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We prove that there are no regular algebraic hypersurfaces with non-zero constant
mean curvature in the Euclidean space R

n+1, n � 2, defined by polynomials of odd
degree. Also we prove that the hyperspheres and the round cylinders are the only
regular algebraic hypersurfaces with non-zero constant mean curvature in
R

n+1, n � 2, defined by polynomials of degree less than or equal to three. These
results give partial answers to a question raised by Barbosa and do Carmo.
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1. Introduction

An algebraic hypersurface in the (n + 1)-dimensional Euclidean space R
n+1, n � 2,

is the zero set M = P−1(0) of a polynomial function P : R
n+1 → R. We say that M

is regular if the gradient vector field ∇P of P has no zeros on M . The condition of
regularity implies that M is a complete properly embedded hypersurface of R

n+1.
There are many examples of algebraic hypersurfaces in R

n+1 which have con-
stant mean curvature. The basic examples of such hypersurfaces are hyperplanes,
hyperspheres and round cylinders. In addition to them, we have, for example, the
classical Enneper and Henneberg minimal surfaces in R

3 [5], and the families of
algebraic minimal cones in R

n+1 constructed in [12]. For other examples, see [4, 6,
8, 10, 11] and the references therein.

Barbosa and do Carmo [3] proved that the only connected regular algebraic
surfaces in R

3 with non-zero constant mean curvature are the spheres and the right
circular cylinders, a result that was already known for polynomials of degree less
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than or equal to three [7]. For generalizations of this result for globally subanalytic
CMC surfaces in R

3 see [2, 9].
Motivated by the theorem mentioned in the previous paragraph and by the fact

that the hyperspheres and the round cylinders are the only examples of regular
algebraic hypersurfaces in R

n+1 with non-zero constant mean curvature known so
far, Barbosa and do Carmo [3, p. 177] proposed the following extension of their
own result:

The hyperspheres and the round cylinders are the only connected regular algebraic
hypersurfaces in R

n+1, n � 2, with non-zero constant mean curvature.
From Perdomo and Tkachev [8] we know that there are no regular algebraic

hypersurfaces with non-zero constant mean curvature in R
n+1, n � 2, defined by

polynomials of degree 3. Here, we prove that there can be no examples defined by
polynomials of any odd degree:

Theorem 1.1. Let Mn be a regular algebraic hypersurface in R
n+1, n � 2, defined

by a polynomial P of degree m. If Mn has non-zero constant mean curvature, then
m is even.

The theorem below shows that the question formulated by Barbosa and do Carmo
has an affirmative answer for polynomials of degree less than or equal to three.

Theorem 1.2. Let Mn be a regular algebraic hypersurface in R
n+1, n � 2, defined

by a polynomial P of degree less than or equal to three. If Mn has non-zero constant
mean curvature, then Mn is a hypersphere or a round cylinder.

Using theorem 1.1 one concludes that if Mn ⊂ R
n+1, n � 2, is a regular algebraic

hypersurface that has non-zero constant mean curvature and is defined by a poly-
nomial P of degree m � 3, then m = 2, i.e., Mn is a quadric hypersurface in R

n+1.
Thus, in the case n = 2, theorem 1.2 follows immediately from theorem 1.1 and the
well-known classification of quadric surfaces in R

3. However, the situation is quite
different for n � 3, since, to the best of our knowledge, there is not a classification
of quadric hypersurfaces in R

n+1 for n � 3.

2. Our arguments

A polynomial P : R
n+1 → R of degree m can be expressed in a unique way as the

sum

P =
m∑

i=0

Pi, (2.1)

where Pm �= 0 and each Pi is a homogeneous polynomial of degree i. We call
Pi, i = 0, . . . , m, the homogeneous factors of P , and Pm the highest order homo-
geneous factor of P . Since Pm clearly changes sign when m is odd, theorem 1.1
is a consequence of the stronger theorem below. From now on we consider that a
regular algebraic hypersurface M = P−1(0) is oriented by the global unit normal
vector field N = ∇P/|∇P |.
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Theorem 2.1. Let Mn be a regular algebraic hypersurface in R
n+1, n � 2, given by

a polynomial P of degree m. If Mn has non-zero constant mean curvature, then the
highest order homogeneous factor Pm of P is semi-definite, i.e., either Pm(x) � 0
for all x ∈ R

n+1 or Pm(x) � 0 for all x ∈ R
n+1.

Proof. Let (2.1) be the expression of P as the sum of homogeneous polynomials.
Writing a point in R

n+1 as x = (x1, . . . , xn+1), let U+ = {x ∈ R
n+1 : P (x) > 0}

and U− = {x ∈ R
n+1 : P (x) < 0}. Since the mean curvature H of M is a non-

zero constant by hypothesis, changing P by −P if necessary, we can assume that
H = c > 0. This means that the mean curvature vector

−→
H of Mn points in the

direction of U+.
By (2.1), for any t ∈ R and any vector v in the unit sphere Sn

1 we have

P (tv) = Pm(v)tm + Pm−1(v)tm−1 + · · · + P1(v)t + P0, (2.2)

and so

P (tv)
tm

− Pm(v) =
m−1∑

i=0

Pi(v)
tm−i

, v ∈ Sn
1 , t �= 0. (2.3)

Using (2.3) and the compactness of Sn
1 , one easily sees that t−mP (tv) → Pm(v)

uniformly on Sn
1 when t → ∞.

Suppose, by contradiction, that Pm changes sign. Then, since Pm is homogeneous,
there exists a vector w in the unit sphere Sn

1 ⊂ R
n+1 such that Pm(w) > 0. Hence,

by continuity, there is a closed disk W around w in Sn
1 such that Pm(v) > Pm(w)/2

for all v ∈ W . Since t−mP (tv) → Pm(v) uniformly on Sn
1 , there exists t0 > 0 such

that |t−mP (tv) − Pm(v)| < Pm(w)/4 for all t > t0 and v ∈ Sn
1 . Combining these

informations, one obtains

t−mP (tv) � −|t−mP (tv) − Pm(v)| + Pm(v)

> −1
4
Pm(w) +

1
2
Pm(w) =

1
4
Pm(w) > 0, t > t0, v ∈ W, (2.4)

and so

{tv : t > t0, v ∈ W} ⊂ U+. (2.5)

Let R be an arbitrary positive number. By (2.5), there exists a ball B of radius R
in R

n+1 such that B ⊂ U+. Let x0 be the centre of B and f : M → R the function
defined by f(x) = ||x − x0||2. Since M is a closed subset of R

n+1, there is a point
p ∈ M such that f(p) = infM f . Let v be an arbitrary unit vector of TpM and
γ : I → M a smooth curve such that γ(0) = p and γ′(0) = v. Since the function
f(γ(t)) attains a minimum at t = 0, one has

0 =
d
dt

∣∣∣
t=0

f(γ(t)) =
d
dt

∣∣∣
t=0

〈γ(t) − x0, γ(t) − x0〉 = 2〈v, p − x0〉 (2.6)

and

0 � d2

dt2

∣∣∣
t=0

f(γ(t)) = 2〈γ′′(0), p − x0〉 + 2. (2.7)
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From (2.6) one obtains that p − x0 is orthogonal to TpM . Since N points inward
U+ and x0 ∈ U+, it follows that N(p) = (x0 − p)/||x0 − p||. Using this information
in (2.7), one obtains

〈Av, v〉 = −〈(N ◦ γ)′(0), γ′(0)〉 = 〈N(p), γ′′(0)〉 � 1
||x0 − p|| ,

for any unit vector v ∈ TpM , where A is the shape operator of M with respect
to N . Taking the trace in the above inequality and using the fact that p �∈ B, one
concludes that

H = H(p) � 1
||x0 − p|| � 1

R
,

for every R > 0, contradicting H = c > 0. This contradiction shows that Pm does
not change sign, and the theorem is proved. �

Remark 2.2. The arguments used in the proof of theorem 2.1 show that the com-
plement of the zero set of any non-zero polynomial, in any number of variables,
contains balls of arbitrarily large radius.

In the proof of theorem 1.2, as well as in the proof of corollary 2.5, we will use
the following result, which is of interest in its own right. We believe this result is
known, but since we were unable to find a reference in the literature, we will provide
a proof for it here.

Lemma 2.3. Let P : R
n+1 → R be a polynomial of degree m, m � 2. If for some

k, 1 � k � n, P (x) vanishes on Sk
r (a) × R

n−k, where Sk
r (a) is the hypersphere of

R
k+1 of radius r and centre a, then P (x) is divisible by the polynomial

Q(x) =
k+1∑

i=1

(xi − ai)2 − r2.

Proof. We will prove the lemma in the case where m = 2d, d � 1. The proof in the
case that the degree of P (x) is odd is entirely analogous and will be omitted.

Assume first a = 0 and r = 1. Write P as

P =
d∑

i=0

P2i +
d−1∑

i=0

P2i+1, (2.8)

where Pj , j = 0, . . . , 2d, is a homogeneous polynomial of degree j. By hypothesis,
for every v ∈ Sk

1 (0) × R
n−k one has

0 = P (v) =
d∑

i=0

P2i(v) +
d−1∑

i=0

P2i+1(v),

0 = P (−v) =
d∑

i=0

P2i(v) −
d−1∑

i=0

P2i+1(v).
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From the two equalities above one obtains
∑d

i=0 P2i(v) = 0 =
∑d−1

i=0 P2i+1(v), which
implies

P2d(v) = −
d−1∑

i=0

P2i(v), P2d−1(v) = −
d−2∑

i=0

P2i+1(v), ∀v ∈ Sk
1 (0) × R

n−k. (2.9)

Let {e1, . . . , en+1} be the canonical basis of R
n+1. For any x = (x1, . . . , xn+1) ∈

R
n+1 such that y :=

∑k+1
i=1 xiei �= 0 it holds that x/|y| ∈ Sk

1 (0) × R
n−k. By (2.8)

and (2.9), for all such x one has

P (x) =
d−1∑

i=0

P2i(x) + P2d(x) +
d−2∑

i=0

P2i+1(x) + P2d−1(x)

=
d−1∑

i=0

P2i(x) + |y|2dP2d(x/|y|) +
d−2∑

i=0

P2i+1(x) + |y|2d−1P2d−1(x/|y|)

=
d−1∑

i=0

P2i(x) − |y|2d
d−1∑

i=0

P2i(x/|y|) +
d−2∑

i=0

P2i+1(x) − |y|2d−1
d−2∑

i=0

P2i+1(x/|y|)

=
d−1∑

i=0

(1 − |y|2(d−i))P2i(x) +
d−2∑

i=0

(1 − |y|2(d−i−1))P2i+1(x).

Notice that the second term on the right-hand side of the above equality vanishes
when d = 1. Since (1 − |y|2k) is divisible by 1 − |y|2 for any integer k � 1, it follows
from the above equality that

P (x) = (|y|2 − 1)R(x), (2.10)

for some polynomial R(x) of degree 2(d − 1). This proves the lemma in the case
a = 0 and r = 1, since |y|2 =

∑k+1
i=1 x2

i . To obtain the lemma in the general case, it
suffices to apply (2.10) for the polynomial P (x) := P (rx + a). �

Theorem 2.1 states that if a regular algebraic hypersurface in R
n+1 has non-

zero constant mean curvature, then the highest order homogeneous factor Pm of its
defining polynomial P is semi-definite (in particular, the degree m of P is even).
Before proving theorem 1.2, for completeness let us say what happens in the case
where Pm is definite, i.e. Pm(x) �= 0 for all x ∈ R

n+1 − {0}:

Theorem 2.4. Let Mn be a regular algebraic hypersurface in R
n+1, n � 2, defined

by a polynomial P of degree m. If the highest order homogeneous factor Pm of P
is definite, then Mn is compact. In particular, if Mn has constant mean curvature,
then Mn is a finite union of hyperspheres of R

n+1.

Proof. Let (2.1) be the expression of P as the sum of its homogeneous factors.
Since Pm is definite by hypothesis, changing P by −P if necessary we can assume
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that Pm(v) > 0 for all v ∈ Sn
1 . Let α = inf{Pm(v) : v ∈ Sn

1 } > 0. By the proof of
theorem 2.1,

t−mP (tv)
unif−→ Pm(v) on Sn

1 as t → ∞.

Then there exists t0 > 0 such that |t−mP (tv) − Pm(v)| < α/2, for all t > t0 and
v ∈ Sn

1 , and so

t−mP (tv) � −|t−mP (tv) − Pm(v)| + Pm(v) > −α

2
+ α =

α

2
> 0,

for all t > t0 and v ∈ Sn
1 . Hence, P (tv) > 0 for all t > t0 and v ∈ Sn

1 , which
implies that the set U− = {x ∈ R

n+1 : P (x) < 0} is bounded. Since M = ∂(U−),
one concludes that M is compact.

Assume now that Mn has constant mean curvature. Since Mn is embedded, by
a well known theorem of Alexandrov [1] each connected component of Mn is a
hypersphere of R

n+1. �

The following result is an immediate consequence of lemma 2.3 and theorem 2.4.

Corollary 2.5. Let Mn be a regular algebraic hypersurface in R
n+1, n � 2,

defined by an irreducible polynomial P of degree m. If the highest order homo-
geneous factor Pm of P is definite and Mn has constant mean curvature, then Mn

is a hypersphere of R
n+1.

Example 2.6. Let P : R
3 → R be the polynomial defined by

P (x, y, z) =
(
x2 + y2 + z2 − 1

)(
(x − 3)2 + y2 + z2 − 1

)
.

It is easy to see that the gradient ∇P of P vanishes nowhere in M2 := P−1(0). Then
M2 is a regular algebraic surface in R

3. The highest order homogeneous factor of
P is P4 = x4 + y4 + z4 + 2x2y2 + 2x2z2 + 2y2z2, which is clearly definite. Being the
union of two disjoint unit spheres of R

3, M2 has constant mean curvature. This
shows that the hypothesis in corollary 2.5 that P is irreducible cannot be dropped.

Proof of theorem 1.2. Since, by hypothesis, the degree m of P is less than or equal
to 3 and Mn has non-zero constant mean curvature, it follows from theorem 1.1
that m = 2. Hence, we can express P as

P = P0 + P1 + P2, (2.11)

where Pi, i = 0, 1, 2, is a homogeneous polynomial of degree i in the variables
x1, . . . , xn+1. Changing P by −P if necessary, we can assume that H = c > 0. We
will establish the theorem by proving that

(†) Up to a rigid motion of R
n+1, Mn = Sk × R

n−k for some k, 1 � k � n, where
Sk is a hypersphere of R

k+1.
We will prove (†) by induction on n. If n = 2, it follows from the well known

classification of quadric surfaces in R
3 and from the hypothesis that M has non-

zero constant mean curvature that M is a sphere or a right circular cylinder. This
shows that (†) holds for n = 2.
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Assume now n � 3 and that (†) holds for n − 1. If P2 is definite, then Mn is a
finite union of hyperspheres of R

n+1 by theorem 2.4. Since the degree of P is two,
it follows from lemma 2.3 that Mn is a single hypersphere of R

n+1. Thus (†) holds
for n in the case that P2 is definite.

If P2 is indefinite, then there exists w ∈ Sn
1 such that P2(w) = 0. Then, after a

change of coordinates given by an orthogonal transformation that sends en+1 to w,
the polynomial P can be written as

P (x1, . . . , xn, xn+1) = A1(x1, . . . , xn)xn+1 + A0(x1, . . . , xn), (2.12)

where A1(x1, . . . , xn) is a polynomial of degree � 1 and A0(x1, . . . , xn) a
polynomial of degree � 2.

Claim. A1 = 0.
Assume that the claim is not true. Since the degree of A1 is at most 1,

given R > 0 there exists a closed ball B ⊂ R
n of radius R on which A1(x1, . . . ,

xn) �= 0. If A1 > 0 on B, using (2.12) one easily verifies that P (x1, . . . , xn, xn+1) >
0 for all (x1, . . . , xn) ∈ B and all xn+1 > maxB |A0|/minB A1. Similarly, if A1 < 0
on B one has P (x1, . . . , xn, xn+1) > 0 for all (x1, . . . , xn) ∈ B and all xn+1 <
maxB |A0|/maxB A1. In either case, one sees that there is a ball of radius R in
R

n+1 entirely contained in the set U+ = {x ∈ R
n+1 : P (x) > 0}. Then, by an argu-

ment used in the proof of theorem 2.1, H � 1/R for every R > 0, contradicting
H = c > 0. This proves the claim.

By (2.12) and the claim above, P (x1, . . . , xn, xn+1) = A0(x1, . . . , xn), where
A0 : R

n → R is a polynomial of degree two in the variables x1, . . . , xn. Since 0 is a
regular value for P , so is for A0. Hence Mn = Mn−1

0 × R, where Mn−1
0 = A−1

0 (0)
is a regular algebraic hypersurface of R

n. Since Mn has non-zero constant mean
curvature, the same is true of Mn−1

0 . Then, by the induction hypothesis, up to a
rigid motion of R

n one has Mn−1
0 = Sk × R

n−1−k, for some k, 1 � k � n − 1, where
Sk is a hypersphere of R

k+1. Hence Mn = Sk × R
n−k, for some k, 1 � k � n − 1.

This shows that (†) holds for n also in the case that P2 is indefinite. Then, by the
induction principle, (†) holds for every n � 2, and the theorem is proved. �
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