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Abstract. A comparative study of the electromagnetic instabilities in anisotropic
unmagnetized plasmas is undertaken. The instabilities considered are the filamenta-
tion and Weibel instability, and their cumulative effect. Dispersion relations are de-
rived and the growth rates are plotted systematically for the representative cases of
non-relativistic counterstreaming plasmas with isotropic or anisotropic velocity dis-
tributions functions of Maxwellian type. The pure filamentation mode is attenuated
by including an isotropic Maxwellian distribution function. Moreover, it is observed
that counterstreaming plasmas can be fully stabilized by including bi-Maxellian
distributions with a negative thermal anisotropy. This effect is relevant for fusion
plasma experiments. Otherwise, for plasma streams with a positive anisotropy the
filamentation andWeibel instabilities cumulate leading to a growth rate by orders of
magnitude larger than that of a simple filamentation mode. This is noticeable for the
quasistatic magnetic field generated in astrophysical sources, and which is expected
to saturate at higher values and explain the non-thermal emission observed.

1. Introduction
Electromagnetic instabilities of Weibel type are non-resonant and arise in plasmas
with thermal anisotropies [1], or in those dominated by electrical streams [2]. Such
systems are unstable to any harmonic perturbation and provide electromagnetic
modes growing exponentially in time but not propagating. These instabilities can
therefore explain the existence of strong quasistatic magnetic fields [3–5] or the
acceleration of plasma particles [6] in many astrophysical sources where the non-
thermal radiation originates. Moreover, the aperiodic instabilities are presently
investigated in order to reduce the perturbations in the fast ignition scenario (FIS)
for inertial confinement fusion [7–11].
Weibel [1] originally described the anisotropic temperature instability which

propagates into a bi-Maxwellian plasma along the lower temperature axis, T⊥ >
T‖ and k = k‖ (Sec. 3.2). Fried [2], trying to explain the physical mechanism
responsible for the Weibel instability, has in fact described the counterstreaming-
based instability propagating along the perpendicular direction with respect to the
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streams, k ⊥ v0 , and which today is called the filamentation instability (Sec. 3.1).
Despite their common origin into the bi-axis anisotropy of velocity distribution
function, these two instabilities are markedly different. Filamentation instability,
for example, develops even within a cold counterstreaming plasma, as shown in
Sec. 3.1.1, whereas Weibel instability arises in thermally anisotropic plasmas with
distributions of Maxwellian [12–15] or non-Maxwellian type [16–18].
A frequent confusion between Weibel and filamentation instabilities is observed,

while the first remarks on their clear distinction can be noticed within the first
works on the stabilization of beam–plasma systems [19–23]. Owing to their relevant
consequences for both astrophysical and laboratory applications, there is, presently,
a strong interest to show how both instabilities can exist independently, or interact
to yield larger or lower growth rates [11, 24]. In the former case the quasistatic
magnetic fields turns out to saturate at higher values expected to explain the
synchrotron radiation detected frommany astrophysical sources [3–5], whereas the
reduction of filamentation instability is imperative for the FIS settings [7,8,11].
Tautz and Schlickeiser have derived the general dispersion relations in coun-

terstreaming Maxwellian plasmas of arbitrary composition for longitudinal and
transverse modes propagating parallel [25,26] or perpendicular [27] to the stream-
ing direction. Moreover, magnetic field amplification has been reported recently
in numerical experiments for the filamentation instability in magnetized counter-
streaming electron–positron plasmas with anisotropic temperatures [28]. In the
present work, we rather choose to investigate purely growing filamentation modes
with wave-vector normal to the plasma streams, and demonstrate that they are very
sensitive to the plasma thermal anisotropy degree owing to their linear coupling
with Weibel modes.
In this series of papers we intend to show how important the cumulative effect of

Weibel and filamentation instabilities can be, providing numerical estimations for
their growth rates. In order to perform a comparative study we plot systematically
the growth rates of purely growing electromagnetic modes for different configura-
tions: counterstreaming plasmas with isotropic (Secs 3.1.2 and 3.1.3) or anisotropic
(Sec. 4) thermal distributions. The plasma system is taken to be homogeneous,
charge and current neutralized, and in this first paper, we limit to a non-relativistic
treatment assuming sufficiently small values for streaming and thermal velocities.

2. Basic framework
In order to investigate the linear wave modes developed in a collisionless plasma
system without any stationary fields (E0 = 0 and B0 = 0), we follow the standard
formalism of kinetic theory using the linearized Vlasov equation [12]

∂fa

∂t
+ v · ∂fa

∂r
= −qa

[
E+

p× B
maγc

]
· ∂fa0

∂p
, (1)

where fa(r, p, t) is the first-order perturbation of the equilibrium distribution func-
tion fa0(p) of the particles of type a, and normalized by∫

dp fa0(p) = 1. (2)

The anisotropic character of fa0(p) translates into

∂fa0

∂p
∦ p (3)
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Figure 1. Two shells of counterstreaming plasmas and filamentation mode with fields E1 ,
B1 and wave vector k.

implying that

(p× B) · ∂fa0

∂p
�0, (4)

which is responsible for the linear unstable solution [13].
The conductivity tensor, σ, is given by the Ohm’s law

J = σ · E =
∑

a

qa

∫ ∞

−∞
dp vfa(r, p, t), (5)

where the linear perturbation, fa , is solution of (1) and using Maxwell equations,
it is finally derived as follows

fa = − ıqa

ω

(
E+

p · E
maγω − k · pk

)
· ∂fa0

∂p
. (6)

The dielectric tensor is defined by εij = δij + (4πı/ω)σij, and with σ from (5) and
(6), we obtain the dispersion relation for the linear unstable transverse modes

k2c2

ω2 δij = εij = δij

+
∑

a

ω2
p,a

ω2

[∫ +∞

−∞
dp

pi

γ

∂fa,0

∂pj
+

∫ +∞

−∞
dp

1
maγω −k · p

(
k · ∂fa,0

∂p

)
pipj

γ

]
.

(7)

3. Filamentation instability versus Weibel instability:
non-relativistic theory

3.1. Pure filamentation instability

The filamentation instability is the electromagnetic unstable mode, developed non-
resonantly, i.e. �(ω) = ωr = 0, in a counterstreaming structure of plasmas, or in a
beam–plasma system where the electron beam passing through the plasma quickly
creates a return current. Such a counterstreaming configuration is presented schem-
atically in Fig. 1, where the filamentation instability is emitted perpendicular to
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Figure 2. (a) Distribution function for two cold counterstreaming plasmas represented
in (8). (b) Growth rates of the filamentation instability obtained as solutions of (9), and
corresponding to three non-relativistic values of the streaming velocity, v0/c = 0.05 (dotted
curve), v0/c = 0.1 (dashed curve) and v0/c = 0.2 (solid curve).

the streaming direction and has the electric field along the streaming direction. For
the sake of simplicity, the two counterstreams are assumed to be symmetric with
vl = vr = v0 , and with equal intensities, everywhere throughout our work.

3.1.1. Monochromatic (cold) counterstreaming plasmas.Wefirst consider the simplest
case of two cold counterstreaming plasmas, described by Fried [2] with the following
distribution function:

f0(vx, vy , vz ) = δ(vx)δ(v2
y − v2

0 )δ(vz ) = 1
2 δ(vx)[δ(vy − v0) + δ(vy + v0)]δ(vz ), (8)

which is presented schematically in Fig. 2(a). Substituting (8) in (7) leads to dis-
persion relation for the transverse unstable modes propagating along x-axis (per-
pendicular to the streaming direction) [2]

εyy = 1 −
ω2
pe

ω2

(
1 +

k2v2
0

ω2

)
. (9)

The role of ions is minimized to that of a neutralizing background and the aperiodic
solutions of (9), ωr = 0 and �(ω) = ωi > 0, correspond to the filamentation
instability, and are plotted in Fig. 2(b). We use the normalized quantities W =
ωi/ωpe and K = kc/ωpe.

3.1.2. Asymmetric cold/thermal counterstreaming plasmas. Two asymmetric
counterstreams are considered now, one stream of a cold plasma and the second
stream of a thermal plasma with a Maxwellian distribution, so that they are de-
scribed by the following distribution function:

f0(vx, vy , vz )=
1
2

[
1

π3/2v3
th

exp
(

−v2
x + (vy + v0)2 + v2

z

v2
th

)
+ δ(vx)δ(vy − v0)δ(vz )

]
,

(10)
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Figure 3. (a) Distribution function for two asymmetric counterstreams plasmas represented
in (10). (b) Growth rates of the filamentation instability obtained as solutions of (11), with
vth/c = 0.1 and for the same values of the streaming velocity, v0/c = 0.05 (dotted curve),
v0/c = 0.1 (dashed curve) and v0/c = 0.2 (solid curve).

which is shown in Fig. 3(a). Using (10) in (7) we find the dielectric constant

εyy = 1 −
ω2
pe

2ω2

(
1 +

k2v2
0

ω2

)
−

ω2
pe

2ω2

[
1 +

1
2

(
1 +

2v2
0

v2
th

)
Z ′

(
ω

kvth

)]
, (11)

in terms of the well-known plasma dispersion function [29]

Z(f) = π−1/2
∫ ∞

−∞
dx

exp(−x2)
x − f

, f =
ω

kvth
. (12)

The aperiodic solutions of (11) are plotted in Fig. 3(b). Owing to the finite tem-
perature of one of the two plasma counterstreams, the filamentation instability is
diminished, i.e. for the same values of the streaming velocity, v0 , the values obtained
for the growth rates in Fig. 3(b) are markedly lower than those obtained for two
cold counterstreaming plasmas in Fig. 2(b).

3.1.3. Counterstreaming plasmas with finite temperature. For two symmetric coun-
terstreams with Maxwellian distributions, shown in Fig. 4(a) and described by

f0(vx, vy , vz ) =
1

2π3/2v3
th

× exp
(

−v2
x + v2

z

v2
th

)[
exp

(
− (vy + v0)2

v2
th

)
+ exp

(
−

[
(vy − v0)2

v2
th

])]
,

(13)

we find the dielectric constant

εyy = 1 −
ω2
pe

ω2

[
1 +

1
2

(
1 +

2v2
0

v2
th

)
Z ′

(
ω

kvth

)]
, (14)

and plot its aperiodic solutions (ωr = 0) in Fig. 4(b).
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Figure 4. (a) Distribution function for two symmetric counterstreaming plasmas given
by (13). (b) Growth rates of the filamentation instability obtained as solutions of (14), with
vth/c = 0.1 and for the same values of the streaming velocity, v0/c = 0.05 (dotted curve),
v0/c = 0.1 (dashed curve) and v0/c = 0.2 (solid curve).

After a quick comparison of the growth rates in Figs 2, 3 and 4, we should remark
on the tendency of stabilization: the growth rates are significantly lower if the finite
temperature effects are included, but the filamentation instability cannot be totally
suppressed. This observation is consistent with the results of Thode et al. [20] and
Cary et al. [21].

3.2. Weibel instability

The Weibel instability is the electromagnetic unstable mode developed
non-resonantly (�(ω) = 0) in a thermally anisotropic plasma. We simply take
a bi-Maxwellian distribution function with two characteristic plasma temperatures
(thermal velocities) defined along two orthogonal directions, vth,x = vth,z = vth <
vth,y = vth⊥,

f0(vx, vy , vz ) =
1

π3/2v2
thvth⊥

exp
[

−
(

v2
x + v2

z

v2
th

+
v2

y

v2
th⊥

)]
, (15)

and presented schematically in Fig. 5(a). The dispersion relation is obtained by
substituting (15) in (7)

εyy = 1 −
ω2
pe

ω2

[
1 +

1
2
(A + 1)Z ′

(
ω

kvth

)]
, (16)

and the growth rates of Weibel instability are plotted in Fig. 5(b). The thermal
anisotropy is defined as A = (vth⊥/vth)2 − 1 > 0, and, in this case, it is assumed
positive as long as vth⊥ > vth. Weibel emission will therefore be perpendicular to
the direction of higher temperature (ky = 0 and we consider k parallel to the x-axis
here) and with electric field along the same direction (E = Ey ).
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Figure 5. (a) Bi-Maxwellian distribution function. (b) Growth rates of the Weibel instability
obtained as solutions of (16), with vth/c = 0.1 and for the three values of the temperature
anisotropy, A = 1 (dotted curve), A = 2 (dashed curve) and A = 3 (solid curve).

4. Cumulative effect of Weibel and filamentation instabilities:
non-relativistic theory

In [24], we have already discussed two representative cases of counterstreaming
plasmas with thermal anisotropies, showing that these two instabilities of filament-
ation and Weibel type can interact to yield larger or lower growth rates. Here,
we extend our investigation to other different configurations of counterstreaming
plasmas with symmetric or asymmetric thermal anisotropies.

4.1. Counterstreams with symmetric anisotropy

4.1.1. Positive anisotropy.As in [24], we can invoke firstly a symmetric configuration
with two counterstreams of thermal plasmas with bi-Maxwellian distributions of
equal anisotropies (A1 = A2 = (vth⊥/vth)2 − 1)

f0(vx, vy , vz ) =
1

2π3/2v2
thvth⊥

× exp
(

−v2
x + v2

z

v2
th

)[
exp

(
− (vy + v0)2

v2
th⊥

)
+ exp

(
− (vy − v0)2

v2
th⊥

)]
,

(17)

and which are presented schematically in Fig. 6(a). The unstable mode will be the
solution of the dispersion relation

εyy = 1 −
ω2
pe

ω2

{
1 +

[
1
2
(A + 1) +

v2
0

v2
th

]
Z ′

(
ω

kvth

)}
, (18)

and cumulates now the both effects of filamentation and Weibel instabilities as is
shown for three sets of parameters in Fig. 6(b) and with solid curves in Fig. 7(a)
and (b).
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Figure 6. (a) Distribution function for two symmetric counterstreams of thermally
anisotropic plasmas, given by (17). (b) Growth rates of the unstable mode, which cumulates
the both effects of filamentation and Weibel instabilities, and it is solution of dispersion
relation (18): for A = 1 and β0 = v0/c = 0.2 it is plotted with a dotted curve, for A = 2 and
β0 = 0.05 with a dashed curve, and for A = 1 and β0 = 0.05 with a solid curve; vth/c = 0.1.
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Figure 7. Comparison of the growth rates of Weibel instability (dotted curves), filamentation
instability (dashed curves) and their cumulative effect (solid curves), considering vth/c = 0.1,
A = 2 and two streaming velocities: (a) v0/c = 0.2 and (b) v0/c = 0.05.

Again, we compare with Fig. 2 and observe that the growth rates are significantly
lower if the finite temperature effects are included, but the instability cannot be
completely suppressed as predicted in [20,21].

4.1.2. Negative anisotropy: stabilization of filamentation instability. The same dis-
tribution function (17) is considered here, but with a negative anisotropy, A =
(vth⊥/vth)2 −1 < 0, i.e. vth⊥ < vth, as shown Fig. 8(a). We have already noted in [24]
that the unstable emission along the x-axis (see in Fig. 1) can be diminished if the
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Figure 8. (a) Two counterstreaming plasmas with negative thermall anisotropies, A < 0 in
(17); (b) The unstable modes are solutions of dispersion relation (18) and are plotted for
vth/c = 0.1, β0 = 0.06 and A = 1 with dotted line, for A = −0.2 with short dashed line, for
A = −0.6 with long dashed line. For A = −0.8, with solid line (damping) are plotted the
damping rates for the stabilized (damped) solutions. (c) The unstable solutions are plotted
for β0 = 0.04 and A = 1 with dotted line, for A = −0.2 with dashed line, and for A = −0.6
with solid line (damping).

anisotropy is of opposite sign (negative). The growth rates are provided by the same
dispersion relation (18) and are plotted with dotted and dashed curves in Fig. 8(b)
and (c), where we can see how are they reduced for higher (negative) anisotropies.
For a sufficiently large negative anisotropy, the cumulative effect can evenly

suppress the non-resonant filamentation mode along x-axis. In this case, the only
possible excitations are resonantly stabilized by collisionless damping and the ima-
ginary solutions correspond to the damping rates and are plotted with solid curves
in Fig. 8(b) and (c). This is the case of a pure Weibel regime corresponding to a
Weibel emission along the y-axis (see Fig. 1).
Stabilization of the filamentation mode has been also investigated in the same

manner, but for a beam–plasma system and using either simple waterbag or
Maxwellian distributions; see, for example, [10] and [11], respectively. In [10]
the effects of both transverse and parallel temperatures on the linear stability of
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collective electromagnetic modes, and for arbitrary wave-vector orientations ran-
ging from two-stream longitudinal instability to filamentation transverse modes
are discussed. In [11], the temperature effects were minimized assuming only the
anisotropy of the background plasma. For comparison, two similar cases are also
treated here in the following two sections.

4.2. Counterstreams with asymmetric anisotropy

4.2.1. Thermal counterstreaming plasmas with antisymmetric anisotropy. If the coun-
terstreaming plasmas behave as opposite sign anisotropies, A1 = (vth1⊥/vth)2 −1 >
0, A2 = (vth2⊥/vth)2 − 1 < 0, they can be modeled using the following distribution
function

f0(vx, vy , vz ) =
1

2π3/2v2
thvth⊥

e
− v 2

x + v 2
z

v 2
th

[
1

vth1⊥
e

− ( v y + v o ) 2

v 2
th1 ⊥ +

1
vth2⊥

e
− ( v y −v 0 ) 2

v 2
th2 ⊥

]
, (19)

which is schematically presented in Fig. 9(a), and substituting in (7) leads to

εyy = 1 −
ω2
pe

ω2

{
1 +

[
1
4
(A1 + A2) +

1
2

+
v2

0

v2
th

]
Z ′

(
ω

kvth

)}
. (20)

The aperiodic solutions are shown in Fig. 9(b) and (c). For anisotropies of equal
magnitudes, A1 = −A2 , dispersion relation (20) reduces to

εyy = 1 −
ω2
pe

ω2

{
1 +

(
1
2

+
v2

0

v2
th

)
Z ′

(
ω

kvth

)}
, (21)

which looks similarly to (14), but provides two times larger growth rates, as we can
observe in Fig. 9(b). In Fig. 9(c) we show howWeibel and filamentation instabilities
cumulate for a large positive anisotropy, A1 > |A2 |, and generate larger growth
rates (dotted curve), or how the filamentation mode is suppressed (dashed curve)
for a sufficiently large negative anisotropy, A1 < |A2 |.

4.2.2. Two counterstreams with cold and thermally anisotropic distributions. One of
the counterstreaming plasmas is considered to be cold and the other has a thermally
anisotropic particle distribution of a bi-Maxwellian type

f0(vx, vy , vz ) =
1

2π3/2v2
thvth⊥

× exp
(

−v2
x + v2

z

v2
th

)
exp

(
− (vy + v0)2

v2
th⊥

)
+

1
2
δ(vx)δ(vy − v0)δ(vz ),

(22)

and with (22) in (7) we find

εyy = 1 −
ω2
pe

2ω2

(
1 +

k2v2
0

ω2

)
−

ω2
pe

2ω2

{
1 +

[
1
2
(A + 1) +

v2
0

v2
th

]
Z ′

(
ω

kvth

)}
. (23)

Numerical solutions of (23) are plotted in Fig. 10(b), and we observe that as long as
one of the plasma streams may be considered cold, the filamentation mode cannot
be stabilized by a negative and large anisotropy. Moreover, we compare with the
growth rates of a pure filamentation instability in Fig. 3(b), and estimate how
important the cumulative contribution of Weibel instability in Fig. 10(b) can be, as
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Figure 9. (a) Two counterstreaming plasmas with antisymmetric thermall anisotropies,
A1A2 < 0 in (19); (b) Growth rates of the unstable mode are the same when A1 = −A2 < 1,
and they are plotted with dotted line for vth/c = 0.1, β0 = 0.2 and A1 = 0.1 = −A2 , and
with solid line for A1 = 0.4 = −A2 ; (c) Solutions are plotted with dotted line for A1 = 3,
and A2 = −0.1, with dashed line for A1 = 0.1, and A2 = −0.9, and with a solid line for
A1 = 0.1, and A2 = −0.1.

long as the anisotropy is sufficiently large (solid and dashed curves). This case is
presented only for an instructive purpose, because in the limit of a zero stationary
magnetic field, plasma temperature effects must be included [21].

4.2.3. Two counterstreams with isotropic and anisotropic distributions. This final
case is close to that considered by Bret and Deutsch [11]. They investigated the
interplay between filamentation and Weibel instability considering a Maxwellian
relativistic beam, interacting with an anisotropic plasma with a bi-Maxwellian
distribution function. In order to complete our comparative study here, we assume
now the same configuration but where the bulk streaming velocity, v0 , is limited to
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Figure 10. (a) Two counterstreaming plasmas: one is assumed to be cold and the other with
a temperature anisotropy of a bi-Maxwellian type. (b) Growth rates for the unstable mode,
which is the solution of dispersion relation (23): vth/c = 0.1 β0 = v0/c = 0.05 and A = 9
with a solid curve, A = 4 with a dashed curve, A = 0 with a long dashed curve and A = −3
with a dotted curve.

non-relativistic values

f0(vx, vy , vz ) =
1

2π3/2v2
th

exp
(

−v2
x + v2

z

v2
th

)

×
[

1
vth⊥

exp
(

− (vy + v0)2

v2
th⊥

)
+

1
vth

exp
(

− (vy − v0)2

v2
th

)]
(24)

and from (7) is obtained with the corresponding dispersion relation

εyy = 1 −
ω2
pe

ω2

{
1 +

[
1
2

(
1 +

A

2

)
+

v2
0

v2
th

]
Z ′

(
ω

kvth

)}
. (25)

In this case, the cumulative effect of Weibel and filamentation instabilities is shown
in Fig. 11 with dashed and solid curves, which correspond to finite values of the
thermal anisotropy. Comparing the pure filamentation growth rates (A = 0) plotted
here with a dotted curve and in Fig. 4 for three different values of streaming velocity,
v0 , we simply decide that the cumulative unstable mode (dashed and solid curves
in Fig. 11) is significantly faster.

5. Conclusions
We have investigated the filamentation and Weibel instabilities and their cumulat-
ive effect in counterstreaming plasmas with isotropic or anisotropic temperature
distributions of a Maxwellian type. In order to facilitate a comparative investigation
for these two instabilities and to highlight the relevance of their cumulative effect,
we have derived the dispersion relations and we have then plotted the growth rates
systematically for different configurations of counterstreaming thermal plasmas.
For a complete comparative picture, we have first shown how the growth rates

look for each of these instabilities in part (see Sec. 3). Comparing the filamentation

https://doi.org/10.1017/S0022377807007015 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377807007015


Filamentation and Weibel instabilities 31

k
x

y

0.5 1 1.5 2 2.5
K

0.02

0.04

0.06

0.08
W

(a) (b)

0.5 1 1.5 2 2.5 3
K

0.02

0.04

0.06

0.08

0.1
W

(c)

Figure 11. (a) Two counterstreaming thermal plasmas: one is assumed to isotropic and the
other with a thermal anisotropy of a bi-Maxwellian type. (b) Growth rates for the unstable
mode, which is a solution of dispersion relation (23): vth/c = 0.1 β0 = v0/c = 0.05 and
A = 9 (solid curve), A = 4 (dashed curve) and A = 0 (dotted curve). (c) Growth rates for
the unstable mode, which is solution of dispersion relation (23): vth/c = 0.1 β0 = v0/c = 0.1
and A = 9 (solid curve), A = 4 (dashed curve) and A = 0 (dotted curve).

growth rates for cold plasmas or plasmas with an isotropic Maxwellian velocity
distribution function, we observe that the pure filamentation growth rates are
reduced by the thermal effects.
In Sec. 4 we have extended the comparison by introducing a thermal aniso-

tropy of a bi-Maxwellian type for each of the counterstreaming plasmas. All of
the representative cases have been covered either assuming a positive or a negative
temperature anisotropy, or choosing symmetric and asymmetric counterstreams.
In one of their first investigations on the stability of an unmagnetized beam–

plasma system, Thode et al. [20] showed that if a finite plasma temperature is
assumed, then the perpendicular temperature of the beam cannot stabilize the fila-
mentation mode (unless there is a small amount of stationary magnetic field [21]).
This can be also observed here by following successively and comparing the growth
rates plotted in Secs 3.1.1, 3.1.2 and 4.2.2. In the last case, Sec. 4.2.2, it is
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suggestively shown in Fig. 10 how important the influence of the Weibel mode is
as long as one of the streams behaves as a sufficiently high thermal anisotropy. We
should also remark on the Weibel regime imposed by the temperature anisotropy
at large wavelengths, see the solid curve in Fig. 10, where the filamentation growing
mode becomes significantly faster. In this case, at saturation, the growth rate of the
cumulative effect is orders of magnitude larger than that of simple filamentation
mode. This contribution is diminished at small wavelengths, where the filamenta-
tion instability is not affected by the temperature anisotropy of counterstreaming
plasmas. Of particular interest will in this case be the re-evaluation of the magnetic
field strength reached at saturation in non-relativistic flowing models appropri-
ate for many interstellar applications (e.g. the creation of magnetic fields in the
GRBs sources of a powerful synchrotron radiation [4] or in the early universe [5]).
The magnetic energy is expected to saturate to much higher values than those
calculated previously considering only the simple filamentation instability of two
counterstreaming cold plasmas or with isotropic Maxwellian distributions. In these
new approaches should be also added the conditions under which involving baryons
might enhance the magnetic energy to even higher values.
Otherwise, all beam plasma instabilities are dissipative, preventing the beam

energy deposition in fusion plasma experiments, and we have shown in Sec. 4.1.2
that for a sufficiently weak ambient magnetic field and a large negative temper-
ature anisotropy, the cumulative effect can suppress completely the non-resonant
filamentation mode. Thus, it is clearly shown that kinetic effects arising from the
perpendicular temperature of the beam or surrounding plasma could stabilize the
non-resonant filamentation mode in fusion plasma experiments.
Relativistic flows of thermally anisotropic plasmas will be investigated in the

next paper of this series. Such a new comparative analysis would be essential in
getting further support for the filamentation instability (enhanced by the Weibel
effect) as the most plausible mechanism for the origin of the quasistatic mag-
netic field in astrophysical systems containing relativistic jets, e.g., active galactic
nuclei, gamma-ray bursts, galactic microquasar systems and Crab-like supernova
remnants.
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