
Proceedings of the Royal Society of Edinburgh, 134A, 961–984, 2004

Non-classical Riemann solvers with nucleation

P. G. LeFloch
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie and
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We introduce a new non-classical Riemann solver for scalar conservation laws with
concave–convex flux-function. This solver is based on both a kinetic relation, which
determines the propagation speed of (under-compressive) non-classical shock waves,
and a nucleation criterion, which makes a choice between a classical Riemann
solution and a non-classical one. We establish the existence of (non-classical entropy)
solutions of the Cauchy problem and discuss several examples of wave interactions.
We also show the existence of a class of solutions, called splitting–merging solutions,
which are made of two large shocks and small bounded-variation perturbations. The
nucleation solvers, as we call them, are applied to (and actually motivated by) the
theory of thin-film flows; they help explain numerical results observed for such flows.

1. Introduction

We introduce the notion of nucleation condition for solutions of the Riemann prob-
lem for scalar conservation laws in one space variable,

∂tu + ∂xf(u) = 0, (1.1)

in which the (smooth) flux-function f : R → R is non-convex. The nucleation con-
dition introduced here leads to new behaviour of solutions of the Cauchy problem,
consisting of equation (1.1) with initial conditions

u(x, 0) = u0(x). (1.2)

Most notably, equations (1.1), (1.2) can have multiple attractors, i.e. solutions with
different behaviour as t → +∞, corresponding to different data u0 : R → R,
but having the same limits u0(±∞). The setting we propose covers recent studies
of thin-film equations [5, 6], in which a scalar conservation law with non-convex
flux is regularized by fourth-order diffusion. Indeed, this application motivated the
introduction of the nucleation condition.
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For scalar conservation laws, under-compressive shocks (a term introduced first
for non-strictly hyperbolic systems [26]) are propagating discontinuities with charac-
teristics passing through them. These are to be contrasted with compressive shocks,
satisfying the Lax entropy inequalities, which have characteristics impinging from
both sides. In typical situations, under-compressive shocks have to satisfy the addi-
tional condition that they can be associated with travelling wave solutions of a
regularized version of (1.1). Consequently, the family of under-compressive shocks
for a specific equation (1.1) depends on the details of the regularization.

This additional travelling wave condition can be abstracted, and thus disasso-
ciated from the regularization, by embodying it in a so-called kinetic relation, an
additional condition originally motivated by mechanical considerations for systems
of mixed type modelling phase transitions [1, 2, 16, 24, 27, 28]. As in [17], we will
refer to under-compressive shocks defined through a kinetic relation as non-classical
shocks.

For scalar equations, a unique solution of the Riemann problem is obtained by
imposing a single entropy inequality and a kinetic relation and by taking the non-
classical solution (i.e. involving non-classical shocks) whenever it is available; other-
wise taking the classical solution (which is always available). Many results are known
concerning non-classical solutions of the Cauchy problem, including existence and
uniqueness issues, and generalizations to systems, as described in the book of the
first author [17]. Moreover, for conservation laws regularized with second-order
diffusion and dispersion, such as the modified Korteweg–de Vries–Burgers (KdV–
Burgers) equation and generalizations [4, 11, 13, 15, 17], this appears to be the cor-
rect framework. Kinetic relations have also been studied numerically [7, 8, 12, 18].
In particular, using Glimm’s scheme, Chalons and LeFloch [8] studied the time-
asymptotics of non-classical solutions.

For systems of mixed type modelling phase transitions, it is recognized that, on
physical grounds, the classical solution should sometimes be selected, even when the
non-classical solution is available. This led Abeyeratne and Knowles [2] to introduce
the notion of nucleation condition, a rule that selects a unique solution of the
Riemann problem, again based on physically reasonable modelling. The issue of non-
uniqueness of solutions and nucleation is also considered by Truskinovsky [22,29].

Recent studies of thin-film equations [5, 6], in which surface tension generates a
fourth-order diffusion regularization of a scalar conservation law, have highlighted
new behaviour that we seek to explain with a nucleation condition for scalar equa-
tions. Our purpose in this paper is to introduce the nucleation condition for scalar
conservation laws, and to explore some consequences. We are particularly interested
in time-asymptotics of non-classical solutions.

In § 2, we recall basic notions of entropy dissipation [17], and in § 3 we introduce
a new Riemann solver that incorporates both a kinetic relation and a nucleation
condition. The nucleation condition provides a selection mechanism to determine
if the evolution is classical or non-classical. The difference from earlier studies of
non-classical shocks for scalar equations is that, previously, there was a continuous
transition from classical to non-classical shocks; in fact, the solution of the Riemann
problem was continuous in L1 with respect to the data [17]. Here, with the new
nucleation condition, we lose this continuous dependence, an important departure
from standard hyperbolic theory. Nonetheless, we are still able to prove existence
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of solutions of the Cauchy problem, in § 4, by the technique of wavefront tracking.
Indeed, the argument is almost entirely that of the earlier theory [3, 17], except
that here the classical solution is sometimes selected when there is an alternative
non-classical solution available, so that solutions involve non-classical waves less
often.

In § 5, we give three examples that explore consequences of the new Riemann
solver. One of our explicit examples leads us, in § 6, to explore a class of solutions
exhibiting repeated wave splitting and merging: an initially classical shock may be
split into a non-classical shock and another classical shock; the two waves can also
reunite at a later time. For the convergence analysis, we derive uniform bounds on
a modified total variation of the wavefront-tracking solutions. This is achieved by
extending a notion in [3, 17] and modifying the strength of the non-classical wave
so that the ‘generalized’ total variation is decreasing or continuous at each merging
and splitting. We can show that when the nucleation condition is imposed, the total
variation decreases by a finite amount at each merging/splitting. Therefore, only
finitely many mergings/splittings can take place, which allows us to conclude that
asymptotically in time, the solution converges to a single classical shock or else a
non-classical shock and a classical shock.

In § 6, the connection with the structures observed numerically for thin films is
explained. We conclude in § 7 with some discussion of the results and their wider
implications.

2. Preliminaries

Consider the scalar conservation law

∂tu + ∂xf(u) = 0, u = u(x, t) ∈ R, x ∈ R, t > 0, (2.1)

where f : R �→ R is a given smooth flux function. We consider the concave–convex
case, in which f satisfies the additional conditions

uf ′′(u) > 0 for u �= 0,

f ′′′(0) �= 0, lim
u→±∞

f ′(u) = +∞.

}
(2.2)

A shock wave from u− to u+ is defined (in this paper) to be a weak solution
u = u(x, t) that is piecewise constant near a discontinuity x = st + c, where the
shock speed s = ā(u−, u+) is given by the Rankine–Hugoniot condition

ā(u−, u+) :=
f(u−) − f(u+)

u− − u+
,

c is a real parameter and u± := u(st + c±, t). A shock wave from u− to u+ is a
classical shock if it satisfies the Lax shock inequalities

f ′(u+) � ā(u−, u+) � f ′(u−).

We consider equation (2.1) supplemented by a single entropy inequality

∂tU(u) + ∂xF (u) � 0 (2.3)

https://doi.org/10.1017/S0308210500003577 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003577


964 P. G. LeFloch and M. Shearer

in the weak sense, where U , F is a specific entropy-entropy flux pair: U : R → R

is convex and F : R → R related to U by compatibility with the conservation
law (2.1),

F ′(u) := f ′(u)U ′(u).

The entropy inequality (2.3) gives rise to a restriction on shock waves in addition
to the Rankine–Hugoniot condition. We define the entropy dissipation function
E : R × R → R by

E(u−, u+) := −ā(u−, u+)(U(u+) − U(u−)) + F (u+) − F (u−).

The entropy inequality (2.3) holds on a shock wave from u− to u+ if and only if

E(u−, u+) � 0. (2.4)

Moreover, classical shocks satisfy (2.4).
As in [17], we define the tangent function ϕ� : R → R associated with the flux f

by ϕ�(u) = u if and only if u = 0, and

f ′(ϕ�(u)) =
f(u) − f(ϕ�(u))

u − ϕ�(u)
and ϕ�(u) �= u for u �= 0.

Additionally, we define the zero entropy dissipation function ϕ�
0 : R �→ R by

E(u, ϕ�
0(u)) = 0 and ϕ�

0(u) �= u for u �= 0.

It can be checked (see [17, theorem II.3.1]) that

(ϕ�
0 ◦ ϕ�

0)(u) = u, u ∈ R. (2.5)

3. The non-classical solver and the nucleation solver

In this section, we present a non-classical Riemann solver that is different from the
one in [17] in that it sometimes substitutes a classical solution where the earlier
solver used a non-classical solution. The substitution is based on a new ingredient,
the ‘nucleation condition’. The Riemann problem is the initial-value problem for
equation (2.1), in which the initial data are two constants,

u(x, 0) =

{
u�, x < 0,

ur, x > 0.
(3.1)

Imposing the single entropy inequality (2.3) already restricts the class of admissible
solutions. Only one free parameter remains to be determined, and the range of non-
classical shocks is constrained by the zero-entropy dissipation function ϕ�

0 defined
above. Therefore, as in [17], we supplement the Riemann problem with an additional
selection criterion called a kinetic relation.

Let ϕ� : R �→ R be a kinetic function, i.e. by definition, a monotone decreasing
and Lipschitz continuous mapping such that

ϕ�
0(u) < ϕ�(u) � ϕ�(u), u > 0,

ϕ�(u) � ϕ�(u) < ϕ�
0(u), u < 0.

}
(3.2)
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The kinetic function will be applied to select non-classical shock waves. Observe
that (2.5) and (3.2) imply the following contraction property :

|ϕ�(ϕ�(u))| < |u|, u �= 0. (3.3)

From ϕ�, we also define its companion function ϕ� : R → R as follows: ϕ�(u) = ϕ�(u)
if ϕ�(u) = ϕ�(u); otherwise, ϕ�(u) �= ϕ�(u) �= u is specified by

f(u) − f(ϕ�(u))
u − ϕ�(u)

=
f(u) − f(ϕ�(u))

u − ϕ�(u)
, u �= 0. (3.4)

Similarly, from the zero-dissipation function ϕ�
0, we define ϕ�

0 : R → R by replacing
ϕ� by ϕ�

0 in (3.4). By (3.2), we have

ϕ�(u) � ϕ�(u) < ϕ�
0(u), u > 0,

ϕ�
0(u) < ϕ�(u) � ϕ�(u), u < 0.

Now we specify all the shock waves that we temporarily deem admissible.

(i) All classical shocks.

(ii) All non-classical shocks connecting states u−, u+ satisfying the kinetic rela-
tion

u+ = ϕ�(u−). (3.5)

Restricting attention to admissible shock waves and rarefaction waves only, the
Riemann problem admits fewer solutions than under the entropy inequality alone,
but there are still two solutions for every choice of ur < ϕ�(u�) if u� > 0 (and for
every ur > ϕ�(u�) if u� < 0), provided ϕ�(u�) �= ϕ�(u�). For definiteness, consider a
positive left-hand state u� > 0. One solution is classical: it consists of either a single
shock (if ur > ϕ�(u�)), or a pattern made of a (right-characteristic) shock followed
by a rarefaction (if ur < ϕ�(u�)). The other solution is non-classical: it consists of
an non-classical shock from u� to ϕ�(u�) and a faster wave from ϕ�(u�) to ur, either
a classical shock (if ur > ϕ�(u�)), or a rarefaction (if ur < ϕ�(u�)).

3.1. The nucleation criterion

To select a unique solution of the Riemann problem (for given initial data u�,
ur for which there are two solutions satisfying the entropy inequality (2.3) and
the kinetic relation (3.5)), we need to introduce a selection rule. In principle, the
selection rule could take the following abstract form: for each u�, there corresponds
a set N (u�), with

N (u�) ⊂ {u < ϕ�(u�)} if u� > 0, N (u�) ⊂ {u > ϕ�(u�)} if u� < 0,

and N (0) := ∅. The selection rule would then be as follows:

if ur ∈ N (u�), then the solution is non-classical,
otherwise, the solution is classical. (3.6)

For example, with the choice N (u�) = ∅ we take the classical solution for all ur
(for this value of u�). At the other extreme, if N (u�) := {u < ϕ�(u�)}, then we
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Figure 1. Solution of the Riemann problem using the nucleation solver:
C, classical shock; R, rarefaction; N, non-classical shock.

recover the solution specified in [17]; this latter rule selects the non-classical solution
whenever it is available.

A simple selection rule that we call the nucleation condition is to define the
set N (u�) through a threshold. Specifically, we consider a Lipschitz continuous
nucleation threshold function ϕN : R → R with the property

ϕ�(u) � ϕN(u) � ϕ�(u), u > 0,

ϕ�(u) � ϕN(u) � ϕ�(u), u < 0.

}
(3.7)

We then define the non-classical set

N (u�) :=

{
[ϕN(u�, +∞)), u� < 0,

(−∞, ϕN(u�)], u� > 0.
(3.8)

In conclusion, we have the following definition

Definition 3.1. Consider a kinetic function and a nucleation threshold satisfy-
ing (3.2) and (3.7). The Riemann solver with kinetics and nucleation is the solution
of the Riemann problem with data u�, ur that satisfies the entropy inequality (2.3),
the kinetic relation (3.5) and the nucleation criterion (3.6), (3.8). For brevity, we
refer to this Riemann solver as the nucleation solver (it is shown graphically in
figure 1).

It will be convenient to define the set of admissible shocks to be those that appear
in solutions of the Riemann solver with kinetics and nucleation.

Definition 3.2. For a given u− > 0, a classical shock from u− to u+ is said to
be admissible if and only if u+ � ϕN(u−) and, similarly, if u− < 0, the classical
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shock is admissible if and only if u+ � ϕN(u−). All non-classical shocks satisfying
the kinetic relation are admissible.

It is worth emphasizing that the Riemann solver with kinetics and nucleation is
not uniquely characterized by the family of admissible waves, consisting of rarefac-
tions and admissible shocks. Indeed, we show with examples that some Riemann
problems have two solutions that can both be constructed from admissible shocks;
only one of them is selected by the nucleation solver. Interestingly enough, as will
be clarified in the following section, the second solution is significant for the theory,
since it can appear as the asymptotic solution for large time.

It is also worth pointing out that the solution of the Riemann problem with
nucleation is not continuous in L1 with respect to the initial data, unless ϕN ≡ ϕ�.
Again, this will be illustrated shortly with examples.

Remark 3.3. If the restriction ϕ�(u) � ϕN(u) is relaxed to allow ϕN(u�) < ϕ�(u�),
then the transition from classical to non-classical solution takes place with a shock-
rarefaction giving way to a non-classical shock-classical shock structure. This makes
analysis of wave interactions more complicated, so we adopt the restriction (3.7)
for simplicity.

Remark 3.4. No ‘natural’ choice can be made for the solution of the Riemann
problem with data u� and ur = ϕN(u�). Indeed, it is not difficult to see that, by
approaching the Riemann data with suitably constructed sequences of initial data,
one can approach both the (classical) one-wave and the (non-classical) two-wave
solutions of this Riemann problem. Modulo minor changes, all of the conclusions
in the present paper remain valid if one replaces the non-classical set in (3.8) with
the open set,

N (u�) =

{
(ϕN(u�), +∞), u� < 0,

(−∞, ϕN(u�)), u� > 0.

4. The Cauchy problem

In this section we prove the existence of solutions for the Cauchy problem

δ∂tu + ∂xf(u) = 0, u = u(x, t) ∈ R, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

}
(4.1)

by constructing approximate solutions by Dafermos’s wavefront-tracking scheme [9,
14,17].

Let u0 : R → R be a function with bounded variation and, for (small) h > 0, let
uh

0 be a piecewise constant approximation of u0 that has finitely many jumps and
satisfies the uniform bounds

inf u0 � uh
0 � supu0,

TV (uh
0 ) � TV (u0),

uh
0 → u0 in L1

loc as h → 0.

⎫⎪⎬
⎪⎭ (4.2)
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At each jump point x of uh
0 , solve (at least locally in time) the Riemann problem

associated with the initial data uh
0 (x±), by using the nucleation solver described

in § 3.
As is usual, rarefaction fans are decomposed into small rarefaction fronts (i.e. ex-

pansion shocks) with small strength less than h. Each small jump travels with the
speed determined by the Rankine–Hugoniot relation. Patching together these local
solutions, we obtain the approximate solution uh = uh(x, t) defined up to the first
interaction time t1 when two waves from different Riemann solutions meet. At each
wave interaction, we have a Riemann problem, which is solved by using the nucle-
ation solver of § 3, decomposing the jump into propagating fronts. Here, contrary
to what is done at the initial time, we simply replace any outgoing rarefaction fan
by a single rarefaction front travelling with the Rankine–Hugoniot speed. Hence
there are at most two outgoing waves in each Riemann solution, so that the total
number of waves remains bounded. Under suitable conditions, specified in detail
just below, the argument in [17, lemma IV.3.5] establishes that the number of wave
interactions is also finite; consequently, uh(x, t) is defined for all (x, t).

In addition to the set of assumptions already put forward in § 2, we also assume
that the Lipschitz constant of ϕ� ◦ ϕ� near u = 0 is strictly less than 1,

lim sup
u,v→0,

u �=v

∣∣∣∣ϕ� ◦ ϕ�(v) − ϕ� ◦ ϕ�(u)
v − u

∣∣∣∣ < 1, (4.3)

and that the companion function ϕ� : R → R associated with the kinetic function ϕ�

satisfies
uϕ�(u) � 0, u ∈ R. (4.4)

Condition (4.4) implies that the Riemann solution is always classical when the
Riemann data are in the same region of convexity or concavity of f . (All of these
assumptions are fulfilled in most situations of interest (see [17]).)

The following theorem establishes the existence of a solution of the Cauchy prob-
lem, defined using the nucleation solver. It will be convenient to introduce the
notation u(t) for the function x �→ u(x, t).

Theorem 4.1. Consider the Cauchy problem (4.1) for the conservation law associ-
ated with a concave–convex flux-function f satisfying (2.2). Consider a kinetic func-
tion ϕ� satisfying the assumptions (3.2), (4.3) and (4.4), and a threshold nucleation
function ϕN satisfying (3.7).

(i) Then, for arbitrary initial data u0 ∈ BV (R), the wavefront-tracking approxi-
mations determined from the non-classical Riemann solver satisfy, for some
constants C1, C2 > 0 depending only on ‖u0‖L∞(R) and on the data f and ϕ�,

‖uh(t)‖L∞(R) � C1, (4.5 a)

TV (uh(t)) � C2TV (u0), (4.5 b)

‖uh(t) − uh(s)‖L1(R) � C2TV (u0) sup
|w|�C1

|f ′(w)||t − s|, (4.5 c)

for all s, t � 0.
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(ii) A subsequence of uh converges strongly in L1
loc to a weak solution u = u(x, t)

of the Cauchy problem (4.1), with

‖u(t)‖L∞(R) � C1, t � 0, (4.6 a)
TV (u(t)) � C2TV (u0), t � 0, (4.6 b)

‖u(t2) − u(t1)‖L1(R) � C2TV (u0) sup
|w|�C1

|f ′||t2 − t1|, t1, t2 � 0. (4.6 c)

(iii) In addition, the solution u satisfies the entropy inequality

δ∂tU(u) + ∂xF (u) � 0. (4.7)

Proof. The proof is virtually identical to the one given in [3,17]. The only difference
comes in the choice of the Riemann solver, which is taken here to be the nucleation
solver described in § 3. The proof is based on a careful analysis of interaction cases.
The novelty here is that several interaction cases are now solved with the classi-
cal Riemann solution rather than with the non-classical one. Modulo this, all the
arguments of proof go through (see [17, § IV-3]).

Based on theorem 4.1, we can now define a solution operator, providing us with
the non-classical solutions with nucleation at time t, by

Stu0 := lim
h→0

uh(x, t), (4.8)

in which uh is the wave-tracking solution associated with a specific sequence of
initial data uh

0 . By theorem 4.1, the limit in (4.8) exists, at least for a subsequence
h → 0.

Some important remarks should be made on the solution operator St. Since we
do not have a uniqueness result (and we do not expect the solutions to be unique),
the operator St need not be a semi-group. Modifying the subsequence h → 0 or
choosing another sequence of initial data, uh

0 may generate a different solution Stu0.
Strictly speaking, St does not depend upon u0 only, but on the approximations uh

0
and the subsequence h → 0 as well.

When no nucleation is allowed, that is, when ϕN ≡ ϕ�, it is conjectured in [17]
that the solutions constructed in theorem 4.1 are uniquely determined by their
initial data. More precisely, St is expected to be an L1 Lipschitz continuous semi-
group of solutions, satisfying, therefore,

St ◦ Ss = St+s, t, s � 0, (4.9)

and
‖Stu0 − Ssu0‖L1(R) � C(‖v0 − u0‖L1(R) + |t − s|). (4.10)

When ϕN �= ϕ�, both properties (4.9) and (4.10) no longer hold for the solution
operator generated from the solver with nucleation. To see that the solution opera-
tor is not continuous with respect to its initial data, consider the sequence of initial
data

uη
0(x) =

{
u∗, x < 0,

ϕN(u∗) + η, x > 0,
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where u∗ > 0 is a point where ϕN(u∗) < ϕ�(u∗). We have

lim
η→0

‖uη
0 − u−η

0 ‖L1(R) = 0,

but the corresponding solution at any time t > 0 is a single shock if η > 0 but a
two wave pattern if η < 0, and therefore

lim
η→0

‖Stu
η
0 − Stu

−η
0 ‖L1(R) > 0.

Theorem 4.1 applies, in particular, to initial data that are perturbations of Rie-
mann data,

lim
x→−∞

u0(x) = u�, lim
x→+∞

u0(x) = ur,

where u�, ur are given. Solutions generated by wavefront tracking satisfy the prop-
erty of propagation with finite speed and it can be checked that

lim
x→−∞

(Stu0)(x) = u�, lim
x→+∞

(Stu0)(x) = ur

for all times t. As already pointed out at the end of § 3, in some range for the data
u� and ur, the Riemann problem can be solved using admissible waves with two
different patterns: a single shock wave or a two-wave pattern. Let us refer here to
these two solutions as w1 and w2.

Heuristically, when the Riemann data are within the range where two solutions
exist, we expect the solution Stu0 to converge asymptotically in time toward one of
these two admissible Riemann solutions. Introducing the similarity variable ξ = x/t,
we define

w(ξ) := lim
t�→∞

(Stu0)(ξt),

assuming that this limit exists.
A significant open problem is to determine conditions on the initial data (or

rather conditions on the sequence of initial data uh
0 ) which would ensure that w

coincide with one of the two solutions w1 and w2. That is, to determine the domains
of attraction of the asymptotic solutions w1, w2. It seems that no simple criterion
is available. For instance, a condition on the amplitude of the initial data would not
be sufficient, as waves can be cancelled out. In examples 4.2–4.4 below, we illustrate
the difficulties with simple piecewise constant initial data.

Example 4.2 (two possible time-asymptotic behaviours). In this example, we give
two choices of piecewise constant initial data,

u(x, 0) = u
(j)
0 (x),

for which the solution using wavefront tracking has different asymptotic behaviour
as t → +∞, even though the initial data have the same limits u± as x → ±∞.
The conclusion from this example is that solutions of the Cauchy problem need
not converge to the solution singled out by the nucleation solver with initial data
u±.

Let u� > 0, and let ur ∈ (ϕN(u�), ϕ�(u�)). Thus the solution of the Riemann
problem given by the nucleation solver is a single classical shock from u� to ur.
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Figure 2. Two possible time-asymptotic behaviours (example 4.2).

Now let u
(1)
m ∈ (ϕ�(u�), ϕN(u�)) and let u

(2)
m ∈ (ϕN(u�), ur). Then we define initial

data

u
(j)
0 (x) :=

⎧⎪⎪⎨
⎪⎪⎩

u�, x < 0,

u
(j)
m , 0 < x < 1,

ur, x > 1.

The solutions with these choices of initial data are shown in figure 2. In the figure,
the waves are labelled ‘N’ for non-classical shock, ‘C’ for classical shock and ‘R’ for
rarefaction. The arrows indicate whether the solution u is increasing or decreasing
from left to right across the wave. The asymptotic behaviour of the solutions as
t → ∞ is quite different: the corresponding solution u(1) and u(2) having exactly
one wave and two waves, respectively.

Example 4.3 (the order in which waves interact does matter). One might specu-
late that the regions of attraction of the two attractors identified in example 4.2
could be characterized by a simple threshold condition on the range of the initial
data, saying, roughly speaking, that, under small perturbations, a single classical
shock would split into a two-wave structure if and only if the perturbation exceeds
some threshold. In this example, we show that a threshold is not available, lead-
ing us to conclude that the boundary between regions of attraction may be quite
complex.
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ϕu2 =     (u1)ϕu1 =     (u  )
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Figure 3. The order in which waves interact does matter (example 4.3):
(i) a large, b − a small; (ii) a small, b − a large.

Consider initial data u(x, 0) = u0(x) shown in figure 3,

u0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u�, x < 0,

u1, 0 < x < a,

u2, a < x < b,

ur, x > b,

where u1 = ϕ�(u�) and u2 = ϕ�(u1). (These seemingly special relationships between
the intermediate states merely simplify the solution; nearby choices for u1, u2 give
rise to further wave interactions, but otherwise the structure of the solution is the
same.) In order to have the possibility of no non-classical shocks in the long-time
behaviour, we let ur satisfy ϕN(u�) < ur < ϕ�(u�).
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Figure 4. Splitting/merging solutions (example 4.4).

The spacing defined by the locations a and b controls the subsequent motion. If a
is large compared with b−a, then the non-classical waves are spaced far apart, and
the slower wave will first catch up to the classical shock from u2 to ur. The result,
shown in figure 4, is a fast classical shock from u1 to ur, which moves ahead of the
non-classical shock from u� to u1.

When a is small compared with b − a, then the non-classical wave from u� to u1
collides with the slower one from u1 to u2, before the latter wave can catch up to the
classical compressive shock from u2 to ur. The result of the interaction between these
two non-classical waves is simple cancellation, leaving a fast compressive shock.
This shock then quickly overtakes the classical shock from u2 to ur, leaving only
the classical shock from u� to ur. This is illustrated in figure 3. Thus, although u1
is well below the nucleation threshold ϕN(u�), nonetheless the asymptotic solution
need not contain any non-classical shocks.

Example 4.4 (splitting/merging solutions). In this example, we demonstrate the
splitting of a classical shock into a non-classical shock and a classical shock, and
then the merging of this structure back into a classical shock. In the next section
we give a theoretical treatment for general initial data near that of the example,
showing repeated splitting and merging.

Consider initial data of the following form (see figure 4):

u0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u�, x < 0,

u1, 0 < x < a,

u2, a < x < b,

ur, x > b.

We assume u� > 0, and the following inequalities:

ϕ�(u�) < u2 < ϕN(u�) < u1 < ϕ�(u�) < ur < ϕN(ϕ�(u�)) < u�.

Now the solution of the Riemann problem with data u1, u2 is a rarefaction wave,
which will interact quickly (if a is small) with the classical shock from u� to u1. To
simplify this interaction, we replace (as in wavefront tracking) the rarefaction by
an expansion shock from u1 to u2. With this observation, the solution of the initial-
value problem is shown in figure 4, assuming that a is small compared with b − a.
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Figure 5. Splitting/merging solution.

The first interaction results in a pair of shocks, a non-classical shock N↓ and a
classical shock C↑. (Recall from example 4.2 that the arrows are a convenient way
to record whether u is increasing or decreasing across the shock from left to right.)
Subsequently, a shock approaches from the right, and slows down the C↑ to a speed
that is below that of the N↓ shock to the left, resulting in the final merging.

In the analysis of the next section, we take ϕN(u�) close to ϕ�(u�), so that the
construction makes sense when u1, u2, ur are all close. Then the main features of
figure 4 are big shocks, either N↓ or C↑, from ϕ�(u�) to one of u2 or ur, and C↓,
from u� to u1 or ur. The analysis will show how this basic structure of big waves
and small waves is maintained when the big wave structure is perturbed slightly.

5. A class of splitting/merging solutions

In this section, generalizing example 4.4, we establish the existence of a large class
of solutions whose structure, illustrated in figure 5, consists of large shocks (one
or two at each time t) undergoing repeated splitting and merging. The large waves
separate regions in the (x, t)-plane where the solution has small and decaying total
variation. Interestingly enough, we will see that the splitting/merging feature can
take place infinitely many times when ϕN ≡ ϕ� but only finitely many times when
a nucleation criterion is acting.

We restrict attention to initial data having a specific structure that we now
describe. Given u∗ > 0, we consider initial data u(x, 0) = u0(x) of the form

u0(x) = uN
0 (x) + v0(x), (5.1)

where

uN
0 (x) :=

{
u∗, x < 0,

ϕN(u∗), x > 0,

and v0 : R → R has small total variation,

TV (v0) < ε. (5.2)
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In addition to the size of the perturbation ε, we have another parameter in the
problem

η := ϕ�(u∗) − ϕN(u∗), (5.3)

which we also assume to be small. Note that uN
0 is a single step function which

admits two distinct Riemann solutions made of admissible waves.
If the perturbation v0 were chosen to be a single step (located at x = 0), con-

necting 0 to δ (with δ sufficiently small), then the solution of the corresponding
initial-value problem depends on the sign of δ.

(i) For δ > 0, the Riemann solution is a single classical shock C↓,

u↓(x, t) :=

{
u∗, x < st,

ϕN(u∗) + δ, x > st,
(5.4)

in which s := ā(u∗, ϕ
N(u�) + δ).

(ii) For δ < 0, we get a two-wave solution u↓↑(x, t) consisting of an non-classical
shock N↓ from u∗ to ϕ�(u∗) plus a faster classical shock C↑ from ϕ�(u∗) to
ϕN(u∗) − δ.

We are going to exhibit a certain structure for the solution of the initial-value
problem (4.1), (5.1), in which these two solutions of the Riemann problem play
a dominant role. Specifically, we will find (illustrated in figure 5) a solution with
either one or two big waves at each time t > 0. When there is a single wave, it is
a perturbation of the solution u↓, and when there are two waves, the solution is a
perturbation of u↓↑.

If we further assume ϕN(u) < ϕ�(u), i.e. that the nucleation condition does not
coincide with the kinetic relation, then we show that there are a finite number
of splittings, in which C↓ gives way to N↓ and C↑, and corresponding mergings, in
which N↓ and C↑ interact (i.e. meet), resulting in C↓. Thus the long-time behaviour
of the solution, with either one or two big waves, is achieved after a finite time.
As for classical entropy solutions (see [10]), the small perturbations in the solution
not represented by these big waves decay in time, so that the solution approaches
a piecewise constant function of x as t → +∞.

In figure 5, we identify the locus of big shocks N↓ and C↓ as a curve x = y(t), and
the locus of the big shock C↑ by x = z(t). Observe that the curve z(t) is defined
only for those times t when the solution has a double-wave structure. Away from
these curves, the solution is expected to have small total variation (of order ε). In
the following, a function having this structure will be called a splitting/merging
solution.

For the analysis, we introduce the notion of generalized strength (which extends
that of [17]). It is based upon redefining the strength of non-classical shocks via a
Lipschitz continuous function ψ : R �→ R satisfying

ϕN(u) � ψ(u) � ϕ�(u), u > 0,

ϕ�(u) � ψ(u) � ϕN(u), u < 0.

}
(5.5)
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A first attempt is to define the generalized strength of the non-classical shock
connecting u to ϕ�(u) (with u > 0, for instance) to be

σψ(u) := (u − ψ(u)) − (ψ(u) − ϕ�(u)). (5.6)

When ϕN ≡ ϕ�, this choice ensures that the strengths are continuous (up to per-
turbation due to small waves) when the two large waves combine together or when
a classical shock splits (see [17, remarks VIII-1.2]. More generally, when ϕN �= ϕ�,
equation (5.6) ensures that the strengths are decreasing at mergings and splittings.
Formula (5.6) needs to be modified, as we now discuss.

First, to see the role of the range of ψ, consider the two extreme choices

σ� := σϕ�

, σN := σϕN
.

Since σψ is linear and decreasing with respect to ψ, we have the following property:

σ�(u) � σψ(u) � σN(u) for all u > 0.

Thus, in order that the generalized strength is positive, no matter what the choice
of ψ(u) ∈ [ϕN(u), ϕ�(u)], we would need to assume that

u − ϕ�(u) > ϕ�(u) − ϕ�(u), u > 0. (5.7)

Inequality (5.7) is satisfied if ϕ�(u) > −u and ϕ�(u) < 0. For example, this is
true for all u > 0 if f is an odd function and the entropy function is U(u) = 1

2u2.
Similarly, these inequalities are satisfied for u near zero (see [17, ch. VIII]).

To cover general flux-functions and kinetic functions beyond those satisfying
equation (5.7), we also modify the strength of the big, increasing classical shock C↑

located at z = z(t) (when it exists in the solution). If C↑ connects states u−, u+,
say, we define its strength as ϕ�(u−) − ϕ�(u+) > 0. Then, instead of (5.6), we set

σψ(u) := (u − ψ(u)) − (ϕ� ◦ ϕ�(u) − ϕ� ◦ ψ(u)). (5.8)

The continuity/decreasing properties mentioned above still hold. In addition, since,
for u > 0,

ψ(u) < ϕ� ◦ ψ(u) < ϕ� ◦ ϕ�(u) < u,

we also have the following result.

Lemma 5.1. The generalized strength σψ(u) defined in (5.8) is strictly positive.

In defining the generalized total variation functional, we distinguish between
the big waves and the (two or three) regions where the solution has small oscil-
lations. Consider a piecewise constant, approximate, splitting/merging solution
u = uh(x, t), associated with the shock curves y = yh(t) and z = zh(t). It is con-
venient to set zh(t) = yh(t) when the solution contains a single shock. We define
separately the total variation of small waves located to the left of the curve yh(t),
between the two curves and to the right of the curve zh(t),

V h
left(t) := TV

yh(t)
−∞ (uh(t)) and V h

middle(t) := TV
zh(t)
yh(t) (uh(t))

and
V h

right(t) := TV +∞
zh(t)(u

h(t)).
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We also set
V h(t) = V h

left(t) + κ0V
h
middle(t) + κ0V

h
right(t),

in which κ0 > 0 is a small constant that is chosen in the proof of theorem 5.2 below.
The strength of the big waves is determined by the functional Wh(t), defined by

Wh(t) :=

{
σψ(u−) + |ϕ� ◦ ũ+ − ϕ� ◦ ũ−|, yh(t) is a non-classical shock,

|u+ − u−|, yh(t) is a classical shock,
(5.9)

where
u± := lim

x→yh(t)±
uh(x, t), ũ± := lim

x→zh(t)±
uh(x, t).

Theorem 5.2. Suppose that ε and η > 0 are sufficiently small and let us restrict
attention to initial data of the form (5.1), satisfying (5.2). Then the piecewise con-
stant approximate solutions uh = uh(x, t) constructed from the nucleation solver
have the splitting/merging structure described above. Moreover, there exist suffi-
ciently small positive constants κ0, κ1, κ2 such that, for each t � 0,

V h(t) + κ2W
h(t) � V h(0) + κ2W

h(0) (5.10)

and

V h
left(t) � V h

left(0),

V h
right(t) � V h

right(0),

V h
left(t) + κ1V

h
middle(t) � V h

left(t) + κ1V
h
middle(t).

⎫⎪⎬
⎪⎭ (5.11)

At each splitting, the total variation V h(t) + κ2W
h(t) decreases by at least ψ(u∗) −

ϕN(u∗); at each merging, it decreases by at least ϕ�(u∗) − ψ(u∗).
Since η > 0, we have ϕN(u∗) �= ϕ�(u∗), so that only finitely many mergings

and splittings can take place and the (approximate) solution eventually settles to a
solution having a specified one- or two-wave structure. In the absence of a nucleation
criterion, i.e. when ϕN(u∗) = ϕ�(u∗), the splittings and mergings may continue for
all time.

By letting h → 0, we obtain an exact solution u = u(x, t) having the split-
ting/merging structure and composed of admissible waves only.

Remark 5.3. More precisely, by taking ε arbitrary small, the decreasing amounts
can be taken to be arbitrary close to 2(ψ(u∗) − ϕN(u∗)) and 2(ϕ�(u∗) − ψ(u∗)).

Remark 5.4. The total variation bounds, together with the standard property of
propagation with finite speed, imply the L∞ bounds

|u(x, t) − u∗| � V h
left(t) � V h

left(0) � ε, x < yh(t),

|u(x, t) − ϕN(u∗)| � TV +∞
zh(t)(u

h(t)) � (1 + κ1)ε, x > zh(t),

|u(x, t) − ϕ�(u∗)| � |ϕ�(u(yh(t)−, t)) − ϕ�(u∗)| + TV
zh(t)
yh(t) (uh(t)) � Cε,

yh(t) < x < zh(t).
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Proof. For simplicity, we remove the subscript h throughout the proof. Using the
notation in [17] and in view of the list of interaction patterns given therein, we
obtain the following.

(i) All interactions that do not involve the big waves located at yh(t) and zh(t)
contain only classical waves. The standard total variation is non-increasing at
each of these interactions.

(ii) Consider a classical interaction C↑ involving the big increasing shock and a
small wave. If u� is connected to um by a big shock and um is connected to ur
by a small rarefaction or shock, we have

[W (t)] = |ϕ�(ur) − ϕ�(u�)| − |ϕ�(um) − ϕ�(u�)| � Lip(ϕ�)|ur − um|

and

[Vright(t)] = −|um − u�|,

which implies that κ2W (t) + Vright(t) is decreasing. The case where a small
shock meets the big shock on the left is completely similar, replacing Vright(t)
by Vleft(t).

(iii) The non-classical wave exists in both the incoming and the outgoing pattern
in only a limited family of interactions, classified as cases RN and CN-3 in [17].
In this classification, the letters R, N and C denote rarefaction, non-classical
shock and classical shock, respectively. It is easy to work out when a CN
interaction involves both incoming and outgoing non-classical waves; this is
case CN-3 (more precisely, in the notation of [17], (C↓

+N↓
±)–(N↓′

±C↑′
−)); it occurs

when
0 < um < u� and ur = ϕ�(um) < ϕ�(u�).

The incoming wave strengths are σψ(um) and |um −u�| and the outgoing ones
are σψ(u�) and |ϕ�(u�) − ϕ�(um)|. We find, for the small waves,

[V (t)] = κ0|ϕ�(u�) − ϕ�(um)| − |um − u�| � (κ0 Lip(ϕ�) − 1)|um − u�| < 0,

and for the non-classical wave,

[W (t)] = σψ(u�) − σψ(um) � Lip(σψ)|um − u�|.

Therefore, [V (t) + κ2W (t)] is negative if

κ0 Lip(ϕ�) + κ2 Lip(σψ) < 1.

(iv) The non-classical shock in the incoming pattern is cancelled out by the big
increasing classical shock in case NC and the merge into a single big classical
shock. Case NC is (N↓

±C↑)–(C↓′); it occurs when

um = ϕ�(u�) and ϕ�(u�) < ur < ϕ�(um) < u�.
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The strength of small waves is unchanged. We have, since ϕ�(u�) = um,

[W (t)] = (u� − ur) − σψ(u�) − (ϕ�(um) − ϕ�(ur))
= (u� − ur) − (u� − ψ(u�))

− (ϕ� ◦ ψ(u�) − ϕ� ◦ ϕ�(u�)) − (ϕ�(um) − ϕ�(ur))

= −ur + ϕ�(ur) + ψ(u�) − ϕ� ◦ ψ(u�).

We find, since ψ(u�) < ϕ�(u�) < ur and ϕ� is monotonically decreasing, that

[W (t)] = −|ψ(u�) − ur| − |ϕ� ◦ ψ(u�) − ϕ�(ur)|
� −|ϕ�(u�) − ur| − |ϕ� ◦ ϕ�(u�) − ϕ�(ur)|
< 0.

In addition, since u� is close to u∗, we have the following bound for the
decrease:

[W (t)] � − 1
2 (ϕ�(u∗) − ψ(u∗)).

(v) The non-classical wave is created from the interaction of classical waves in
case CR-4, (C↓

±R↓
−)–(N↓′

±C↑′
−), which occurs when

ϕ�(u�) < ur < ϕ�(u�) < um � 0 < u�.

For the small waves, we find (as in [17])

[V (t)] = −κ0(um − ur) < 0,

and for the big waves,

[W (t)] = σψ(u�) − (u� − um) + (−ϕ�(ur) + ϕ� ◦ ϕ�(u�))

= (u� − ψ(u�)) + (ϕ� ◦ ψ(u�) − ϕ� ◦ ϕ�(u�))

− (u� − um) + (−ϕ�(ur) + ϕ� ◦ ϕ�(u�))

= −ψ(u�) + um − ϕ�(ur) + ϕ� ◦ ψ(u�).

Hence

[V (t) + κ2W (t)] = −κ0(um − ur) + κ2(−ψ(u�) + um − ϕ�(ur) + ϕ� ◦ ψ(u�)).

Observe that, when κ0 = κ2 = 1 and ψ = ϕ�, we find

[V (t) + κ2W (t)] = −|ψ(u�) − ur| − |ϕ�(ur) − ϕ� ◦ ψ(u�)| < 0.

More generally, [V (t) + κ2W (t)] is negative if κ2 � κ0 and ψ is arbitrary
within ϕN and ϕ�, since

[V (t) + κ2W (t)] = −κ0(um − ur) + κ2(−ψ(u�) + um − ϕ�(ur) + ϕ� ◦ ψ(u�))

� κ2(−um + ur − ψ(u�) + um − ϕ�(ur) + ϕ� ◦ ψ(u�))

= −κ2(|ψ(u�) − ur| + |ϕ�(ur) − ϕ� ◦ ψ(u�)|)
� −κ2|ψ(u�) − ϕN(u�)|.
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In addition, since u� is close to u∗, we have

(ψ(u�) − ϕN(u�)) � 1
2 (ψ(u∗) − ϕN(u∗)) > 0.

We do not need to consider the interaction cases in [17] in which two non-classical
shocks cancel each other; consequently, all relevant cases are now covered.

Finally, we observe that when the nucleation function is trivial, that is, when
ϕN(u�) = ϕ�(u�) for some u� > 0 (for definiteness), it is easy to associate to the
non-classical shock connecting u� to ϕ�(u�) a solution containing infinitely many
splittings and mergings. Such a solution can be simply constructed by repeating the
splitting/merging feature obtained in example 4.3 above. When ϕN(u�) = ϕ�(u�),
this feature can be repeated infinitely many times by choosing the states u1, u2
in example 4.3 to be arbitrarily close to ϕ�(u�). We only sketch the construction.
One should consider a sequence of constants u0

1, u
0
2, u

1
1, u

1
2, . . . , together with a cor-

responding initial condition with constant states u�, u
0
1, u

0
2, u

1
1, u

1
2, . . . (in this order

with increasing x), separated by discontinuities. The location of the corresponding
jumps is unimportant. By taking the states to be sufficiently close to (but greater
than) u�, one can ensure that the initial condition has bounded total variation. The
splitting/merging feature described in example 4.3 occurs with each pair of states
uk

1 , uk
2 and continues indefinitely. This completes the proof of theorem 5.2.

6. Application to thin liquid films

The thin liquid film equation studied in [6] is

ht + (h2 − h3)x = −(h3hxxx)x + D(h3hx)x. (6.1)

In this equation, h = h(x, t) is the (non-dimensionalized) height of a thin liquid
film moving up an inclined flat solid surface. The non-convex flux

f(h) = h2 − h3, 0 < h < 1,

contains the competing effects of gravity (the cubic contribution) and a surface
stress known as the Marangoni stress, induced in experiments by an imposed con-
stant thermal gradient along the solid surface. The fourth-order diffusion is supplied
by surface tension, and the second-order diffusion, with a (small) non-dimensional
parameter D, represents a contribution of gravity to the pressure. The equation rep-
resents the lubrication approximation of two-dimensional Stokes flow with a free
boundary.

Two kinds of numerical experiments were reported in [6], both setting D = 0
in (6.1). In simulations of initial-value problems, a downstream (precursor layer)
height hr = 0.1 is fixed, and smooth initial data are chosen to approximate a
sequence of Riemann problems, with upstream height h� > 0.1 being varied. In these
simulations, both the single (classical) wave structure and the two-wave structure
with an under-compressive (non-classical) wave are observed to emerge from the
initial data. Moreover, both these structures can be observed for a range of choices
of h�, depending on the internal structure of the initial data. However, for all large
enough h�, roughly h� > 0.4, only the two-wave structure emerges.
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The other numerical experiments were carried out to explain the partial differ-
ential equation (PDE) results in terms of travelling waves approximating shocks.
The travelling wave equation is derived by seeking solutions h = h(y), y = x − st
of (6.1) (again, we take D = 0), and integrating once from y = −∞,

−s(h − h−) + f(h) − f(h−) = −h3h′′′. (6.2)

To this equation we add boundary conditions h(±∞) = h±. Of course, we have

s = ā(h−, h+) := h− + h+ + h2
− + h−h+ + h2

+,

since h± must be equilibria for the ordinary differential equation (6.2).
With h+ = 0.1, it was found that, for an interval I = (h+, hmax) of values of

h−, there are (sometimes multiple) travelling waves approximating the compressive
shock from h− to h+. Moreover, in the interior of this range, there is a value
h− = h∗

− ∈ I for which there is additionally a travelling wave approximating an
under-compressive shock from h̃− > h∗

−, with ā(h∗
−, h+) = ā(h̃−, h+), to h+. For

hmax < h− < h̃−, there are no travelling waves connecting h− to h+.
This structure can be understood from the phase portraits of equation (6.2), as

explained in [6]; our purpose in the present section is to connect the structure with
the kinetic relation and the nucleation condition introduced in this paper. First
of all, the under-compressive travelling wave from h̃− to h+ represents the kinetic
relation. That is, since h̃− and h∗

− depend on h+, we can let

ϕ�(h+) = h̃−, ϕ�(h+) = h∗
−. (6.3)

Similarly, the upper limit hmax on h− for the existence of compressive travelling
waves can be taken to represent the nucleation condition. That is, we can set

ϕN(h+) = hmax. (6.4)

With these identifications, the simulations of initial-value problems for (6.1) can be
understood in terms of the hyperbolic theory of this paper.

However, there may be some features described in [6] in which the dissipation
plays a more detailed role, which are not captured by the hyperbolic theory. For
example, initial data with a narrow plateau, say with width a > 0, can give a
single-wave solution where a broader ridge leads to a double wave structure. This
cannot be explained by wave interactions at the hyperbolic level, and it seems that
for small a the dissipative effects dominate the hyperbolic wave structure initially.
By scaling x and t in equation (6.1) by a large constant A > 0, a small parameter
ε = A−3 is introduced as a coefficient in front of the fourth-order diffusion. It would
be reasonable to expect that, for a > A−1 = ε1/3, the hyperbolic structure would
be recovered in simulations of the dissipative equation. It would be interesting to
do the numerical experiments (see also the discussion in § 7 below.)

On the other hand, it would also be interesting to investigate whether split-
ting/merging solutions can be observed in thin-film flow, and to capture splitting
and merging in numerical solutions. The general topic of relating the kinetic rela-
tion and nucleation condition back to the thin-film application will be addressed in
a forthcoming paper, building on preliminary results in [20].

https://doi.org/10.1017/S0308210500003577 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003577


982 P. G. LeFloch and M. Shearer

7. Concluding remarks

In this paper, we have formulated a theory for scalar conservation laws, motivated
by the regularized equation (6.1), containing both second-order and fourth-order
diffusion. Other regularizations leading to non-classical shocks have second-order
diffusion and dispersion, such as the modified KdV–Burgers equation [4, 15, 17].
However, for these regularizations, it appears that no nucleation condition is needed
to explain the wave structure of solutions observed in numerical solutions of initial-
value problems. This can be explained in part through analysis of travelling waves:
for second-order diffusion plus third-order dispersion, Lax shocks lose travelling
wave profiles precisely when an under-compressive shock admits a travelling wave
profile. In other words, the nucleation condition and kinetic relation coincide.

To put some perspective on the results obtained in this paper, consider the equa-
tion

∂tu + ∂xf(u) = αuxx + βuxxx − γuxxxx, (7.1)

in which all three regularizations are included.
As far as the Riemann problem is concerned, every limiting solution u obtained

when α, β, γ → 0 (for some definite ratios α2/β and α3/γ) must be one of the solu-
tions constructed in § 3, where we described the general selection framework based
on a non-classical set N . This is a consequence of the following two observations.

(1) Any (formal) limit u = limα,β,γ→0u
αβγ of equation (7.1) satisfies the entropy

inequality
1
2∂tu

2 + ∂xg(u) � 0, g(u) :=
∫ u

f ′(u)u du, (7.2)

as follows immediately from the identity

1
2∂tu

2 + ∂xg(u) = −α|ux|2 − γ|uxx|2∂xRαβγ , (7.3)

where ∂xRαβγ is a conservative term, vanishing with α, β, γ → 0.

(2) For any given Riemann data, the set of all Riemann solutions satisfying a
single entropy inequality can be parametrized by a single real parameter.
(The complete description of all Riemann solutions is provided in [17].)

Such limiting solutions are endowed with a specific kinetic function ϕ� and a
specific non-classical set N . It would be very interesting to know if the particular
form of the nucleation solver (3.8) associated with a threshold function ϕN cap-
tures the various limiting solutions of (7.1) accurately, or whether the more general
framework based on a non-classical set N is needed. It must be pointed out that it
is also quite possible that the hyperbolic theory is not the right setting to describe
the limits of (7.1) (assuming that the limits even exist).

Extensive numerical computations of the kinetic function ϕ� have been performed
by the first author and his collaborators for various examples for which the kinetic
function gave a satisfactory description of the singular limits. The dependence of
the kinetic function with respect to the diffusion/dispersion ratio, the form of the
regularization, the order of accuracy of the scheme, etc., were studied numerically
(see, in particular, [7, 12, 18, 21]). In addition, the kinetic function was used in
combination with the Glimm and wavefront-tracking schemes [8,16,17] to compute
solutions at the hyperbolic level of modelling.
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Establishing the existence of the travelling waves for the thin-film model (equa-
tion (7.1) with α = β = 0) turned out to be challenging [5]. On the other hand,
when γ = 0, the travelling wave equation is simpler and the analysis provides spe-
cific information on the kinetic function. An open problem is to show, for the full
model (7.1), the existence of the kinetic function and to analyse its monotonicity
properties and asymptotic behaviour.

In addition, it would be interesting to continue the investigation numerically
and to tabulate the nucleation function and investigate its properties, as it does
not seem to be tractable analytically, even when α = β = 0. Performing further
simulations of the PDE to compare directly with predictions of the hyperbolic
theory, with kinetics and nucleation given by the tabulated functions, will shed
some light on the validity of the framework proposed in this paper. While the kinetic
relation is undoubtedly correct, the nucleation condition is somewhat arbitrary, and
it may be that a different choice of nucleation condition will give a better hyperbolic
representation of the diffusive PDE solutions.

As described earlier, nucleation conditions were introduced originally for systems
of mixed type associated with dynamic phase transitions [1]. For the strictly hyper-
bolic p-system, nucleation conditions have not been needed to specify a unique
solution of the Riemann problem [19, 25]; there is a unique solution whose shock
waves possess travelling wave solutions of a diffusion-dispersion regularization (gen-
erally referred to as viscosity-capillarity). In principle, if higher-order regularization
were called for, then a nucleation condition could be specified along the lines of the
one introduced here for scalar equations, in order to reproduce, at the hyperbolic
level, solutions of the regularized system. However, there is no physical context (to
our knowledge) motivating the introduction of such a condition.

On the other hand, for non-strictly hyperbolic systems with a quadratic flux
(of type II [23]), there are solutions for the same Riemann data using either a
travelling wave condition (which admits non-classical waves) or using only classical
waves. Here, it would be interesting to formulate a kinetic relation for non-classical
shocks, to characterize all non-classical solutions of the Riemann problem, and to
describe a nucleation or selection condition to specify a unique solution of the
Riemann problem.
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