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This paper presents an optimization circuit model of multiconductor transmission lines in the time domain. Several methods
allow calculation of the currents and the tensions distributed on the uniform transmission line. Most of these methods are
limited to lines with constant losses, and only for linear loads. The macro-model we propose, using Pade approximant,
employs more variables and allows it to reduce the necessary cells’ number in modelization than the traditional cells
cascade method. This macro-model, using the Modified Nodal Analysis method (MNA), is suitable for an inclusion in
circuit simulator, such as Esacap, Spice, and Saber. The MNA method offers an efficient means to discretize transmission
lines on real and complex cells compared to the conventional lumped discretization. In addition, the model can directly
handle frequency-dependent line parameters in the time domain. An example, with experimental measures taken from lit-
erature, is presented to validate the model we propose, and show its importance. It is necessary for assuring the results validity
obtained from Pade macro-model to study its stability and passivity.
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I . I N T R O D U C T I O N

The problems connected with high-frequency mounting the
function of the multiconductor transmission lines (MTLs)
are various (crosstalk, distortion, attenuation, etc.). Skin and
proximity effects make the problem more complicated,
because the inclusion of these effects requires a model of dis-
tributed line with linear parameters related to frequency.
They are, then, aggravated as a result of the propagation
effects whenever the length of the interconnection liaison
becomes large in relation to the wavelength. The traditional
models of such liaisons (localized constant model or the
cascade model) have become old-fashioned.

The major difficulty is then to have a distributed MTL
model with losses (resistive, dielectric) valid in both time
and frequency domains for linear and non-linear charges.

Diverse publications [1] have addressed this problem by
using a modeling of cell cascade. This method provokes not
only the oscillations of the echelon response (Heaviside func-
tion; Gibbs phenomenon [2]), but also it needs an extreme
important calculus time that penalizes simulation greatly.
Furthermore, it is very difficult to model MTL with linear para-
meters based on the frequency. The modal method [1] that
allows to represent MTLs, with the help of the BRANIN

model [3–5], is easy to be implemented in circuit simulators,
but it does not permits to be tackled as lines without losses.

In this paper, we will focus basically on the general
characteristics of the method developed by Dounavis et al.
[6] to model MTL variable losses. This method, which is
based on Padé approximation [7, 8] allows one to represent
an MTL under, the “macro-model” form. Contrary to trad-
itional cell method, this method does not present the Gibbs
phenomenon; it can be easily integrated in generic or circuit
simulators of type SPICE or ESACAP [9] using the MNA
method “Modified Nodal Analysis” [10].

Our contribution resides in macro-model optimization
size, and therefore the reduction of variables number (macro-
model matrix size) and subsequently the reduction of simula-
tion duration. We show the specificities of the macro-model
that we have developed and illustrate the importance of this
model through various application examples.

I I . P A D E M A R C O - M O D E L : F R O M
L I N E T O E Q U I V A L E N T C I R C U I T

A) Reminder: MTL general equations
We consider MTL represented by Laplace parameter s
through a coupled equation as below [11]:

d

dz
V(z, s) = −(R + sL)I(z, s),

d

dz
I(z, s) = −(G + sC)V(z, s),
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or R, L, C and G [ <N × <N are matrix of linear parameters,
and z is the propagation axis.

The solution of system (1) takes the form:

V ℓ, s( )
−I(ℓ, s)

[ ]
= eZ V 0, s( )

I(0, s)

[ ]
, (2)

with Z = 0 − R + sL( )ℓ
− G + sC( )ℓ 0

[ ]
ℓ is the line length.

The method proposed in [6] permits approximating the
solution of equation (2) in the time domain.

B) Pade method: application to MTL

1) mathematic formulation

Pade developments used in the field of enslaved systems to
approximate a pure delay by a quotient of two polynomials
have recently been applied in the analysis of the MTL. In
this case, we extrapolate the previous method using the devel-
opments of Pade [7, 8] for the approximation of the exponen-
tial function matrix eZ . Thus, equation (2) becomes:

V ℓ, s( )
−I(ℓ, s)

[ ]
= eZ V 0, s( )

I(0, s)

[ ]

= Bpq Z( )−1Apq Z( ) V 0, s( )
I(0, s)

[ ]
, (3)

with

Apq(Z) =
∑p

j = 1

(p + q + j)!p!
(p + q)!j!(p − j)!

(Z)j, (4)

Bpq(Z) =
∑q

j = 1

(p + q + j)!q!
(p + q)!j!(q − j)!

(Z)j, (5)

or p and q represent the Pade approximation order, Bpq
21(Z )

and Apq(Z ) are polynomials of matrices.
Using diagonal Pade approximation (p ¼ q), we can

express polynomials product Bpq
21(Z ).Apq(Z) using poles and

zeros [8]:

† p ¼ 2.k pair:

Bpq(Z)−1Apq(Z) =
∏u = p/2

i

(uiI − Z)(u∗
i
I − Z)

[ ]−1

︸












︷︷












︸
B−1

pqi

(uiI + Z)(u∗
i
I + Z)

[ ]−1

︸












︷︷












︸
Apqi

. (6)

I is the identified matrix N × N.
with ui ¼ xi + jyi, Polynomial complex pole Bpq(Z), ui

∗ is
the conjugated pole.

† p ¼ 2.k + 1 impair:

B−1
pq (Z) Apq(Z) = u0I − Z( )−1︸




︷︷




︸

Bpq0

u0I + Z( )︸



︷︷



︸
Apq0

×
∏k

i=1

ui − Z( ) u∗
i I − Z

( )[ ]−1︸











︷︷











︸
B−1

pqi

uiI + Z( ) ui
∗I + Z( )[ ]︸











︷︷











︸

Apqi

(7)

with u0, polynomial real pole Bpq(Z).

2) pade macro-model

From the previous equations, it is possible to determine an
equivalent macro-model. Let us consider, for instance, the
case of p impair. From equations (3) and (7), the transmission
line can, then, be modeled by a macro-model that is consti-
tuted from a plurality cells of the first and the second order
(cells with real and complex poles) whose number depends
on the Pade approximation order (Fig. 1).

We can relate the tension, input, and output current
vectors of each cell of the Fig. 1 to its hybrid matrix.

1) Cell of real pole

Cell of real pole is defined by the hybrid representation

Vℓ

Iℓ

[ ]
= B−1

pq0
(Z)Apq0 (Z)

V0

I0

[ ]
, (8)

with Bpq0 = (u0I − Z), (9)

Fig. 1. Line equivalent circuit according to Pade: the first- and second-order cells.

604 youssef mejdoub, hicham rouijaa and abdelilah ghammaz

https://doi.org/10.1017/S1759078714000129 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078714000129


Apq0 = (u0I + Z), (10)

or

– Vℓ, Iℓ, V0 and I0 are, respectively, input and output
variables

– I is the matrix unity.

2) Cell of complex pole

The cell of complex pole is defined by the hybrid
representation

Vi+1

Ii+1

[ ]
= B−1

pqi(Z)Apqi (Z)
Vi

Ii

[ ]
, i = 1, . . . , n − 1 (11)

with

Apqi = (uiI + Z)(u∗
i I + Z), (12)

Bpqi = (uiI + Z)(u∗
i I − Z). (13)

The vectors V1, . . ., Vn21 and I1, . . ., In21 are the inter-
mediary variables that can be used for representing the
macro-model.

3) determination of pade approximation

order

Pade approximant order (p, q) is determined with the help of
the following inequality:

e[Z] − B−1
pq (Z)Apq(Z)

∥∥∥ ∥∥∥
e[Z]

∥∥ ∥∥
1

, jr (14)

with jr the relative value of the error on the matrix
exponential.

In the numeric approach, we have used the recurrence rela-
tions as follows:

B−1
p+1q+1(Z)Ap+1q+1(Z) − B−1

pq (Z)Apq(Z)
∥∥∥ ∥∥∥

1

B−1
p+1q+1(Z)Ap+1q+1(Z)

∥∥∥ ∥∥∥
1

, jr (15)

with

Bpq(Z) = Bp−1q(Z) + Z
−q

(q + p)(q + p − 1)

( )
Bp−1q−1(Z) ,

p ≥ l, q ≥ l, (16)

Bpq(Z) = Bpq−1(Z)

+ Z
p

(q + p)(q + p − 1)

( )
Bp−1q−1(Z), (17)

Apq(Z) = Bp−1q(Z)

+ Z
p

(q + p)(q + p − 1)

( )
Ap−1q−1(Z), (18)

Bpq(Z) = Bpq−1(Z)

+ Z
−q

(q + p)(q + p − 1)

( )
Bp−1q−1(Z). (19)

In a simulation, the value jr relates to the used application
(time or frequency domain) and to precision constraints in
these domains.

I I I . M O D E L S T A B I L I T Y A N D
P A S S I V I T Y

The study of a complete circuit comprises generally a source of
excitement, a transmission line, and output load. The study of
such circuit imposes typically a problem of model stability.
The problem of the equivalent circuit stability can be
approached in many ways. We are interested, as in the case
of the extern stability, in the evolution of circuit output
excited by a certain stimulus (stability BIBO, i.e. bounded
input–bounded output). We study, in the case of the intern
stability, the natural evolution of circuit analyzing the transi-
ent evolution of an adapted scalar function, such as the total
energy and its derivative (Lyapunov stability). In a hybrid
approach, we can analyze the energetic evolution of circuit
excited by any input entry. This approach, since it corre-
sponds the notion of passivity [12], is considered as the
most suitable for our case.

The analysis of the different constraints related to the sta-
bility, causality, and passivity, was conducted in [13].
Comparison of the stresses associated with these concepts
show that passivity presents the most interesting proprieties
but also the hardest constraints.

Thus, the association of two macro-models, stable indi-
vidually, does not guarantee the stability of the whole [14,
15]. As against the property of passivity is essential as it
ensures the stability of all macro-models constituting
the circuit: if a model is passive, it is necessarily stable (the
reverse is not always true) and the association of two passive
models, resulting in an overall passive model. Given these
properties, it will suffice that the Pade macro-model is
passive to ensure a complete passivity of the entire network
(the other network elements are assumed to be passive) and,
subsequently, its stability [8].

Recalling that, from a physical point of view, the passivity
or “dissipativity” means that the energy of the system at time T
is less than or equal to the sum of the initial energy and the
energy supplied to the circuit during the interval (0, T ) by
the external source. It corresponds to the following mathem-
atical definition:

W(T) ≤ W(0) +
∫T

0
V(t).I(t).dt. (20)

Applied to the n-port networks study, it leads to the follow-
ing two conditions [16] that must satisfy the admittance
matrix Y(s):

† Y(s∗) ¼ Y∗(s)
† Y(s): the real positive definite matrix

The first condition implies that the coefficients of the
rational matrix are real: this condition is always verified.
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It will suffice, then, to ensure that Y(s) is a real positive
matrix for all Re(s) . 0 to guarantee the model stability.

As we mentioned earlier, Pade macro-model is composed
of cells and complex real poles. According to the criterion
of passivity, it is sufficient that these two cells are passive
(Y0 and Yi are real positives) for the macro-model is passive
and therefore stable.

Admittance matrices Y0 and Yi contain linear parameters
of the line R, L, C, and G. All these matrices are real positive
and then the Pade macro-model is passive [6].

I V . M N A M E T H O D : F R O M
E Q U I V A L E N T C I R C U I T T O A P P L I E D
E Q U A T I O N S

A) MNA method
The “Modified Nodal Approach” MNA method [8, 10] is a
method based on Kirchhoff laws, which is applied to every
type circuit constituted from passive elements (linear and/or
non-linear) and active ones (independent excitement
sources). This mixed method permits to use the tensions
and currents like unknown variables in a circuit
simultaneously.

The relations (8) and (11) can be represented as follows:

Gp
V
I

[ ]
+ Cp

V
I

[ ]
= J

F

[ ]
. (21)

The matrices Cp and Gp contain the passive elements (R, L,
C, and G).

MNA method is easy to be implemented especially if we
know the network description and output requirement. The
calculus leads to sparse matrices, which are well adapted to
digital computation.

B) MNA method application of Pade
macro-model
Using the circuits theory [17, 18] and from the admittance
matrix of each cell (Y0 and Yi), we obtain two equivalent elec-
tric schema related to each cell (real and complex cell poles).
MNA method application of electric schema, corresponding
to each cell, leads to these matrices Cp and Gp. The size of
the matrices Cp and Gp has been reduced (see Table 1) to
the proposed [19] work. Optimized expressions of these
matrices are given below.

The determination of state equation (MNA method) from
electric schema and blocks optimization will be given with
more detail in the following paragraph.

1) cell of real pole

From the admittance matrix of the cell real pole, we get the
equivalent electric schema below (Fig. 2).

The representation of this circuit is difficult to be
generalized in the case of MTL. Of course, this method is
not systematic at all: it is necessary to redefine the equivalent
schema of each studied case. In addition, the number
of quadruple and the number of elements (RLC) in question
become very important. Finally, the equivalent circuit is

further complicated by the addition of the coupling
impedances.

MNA method application of schema (cell of real pole),
leads to the matrices Cp and Gp their expressions are given
below:

Matrice Gp, Matrice Cp

Gp =

node1 node2 node3 IL

ℓ

2m0
G 0

ℓ

2m0
G I

0
m0

2ℓ
R−1 −m0

2ℓ
R−1 −I

ℓ

2m0
G

−m0

2ℓ
R−1 m0

2ℓ
R−1 + ℓ

2m0
G

( )
0

−I I 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Cp =

node1 node2 node3 IL

ℓ

2m0
C 0

ℓ

2m0
C 0

0 0 0 0
ℓ

2m0
C 0

ℓ

2m0
C 0

0 0 0
2ℓ
m0

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is possible to simplify the matrices Cp and Gp taking
into account the fact that the current in the resistance
between nodes 1 and 2 is the same as the inductance
between nodes 2 and 3. Also, it is possible to replace these
two branches in one branch and reduce the dimensions of
matrices according to the following expressions (node 2 is
deleted).

Table 1. Optimization of matrices Cp and Gp.

Matrix Blocks
number [19]

Blocks number
(proposed model)

Real pole of cell Gp 16 blocks Nine blocks
Cp 16 blocks Nine blocks

Complex pole of cell Gp 49 blocks 36 blocks
Cp 49 blocks 36 blocks

Fig. 2. Equivalent schema of cell real pole.
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Matrice Gp, Matrice Cp :

Gp =

node1 node2 IL1

ℓ

2m0
G

ℓ

2m0
G I

ℓ

2m0
G

m0

2ℓ
R−1 + ℓ

2m0
G

( )
−I

−I I
2ℓ
m0

R

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Cp =

node1 node2 IL1

ℓ

2m0
C

ℓ

2m0
C 0

ℓ

2m0
C

ℓ

2m0
C 0

0 0
2ℓ
m0

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2) cell of complex pole

As we have seen before, it is possible to determine the matrices
Cp and Gp of the cell complex pole.

Matrice Gp:

Gp =

x2
i + y2

i

4xiℓ
R−1 + ℓ

4xi
G 0

ℓ

4xi
G

0
xiℓ

x2
i + y2

i
G

−xiℓ

x2
i + y2

i
G

ℓ

4xi
G

−xiℓ

x2
i + y2

i
G

xiℓ

x2
i + y2

i
+ ℓ

4xi

( )
G

x2
i + y2

i

4xiℓ
R−1 0 0

−I I 0

0 0 −I

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
i + y2

i

4xiℓ
R−1 I 0

0 −I 0

0 0 I
x2

i + y2
i

4xiℓ
R−1 0 −I

0
ℓ

xi
R 0

I 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Matrice Cp:

Cp=

ℓ

4xi
C 0

ℓ

4xi
C 0 0 0

0
xiℓ

x2
i +y2

i
C

−xiℓ

x2
i +y2

i
C 0 0 0

ℓ

4xi
C

−xiℓ

x2
i +y2

i
C

xiℓ

x2
i + y2

i
+ ℓ

4xi

( )
C 0 0 0

0 0 0 0 0 0

0 0 0 0
ℓ

xi
L 0

0 0 0 0 0
4xiℓ

x2
i +y2

i
L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Knowing the matrices Cp and Gp, we have implemented
the state equation defined by MNA method in circuit simula-
tor ESACAP [9]. In the following paragraph, we present an
example of simulations realized depending on our circuit
approach.

V . A P P L I C A T I O N : T R A N S I E N T
A N A L Y S I S O F T H R E E M I C R O S T R I P
L I N E S P C B W I T H A P E R F E C T L Y
C O N D U C T I N G G R O U N D P L A N E

In this example, an extract is taken from the study done by
Chang in 1970 [20]. We will compare the induced tensions
in transient analysis in two receptor conductors (near- and
far-crosstalk tensions) obtained through Pade Macro-model
with the decomposition method in cells cascade. Let us
consider three rectangular conductors placed in a non-
homogeneous dielectric (1r ¼ 4.65) with electrical reference
for conducting ground plane perfectly. These conductors are
excited by a generator e(t) internal impedance 50 V,
rise time Tr ¼ 1 ns, delivering an echelon of 1 V amplitude
(Fig. 3).

Depending on these geometric parameters of the three
ribbons defined in Fig. 4, the linear parameters R, L, and C
are presented below [21, 22]:

L =
3.879 1.6238 0.8252

1.6238 3.7129 1.6238

0.8252 1.6238 3.879

⎡
⎢⎣

⎤
⎥⎦ nH/cm,

C =
1.0413 −0.3432 −0.014

−0.3432 1.1987 −0.3432

−0.014 −0.3432 1.0413

⎡
⎢⎣

⎤
⎥⎦ pF/cm,

R =
Rdc 0 0

0 Rdc 0

0 0 Rdc

⎡
⎢⎣

⎤
⎥⎦V/cm,

Rdc =
1

swd
= 3.18V/cm (see e.g., Paul [1])

with s ¼ 58 m/mm2, copper conductivity.
The comparison with a rigorous analytical approach is dif-

ficult to be realized because the dielectric is non-homogenous.
The frequency range is very high; the conductors’ number is
important and all these present further losses.

Fig. 3. Three-wire line electric schema.
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It is possible to determine an equivalent homogenous
dielectric medium introducing a constant and effective dielec-

tric, such as 1e:1e =
1 + 1r

2
.

Also, the propagation time is: DT = l
n
= 1.7 ns ; n = 3.108

1e(see, e.g., [1]).

Figures 5 and 6 show the evolution of the far- and near-
crosstalk tensions in terms of time in the case of cell model
and Pade macro-model. The first method uses 766 variables,
whereas the macro-model uses only 65 variables (see Table 2).

The different curves clearly show the return time (3.4 ns or
2xDT; DT ¼ 1.7 ns delay line) associated with different mis-
matches in and out of the line.

We note that T ¼ 1.5 ns (Fig. 5), the tension V1a of the gen-
erator conductor input equals the value 0.55 V: this value cor-
responds the potentiometric division to input impedance of
disruptive conductor, Zin1 ¼ 68 V which also represents,
due to the absence of the effects of propagation up to this
time, the characteristic impedance of the line.

The disruptive conductor mismatch is from the origin
of the augmentation of the tension V1a from the moment
T ¼ 3.4 ns (positive reflection).

Far- and near-crosstalk tensions have substantially the
same shape.

The very small rise time of the generator (Tr ¼ 1 ns,
equivalent bandwidth of the order of 350 MHz) does not
obviously allow to represent by localized elements, and
consequently a simple physical interpretation of crosstalk phe-
nomenon. The analytical method [23] used for the study of
weak coupling in the three-wire lines could possibly be extra-
polated to interpret qualitatively the curves.

Finally, the simulation results are in good concordance
with those from the measurements [20].

Table 2 below sums up the main interest of our method in
terms of its relation to the method of decomposition cells.

V I . C O N C L U S I O N

In this paper, we have presented a new digital model of trans-
mission lines using a circuit approach. This method is based
on the transmission lines theory, which is also based on the
Pade approximation of exponential matrix. Its software imple-
mentation has been carried out by the MNA method.

First, we determined the admittance matrix of the line
based on linear parameters thereof and Pade polynomials.
This admittance matrix was associated with a model called
Pade macro-model. Also, we analyzed its problems of stability
and passivity.

Finally, the macro-model also allows one to take into
account the losses in the lines. In the presented application
examples, we compared the performance of our model with
the cells cascade model. Through these examples, we have
shown the optimization interests of Pade model compared to
cells method: the reduction of variables number and blocks
leads consequently to a reduction of simulation duration.

The extension of the macro-model LTM with varying
losses with frequency is an interesting possibility to model
real situations. In the same process, it will be interesting to
extend the case of LTM excited by EM wave and LTM
shielded.

Fig. 5. Transient response of the input tensions of the three conductors
(far-crosstalk).

Fig. 6. Transient response of the output tensions of the three conductors
(near-crosstalk).

Fig. 4. Sectional view of three rectangular conductors immersed in a dielectric.

Table 2. Comparison between cells decomposition method and Pade macro-model.

Used variables number Reducing number of variable Time of simulation

Cells method Proposed macro-model Cells method Proposed macro-model

Examp 1 766 65 91% 33.48 s 7.86 s
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