.e. (4.15), in the upper part of wave boundary layer.
Nevertheless, it is the very near-bottom region that plays a crucial role in determining
bottom shear stress and sediment transport, so our model’s prediction of the first-
harmonic velocity of sinusoidal waves is still considered good. The third-harmonic
velocity embedded in sinusoidal waves, as shown in figure 12(c,d), is a result of the
temporal variation of turbulent eddy viscosity. The model to some extent predicts the
overshoot structure of the third-harmonic velocity amplitude in the very near-bottom
region, but the magnitudes are significantly underestimated. The third-harmonic phases
are overpredicted in the very near-bottom region by 30◦–50◦, and the predictions in the
upper part of the water column deviate even more significantly from the measurements.
Therefore, it should be concluded that the model only qualitatively predicts the third-
harmonic velocity. Nevertheless, the third-harmonic velocity is a very small component
of the entire oscillatory velocity (3–5 %), and its contribution to bottom shear stress
is negligible, so there is no necessity to predict it very accurately.

For Stokes and forward-leaning waves, the predictions of the first- and third-
harmonic velocities lead to the same conclusions as for sinusoidal waves. The
prediction of the mean velocity will be specifically discussed in the § 5.2, so here
we will only discuss the predictions for second-harmonic velocities, as shown
in figure 13. Generally speaking, the model’s performance is very similar to
that for the first-harmonic velocity of sinusoidal waves. For the Stokes-wave test
(figure 13a,b), the near-bottom logarithmic amplitude profile is excellently predicted,
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FIGURE 13. Prediction of the second-harmonic velocity of test ST400a_sa (Stokes waves)
and FL320a_sa (forward-leaning waves) (solid lines: predictions; dots: measurements):
(a) amplitude of test ST400a_sa, |U(2)(z)|; (b) phase of test ST400a_sa, Arg(U(2)(z));
(c) amplitude of test FL320_sa, |U(2)(z)|; (d) phase of test FL320_sa, Arg(U(2)(z)).

and second-harmonic phase is also reasonably predicted with an error less than 2◦,
but in the upper part of the boundary layer the agreement between measurements
and predictions deteriorates, i.e. the vertical elevation of the maximum amplitude
overshoot is still overestimated. For the forward-leaning-wave test (figure 13c,d),
the prediction is not as good as for the Stokes-wave test. The prediction of the
second-harmonic amplitude is no longer excellent in the very near-bottom region,
i.e. the model overpredicts the amplitude by roughly 5 % below z = 3 mm, and the
prediction of the second-harmonic phase is also worse, i.e. the measurements are
nearly depth-invariant in the region a few millimetres above the bottom, but the
predictions do not pick up this feature. Given that the second-harmonic velocity
is only approximately 25 % of the first-harmonic velocity in magnitude, such an
inaccuracy is still acceptable.

Although the overall performance of the theoretical model for predicting wave
velocity is not excellent, it still accurately predicts the dominant harmonics of
wave velocity in the very near-bottom region, which is essential for predicting
wave bottom shear stress. The predicted time series of bottom shear stress for the
three representative tests are compared with measurements obtained from modified
log-profile fittings in figure 14. For all tests, the model predicts the positive and
negative maxima of the bottom shear stresses with an accuracy better than 10 %.
The temporal variation is also well predicted, e.g. the model accurately captures the
asymmetry between the two wave half-periods for the two nonlinear-wave tests. Thus,
the model can accurately predict bottom shear stress in the WCS, which is critical
for future studies on fluid–sediment interaction.
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FIGURE 14. Prediction of wave bottom shear stress (solid lines: predictions; dots:
measurements from modified log-profile fitting analysis with kb = 3.7 mm): (a) test
SP400a_sa (sinusoidal wave); (b) test ST400a_sa (Stokes wave); (c) test FL320_sa
(forward-leaning wave).

5.2. Mean velocity embedded in pure nonlinear-wave tests
For six representative nonlinear-wave tests, the predictions of ū are compared with
measurements in figure 15. For the two ceramic-marble-bottom tests (figure 15a,b),
the model accurately predicts the mean velocity in the very-near bottom region, i.e.
the maximum negative velocity and the thickness of the negative-velocity region are
both reasonably predicted. Above z= 100 mm, the location where the reference value
of ū is specified as a boundary condition, the neglected effect of the mean pressure
gradient becomes significant, and the prediction deviates from measurements above
z= 100 mm for some tests. The model prediction is also good for the two sandpaper
tests (figure 15c,d). For the two smooth-bottom tests (figure 15e,f ) the prediction is
only qualitative, i.e. the overshoot is significantly overestimated (by a factor over 2).
This is possibly because the viscous effect is not completely negligible as evidenced
by the thickness of buffer layer estimated from (3.6) to be up to 2 mm. Therefore, it
is concluded that the model can quantitatively predict the mean velocity embedded in
nonlinear waves over rough bottoms, but its performance for smooth-bottom scenarios
is only qualitatively acceptable.

The total mean velocity ū embedded in a nonlinear wave in OWTs is the sum of a
TA-streaming, ūs, and a return current, ūc. The present model can separately predict
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FIGURE 15. Prediction of the boundary layer streaming of the nonlinear waves (black
dots: measurements; grey zones: standard deviations given by spatial averaging; solid
lines: prediction): (a) ST400a_ce; (b) FL320a_ce; (c) ST400a_sa; (d), FL320a_sa;
(e) ST400a_sm; (f ) FL320a_sm.

ūs and ūc, so it is of interest to investigate them individually. For simplicity, the
following discussion is based on the two ceramic-marble-bottom tests ST400a_ce and
FL320a_ce. In figure 16, the predicted total mean velocities ū shown in figure 15(a,b)
are decomposed into ūs and ūc. For the nonlinear waves in this study, model
predictions suggest that ūs can be approximately written as

ūs(z)≈ ūs,1(z)+ ūs,2(z), (5.1)

where ūs,n can be approximated by (see Yuan 2013 for details)

ūs,n(z)≈Re
{− 1

2 ane−iψnu(n)(z)
}
, n= 1, 2. (5.2)

It can be readily seen that ūs,1 and ūs,2 represent the TA-streaming produced by the
first- and second-harmonic interactions of the time-varying velocity gradient and the
time-varying turbulent eddy viscosity, since an represents the relative magnitude of
the nth-harmonic turbulent eddy viscosity and u(n)(z) is the complex amplitude of the
nth-harmonic velocity.

For the Stokes wave shown in figure 16(a), ūs,1 and ūs,2 are both negative over
the entire boundary layer; ūs,1 reaches −19.3 cm s−1 at z = 100 mm and is much
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FIGURE 16. Decomposing of the mean velocity profile embedded in nonlinear waves
(thick dashed lines: turbulence asymmetry streaming; thin dashed lines: main components
of turbulence asymmetry streaming; thick dash-dot lines: basic (return) current): (a) Stokes
wave (ST400a_ce); (b) forward-leaning wave (FL320a_ce).

stronger than ūs,2 which is only −2.3 cm s−1 at the same level. Therefore, the total
ūs is −22.5 cm s−1 at z = 100 mm, which is much stronger than the total mean
velocity (ū = 1.7 cm s−1) at z = 100 mm (see figure 15a). Thus, the superimposed
return current ūc must be positive and have a magnitude comparable to ūs, i.e.
ūc is 24.2 cm s−1 at z = 100 mm. The predicted current shear velocity u∗c which
controls ūc is 4.64 cm s−1, and is in excellent agreement with the measurement
u∗c = 4.67 cm s−1 obtained from log-profile fittings of the instantaneous velocity
profiles (§ 3.1.2). Therefore, the observed mean velocity embedded in a Stokes wave
is essentially a small imbalance between a sizeable TA-streaming and a sizeable
return current. The reason for having such a strong ūs,1 is that the first-harmonic
turbulent eddy viscosity and the first-harmonic free-stream velocity are roughly in
phase. For this test the predicted a1 and ψ1 are 0.28 and −22◦, respectively, and the
amplitude of U(1)

∞ is roughly 160 cm s−1, so the asymptotic value of ūs,1, according to
(5.2), is approximately −20 cm s−1, which is in agreement with the actual prediction
(−19.3 cm s−1).

The TA-streaming of forward-leaning waves is dramatically different from that
of Stokes waves. As shown in figure 16(b), ūs,1 is mostly positive over the entire
boundary layer and its magnitude is slightly smaller than that of ūs,2 which is always
negative. Thus, the magnitude of ūs is quite small, and consequently the return
current required to balance the total volume flux is weak, i.e. ūc is only 1.02 cm s−1

at z = 100 mm and the predicted u∗c is only 0.95 cm s−1 (the measured value is
1.36 cm s−1). The reason for such a small and positive ūs,1 for the forward-leaning
wave is that the first-harmonic turbulent eddy viscosity is almost 90◦ out of phase
with the first-harmonic velocity. The predicted ψ1 is −96◦, while the predicted
a1 is still 0.28. Thus, the absolute value of the complex number given by the
right-hand side of (5.2) is still large (18 cm s−1), but its real part is only 2 cm s−1.
Gonzalez-Rodriguez & Madsen (2011) only considered the first-harmonic interaction
ūs,1, which is the dominant one for Stokes waves but not for forward-leaning waves.
Therefore, their model works for Stokes waves, but since ūs,1 is dramatically different
from the total ūs, their prediction fails for forward-leaning waves. This suggests that
the TA-streaming is very sensitive to the actual flow condition.
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FIGURE 17. Comparison of the predicted and measured current shear velocity for
nonlinear waves (solid line: perfect agreement; dashed lines: least-square fit to the data):
(a) Stokes waves; (b) forward-leaning waves.

The predicted and measured mean bottom shear stresses are compared in terms of
the current shear velocity u∗c in figure 17. For the Stokes-wave tests (figure 17a),
the predictions on average deviate from the measurements by a mere 0.5 %. For the
forward-leaning-wave tests, the agreement is still reasonable but not as good as for the
Stokes-wave tests, i.e. the fitted dashed line in figure 17(b) corresponds to a slope of
0.65, indicating that the model underestimates u∗c by 35 %. This is partly because the
forward-leaning-wave tests have much smaller u∗c than the Stokes-wave tests, so the
same absolute experimental and model inaccuracies will result in a larger relative error.
At the same time, the model’s performance in predicting the mean velocity is generally
worse for forward-leaning waves, as shown in figure 15, consequently the model’s
inaccuracy in predicting the mean bottom shear stress for forward-leaning waves is
expected to be larger.

The analytical solution for the mean velocity indicates that the mean bottom
shear stress is solely related to the return current, so it will not be the same if the
waves are produced in real coastal waters, and hence has little value for practical
applications. However, this mean bottom shear stress is very important for interpreting
measurements of net sediment transport under pure nonlinear waves in OWTs, such
as the experimental results reported by Ribberink & Al-Salem (1995), O’Donoghue
& Wright (2004), van der A, O’Donoghue & Ribberink (2010) and Ruessink et al.
(2011). Generally speaking, the wave nonlinearities make the maximum onshore
(positive) bottom shear stress τbm+ stronger than the maximum offshore (negative)
bottom shear stress τbm−, so a net onshore sediment transport, which is closely
related to the difference between the two maxima, is produced. When studying this
phenomenon using OWTs, the additional positive mean bottom shear stress produced
by the return current will enhance this difference, and therefore increase the net
onshore sediment transport rate. Based on actual measurements of bottom shear
stress, the mean bottom shear stress of test ST400a_ce increases the ratio τbm+/τbm−
from 1.54 to 1.75, which means that the difference between the two maxima is
increased by roughly 40 %. As a rule of thumb, the bedload sediment transport rate
is proportional to the magnitude of bottom shear stress to the power of 3/2, so
the net bedload sediment transport rate is roughly proportional to a period-averaged
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quantity IBS defined as

IBS = |τb(t)|3/2 τb(t)
|τb(t)| , (5.3)

where the overbar indicates period average. For Stokes-wave tests in this study, IBS
can be increased by roughly 50 % if the mean bottom shear stress is added to the total
bottom shear stress. Therefore, it is possible that half of the measured net sediment
transport rates under Stokes waves in OWTs is due to a facility-produced return
current, which must be considered when deriving or validating empirical sediment
transport formulae using OWT measurements.

5.3. Currents in the presence of sinusoidal waves
Comparisons of the measured and predicted current velocity profiles for six
representative sinusoidal-wave–current tests are shown in figure 18. These tests are all
with the SP400a wave (the strongest sinusoidal wave) but have different current and
bottom conditions. The predictions given by the improved GM model (indicated by
the dashed lines) are also provided. It should be noted that this model was derived
with a three-layer turbulent eddy viscosity, but the predicted current velocity profile
was further simplified by neglecting the smooth transition layer between the two
logarithmic layers, so the curves have a sharp kink which we shall not consider when
evaluating this model’s performance. Generally speaking, the present model very
accurately predicts the upper current profiles, while the accuracy deteriorates slightly
in the very near-bottom region. The test SP400a_C13_ce shown in figure 18(a) has
the worst agreement between measurements and predictions. This is possibly because
it suffers from the most significant effect of the mean pressure gradient, since it
has the largest apparent roughness (see discussions in § 3.1.1). The predictions given
by the improved GM model closely follow the predictions of the present model.
The predicted and measured current shear velocities are compared in figure 19. The
present model generally overestimates the current shear velocity by approximately
6.1 %± 2.7 %, while the improved GM model has a slightly better performance, i.e.
the overestimate is 3.3 % ± 6.1 %. Thus, we conclude that both models accurately
predict the current shear velocity.

Despite their equally good performance, the two models differ substantially in their
formulation of the effect of waves on currents. For the GM-type model, only the
basic wave–current interaction is considered, i.e. the waves influence the coexisting
currents by increasing the turbulent eddy viscosity in the very near-bottom region.
However, for the present model, the total current velocity is the sum of a basic
current velocity ūc and a TA-streaming ūs. In the very near-bottom region, ūc is
controlled by a turbulent eddy viscosity which is scaled by the mean shear velocity
ū∗, which is generally larger than u∗c, so the effect of an enhanced turbulent eddy
viscosity still exist. However, it is weaker than that suggested by the GM model,
since ū∗ is less than u∗m, which is used in the GM model to scale the mean bottom
turbulent eddy viscosity, by a factor of roughly

√
2/π= 0.8 (assuming a weak current

and a strong sinusoidal wave). Therefore, it is the existence of the TA-streaming, ūs,
which is entirely neglected in the improved GM model, that makes the GM model’s
predictions agree with those obtained from the present model. To illustrate this,
the total current velocity ū predicted by the present model is decomposed into
ūc and ūs. For simplicity, the following discussion is based on a representative test
SP400a_C40_sa (figure 18d) which has the best agreement between model predictions
and measurements.
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FIGURE 18. Prediction of current velocity profiles in the presence of sinusoidal
waves (solid lines: the present model; dashed lines: the improved GM model;
dots: measurements): (a) SP400a_C13_ce; (b) SP400a_C40_ce; (c) SP400a_c13_sa;
(d) SP400a_c40_sa; (e) SP400a_c13_sm; (f ) SP400a_c40_sm.
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FIGURE 19. Comparison of the predicted and measured current shear velocity (solid line:
perfect agreement; dashed lines: least-square fit to the data): (a) present model; (b) the
improved GM model.
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FIGURE 20. Decomposing of the total current velocity profile of test SP400a_C40_sa into
a boundary layer streaming and a basic current velocity (solid line: total mean velocity;
dashed line: boundary layer streaming; dash-dot line: basic current).

As shown in figure 20, the predicted ūs is opposing ūc, and its magnitude is roughly
a quarter of ūc at the level z= 100 mm, so it is a non-negligible component of the
total current velocity profile. For sinusoidal-wave–current flows, ūs is mainly due to
the interaction of the first-harmonic turbulent eddy viscosity and the first-harmonic
velocity gradient. Thus, ūs can be roughly written as

ūs(z)≈Re
{− 1

2 a1e−iψ1u(1)(z)
}
. (5.4)

For a superimposed basic current ūc in the positive direction, model predictions
suggest that ψ1 is always close to zero. The phase of u(1)(z), as suggested by
measurements, changes by no more than 25◦ over the entire boundary layer. Thus, ūs
can be further approximated as

ūs(z)≈− 1
2 a1|u(1)(z)|. (5.5)

This suggests that ūs is in the negative direction for a positive ūc. For a negative
ūc, it can be easily proved that ψ1 is changed to roughly −180◦, so ūs becomes
positive. Therefore, the TA-streaming embedded in the sinusoidal-wave–current flows
is always against the direction of the superimposed current. In the very-near bottom
region, the amplitude of the first-harmonic velocity |u(1)(z)| follows a logarithmic
profile approximately controlled by the maximum wave shear velocity u∗wm, so the
total mean velocity ū can be written as

ū(z)= ūc + ūs = 1
κ

(
−1

2
a1u∗wm + u∗c2

ū∗

)
ln
(

z
z0

)
. (5.6)

This suggests that ū(z) is still logarithmic in the very near-bottom region. The shear
velocity of the basic current velocity profile, u2

∗c/ū∗, is reduced by a1u∗wm/2, which
corresponds to the effect of the TA-streaming. Thus, an ‘effective’ shear velocity is
given by

u∗c,a =−1
2

a1u∗wm + u∗c2

ū∗
. (5.7)
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In the GM-type models, the effective shear velocity for the lower current velocity
profile is u∗c,b = u2

∗c/u∗m. For a simple yet realistic approximation, the bottom shear
stress of the sinusoidal-wave–current flows can be taken as the sum of a sinusoidal
wave bottom shear stress and a current bottom shear stress. With this approximation,
we can evaluate the difference between u∗c,a and u∗c,b for various current conditions
specified by u∗c/u∗wm. The results suggest that the ratio u∗c,a/u∗c,b is between 0.93
and 1.15 for u∗c/u∗wm from 0 to 2 (very weak to very strong current). This explains
why the two models give virtually identical predictions for the lower current velocity
profile. Thus, by using u∗m as the scaling shear velocity, the GM model implicitly
includes the effect of the TA-streaming which can only be predicted with a time-
varying turbulent eddy viscosity.

5.4. Currents in the presence of nonlinear waves
For currents in the presence of nonlinear waves, both the wave nonlinearity and the
current can produce TA-streaming, so the total ūs is the sum of two components: a
current-related TA-streaming ūsc, which is always against the current direction; and a
wave-related TA-streaming ūsw, which always opposes the wave direction. Therefore,
ūsw and ūsc are co-directional for currents following nonlinear waves, resulting in an
enhanced ūs that opposes currents. However, ūsw and ūsc are against each other for
currents opposing nonlinear waves, resulting in a reduced ūs in the direction of the
stronger of ūsw and ūsc. For a given working frequency of the WCS pump, the total
net volume discharge is maintained, so if added to a nonlinear wave, the basic current
ūc of a positive current should be stronger (in terms of |u∗c|) than that of a negative
current with the same pump frequency, so the difference in ūs is compensated. This
explains why the vertical profiles of the total mean velocity ū depend on current
direction (e.g. see figure 9).

Figures 21 and 22 compare the model’s predictions with the measurements for the
four typical tests shown in figure 9, i.e. C13 currents (roughly 15 cm s−1 cross-section
average velocity) and C40 currents (roughly 46 cm s−1 cross-section average velocity)
following and opposing the strongest Stokes waves ST400a (first-harmonic velocity
amplitude of 160 cm s−1 and 6.25 s wave period) over the sandpaper bottom. The
model accurately predicts the mean velocity profiles for all four tests. For the two tests
with the C40 current shown in figure 22, the predictions are in excellent agreement
with the measurements. For test ST400a_C13_sa (figure 21a), the model reasonably
predicts the very steep slope in the very near-bottom region, but the transition to the
upper current profile takes place above the observed level. For test ST400a_C13r_sa
(figure 21c), the current velocity profile does not have the conventional two-log-profile
structure suggested by the GM model. The model successfully predicts this current
velocity profile and offers a clear explanation for this phenomenon. As shown in
figure 21(d), the two-log-profile structure is predicted for the basic current profile,
but it is totally obliterated by the coexisting TA-streaming which is much stronger
than the basic current.

The predicted current velocity profile for each test is also decomposed into ūc and
ūs. The two components of ūs, ūsc and ūsw, cannot be further isolated, but their mutual
interaction can still be traced. Here we used the ūs for a pure Stokes wave ST400a_sa
over the sandpaper bottom as a rough estimate of ūsw. Figure 16 shows that ūsw is
negative and its magnitude can reach the order of −20 cm s−1 at z= 100 mm. For a
positive superimposed C13 current, ūsw enhances the co-directional ūsc, so a sizeable
total ūs opposing the current is produced, i.e. ūs is approximately −30 cm s−1

at z = 100 mm, as shown in figure 21(b). However, a negative superimposed C13
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FIGURE 21. Predicted and measured current velocity profile of a C13 current following
and opposing the ST400a wave over the sandpaper bottom: (a) predicted and measured
current velocity profiles for ST400a_C13_sa, (b) decomposition of the predicted current
velocity profile for test ST400a_C13_sa, (c) predicted and measured current velocity
profiles for ST400a_C13r_sa, (d) decomposition of the predicted current velocity profile
for test ST400a_C13r_sa.

current gives a positive ūsc opposing ūsw, so the total ūs is the difference between its
two components. As shown in figure 21(d), ūs is only −12 cm s−1 at z = 100 mm,
and it follows the current, indicating that ūsw is stronger than ūsc. Since the pump
maintains a constant and preset discharge, the facility has to develop an additional
current to cope with the different net discharges due to TA-streaming, which is
analogous to the facility-generated return current balancing the TA-streaming for pure
nonlinear wave tests. Therefore, the basic currents in the two tests are significantly
different. A strong basic current is predicted for the test with a positive C13 current,
i.e. ūc at z = 100 mm is over 50 cm s−1 in figure 21(b), but a much weaker basic
current is required for the test with a negative C13 current, i.e. ūc is only −6 cm s−1

in figure 21(d).
The two tests with C40 currents give the same conclusions. For test ST400a_C40r_sa

(figure 22d), the positive ūsc is slightly stronger than the negative ūsw, so the total ūs
is still against the current, but its magnitude (<6 cm s−1 at z = 100 mm) is much
smaller than that of test ST400a_C40_sa (figure 22b) which is over −50 cm s−1 at
z= 100 mm. Accordingly, a strong basic current, i.e. uc= 100 cm s−1 at z= 100 mm,
is predicted for test ST400a_C40_sa, while the basic current is much weaker for test
ST400a_C40r_sa, i.e. uc is only −65 cm s−1 at z= 100 mm.

Since the current (mean) bottom shear stress is only related to the basic current,
the significant difference in the basic current velocity implies that the currents
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FIGURE 22. Predicted and measured current velocity profile of a C40 current following
and opposing the ST400a wave over the sandpaper bottom: (a) predicted and measured
current velocity profiles for ST400a_C40_sa, (b) decomposition of the predicted current
velocity profile for test ST400a_C40_sa, (c) predicted and measured current velocity
profiles for ST400a_C40r_sa, (d) decomposition of the predicted current velocity profile
for test ST400a_C40r_sa.

following and opposing a nonlinear wave in the WCS are not comparable, despite
the total mean discharge being the same. Another way to look at this implication is
as follows. If we only use a target current velocity at a certain reference level or a
total current discharge to specify a current, we cannot distinguish between boundary
layer streaming and basic current, so such a specification of currents is inappropriate
when the current bottom shear stress is the primary concern. In such situations, we
suggest using the current bottom shear stress or the slope of the current velocity
profile outside the wave boundary layer (see (B 8)) to specify currents, although this
may make the experimental procedure more tedious.

We can validate the prediction of the basic current using the measured current
bottom shear stress, since appendix B shows that the total current bottom shear
stress is just the mean bottom shear stress given by the basic current. This can
also indirectly validate the prediction of TA-streaming given that the total current
velocity is accurately predicted. As shown in table 4, except for test ST400a_C13r_sa
which has a very small u∗c and consequently a large relative error, the predicted
u∗c is in excellent agreement with the measurements, i.e. the relative error for the
remaining three tests is only approximately 5 % (overestimate), which is in agreement
with the 6 % overestimate for the u∗c of sinusoidal-wave–current tests (figure 19).
Both measurements and predictions suggest significant differences between the
current shear velocities for currents following and opposing nonlinear waves, i.e.
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Test ID Measured u∗c (cm s−1) Predicted u∗c (cm s−1) Prediction/measurement (%)

ST400a_C13_sa 4.75 4.97 104.6
ST400a_C13r_sa −1.10 −1.62 145.5
ST400a_C40_sa 7.11 7.48 105.2
ST400a_C40r_sa −5.36 −5.69 106.1

TABLE 4. Predicted and measured current shear velocities for nonlinear-wave–current tests.

the experimental u∗c in test ST400a_C13_sa is more than four times larger than
that of ST400a_C13r_sa in magnitude. Therefore, the present model not only
reasonably predicts the total current velocity profile, but also accurately predicts
its two components. If the improved GM model is applied to these tests, very
similar values for u∗c will be predicted for following and opposing currents with the
same pump setting, since the model does not consider the TA-streaming associated
with the wave nonlinearity. Using approximated current velocities at z = 100 mm
(20 cm s−1 and 55 cm s−1 for C13 and C40 currents, respectively) for specifying
the current condition, the current shear velocities given by the improved GM model
are 3.27 cm s−1 and 6.26 cm s−1 for tests with C13 and C40 currents, respectively.
Therefore, u∗c will be dramatically overpredicted for the opposing currents, e.g. a
factor of 3 for test ST400a_C13r_sa, but dramatically underpredicted for the following
currents, e.g. 31 % for test ST400a_C13_sa. This shows that a GM-type model is not
applicable in shallow waters where waves can be highly nonlinear.

These results also have important implications in the study of sediment transport
under nonlinear-wave–current flows in OWTs. Since both the nonlinear wave and the
current depend on direction, it is natural to compare the net sediment transports of
currents following and opposing the nonlinear wave. If the total current discharge or
a reference current velocity at a reference elevation is used to specify the current
condition, the two basic currents obtained are not equivalent, i.e. the magnitudes of
the current bottom shear stresses are not the same. Consequently, the two net sediment
transports are not comparable. In such cases, the correct thing to do is to adjust the
total current discharge to maintain the same magnitude of current bottom shear stress.

6. Conclusions
A high-quality experimental study including a large number of tests which

correspond to full-scale coastal boundary layer flows is performed using a state-of-
the-art OWT for flow generation and a PIV system for velocity measurements. The
tests include three wave shapes, i.e. sinusoidal, Stokes and forward-leaning waves,
combined with collinear currents over three different bottom roughness configurations:
smooth, ‘sandpaper’ and ceramic-marble bottoms. For sinusoidal-wave–current flows,
the typical two-log-profile structure of the current velocity profile suggested by
the GM model is observed. The measured maximum wave bottom shear stress
generalized in terms of the wave friction factor and the associated phase lead is
reasonably predicted by the improved GM model developed by Humbyrd (2012).
For the nonlinear-wave–current boundary layer flows, measurements from typical
tests indicate that there is a substantial difference between currents of the same
total discharge but opposing directions in the presence of nonlinear waves. For a
weak current opposing a nonlinear wave, the two-log-profile structure suggested
by the GM model may even be totally absent. This is because the wave-induced
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turbulence asymmetry (TA) streaming contaminates the conventional two-log-profile
structure. Therefore, the GM model is not able to predict the current profile for
nonlinear-wave–current flows.

A semi-analytical model for oscillatory turbulent boundary layers is developed to
interpret the experimental results. This model assumes that the flow is homogeneous
in the wave direction and only considers a collinear superimposed current, so it is
perfectly suitable for predicting boundary layer flows in OWTs. Following Trowbridge
& Madsen (1984a,b) and Gonzalez-Rodriguez & Madsen (2011), the turbulent
eddy viscosity is considered time-varying, and is expressed as the product of a
temporal variation function and the mean turbulent eddy viscosity. Following Lavelle
& Mofjeld (1983), a new temporal variable is introduced for easy decoupling and
analytical solution of the wave and current equations. The backward conversion of
the temporal variable and the closure hypothesis are obtained by numerical Fourier
analyses. This semi-analytical model can not only achieve high model accuracy, but
also decompose predictions of velocity and bottom shear stress into components with
different physical origins. This is not easily achievable for completely numerical
models, e.g. no previous numerical study cited in this paper has identified the
turbulence asymmetry streaming for currents in the presence of sinusoidal waves.
Therefore, this semi-analytical model is ideally suited for the purpose of this study,
i.e. improving our physical understanding of boundary layer flows in OWTs.

For pure wave flows in OWTs, the model accurately predicts the dominant
harmonics of oscillatory velocity, e.g. the first-harmonic velocity for both sinusoidal
and nonlinear waves and the second-harmonic velocity for the nonlinear waves, while
the smaller higher harmonics, e.g. the third-harmonic velocity, are only qualitatively
predicted. The predictions of the bottom shear stress under pure wave flows are in
excellent agreement with measurements obtained from log-profile fitting instantaneous
velocity profiles.

Model prediction illustrates that the mean velocity embedded in nonlinear waves
in OWTs is actually the difference between the wave-produced TA-streaming and a
facility-produced return current necessary to maintain a zero net discharge. For certain
wave shapes, both of these components can have magnitudes much stronger than the
observed total mean velocity. The mean bottom shear stress is solely produced by
the return current, and it can contribute significantly to the net sediment transport
rates under nonlinear waves in OWTs. This must be realized when using OWT
measurements to derive or validate empirical sediment transport formulae.

For currents in the presence of sinusoidal waves, both the present model and the
improved GM model give good predictions of the current velocity profiles and the
current bottom shear stress. However, there are substantial differences between the
two models’ formulations of the effect of waves on currents. For GM-type models,
the waves influence the coexisting currents by increasing the turbulent eddy viscosity
inside the wave boundary layer. This effect is relatively weaker in the present model,
but another effect, the current-produced TA-streaming which is entirely missed in
GM-type models, is added. It acts to retard the magnitude of the superimposed
current in much the same manner as does an artificially increased turbulent eddy
viscosity. Therefore, the present model and the improved GM model give nearly
identical predictions of current velocity profiles, indicating that the GM model
formulation implicitly accounts for the TA-streaming.

For currents in the presence of nonlinear waves, the present model successfully
predicts the current velocity profiles and captures the difference between currents
following and opposing the waves. The prediction illustrates that the TA-streaming,
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which is due to the combined effect of the superimposed current and the wave
nonlinearities, can significantly contaminate the basic current which follows the
two-log-profile structure suggested by the GM model. In certain situations, such as a
weak current in the opposite direction to a strong Stokes wave, the conventional
two-log-profile structures is completely obliterated. This shows that it can be
misleading to use the GM model for analysis of field measurements obtained in
relatively shallow waters where the waves are nonlinear.

With the results presented in this paper, we have developed a thorough understanding
of the boundary layer flows in OWTs, which is the prerequisite for interpreting OWT
results on sediment transport rates. However, the effect of wave propagation, e.g.
the Longuet-Higgins-type streaming, is completely absent for OWT flows, but can
significantly affect both turbulent boundary layer flows and sediment transport rates
in coastal waters, as suggested by many previous studies (e.g. Yu, Hsu & Hanes
2010; Fuhrman, Schløer & Sterner 2013; Holmedal et al. 2013; Kranenburg et al.
2013). Thus, it is inappropriate to blindly apply OWT results on hydrodynamics
and sediment transport rates to the coastal environment. The correct methodology
would be to first develop a good hydrodynamic model specifically for OWTs, such
as the semi-analytical model of this study, and then based on this model develop
a sediment transport model which is validated against OWT experiments. In this
way, we gain confidence in the sediment transport model and can in due course
extend the hydrodynamic model to progressive waves and couple it with the verified
sediment transport model to obtain predictions for sediment transport rates in coastal
waters. The extended model, of course, can also be validated against large-scale wave
flume experiments (e.g. Dohmen-Janssen 2002). However, we want to point out that
it is impractical to take large-flume experiments as the starting point, since their
experimental costs are much higher, as reflected by the small quantity of reported
studies so far, and their experimental conditions are much less controllable, e.g. it is
very difficult to accurately generate sinusoidal waves with large amplitudes in wave
flumes.
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Appendix A. Modification of the Grant–Madsen model
Humbyrd (2012) proposed the following continuous three-layer turbulent eddy

viscosity:

νt =
κu∗mz, z0 < z 6 δt,

κu∗mδt, δt < z 6 δct,

κu∗cz, δct < z.
(A 1)

Inside the wave boundary layer, νt is scaled with u∗m (the maximum shear velocity)
but has a linear-constant structure, which gives the lowest two layers. The transition
level δt is

δt = 1
6δw, (A 2)
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where the wave boundary layer thickness δw is defined as the level where the wave
velocity deficit reaches 5 % of the free-stream value and is obtained by iteratively
solving the linearized boundary layer equation. Humbyrd gives an approximate explicit
formula for δw/l:

δw

l
= exp

{
a
(

Cµ

Abm

kb

)b

+ c

}
, (A 3)

where l is a characteristic boundary layer length scale l= κu∗m/ω and Cµ is the ratio
of the maximum combined bottom shear stress τbm to the maximum wave bottom
shear stress τwm which can be given in terms of α = u∗c/u∗m:

Cµ = (1− α2)−1. (A 4)

The parameters a, b, and c in (A 3) are also functions of α:

a=
{

2.03, 0<α 6 1/6,
−3.81α3 + 0.795α2 + 0.831α + 1.92, 1/6<α 6 1,

b=
{−0.0849, 0<α 6 1/6,

a/(9.84α3 − 25.5α2 − 8.77α − 22.6), 1/6<α 6 1,

c=
{−0.845, 0<α 6 1/6,

Xµ,crit(−17.4α3 + 6.96α2 − 5.40α − 1.77), 1/6<α 6 1,

(A 5)

where

Xµ,crit =
0.342, 0 6 α 6 0.15,

22.6α3 − 18.9α2 + 4.83α − 0.035, 0.15 6 α 6 0.3,
0.222α2 − 0.619α + 0.490, 0.3 6 α 6 1.

(A 6)

The turbulent eddy viscosity associated with the current has a linear variation which
will always intersect with the constant layer at a transition level:

δct = δt/α. (A 7)

Since the current-generated turbulence becomes dominant above this level, νt is given
by νt = κu∗cz, and hence the upper logarithmic layer of the current velocity profile
starts from δct.

With the three-layer turbulent eddy viscosity introduced above, the following
solution of the current velocity profile is obtained:

ū(z)=



u∗c2

κu∗m
ln
(

z
z0

)
, z0 < z 6 δt,

u∗c2

κu∗m

[
z− δt

δt
+ ln

(
δct

z0

)]
, δt < z 6 δct,

u∗c
κ

[
ln
(

z
δct

)
+ 1+ u∗c

u∗m

(
ln
(
δt

z0

)
− 1
)]

, δct < z.

(A 8)

The analytical solution of the wave velocity is not presented here for simplicity, and
the reader is referred to Humbyrd (2012) for details. It should be noted that the
wave amplitude profile follows the logarithmic law in the very near-bottom region,
as suggested by (3.3).
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Appendix B. Analytical solution for the current velocity
The current velocity ū(z) is the sum of the solution of the current equation in

τ -space, i.e. (4.24), and a mean velocity, ūV(z), produced when converting the wave
solution from τ -space to t-space, which essentially represents the origin of the TA-
streaming. After matching the no-slip boundary condition, ū(z) is given by

ū(z)= ūV(z)+
∫ z

z0

c
ν̄t(z′)

dz′ − ūV(z0). (B 1)

The unknown constant c is obtained by matching the reference current velocity, and it
can be shown to be the current bottom shear stress τcb/ρ as follows. We here consider
the period average of the instantaneous bottom shear stress:

τcb

ρ
= ν̄t(z0) f (t)

∂(ũ+ ūV)

∂z

∣∣∣∣
z=z0

+ c; (B 2)

(ũ + ūV) is essentially the result of converting the oscillatory velocity from τ -space
to t-space, so the first term on the right-hand side can be written in terms of the
oscillatory velocity in τ -space as

ν̄t(z0) f (t)
∂(ũ+ ūV)

∂z

∣∣∣∣
z=z0

= ν̄t(z0)

T

[
∂

∂z

∫ τ(T)

τ (0)
Ṽ(z, τ )dτ

] ∣∣∣∣
z=z0

. (B 3)

Here f (t)= dτ/dt is invoked. According to the definition of τ , τ(T)− τ(0)= T . Thus,
the right-hand side of (B 3) contains an integral of a periodic function with a zero
mean value over its period. Consequently, this term and hence the first term on the
right-hand side of (B 2) are both zero, resulting in c = τcb/ρ. Therefore, the current
velocity profile is given by

ū(z)= ūs(z)+ ūc(z), (B 4)

where

ūs(z)= ūV(z)− ūV(z0) (B 5)

and

ūc(z)=
∫ z

z0

τcb/ρ

ν̄t(z′)
dz′. (B 6)

The ūs(z) is produced by the interaction of the time-varying turbulent eddy viscosity
and the time-varying velocity, so it represents the TA-streaming; ūc(z), however,
carries no information about the temporal variation of the turbulent eddy viscosity, so
it essentially represents the superimposed current, and will be referred as the ‘basic
current velocity’. With this separation of the mean velocity, we can divide the mean
bottom shear stress into three parts:

τcb

ρ
=
[
νt(z, t)

∂ ũ
∂z
+ ν̄t(z)

∂ ūs

∂z

]∣∣∣∣∣
z=z0

+ ν̄t(z)
∂ ūc

∂z

∣∣∣∣
z=z0

. (B 7)

The previous arguments demonstrate that the sum of the first two terms is zero, which
suggests that the mean bottom shear stress related to the product of the time-varying
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velocity gradient and the time-varying turbulent eddy viscosity (first term) is balanced
by the mean bottom shear stress related to the TA-streaming (second term). Therefore,
the wave alone will not produce a mean bottom shear stress, regardless of the wave
shape. The reason for getting non-zero mean bottom shear stresses for nonlinear
waves in the OWTs is the ‘return current’ required to have a zero net volume
flux, which is equivalent to superimposing a current. Thus, the mean bottom shear
stress is indeed the ‘current’ bottom shear stress. This gives us a consistent way to
define the equivalence of currents in the presence of different waves: two equivalent
superimposed currents have the same mean bottom shear stress. Using (4.15) for ν̄t,
the integral of ūc(z) can be analytically evaluated to give

ūc(z)=



rwcu∗c
κ

ln
(

z
z0

)
, z0 6 z< δI,

rwcu∗c
κ

z− δI

δI
+ ūc(δI), δI 6 z< δJ,

rwcu∗c
κ

[
l
γ δI

(eγ ((z−δJ)/l) − 1)
]
+ ūc(δJ), δJ 6 z< δK,

u∗c
κ

ln
(

z
δK

)
+ ūc(δk), δK 6 z,

(B 8)

where
rwc = |u∗c|ū∗

. (B 9)

It should be noted that the u∗c in (B 8) will be negative if τcb is in the negative
direction. Its value is given by matching the reference current velocity:

ū(zr, u∗c)= ur. (B 10)

After this, the current velocity is analytically obtained.
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