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This paper provides a historical chronology of economic activity in 16th- and
17th-century France that is based on wheat price series in Paris and Toulouse.
A stochastic regime-switching model enables us to benchmark eras and summarize the
salient features of a development difficult to appraise in all its complexity. A new
class of Markov regime-switching time-series models is introduced to allow for
nontrivial interdependencies between different types of cycles that make the economy
grow at an unsteady rate. With a predominantly agricultural cycle, we uncover
a strongly periodic Markov switching scheme for recorded wheat prices from the grain
markets of Paris and Toulouse. Besides the periodic nature of the Markov chain, we also
study whether a common factor determined the state of the economy in Paris and
Toulouse or whether each series moved independently.
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1. INTRODUCTION

Historians typically rely on documents from archives, chronologies of monarchies,
major events such as wars, literature and other forms of art, and so on, to produce
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a synthesis of history. The chronologies extracted from such historical analysis are
typically vague and imprecise. In this paper, we propose to use regime-switching
models applied to two centuries of quarterly wheat price series recorded in the
16th and 17th centuries on the Paris and Toulouse grain markets to outline the
salient features of a development difficult to appraise in all its complexity. Why
wheat prices? Wheat was the commodity that fueled business activity like oil
does today.1 As the single most important commodity, its price followed very
closely the ups and downs of the economy. We not only try to earmark eras of
property and depression using univariate time-series regime-switching models, but
we also attempt to analyze issues such as the interdependency of cycles in the two
cities and the interdependency of seasonal and other components. To accomplish
this we rely on a time-series stochastic regime-switching model introduced in a
companion paper [Ghysels (2000)]. Besides univariate models, we also consider
bivariate ones. Studying comovements of time series through multivariate regime-
switching models has been of interest to empirical macroeconomists in determining
the nature of the business cycle. See Diebold and Rudebusch (1994), Hamilton
and Lin (1994), and Chauvet (1995), for example. The same questions raised in
the business-cycle literature appear here in a historical context. Indeed, we want
to find out whether, despite their geographic separation, cities such as Paris and
Toulouse had a common single factor determining their ups and downs. Obviously,
both had a strong common seasonal that affected the regime-switching scheme in
both cities. However, is that enough to say that they were experiencing the same
phases at the same time? We formally test this and find that both followed an
independent path of regime switches. Of historical interest, of course, is also the
comparison of chronologies for both cities and examination of their common
features.

The paper is organized as follows: In Section 2, we provide a brief discussion of
France in the 16th and 17th centuries, focusing on those elements relevant for the
historical analysis of wheat prices in Paris and Toulouse. In Section 3, we cover
the details of the time-series regime switch in models that we estimated. Both
univariate and bivariate models are considered. We also discuss the chronologies
provided by the time-series models and relate them to historical events. We provide
conclusions in Section 4.

2. PROSPERITY AND DEPRESSION IN 16TH- AND 17TH-CENTURY
FRANCE: A TALE OF TWO CITIES

Many historians have studied agricultural cycles during the so-called Modern pe-
riod covering the three centuries from the 16th century until the French Revolution.2

The prosperity of a nation depended critically on its ability to produce food, par-
ticularly grain, to sustain its workforce, army, tax base, and many other aspects of
economic life. It is therefore no accident that economic historians paid consider-
able attention to grain prices, since they provide an indirect yet revealing measure
of economic activity.3 The study of wheat prices in France has been a fertile area of

https://doi.org/10.1017/S1365100501018028 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501018028


34 CATHERINE BAC ET AL.

research because there are relatively well preserved and detailed records of market
prices, the so-calledmercuriales, for several regions of the country. We examine
price series from two urban areas, namely, Paris and Toulouse. The series were
collected by Frˆeche and Frˆeche (1967) for Toulouse and by Meuvret and Baulant
(1960, 1962) for Paris.

It is a difficult task even to indicate the complexity of France in the 16th century,
which is perhaps why the renowned French historian Fernand Braudel termed it
the “long” 16th century. Literally hundreds of books were written on the economic,
social, and political history of the country. It is absolutely impossible to summarize,
for instance, the two volumes of Book I ofHistoire Economique et Sociale de la
France—1450à 1660edited by Braudel and Labrousse (1970, 1977), or the two
volumes by Duby and Mandrou (1968, 1984),Histoire de la Civilisation Franc¸aise,
or even more specifically the very detailed study on coinage in France by Spooner
(1972) and the several chapters of Volumes III through V of theNew Cambridge
Modern History. It takes erudicity and particular skills to understand, interpret, and
synthesize historical events produced by sources as diverse as archive documents,
chronicles, political institutions, literature, arts, religious movements, and so on.
It is surely not our ambition to match up to such endeavors that many famous
historians undertook. First and foremost, we focus only on economic history.
Second, we use exclusively time-series analysis.

We construct chronologies via regime-switching time-series models applied
to wheat price series from the Paris and Toulouse grain markets and compare
them with the turning points suggested by historical analysis. This comparison is
reminiscent of that by Hamilton (1989), who focused on a single series, that is, U.S.
GNP, to produce a chronology closely related to that published by the NBER, which
is based on less formal methods somewhat similar to what historians try to do. Of
course, for the 16th and 17th centuries, there are no precise NBER chronologies
like that. The limited data sources, often incomplete and imprecise, that historians
have to use result in rather vague and rough estimates of the beginning and end of
different eras.4

The study of agricultural markets since the 16th century must be placed in the
context of the transition from the feudal self-subsistent food sector to the market-
oriented farm supplying grain to the ever-growing urban population of cities like
Lyon, Marseilles, Nantes, Paris, and Toulouse. The 13th century propagated most
of this evolution when French kings consolidated their power [Duby and Mandrou
(1968, p. 191)], large trade fairs emerged (pp. 177–182) and cities took leading
roles in economic activity and cultural events.

Indeed, the 13th century was mostly one of growth and prosperity. The French
population is believed to have peaked at the end of the century at levels not seen
again until the 18th century (Duby and Mandrou 1968, p. 173). It was also a
century rich in intellectual developments; the establishment of the first Parisian
university by Robert de Sorbon between 1192 and 1231 may serve as an example.
The next two centuries were absolutely not carbon copies. The Hundred Years war,
which lasted more than a century from 1337 until 1453, drained public finances
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and eroded some of the monarch’s powers. Then there was the Black Pest, which
took the lives of many citizens, particularly those who lived in confined places,
like city dwellers. Economic activity picked up after the Hundred Years war but the
recovery was not easy and took almost half a century, that is, until the beginning
of the 16th century.

The structure of the agricultural sector is discussed in detail by Le Roy Ladurie
(1977). The boundaries of villages and farmland remained roughly the same from
the 13th until the 17th century and no major technological innovations took place
during that period [Duby and Mandrou (1968, p. 130)]. France was a country
of small farming with very few peasants owning their land. French nobility, who
owned the land, preferred to live in cities, unlike the British landlords who remained
on their property. Farmers divided their harvest into (1) rent payments, often in
grain deliveries but sometimes in gold or silver coins; (2) so-calleddı̂mesto the
local abbey or clergy; (3) a tax imposed by the monarchy; and (4) the residual,
left for sowing and own consumption or sale. Whereas thedı̂meswere levied as
a fraction of the harvest (1 out of every 13 bushels, for instance), the other two
dues were fixed amounts set prior to the harvest season. The landlords sold most
of their grain deliveries on the local grain markets. The fact that farmers kept the
residual was the cause of great hardships whenever crops were destroyed by bad
weather, deliveries or harvesting were disrupted by war, and so on.

To conclude this section, a few words are offered about the data. The prices
are quarterly and nominal and represent observations at the end of the quarter for
one hectoliter of wheat.5 Unfortunately, it was impossible to deflate the nominal
prices because there are no regularly recorded price index series for the 16th and
17th centuries.6 Hence, grain prices are expressed inLivre Tournois, the monetary
unit of that era. The data are surely nonstationary, as Figure 1 shows. They cover
a sample from 1520 to 1698. The series shown in Figure 2 do not start until
1521 because we reserve the first observations to condition initial values. We
study the first differences of the log prices that appear in Figure 2. Because we
do not have deflated data, we cannot disentangle price movements due to real and
monetary factors. Some of the monetary movements could be partly recovered from
the very detailed study by Spooner (1972) on coinage in France. The monetary
system was quite complex, however, as different forms of currency, gold, silver,
copper, and credit often did not meet the growing volume of transactions during
both centuries. We do have some information on the influx of gold, for instance,
which will be used to benchmark eras of nominal price increases as is discussed
later.

A casual look at the series plotted in Figure 2 prompts several observations.
First, the log first differences appear stationary. We discuss formal tests regarding
stationarity shortly. It also appears from the three plots in Figure 2 that there are
several extremely sharp price fluctuations in both markets, but the spurs and drops
in each market do not seem to coincide. The lower part of Figure 2, which displays
the spread, confirms this observation and also will be the subject of more formal
testing.
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3. TIME-SERIES REGIME-SWITCHING MODELS

Section 3.1 presents the univariate time-series model estimation results. Section 3.2
is devoted to the extraction of chronologies. Finally, Section 3.3 covers bivariate
models and examines factors common to both the Paris and Toulouse markets.

3.1. Univariate Time-Series Analysis

Before turning our attention to Markov switching models, we present some linear
features of the data. Table 1 reports linear regression results for the1 log pt series
plotted in Figure 3. The summary statistics appearing at the bottom of the table
show that prices tended to drop during the summer by an average of over 6% in
Toulouse and roughly 1.35% in Paris. They increased more than 4% in Toulouse
and almost 3% in Paris during autumn. The winter boosted prices in Toulouse
by another 5% whereas prices in Paris were stable. Finally, during spring, prices
in Toulouse fell slightly but remained stable in Paris. The first impression is that
the Toulouse market seems to have greater seasonal fluctuations than the Paris
market. A look at the ACF also shows stronger autocorrelations for Paris than for
Toulouse. Also note that the residuals of the AR(8) model with seasonal dummies
reported in the top panel of Table 1 still show considerable seasonality.7 Indeed,
regressing squared residuals on their own past reveals significant seasonality as
well as significant lag effects.

Because we estimate periodic-regime switching models, we test whether peri-
odicity appears in the linear representation reported in Table 1. Let us turn our
attention to Table 2, where parameter estimates of a periodic AR(2) model and
Wald tests for periodicity are reported.8

The results in Table 2 reveal that the third and fourth quarters in particular display
a distinct pattern, if one relies on (robust)t statistics. The joint tests, reported at the
bottom of the table, reenforce this finding. Again, the evidence for the Toulouse
data is stronger than that for the Paris data. The plots in Figure 3 suggest that
1 log pt is stationary.9

We now turn our attention to Markov regime-switching models. Because the data
are sampled at a quarterly frequency, we investigated the following model structure:

1 log pt = µ[(i t , st )] +
4∑

j=1

bj {1 log pt− j − µ[(i t− j , st− j )]} + δt , (1)

whereδt ∼ N[0, σ 2(i t , st )] with σ 2(i t , st )= σ 2(i t ) ∀ st and

µ[(i t , st )] = α0+ α1i t + 1stαs, s= 2, 3, 4, α1 > 0, (2)

while the Markov chain is parameterized as

p(i t+1 = i | i t = i, zt ) = exp(z′tγi )

1+ exp(z′tγi )
(3)
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TABLE 1. Linear regression models of log price changes

Paris market

Model:1 log(pt ) =
4∑

s=1

1(st = s)αs +
8∑

j=1

θ j1 log(pt− j )+ εt

α1 0.6260 θ1 −0.1323 θ5 −0.1785
(1.3007) (0.0768) (0.0431)

α2 −0.2770 θ2 0.0189 θ6 −0.1464
(1.3981) (0.0298) (0.0458)

α3 −0.6847 θ3 0.1006 θ7 −0.0991
(1.6395) (0.0406) (0.0378)

α4 2.5412 θ4 −0.0681 θ8 −0.0161
(1.1415) (0.0405) (0.0357)

Model: ε̂2
t =

4∑
s=1

1(st = s)α̃s +
8∑

j=1

θ̃ j ε̂
2
t− j + µt

α̃1 195.7904 θ̃1 0.2929 θ̃5 0.0245
(140.0948) (0.0429) (0.0088)

α̃2 287.8003 θ̃2 −0.0720 θ̃6 −0.0073
(63.9180) (0.0342) (0.0118)

α̃3 428.6002 θ̃3 0.0339 θ̃7 −0.0079
(100.6385) (0.0155) (0.0096)

α̃4 94.5657 θ̃4 −0.0230 θ̃8 −0.0114
(31.8535) (0.0108) (0.0111)

Some descriptive statistics

Average price changes: Q1:−0.0509 Q2: 0.0291 Q3:−1.3502 Q4: 2.860
ACF: (1)−0.1072 (2) 0.0508 (3) 0.0638 (4)−0.0512 (5) −0.1779

(6)−0.0957 (7)−0.0928 (8)−0.0235 (9)−0.0671 (10)−0.0180

Toulouse market

Model: 1 log(pt ) =
4∑

s=1

1(st = s)αs +
8∑

j=1

θ j1 log(pt− j )+ εt

α1 6.3924 θ1 0.0188 θ5 −0.0611
(1.0125) (0.0047) (0.0350)

α2 −2.1488 θ2 0.0361 θ6 −0.0638
(1.2753) (0.0393) (0.0333)

α3 −7.4921 θ3 0.0922 θ7 −0.0537
(1.7448) (0.0386) (0.0364)

α4 4.6903 θ4 −0.2168 θ8 −0.0340
(1.0026) (0.0434) (0.0453)
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TABLE 1. (Continued.)

Model: ε̂2
t =

4∑
s=1

1(st = s)α̃s +
8∑

j=1

θ̃ j ε̂
2
t− j + µt

α̃1 60.0191 θ̃1 0.0543 θ̃5 0.0402
(25.5567) (0.0386) (0.0384)

α̃2 154.8692 θ̃2 0.0733 θ̃6 −0.0109
(39.2765) (0.0438) (0.0221)

α̃3 498.9272 θ̃3 0.0749 θ̃7 0.0105
(84.4534) (0.0401) (0.0188)

α̃4 78.8278 θ̃4 −0.0117 θ̃8 −0.0047
(26.7928) (0.0482) (0.0430)

Some descriptive statistics

Average price changes: Q1: 5.1432 Q2:−2.1871 Q3:−6.1682 Q4: 4.3556
ACF: (1) 0.0270 (2)−0.0314 (3) 0.0757 (4)−0.1222 (5) −0.0690

(6)−0.1383 (7)−0.0947 (8) 0.0600 (9)−0.0283 (10)−0.0514

Note: The standard errors were obtained via a HAC estimator with Bartlett window using (in RATS format) LAG= 4
and DAMP= 1.

with i = 0 or 1 andγi (·) is independent ofst . Equations (1) through (3) repre-
sent a special case of the general class of models considered in Ghysels (2000).
Obviously, the choice ofzt will determine the nature of the Markov switching
scheme. The original Hamilton model is obtained whenzt is constant through a
reparameterizationp= exp(γ10)/(1+exp(γ10)) andq= exp(γ00)/(1+exp(γ00)).
A second specification forzt involves a set of seasonal dummies, that is, a quar-
terly periodic stochastic regime-switching model. A third and final specification
involves a stochastic transition probability matrix, namely,zt = (1, (1 log pt )

S),
where(1 log pt )

S is (an estimate of) the seasonal component of1 log pt . Hence,
the transition probabilities are affected by the seasonal fluctuations in wheat price
inflation. We will momentarily leave aside the specification of(1 log pt )

S and
simply note that (33) in this case becomes

p(i t+1 = i | i t = i, zt ) =
exp

(
γi 0+ γi 1(1 log pt )

S
)

1+ exp
(
γi 0+ γi 1(1 log pt )S

) . (4)

The seasonal component of1 log pt affects the transition probabilities when
γi 1 6= 0 for eitheri = 0 or i = 1. Hence, the hypotheses of interest areγi 1= 0 for
eitheri = 0 and/ori = 1. Again, whenγi 1= 0 for bothi = 0 andi = 1, we recover
Hamilton’s original model.

We first discuss the two specifications involving nonstochasticzt . The model
described by (1) and (2) implies that the discrete state variablei t only affects the
drift, not the seasonal dummies. Moreover, the fact that the Markov chain is periodic
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FIGURE 3. Aperiodic and logistic Markov switching chronologies.

and the innovation variance depends oni t results in conditional heteroskedasticity
with periodic features.10

The parameter estimates of the Markov regime-switching models appear in
Table 3. We report three model specifications in Table 3 for the Paris and Toulouse
markets. The first specification is “standard,” that is, one in which the Markov
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TABLE 2. Linear periodic models of log price changes

Model:1 log(pt ) =
4∑

s=1

1(st = s)ᾱs +
2∑

j=1

θ̄0 j1 log(pt− j )

+
2∑

j=1

4∑
s=2

θ̄s j1(st = s)1 log(pt− j )+ ηt

Paris market

ᾱ1 0.3301 θ̄01 −0.0828 θ̄31 −0.1455
(1.2046) (0.0661) (0.1594)

ᾱ2 −0.9708 θ̄02 0.1121 θ̄32 −0.1319
(1.4147) (0.0381) (0.1126)

ᾱ3 −1.1824 θ̄21 −0.1022 θ̄41 0.0934
(1.8324) (0.2730) (0.1082)

ᾱ4 2.8771 θ̄22 0.0782 θ̄42 −0.2035
(1.2166) (0.0906) (0.1141)

Joint Wald tests for periodicity, H0: θ̄ s1= θ̄ s2= 0
s= 2: 0.86(0.35) s= 3: 1.70(0.19) s= 4: 7.03(0.01) s= 2, 3, 4: 10.81(0.01)

Toulouse market

ᾱ1 4.6003 θ̄01 0.2942 θ̄31 −0.5483
(0.8608) (0.0724) (0.1322)

ᾱ2 −3.0663 θ̄02 0.1135 θ̄32 −0.7262
(1.1794) (0.0393) (0.1947)

ᾱ3 −3.5175 θ̄21 −0.1162 θ̄41 −0.1918
(1.7890) (0.1802) (0.0848)

ᾱ4 5.4040 θ̄22 −0.1207 θ̄42 0.0772
(0.8734) (0.1272) (0.0622)

Joint Wald tests for periodicity, H0: θ̄ s1= θ̄ s2= 0
s= 2: 0.65(0.42) s= 3: 5.03(0.03) s= 4: 5.89(0.02) s= 2, 3, 4: 12.03(0.01)

Note: For a description of standard errors and test statistic computations, see Table 1, where the sample is also
described.

chain parameters are invariant through time. We denote this model specification
as aperiodic. This model appears in the first columns of the two panels of Table 3.
Next we report the model with a periodic Markov chain specification, where each
p andq varies withst , thus involving eight instead of two transition probabilities.
Apart from the difference in the Markov chain structure, the two first models in
Table 3 are alike because both specifications involve two drift parametersα0 and
α1, two state-dependent variancesσ1 andσ2, four polynomial lag parametersφ1

throughφ4 as well as three seasonal dummies. The final model is the logistic model
specified in equation (4).

Note that the differences between parameter estimates other than those per-
taining to the Markov chain are statistically insignificant. The empirical estimates
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TABLE 3.Maximum likelihood estimates of aperiodic and periodic Markov regime-
switching models

A. Paris market

Aperiodic model Periodic model Logistic model

Estimates Standard errors Estimates Estimates Standard errors

State-dependent drift parameters

α0 −1.2799 0.8424 −1.4194 −1.2277 0.8520
α1 1.7233 3.4735 1.7915 0.4376 4.1482

Autoregressive parameters

φ1 0.0505 0.0352 0.0694 0.0646 0.0322
φ2 0.0473 0.0292 0.0453 0.0540 0.0303
φ3 0.0440 0.0313 0.0578 0.0604 0.0268
φ4 −0.0392 0.0300 −0.0348 −0.0637 0.0325

State-dependent standard errors

σ1 10.2073 0.5687 9.7190 10.9170 0.5346
σ2 36.1085 2.7095 36.2535 39.3654 3.1829

Markov chain parameters

p or γ10 0.9306 0.0205 — 3.1286 0.4247
p(1): Wi→Sp — — 0.8699 — —
p(2): Sp→Su — — 0.9078 — —
p(3): Su→Fa — — 0.9542 — —
p(4): Fa→Wi — — 0.9827 — —
γ11 — — — −0.0712 0.0184
q or γ00 0.7706 0.0643 — 0.8862 0.4317
q(1): Wi→Sp — — 0.9277 — —
q(2): Sp→Su — — 0.9362 — —
q(3): Su→Fa — — 0.6561 — —
q(4): Fa→Wi — — 0.6680 — —
γ01 — — — 0.0224 0.0169

Seasonal dummies

α2 −0.9090 1.1113 −0.9854 −0.7432 1.1811
α3 2.5244 1.2060 2.5031 3.0911 1.2028
α4 2.8427 1.2039 2.9444 3.8410 1.1908

Log likelihood

−2296.8376 −2282.4341 −2288.7336
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TABLE 3. (Continued.)

B. Toulouse market

Aperiodic model Periodic model Logistic model

Estimates Standard errors Estimates Estimates Standard errors

State-dependent drift parameters

α0 3.4538 0.9628 4.3074 4.6620 0.7949
α1 6.3729 1.7974 6.0162 2.8907 2.6582

Autoregressive parameters

φ1 0.0542 0.0385 0.1025 0.0949 0.0307
φ2 0.0823 0.0314 0.1168 0.0883 0.0306
φ3 0.1143 0.0327 0.1269 0.1335 0.0298
φ4 −0.1666 0.0346 −0.1092 −0.1609 0.0319

State-dependent standard errors

σ1 8.9263 0.6782 8.7712 10.1125 0.5489
σ2 22.5436 1.7389 23.3575 25.7940 1.6399

Markov chain parameters

p or γ10 0.8489 0.0592 — 2.0486 0.4411
p(1): — — 0.8048 — —
p(2): — — 0.6327 — —
p(3): — — 0.9187 — —
p(4): — — 0.9487 — —
γ11 — — — −0.0965 0.0230
q or γ00 0.7955 0.1081 — −0.1332 0.6685
q(1): — — 0.8932 — —
q(2): — — 0.9271 — —
q(3): — — 0.6189 — —
Su→Fa
q(4): — — 0.5964 — —
γ01 — — — 0.2199 0.1630

Seasonal dummies

α2 −7.1556 1.0730 −6.9577 −6.6825 1.0068
α3 −9.3930 1.1500 −10.1078 −7.5822 1.3781
α4 −1.4083 1.0061 −1.0926 −0.9896 0.9247

Log likelihood

−2269.4073 −2233.0851 −2240.8897

Notes: For details about sample see Table 1. Wi=Winter, Sp=Spring, Su=Summer, Fa=Fall.
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suggest that state 1 withi t = 0 corresponds to relative price stability, that is, a
low drift and a low variance, whereas state 2 withi t = 1 has both a high drift
and a high variance. For the Parisian market the low drift is, in fact, negative,
whereas for the Toulouse market it is positive and relatively large. According to
theα0 andσ0 estimated empirical results reported in Table 3, we finds that relative
price stability means a steady-state inflation rate of about 3.5% (S.E.= 8.9%) for
Toulouse and−1.3% (S.E.= 10.2%) for Paris. In contrast, withi t = 1 (α0+α1),
we have a steady-state inflation rate of 9.8% (S.E.= 22.5%) for Toulouse and 0.5%
(S.E.= 36%) for Paris. The AR polynomial parameters reported in Table 3 show
very little persistence of wheat price inflation within the two regimes; hence, the
level shift in inflation appears to be the most important factor.

Let us consider now the Markov chain parameters appearing in Table 3. We ob-
serve that the inflationary state occupies a slightly larger proportion of the sample
becausep>q for both series. As noted earlier, in Paris the inflationary state cor-
responds to relatively small growth with a very large variance, much larger than in
Toulouse. When we consider the periodic version, we observe considerable varia-
tion in the switching probabilities throughout the year. Hence, the seasonal cycle
strongly affects the transitions between the two states. In particular, it appears quite
unlikely to leave the inflationary state except when spring and/or summer arrives,
that is, when the harvest is known and market prices reflect anticipated shortages
or abundances. Here again, the differences in switching probabilitiesp(1) andp(2)
versusp(3) andp(4) are more pronounced for Toulouse. Likewise, the probability
of moving toward the inflationary state is high during the summer and the fall be-
causeq(3) andq(4) are much lower thanq(1) andq(2). One striking feature of the
Markov chain parameter estimates is the appearance of near boundary estimates.
This phenomenon is symptomatic of periodic Markov chain models and deserves
some attention here.11 However, it is worth noting that the LM test for period-
icity [described by Ghysels (2000)] strongly rejects the aperiodic specification.
Likewise, the LR test does so as well.12

Unconstrained periodic regime-switching models are, in many circumstances,
overparameterized for the sample sizes typically encountered in economic time
series. The results in Table 3 suggest that regime switches are still rare even with two
centuries of data. Obviously, the evidence that, with approximately two centuries of
data, one has in some sense, such a diversity of parameter estimates, quite strongly
suggests periodicity. Yet, the presence of boundary parameters complicates the
task of statistical hypothesis testing. In that regard, at least the LM test, involving
the nonperiodic estimates away from the boundary is very useful. The LR test
also supports the periodic model but the boundary estimates imply nonstandard
conditions.13

The third and final model specification has transition probabilities determined
by the logistic function (4), which does not involve the boundary-parameters issue
potentially present in the periodic case. The specification of(1 log pt )

S remains
to be discussed, however. Estimating a seasonal component inevitably rests on a
set of identifying assumptions to uncover the unobserved component. The model
(1)–(4) is nonlinear and, in particular, has nonlinear seasonal effects. A priori, it is

https://doi.org/10.1017/S1365100501018028 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501018028


46 CATHERINE BAC ET AL.

not obvious how to extract and/or formulate(1 log pt )
S in a nonlinear framework.

It also would be unnecessarily complicated to try to extract properly this component
if it is only for the purpose of showing that seasonal fluctuations affect transition
probabilities. We therefore restrict ourselves to a linear estimate of the seasonal,
which is the fairly traditional method of extracting seasonal components. Some
caution is necessary, however, because a procedure like the X-11 program involves
two-sidedfiltering; that is, future as well as past1 log pt are used to obtain an
estimate of the seasonal component. Using future observations inzt to model the
Markovian regime-switching dynamics would not be appropriate. We therefore
used one-sided linear filters, namely,

(1 log pt )
S = 1

k

k−1∑
j=0

1 log pt−4 j ,

which is a seasonal averaging filter over a span ofk years. The last column of
Table 3 reports the empirical estimates using a 4-year filter (i.e.,k= 4). The coef-
ficients of the autoregressive part, the mean shifts, and state-dependent variances
are quite similar to those appearing in Panel A of the table, which covers the models
with nonrandom transition matrices. Hence, we focus only on the parametersγi j

of the logistic function (4). First, we note that the Wald test for the nullγi l = 0, is
rejected at conventional significance levels forγ11 but not forγ01. Note also thatγ01

andγ11 have opposite signs. Hence, particularly during the summer, when prices
typically drop, we should find opposite effects on switching probabilities, which is
indeed the case if we examine, respectively,q(3) andp(3) relative to the estimates
of p andq for the other quarters. We also note that the LR test for the nullγi 1= 0
strongly rejects this hypothesis, suggesting again a seasonal effect in transition
probabilities.

3.2. Historical Analysis and Chronologies

In his original paper, Hamilton (1989) showed how a univariate stochastic regime-
switching model for U.S. post-WWII real GNP growth almost exactly reproduced
the NBER business-cycle chronology. Such chronologies are come from a commit-
tee at the Bureau involved in appraising and classifying the business-cycle patterns
of the U.S. economy. As noted before, we do not have an equally detailed and re-
searched chronology for the 16th and 17th centuries. Historians have been engaged
in analyses similar to those of NBER dating committees, but with a more frag-
mented database. One of the best examples of historical business-cycle analysis for
this period is that of Morineau (1977). His methodology is similar to that of Burns
and Mitchell (1946), except that the descriptions of the subsequent stages of the
business cycle are far less precise because of the lack of data. His analysis, and that
of other historians, falls short of proposing an explicit set of dates. We do not expect
to recover a business-cycle chronology because our series are wheat-price inflation
series. For lack of any better series, however, they figure prominently in any attempt
to study cycles. In fact, they also play a key role in Morineau’s study. Using the
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smoothed probability estimates of the Markov switching models presented in the
preceding section, we obtained chronologies of inflationary wheat-price states for
16th- and 17th-century Paris and Toulouse. Comparing those chronologies with
the historical ones is the purpose of this section.

Figure 4 displays the chronologies extracted from the aperiodic Markov switch-
ing models for Paris and Toulouse (Table 3). The shaded vertical areas in Figure 4

FIGURE 4. Markov switching (aperiodic) and historical chronologies.
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correspond to the smoothed probabilities for the inflationary statesi t = 1 exceed-
ing 0.75. Superimposed on the shaded areas are a set of chronologies recovered
from a number of historical studies. They cover political events such as wars and
the reign of kings as well as economic, demographic, and climatological cycles,
including the gold and silver influx from Spain, famines, and harsh winters. The
superimposed historical chronologies are not exactly the same for Toulouse and
Paris because certain factors, such as wars and famines, affected each city differ-
ently. In the Appendix, we provide a detailed account of the various sources of
the historical chronologies. Consistent with the parameter estimates ofp andq,
we find that the inflationary state occupies a greater fraction of the sample, with
an average duration of 19.96 quarters (though the median is only 12.5 quarters)
versus a mean of 10.09 quarters (median= 6 quarters) fori t = 0 for Paris and
averages 20.23 (median= 19) versus 12.67 (median= 10) quarters, respectively,
for Toulouse. Figure 4 shows that, for both Paris and Toulouse, the inflationary
states appear to match up with episodes of famines, pests, and other epidemics but
not so much with climatic cycles. In fact, famines, pests, and other epidemics do
not match up very closely with the climatic cycles either. For Paris, war periods
appear to match up more closely with the Markov chain chronology, at least during
the 16th century. We also notice that the chronologies for Paris and Toulouse look
quite different. Indeed, Paris experienced quite a few inflationary episodes, partic-
ularly during the 16th century, more so than Toulouse. During the 17th century, it
is somewhat the reverse, particularly with a few long inflationary spells during the
latter part of the century in Toulouse.

The statistical tests reported in Table 3 favored the periodic specification. Let
us therefore consider chronologies obtained from the logistic Markov chain model
appearing in the last column of each panel of Table 3. Figure 3 also displays the
chronology for Paris obtained from the logistic model specification (the results for
Toulouse are similar and thus are omitted here). We see some important differences,
in particular, fewer regime switches, with the average length of thei t = 0 state going
from 6.73 quarters to 7.78 (yet the median remaining at 6 quarters). Although the
mean duration increases, the inflationary states in the early 17th century appear to
be much shorter. The matchup with famines, pests, and other epidemics appears
the same. The lack of matchups with climatic cycles is again apparent.

3.3. Bivariate Regime-Switching Models

The univariate analysis in the preceding section suggests that Paris and Toulouse
experienced different economic cycles. We investigate this issue now more for-
mally by estimating a bivariate joint regime-switching model for the wheat price
series of both cities together.

We noted in the introduction that multivariate regime-switching models have
been used by Diebold and Rudebusch (1994), Hamilton and Lin (1994), and
Chauvet (1995) to examine questions regarding the nature of business-cycle co-
movements among macroeconomic time series. One could describe this class
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as common-factor models with discrete states as discussed in detail by Ghysels
(2000). So far, we have dealt only with the specific case described by equations
(1) through (3). We now expand this by considering(

1 log pP
t

1 log pT
t

)
=
(
µP
[(

i P
t , st

)]
µT
[(

i T
t , st

)])

+
4∑

j=1

b̃j

(
1 log pP

t− j − µP
[(

i P
t− j , st− j

)]
1 log pT

t− j − µT
[(

i T
t− j , st− j

)])+(δP
t

δT
t

)
(5)

where the superscriptsP andT stand for Paris and Toulouse. The lag polynomial
coefficient matrices̃bj are diagonal with elementsbP

j andbT
j . Finally, as in (2),

we have

µh
[(

i h
t , st

)] = αh
o + αh

1 i h
t + 1st α

h
s s= 2, 3, 4 αh

1 > o h= P, T (6)

andδh
t are random Gaussian and dependent oni h

t andst as in (1). The model has a
common state variable ifi P

t = i
T

t = i t ∀ t , reducing the discrete state space from the
bivariate(i P

t , i
T
t ) process to the degenerate(i t , i t ). This implies that wheat price

movements in both cities are driven by the same state process. For the Markov
chain, without the common-factor restriction, we have the following transition
matrix:

P T P 0 0 1 1

T 0 1 0 1

0 0 P00
00 (st ) P01

00 (st ) P10
00 (st ) P11

00 (st )

0 1 P00
01 (st ) P01

01 (st ) P10
01 (st ) P11

01 (st )

1 0 P00
10 (st ) P01

10 (st ) P10
10 (st ) P11

10 (st )

1 1 P00
11 (st ) P01

11 (st ) P10
11 (st ) P11

11 (st )

. (7)

Under the common restriction, both Paris and Toulouse share the same states.
Therefore, transition matrix (7) reduces to a 2× 2 matrix with transitions only
between (0,0) and (1,1). Formally stated, this hypothesis can be written in terms
of constraints on the transition matrix:

H0: Pkl
i j (st ) = 0 ∀ i, j, k, l s.t.i 6= j or k 6= l , (8)

which reduces the 4× 4 (possibly periodic) Markov chain to a 2× 2 matrix. The
hypothesis will be tested via a standard LR test.

The empirical results for the bivariate models with common-factor restrictions
are reported in Table 4. Two versions of the model are reported: aperiodic and
periodic. In each case we report the unconstrained bivariate model as well as the
constrained one. The constraints corresponds to the null hypothesis of a common
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Markov chain specification appearing in (8). Because of space limitations we do
not report the logistic model, but the results are essentially similar to those found
with the periodic specification. A first clear indication that the common-factor
restriction is not supported by the data is that the parameter estimates are very
different and very imprecisely estimated. In particular, the parameter estimates of
the Toulouse equations are quite implausible with large standard errors, especially
the drift parameters. Also,̂q for this model is very low, at only 0.5348. The null
hypothesis (8) is overwhelmingly rejected. For the periodic model the results are
quite the same, though no standard errors are reported here for the reasons explained
before.

4. CONCLUSIONS

This paper deals with the possibility of nontrivial interactions between cyclical
variation and the repetitive intrayear dynamics of the economy. The presence or
absence of such interactions is a fundamental issue. As in testing for cointegration,
long memory, unit roots, or mean reversion, to name a few key issues, we are
hampered by relatively short data sets—only 40 or 50 years of data for GNP. It
is often said that it would be relatively easy to deal with this and many other
issues in macroeconometrics if long spans of uniformly measured time series
were available. The empirical example reported in Section 3 clearly shows that
models this complex are still not identified sharply with a long historical record
of wheat price movements over two centuries for two cities. Unfortunately, such
data sets are still rare and have their own problems (e.g., differences in quality
of measurements and no obvious deflators for nominal series). The parametric
structures that we present in this paper lead to straightforward hypotheses that one
can test regarding periodic features in stochastic regime switching. We show how
significant the nontrivial interactions between cyclical variations and seasonal ones
were in the 16th- and 17th-century economies. Of course, these economics were
extremely primitive and rural in comparison to our modern economies, at least
for the Western world. The models that we estimated generated chronologies,
which we compared to the fragmented and imprecise chronologies constructed
by historians from incomplete and partial data sets. We found that the economic
cycles in Paris and Toulouse were unrelated and driven by different factors. Though
both cities were governed by the same king, their inhabitants experienced very
different lives. The analysis in this paper provides a time-series-analysis alternative
to standard historical chronologies. The method that we propose is easily extended
to other types of time series.

NOTES

1. See, for instance, Meuvret (1971), Morineau (1977), and Spooner (1968) for detailed discussions
of the economic history of 16th- and 17th-century Europe and, in particular, the role of wheat.

2. See, for instance, Meuvret and Baulant (1960), Braudel and Labrousse (1970, 1977), Meuvret
(1971), Saint-Amour (1988, 1991), and Chevet and Saint-Amour (1991).
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3. The historical studies best known to economists are those of the British economist and statistician,
William H. Beveridge, who collectedannualwheat price data over four centuries. It led also to several
discussions regarding the use of periodogram analysis and its interpretation; see, for instance, Granger
and Elliott (1967). In our study, we use hitherto unexploredquarterly time series, which will be
discussed later.

4. The best example is the chapter by Morineau (1977) on business cycles in Braudel and Labrousse
(1977). Unfortunately, Morineau did not produce an explicit chronology; his analysis remained descrip-
tive and was accompanied by some time-series plots, notably of wheat prices. For further discussion,
see Section 3.3.

5. Unlike today, there was no government-imposed quality standard on quoted grain prices or
agricultural products in general. Hence, we can only guess how the quality of 1 hectoliter of grain
varied through the sample.

6. Some calculations of general price movements exist [see for instance Spooner (1968, Table 1)],
but they are very imprecise and are calculated at 15-year or greater time intervals. To give some idea of
the imprecision, a price index 1471–1472= 100 takes values ranging from 78.8 to 126.9 in 1487–1514
and 4.77 to 627.5 in 1590–1598 depending on the method of calculation.

7. We considered higher-order lags but did not find any significant parameters beyond the eighth
lag, which is why we focus on the AR(8) model.

8. From the discussion in Ghysels (2000, Sect. 2), we know that a periodic AR(2) structure cor-
responds to a complicated seasonal ARMA model. Hence, the fact that only two lags were taken in
the periodic model is not in contradiction to the AR(8) specification appearing in Table 1. Moreover,
higher-order periodic models yielded results similar to those reported in Table 2.

9. Standard Dickey–Fuller tests do not reject theI (1) specification but do rejectI (2). Because
of the periodic structure, one may test the null hypotheses ofI (1) and I (2) with tests appropriately
designed for these types of models. Such tests are discussed by Ghysels et al. (1996). We do not report
the results here because they also overwhelming endorsed theI (1) specification.

10. The evidence reported in Table 1 appears to support the presence of such effects because of the
seasonal variation in the variance.

11. The occurrence of boundary parameter estimates in Hamilton-type models is not uncommon,
even in aperiodic models. For instance, Cecchetti and Lam (1992) estimated regime-switching models
using annual output data from nine OECD countries and reported boundary parameter estimates for
four countries. Phillips (1991), also using international data, reported similar results.

12. We did report standard errors for the parameter estimates of the periodic models in Table 3. If
the underlying parameters are at the boundary, then standard regularity conditions do not hold. If they
are not at the boundary, then standard errors can be computed the usual way. The information in the
sample about the parameters, despite the length of the sample, is so limited that the Hessian is nearly
singular, suggesting identification problems so that standard errors are enormous or are impossible to
calculate numerically. In all of our computations, we used GAUSS code. In particular, we used the
Maxlik and HESS procedures to obtain the ML estimates.

13. One could consider estimators with smoothing properties yielding nonboundary estimates.
Bayesian estimators, of either the type proposed by Hamilton (1991) or the type proposed by Albert
and Chib (1993) and McCulloch and Tsay (1994) involving the Gibbs sampler, are two such examples.
However, with two centuries of data, it is clear that boundary estimates are not so much a small-sample
phenomenon. Therefore, it is somewhat artificial to force estimates away from the boundary.
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APPENDIX: SOURCES OF HISTORICAL
CHRONOLOGIES

In this Appendix we document the sources of the historical chronologies superimposed
on the smoothed Markov switching probability chronologies appearing in Figures 3 and
4. Morineau (1977) was our principal source of information, complemented by data from
Duby and Mandrou (1984) as well as correspondence with the French historian Jean-Michel
Chevet (INRA, Paris). The “Pest and other Epidemics” chronology for Paris is reported by
Morineau (1977, p. 907) as 1568, 1575, 1578, and 1580. For Toulouse, Morineau (1977,
p. 906) reports 1521, 1528, 1542, 1548, 1550, 1559, 1566, and 1586–1587. The “Famine”
chronology, referred to in the literature asdisette et faminesfor the Paris region is reported by
Morineau (1977, p. 944) as 1521–1522, 1524–1525, 1531–1532, 1545–1546, 1562–1563,
1565–1566, 1573–1574, 1586–1587, 1589–1591, 1630–1632, 1642–1643, 1648–1653. For
the Toulouse region the dates are 1531, 1537–1538, 1545, and 1565 [see Morineau (1977,
p. 906)].

Several studies have examined climatic cycles; see, for instance Slicher van Bath (1963).
There appeared to be several cold weather spells over the following periods: 1547–1554,
1563–1581, 1587–1601, 1604–1610, 1614–1620, 1635–1645, 1657–1668, 1684–1699 [see
also Morineau (1977, p. 955)]. The next chronology refers to the influx of gold and silver
from the American continent through Spanish expeditions. The monetary movements during
the 16th century are quite complex; for example, the Spanish monarchy declared bankruptcy
twice. A very detailed study regarding the French money supply and the influences of
Spanish gold and silver is provided by Spooner (1972). The “Influence of Gold and Silver”
chronology only provides the peak periods, which are benchmarked by Morineau (1977, p.
958) as 1536–1540, 1551–1555, 1561–1565, and 1581–1585.

The “War” chronology is based on three major conflicts that were waged throughout
the 16th and 17th centuries: (1) the religious wars (guerres de religion), (2) the Thirty
Years’ war, and (3) the so-calledFronde. The religious wars were spread over several
mutually overlapping conflicts that dragged on several years. They were for the Paris region:
(a) invasion of Rouen and Battle of Dreux, 1562–1563, (b) various wars from 1567 to 1598
with a siege of Paris (1569–1570), massacre of Saint Barth (1574–1576), and a second siege
of Paris (1585–1598). For the Toulouse region, they were (a) various wars from 1569 to
1570 and from 1574 to 1577, including agitation in the south (1575–1576), the Saint Barth

TABLE A-1. Kings and their reigns

King Symbols Reign

François I K1 1515–1547
Henri II K2 1547–1559
Charles IX K3 1560–1574
Henri III K4 1574–1589
Henri IV K5 1589–1610
Louis XIII K6 1610–1643
Louis XIV K7 1643–1715
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massacre (1574–1576), in addition to the war in the Cahors region (1580). The Thirty Years’
war took place in Germany from 1618 to 1648, and ended with the Peace of Westphalia;
it involved French interventions, notably led by Richelieu, minister to Louis XIII. It was
immediately followed by theFronde, a collection of conflicts from 1648 to 1653. The dates
for this chronology were constructed from several sources [notably, Duby and Mandrou
(1984)] and with the help of historian Jean-Michel Chevet (INRA, Paris).

Table A-1 provides the reigns of French kings and their corresponding symbolic reference
in the chronology.

https://doi.org/10.1017/S1365100501018028 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501018028

