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ABSTRACT
This study investigates a new aircraft flight trajectory optimisation method, derived from the
Non-dominated Sorting Genetic Algorithm II method used for multi-objective optimisations.
The new method determines, in parallel, a set of optimal flight plan solutions for a flight.
Each solution is optimal (requires minimum fuel) for a Required Time of Arrival constraint
from a set of candidate time constraints selected for the final waypoint of the flight section
under optimisation. The set of candidate time constraints is chosen so that their bounds are
contiguous, i.e. they completely cover a selected time domain. The proposed flight trajectory
optimisation method may be applied in future operational paradigms, such as Trajectory-
Based Operations/free flight, where aircraft do not need to follow predetermined routes. The
intended application of the proposed method is to support Decision Makers in the planning
phase when there is a time constraint or a preferred crossing time at the final point of the flight
section under optimisation. The Decision Makers can select, from the set of optimal flight
plans, the one that best fits their criteria (minimum fuel burn or observes a selected time con-
straint). If the Air Traffic Management system rejects the flight plan, then they can choose the
next best solution from the set without having to perform another optimisation. The method
applies for optimisations performed on lateral and/or vertical flight plan components. Seven
proposed method variants were evaluated, and ten test runs were performed for each variant.
For five variants, the worst results yielded a fuel burn less than 90kg (0.14%) over the ‘global’
optimum. The worst variant yielded a maximum of 321kg (0.56%) over the ‘global’ optimum.
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NOMENCLATURE

ATM air traffic management

BADA 4.0 base of aircraft data version 4.0 – an aircraft performance model

CAS calibrated air speed [Kn]

DM decision maker

EA evolutionary algorithms

EST Eastern Standard Time

EOC end of cruise

FAA Federal Aviation Administration

FPL flight plan

fpm feet per minute (1fpm = 1ft/min)

GA genetic algorithms

GDPS Global Deterministic Prediction System

GRIB2 GRIdded Binary 2 data file format

IDLE Idle thrust engine setting

JFK John F. Kennedy Airport

Kn knots [NM/h]

LFPL lateral flight plan

LHR London Heathrow Airport

MACH Mach speed [-]

MCMB maximum climb thrust engine setting

MCRZ maximum cruise thrust engine setting

MMO maximum operational MACH speed limit [-]

MOO multi-objective optimisation

NAT-OTS North Atlantic Organized Track System

NG-FMS New Generation Flight Management System

NSGA-II non-dominated sorting genetic algorithm II

NM nautical miles

Mi number of non-empty tentative solutions at iteration i

mi number of updated tentative solution elements at iteration i

ORT orthodromic route

P-ORT orthodrome constructed perpendicular to the ORT

P0 initial population

Pi population of generation i

RGRID routing grid

RTA Required Time of Arrival [h]
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RTAn nth RTA constraint value

SLL Sea level length – the length of a flight segment computed at the SLA

TAP traffic aware planner

TBO trajectory-based operations

TOC top of climb

TOD top of descent

TS tentative solutions set

TSi tentative solution set at iteration i

UTC Coordinated Universal Time

VFPL vertical flight plan

VMO Maximum Operational CAS speed limit [Kn]

WGS84 World Geodetic System 1984 – ellipsoid earth model

TLA thrust lever angle (engine thrust setting) [%]

WPT waypoint

WPTfinal final flight trajectory point/lateral flight plan

WPT init Initial flight trajectory point/lateral flight plan

�RTA RTA constraint window width

4D four-dimensional space (latitude, longitude, altitude and time)

1.0 INTRODUCTION
This paper presents a new optimisation method designed to support Decision Makers (DMs)
in the planning phase of flights with a Required Time of Arrival (RTA) constraint at the final
waypoint (WPTfinal). The proposed flight trajectory optimisation method may be applied in
future operational paradigms, such as Trajectory-Based Operations (TBO)/free flight, where
aircraft do not need to follow predetermined routes.

Aircraft flight trajectories are the result of two levels of planning, optimisation and valida-
tion: local (aircraft), and global (airspace). At the aircraft level, the flight trajectory planning,
optimisation, and validation are performed by aircraft operators/the Flight Management
System (FMS)/an aircrew(1-3), based on specific flight data (aircraft performance data and
limitations, load, departure/destination pair, atmospheric conditions, navigation constraints,
etc.). The result is a flight profile that minimises a preselected cost function (fuel burn, total
costs, flight time, etc.), and satisfies all constraints and regulations(4). At the global level,
the Air Traffic Management (ATM) system(5-9) performs the optimisation and validation. The
objective is to ensure safe operations for all aircraft in that airspace (aircraft separation, com-
pliance with navigation rules, regulations and policies, etc.) and to maximise the airspace
throughput. The optimal flight trajectory selected by the flight operator is defined as a Flight
Plan (FPL)(10,11). A FPL is a standard, structured format, flight trajectory description, and
is submitted to ATM for validation and approval. If the FPL is rejected, the flight planning
sequence is repeated. In the near future, upon the implementation of time-based metering
operation in the US airspace(12), at certain points in the airspace (geographic locations and
altitudes) where the traffic demand is high, a time constraint (RTA constraint), negotiated
between the flight planner and the ATM, will be assigned to each aircraft, which will have to
cross the location within its assigned time window.
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An aircraft can fly at any altitude–speed combination within its flight envelope. Although
this is the case, the FPL segments have discrete speed and altitude values. The discrete speed
values (multiples of 1Kn for Calibrated Air Speed (CAS), and 0.001 for MACH) are a result
of the limitations regarding their selectable values in the FMS and the Flight Control Unit
(FCU). Cruise altitudes are multiple of 1,000ft, as imposed by navigation regulations.

Some examples of flight trajectory optimisation problems treated in the literature as a flight-
planning problem are presented in refs. [13-20]. The Aircraft’s Performance Model (APM),
the Atmospheric Data Model (ADM), the specific optimisation problem (initial aircraft posi-
tion and speed, weight, fuel quantity, etc.) and the method/approach, etc., influence the results
of the optimisation: the flight trajectories/flight plans identified as solutions and their qualities.

The type of APM used in flight performance calculations differs as a function of the context
and platform on which they are conducted. In ATM platforms, the flight performance calcu-
lations are performed on ground-based computers, using an aero-propulsive aircraft model
(e.g. BADA(21-24)) that is more complex and more accurate than other models. In current FMS
platforms, on-board systems with limited computational power, the flight performance calcu-
lations are performed using an APM based on interpolation tables (Performance Database –
PDB)(25,26), which are less accurate and less complex. Ramasamy et al.(27,28) presented con-
cepts for a New Generation Flight Management System (NG-FMS) architecture and flight
trajectory optimisation algorithms. The APM can be provided either by the aircraft manufac-
turer or could be generated/estimated based on flight test data. Ghazi and Botez presented a
method to generate an APM(29) and an engine model(30), based on test flight data. Murietta
et al.(31) devised a method for generating a cruise phase PDB from flight test data generated
with a level D flight simulator. Ghazi et al.(32) presented a method to generate a climb phase
PDB from an aero-propulsive aircraft model created from flight test data obtained using and
level D flight simulator for Cessna Citation X. Dancila et al.(33) developed a new method that
estimates, faster and more precisely, the fuel burn for a cruise segment at constant altitude
and the time required to burn a specified quantity of fuel.

The atmospheric data (air temperature and wind predictions) are issued by national meteo-
rological service agencies in a gridded format (GRIB2(34,35)), and in various forecast models.
Atmospheric data are defined in the nodes of a four-dimensional (4D) grid (latitude, longi-
tude, pressure altitude, and time). The differences between the forecast models refer to the
area covered by the forecast (global(36,37) or regional(38,39)), the grid resolution, map projec-
tion type (latitude–longitude or polar-stereographic), forecast timespan and update interval.
Various studies evaluated the forecast data accuracy relative to the real atmospheric conditions
encountered by aircraft(40-42), and interpolation methods(43,44). The atmospheric conditions
(wind and air temperature) along the flight trajectory have an important effect on the aircraft’s
flight performance (flight envelope limitations, fuel burn rate, etc.) and its global performance
(fuel burn and flight time). Therefore, the atmospheric data used in calculations should be as
close as possible to the real atmospheric conditions encountered by the aircraft. A review of
the available atmospheric data, their sources and their integration in a prototype route opti-
misation tool developed by NASA, called the Traffic Aware Planner (TAP) application, is
presented in ref. [45].

Similar to the APM, ADMs vary as a function of the optimisation context/platform,
timespan and area delimiting the flight trajectory. In FMS platforms, given their limited
computational power and memory, the atmospheric data are considered stationary, defined
in a selected set of points along the flight trajectory, at a limited set of altitudes(42). The
atmospheric conditions in a point of interest, other than where the data were defined, are com-
puted by multi-linear interpolations(46-48). In online ATM platforms, the atmospheric data are
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computed from forecast data(16,41) by linear interpolations, as a trade-off between precision
and computation time. Dancila and Botez(49) developed a new ADM that defines the time-
varying atmospheric data in the nodes of a Routing Grid (RGRID). The model computes the
atmospheric parameter values in a grid node on average six times faster and with the same
accuracy as when calculated by 4D interpolations from GRIB2 data.

In flight performance prediction and flight planning/optimisation applications, an aircraft
flight trajectory is determined by performing an accelerated simulation of the FPL. The
methodology for performing the accelerated simulation and the performance data calculation
is described in refs. [50,51]. The optimal solution to a flight planning/trajectory optimisa-
tion problem is the result of a search. The search identifies, as a function of the optimisation
objective, the lateral flight trajectory (Lateral Flight Plan – LFPL), the vertical flight trajec-
tory (Vertical Flight Plan – VFPL – the speed and altitude profile), or both, that minimise a
selected cost function and satisfy the imposed constraints. The search is performed within
a candidate solution set, selected as a function of the optimisation scenario. Dancila and
Botez(52) proposed a method to construct a family of vertical flight profiles that cover the
aircraft’s flight envelope, appropriate for use in FMS flight trajectory computation and optimi-
sation. Geometrical approaches to vertical flight trajectory optimisation are presented in refs.
[53,54]. Yu and Zhang(55) presented a survey of Unmanned Aerial System (UAS) flight path
planning approaches. Ceruti and Marzocca(56) modelled the docking manoeuvre of an airship
by Bezier curves and proposed an optimisation method using Particle Swarm Optimisation
(PSO) to determine the optimal Bezier curve parameters that minimise the energy necessary
for the manoeuvre.

For constrained optimisation problems, some constraints apply to the candidate profile set
(e.g. altitudes, speeds, waypoints (WPTs), etc.) and others refer to solution attributes (e.g.
time constraint(s), etc.). Liden(57) showed that when a flight trajectory is defined by an LFPL
and a VFPL that contains a set of segments flown at a set of constant speeds and altitudes,
the flight time as a function of speed might contain discontinuities (there are no FPL segment
speed and altitude combinations that yield a flight time within a time domain).

Hagelauer and Mora-Camino(58) proposed a Dynamic Programming (DP) optimisation
method for 4D trajectories with multiple RTA constraints along the route, defined as a con-
trol problem, where the search space was reduced using a heuristic. Other authors used an
approach based on Evolutionary Algorithms (EAs) for solving the optimisation problem of
a flight trajectory with an RTA constraint. Murietta-Mendoza et al.(59) used an artificial bee
colony optimisation algorithm to determine the optimum vertical flight profile for a cruise
segment with RTA constraint. The vertical flight profile was then processed to obtain a ver-
tical flight profile with a minimum number of speed changes. Gardi et al.(60) presented a
review of the multi-objective 4D flight trajectory optimisation methods, in which the cost
functions incorporate operational costs, as well as other cost elements such as noise, pollut-
ing emissions, contrails, airspace congestion, etc. Flight guidance and control concepts(2,61)

were developed to generate optimal 4D trajectories with a set of RTA constraints assigned at
WPTs along the flight trajectory.

Ceruti et al.(62) presented a multidisciplinary optimisation approach that uses heuristic
optimisation strategies, appropriate for the case where the optimisation involves multi-
ple interdependent parameters. Another multidisciplinary optimisation method presented by
Ceruti et al.(63) assigns a fitness value for a candidate solution based on two extreme solutions
(an ideal best and an ideal worst solutions) determined for each iteration of the algorithm.

Multi-Objective Optimisation (MOO) algorithms are used extensively to solve problems
where the solution must satisfy multiple competing and contradictory objectives. Marler and
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Arora(64) conducted a survey of the MOO methods used in engineering. Miettinen(65) pre-
sented the concepts related to MOO and described a series of approaches and methods to
conduct the optimisation. Fonseca and Fleming(66) presented an analysis of MOO methods
based on Genetic Algorithms (GAs). Murata and Ishibuchi presented examples of MOO
methods based on GAs: an outline for conducting MOO using GAs (MOGA(67)), and local
search methods(68,69). Fonseca and Fleming proposed a MOO method for optimisation prob-
lems with multiple constraints, based on EAs(70,71). Deb et al.(72) presented an elitist MOO
algorithm based on GAs and non-dominated population sorting (Non-dominated Sorting
Genetic Algorithm II - NSGA-II). Jensen(73) proposed a new non-dominated sorting method
that reduces the number of comparisons between the population members, thus reducing the
computation time.

2.0 PROBLEM STATEMENT
The optimisation problem considered in this paper is defined as follows:

• Given an:

• Aircraft model that performs the flight (aircraft flight envelope, APM);
• Initial conditions: aircraft location WPT init (latitude, longitude, altitude) and time,

weight, quantity of fuel on-board, and speed;
• The final location WPTfinal (latitude, longitude, and altitude) to be reached by the

aircraft, and the speed at the final location;
• The selected range of flight altitudes and speeds, and the geographic area through which

the aircraft trajectory can be routed;
• The atmospheric conditions for the geographic area, range of altitudes and times that

cover all the candidate flight trajectories; and
• A set of N adjacent RTA constraints, defined by a set RTAn of constraint values bounded

by �RTA, which cover a selected time domain, imposed at WPTfinal.

• Identify the set of FPLs (each FPL corresponds to a particular RTA constraint [RTAn −
�RTA/2, RTAn + �RTA/2]), where each FPL requires the minimum fuel burn relative to
FPLs that yield a flight time within the particular RTA constraint bounds. It is assumed that
the FPLs have the standard format presented in sub-section 3.1.

3.0 METHODOLOGY
A flight trajectory optimisation for a flight section with an imposed/chosen RTA constraint
could pose two problems: the optimised FPL may be rejected by the ATM, or there may be
another RTA constraint value acceptable for the DM and ATM for which the optimal FPL
yields a better fuel burn/performance.

To the best of the authors’ knowledge, the method proposed in this paper has not been
considered previously. The proposed optimisation method, based on an EA, derived from the
NSGA-II(72), solves these problems by conducting, in parallel, a search for optimal FPLs for a
set of adjacent RTA constraint values that cover a flight time domain of interest. The optimisa-
tion is conducted in the objective space (fuel burn – flight time). Following the optimisation,
a DM is presented with a set of optimal FPL solutions, one for each RTA constraint. The
FPL that best suits the optimisation criteria (minimum fuel burn, flight time, or a trade-off
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between the two) can be selected and filed for approval by the ATM. If rejected, the next-best
FPL could be selected from the solution set.

This section is structured as follows: the first sub-section (3.1) presents concepts regarding
flight trajectories and FPLs. The next sub-section (3.2) presents the APM used in this study,
followed by the ADM in sub-section 3.3. Sub-section 3.4 describes the methodology used for
computing the flight trajectory and the flight performance (flight time and fuel burn) for a
candidate FPL. Finally, sub-section 3.5 presents the proposed methodology.

3.1 Flight trajectory/flight plan
A FPL(10,11) is a description of an aircraft’s flight trajectory (the space–time evolution), in a
standard and compact format. It contains all the information necessary for:

• The onboard automation (FMS) to perform predictive calculations and flight performance
parameter validations (flight envelope limitations, available fuel, navigation constraints,
etc.), and to execute the flight along the flight trajectory; and

• The ATM to validate the flight trajectory relative to conflicts with other aircraft trajectories
along the route, restricted airspace incursions, adverse/dangerous atmospheric conditions
(icing, severe turbulence, convective activity, etc.), navigation constraints, regulations, etc.

A FPL has two components: a LFPL, which defines the lateral flight trajectory component
(the flight trajectory’s projection on the Earth’s surface), and a VFPL, which defines the
altitude–speed profile along the LFPL.

3.1.1 Lateral flight plan

A LFPL describes the lateral flight trajectory component as a succession of WPTs (geographic
locations) that define flight trajectory segments. A LFPL segment type(74) can be either lox-
odromic (the aircraft maintains a constant heading along the segment) or orthodromic (the
shortest distance between the two WPTs and the heading changes along the segment). The
lateral segment parameters’ calculations (Sea Level Length (SLL), departure and arrival head-
ings, the aircraft’s heading in a point along the segment, etc.) are performed differently, as a
function of the segment’s type and the Earth model employed, i.e. spherical or World Geodetic
System 1984 (WGS84) ellipsoid(75). The loxodromic segment parameters are computed using
the rhumb line equations(76). The orthodromic segment parameters are computed using spher-
ical trigonometry for orthodromic segments on a spherical Earth, and Vincenty’s formulas(77)

for orthodromic segments on an ellipsoidal Earth.
The set of LFPL candidates evaluated in the optimisation are constructed by selecting, suc-

cessively, from an RGRID, the WPTs that delimit each FPL segment. First, the RGRID is
constructed similarly to the method presented in ref. [49] and in a flight trajectory optimisa-
tion study(78) conducted by the authors. An Orthodromic Route (ORT) is constructed between
WPT init and WPTfinal, and then divided into the minimum number of equal segments with an
SLL smaller than or equal to a selected value (step size). In each ORT segment limit WPT,
a new orthodrome is constructed perpendicular to the ORT (P-ORT), and new WPTs are cre-
ated at locations that generate segments with a selected SLL, up to a selected maximum devi-
ation from the ORT. The RGRID is constructed step by step, starting from WPT init. Relative
to its location, the aircraft can advance to a new RGRID WPT situated one step ahead along
the ORT, and a maximum number of steps (NW ) along the P-ORT, on either side. Therefore,
the RGRID starts with a single WPT (WPT init) and increases, at each step along the ORT, with
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Figure 1. Example of a RGRID and a LFPL component constructed based on the RGRID.

2 × NW WPTs (NW on each side of the ORT), until it reaches the maximum deviation (num-
ber of transversal WPTs). At the other end, starting at a certain position along the ORT, the
number of WPTs across the ORT starts to decrease by 2 × NW WPTs, until it reaches the final
WPT (WPTfinal), where there is a single WPT. The candidate LFPL construction is performed
step by step, starting from WPT init. For each LFPL segment, the RGRID WPTs that define the
segment are selected by choosing the lateral deviation step and the number of WPTs on the
segment (steps along the ORT). An illustration of an RGRID and a LFPL is shown in Fig. 1.

To accelerate the flight performance evaluations, the SLL and the departure headings are
computed ahead of time for each possible segment starting at a RGRID node (a maximum
of 2 × NW + 1, which is the maximum number of lateral deviation choices), and stored in
a RGRID node data structure. During the flight performance calculations, the segment SLL
and departure heading are readily available. The distance flown by the aircraft along an LFPL
segment is calculated by multiplying the segment’s SLL with a correction factor, computed
based on the Earth’s radius and the aircraft’s altitude.

3.1.2 Vertical flight plan

The VFPL describes, in a concise, standardised form, the aircraft’s altitude and speed evolu-
tion along the LFPL. A VFPL can be decomposed into seven sections (flight phases): take-off,
initial climb, climb, cruise, descent, approach and landing. Each VFPL section is composed of
a set of segments, defined by a set of specific parameters for each segment type (e.g. the seg-
ment type, altitude, speed, position along the LFPL, etc.). Not every vertical flight trajectory
segment is explicitly defined in the VFPL. There are vertical flight trajectory segments (e.g.
constant altitude acceleration/deceleration, climb in cruise, etc.) that are transition segments
between segments defined in the VFPL, and they are generated during the FPL accelerated
flight performance calculations. In this paper, it was assumed that the WPT that demarcates
two VFPL segments defines the geographic location (WPT) where the altitude/speed change
is initiated (starts), and not the geographic location where the aircraft reaches the new speed
and/or altitude.

Some VFPL segment parameters are implicit, ‘inherited’ from the previous segment (e.g.
constant speed climb segment start altitude) or defined by the FPL (e.g. geographic loca-
tion/WPT where a constant altitude and speed cruise segment ends). Other parameters are
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dependent on the specific context (aircraft performance, weight, atmospheric conditions, etc.)
and can only be determined during the accelerated flight performance calculations (e.g. the
distance necessary/geographic location where the aircraft reaches the cruise altitude).

In this study, a VFPL is considered to have three phases/sections (climb, cruise and descent)
and the structure described below, similar to that used by the authors in a previous flight tra-
jectory optimisation study(78), and can contain some or all of the listed elements. The number
of sections, segments, the segment types and the order in which they appear, are specific for
the FPL. It is assumed that:

• The climb is flown at [CASCLIMB, MACHCLIMB] from the initial aircraft position WPT init,
at altINIT (initial aircraft altitude) to the Top of Climb (TOC; the point where the air-
craft reaches the initial cruise altitude altCRZ_INIT), executed at Maximum Climb (MCMB)
Thrust Lever Angle (TLA). The transition between CAS and MACH occurs at the
crossover altitude;

• The cruise phase is composed of a succession of constant speed cruise segments:

• A constant altitude (altCRZ_INIT) and speed (MACHCRZ_INIT) cruise segment from TOC
to a selected location along the lateral flight trajectory (LFPL segment);

• A set of constant altitude and speed cruise segments ([altCRZi, MACHCRZi]) where each
segment can have a different cruise altitude and/or speed value, and are delimited by
selected LFPL WPTs. The set’s last segment ends at the End of Cruise (EOC – a point
in cruise beyond which the aircraft is considered in descent mode, therefore no more
step climbs are executed). The EOC location is selected so that the Top of Descent
(TOD), the point where the aircraft starts the descent, is located after the EOC; and

• A final constant altitude (altCRZ_FINAL – same as the altitude of the previous segment
ending in EOC) and speed (MACHCRZ_FINAL) segment, from the EOC to the TOD.

• The aircraft does not perform descents in cruise, i.e. the altitude for a cruise VFPL segment
is always equal to or higher than that of a previous segment;

• The descent is flown at constant scheduled speed ([MACHDESCENT, CASDESCENT]), starting
from TOD, from the final cruise altitude (altCRZ_FINAL) to the final descent altitude (altFINAL)
at WPTfinal, and executed at idle (IDLE) TLA. The transition from MACH to CAS speed
occurs at the crossover altitude; and

• The speeds (CAS and MACH) and altitudes have discrete values, multiples of 1Kn for
CAS, 0.001 for MACH and 1,000ft for altitude.

The TOC and TOD locations along the LFPL are specific for the FPL data (LFPL and
VFPL), aircraft performance and weight, atmospheric conditions, etc.

3.2 The aircraft performance model
The accelerated flight performance calculations were performed using a toolbox, developed
in-house and based on the Base of Aircraft Data (BADA)(21-24) version 4.0 APM devel-
oped by Eurocontrol. The BADA APM provides aircraft-specific parameters and data models
(flight envelope limitations, aerodynamic and engine performance, valid aircraft configura-
tions, etc.), and the methodology to compute the flight performance parameters of interest
and the aircraft dynamics using equations based on the Total Energy Model (TEM). Specific
information regarding BADA 4.0 can be obtained from Eurocontrol(22) and is subject to a
license agreement.

The flight performance calculation toolbox contains a set of functions specific to each type
of vertical flight trajectory segment generated for a flight along a profile defined by an FPL.
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3.3 Atmospheric data model
The Atmospheric Data Model (ADM) used in this study was that presented by Dancila and
Botez(49). The model defines the atmospheric data, as a function of time, in RGRID nodes (see
sub-section 3.1) and at a set of selected altitudes. The geographic area covered by the RGRID,
the range of altitudes selected for the vertical flight profile, and the time domain estimated to
cover the possible flight times between the initial and final WPTs determine the atmospheric
data prediction files to be retrieved from the meteorological service agency. This ADM has
the advantage that, in a large majority of the cases, the atmospheric parameters used in the
flight segment performance calculations only require 1D linear interpolations to compute
their values in an RGRID node, at the altitude and time instance of interest. The ADM was
shown(49) to be on average six times faster, and as accurate as when computed by linear
interpolations from the GDPS GRIB2 data. Atmospheric data at points other than the RGRID
nodes, a reduced number of occurrences during the flight performance calculations (e.g. at
the final points of climb/descent and acceleration/deceleration segments), can be computed
through linear interpolation based on the atmospheric data in the grid nodes. Depending on
the specific case, a smaller number of interpolations may be required than when the GRIB2
data is used.

3.4 Accelerated flight simulation and flight performance parameters
calculations

The accelerated flight simulation performs a step-by-step simulation of the aircraft’s evo-
lution along the flight trajectory determined by the selected FPL. The specific methodology
employed for performing the accelerated flight simulation, used for flight trajectory prediction
and optimisation, is described in ref. [50] and illustrated in Fig. 2.

The simulation is performed phase by phase, starting from the initial aircraft position (geo-
graphic location, altitude and time), attitude (banking angle, climb/descent angle, etc.), speed
and aircraft configuration (weight, fuel quantity, etc.). For each flight phase, the accelerated
simulation successively estimates the aircraft’s evolution along each VFPL section and LFPL
segment. Each VFPL segment is decomposed into a set of sub-segments, chosen so that
the mathematical model that describes the aircraft and the performance parameters’ evolu-
tion does not change, and is then divided into smaller sub-segments (integration steps). The
parameter along which the decomposition is made (altitude, distance, time) is a function of
the segment’s type. The integration step size is chosen as a trade-off between computation
time and precision. Small integration steps increase the results’ accuracy, but the computation
time may become prohibitive.

For each sub-segment, the flight performance parameters are computed by multiplying the
parameter values computed in a point on the sub-segment with the integration step size. The
computed data are then used to determine the aircraft’s weight, position along the LFPL,
altitude, speed, etc., at the segment’s end. These data are the initial conditions for the next
sub-segment’s accelerated simulation. During the accelerated flight simulation, new flight
trajectory segments are created that do not have their correspondent in the VFPL segments.
They are transitions between VFPL segments, such as acceleration/deceleration segments
between two consecutive constant speed segments or climb/descent segments between two
constant altitude cruise segments.

The simulation starts by performing the climb phase accelerated simulation, from WPT init

to the TOC, followed by the cruise phase simulation, from the TOC to the EOC. Next,
the descent phase accelerated simulation is conducted backwards (backward integration),
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Figure 2. Accelerated flight simulation and flight performance parameter calculations.

from WPTfinal to the TOD. The aircraft weight and crossing time at WPTfinal are estimated
heuristically, based on the aircraft’s weight and crossing time at the EOC. After the descent
phase simulation, the estimated aircraft position, weight, and crossing time at the TOD are
known. Finally, the cruise segment between EOC and TOC is simulated, and the aircraft
weight and crossing time at the TOD are known, based on the forward simulation from the
initial waypoint. The heuristic estimation of the aircraft weight and crossing time at WPTfinal

is validated by comparing the differences between the aircraft weight and crossing time at
the TOD, computed forward, from the cruise phase, and those computed backwards, from the
descent phase. If the difference(s) is (are) larger than selected threshold(s), they are applied
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as corrections to the estimated values at WPTfinal. The simulation from the EOC to WPTfinal

and the validation are repeated until the simulation converges (the differences are smaller than
the thresholds) or the number of iterations surpasses a selected maximum value (simulation
error).

During the simulation, for each sub-segment, the flight parameters are validated relative
to the flight envelope limitations and fuel requirements (if the flight requires more fuel than
available). An accelerated flight simulation module option allows, if desired, the correction
of FPL segments that would result in flight parameters outside the aircraft’s flight envelope
(invalid altitude – speed profiles). The corrected FPL (with valid altitude – speed profiles) is
returned by the accelerated flight simulation function for future use in the optimisation.

3.5 The proposed optimisation method
The proposed optimisation method uses a new evolutionary search method, derived from the
NSGA-II. The first sub-section (3.5.1) presents the general considerations and observations
regarding the optimisation problem. Sub-section 3.5.2 presents the characteristics of the can-
didate FPLs solutions selected and evaluated during the optimisation. Next, sub-section 3.5.3
presents the genetic operations applied to candidate FPLs (crossover and mutation) and,
finally, sub-section 3.5.4 details the proposed method.

3.5.1 General considerations

For a selected FPL, a change in total flight time can be obtained by changing one or more
FPL parameters, for one or multiple segments. Given that the candidate FPL parameters
(speeds, altitudes, WPT locations) have discrete values, the set of obtainable flight times are
also discrete values. The complex and non-linear relationship between (lateral and vertical)
FPL parameters, atmospheric conditions and the flight parameters of interest (total flight time
and total fuel burn), as well as the atmospheric conditions which vary as a function of the
selected altitude, route and the time when the aircraft crosses each trajectory point, makes it
possible that for each RTA value the optimal solution is located in a different search space
region.

The proposed method is based on the following observations:

• The fuel burn variation versus flight time cannot be estimated a priori. Depending on the
specific optimisation problem, the fuel burn variation in general, and specifically for the
optimal (minimum fuel) solution set, could increase or decrease with the flight time, or it
may not have a monotonous variation;

• The optimisation problem can be seen as a constrained MOO with a two-dimensional
objective space (fuel burn versus flight time); however, this is not a classical MOO problem
since the set of optimal FPL solutions might not form a Pareto front (see the first observa-
tion). The solutions sought here do not constitute a trade-off between fuel burn and flight
time, but they are the FPLs that yield the minimum fuel burn for the set of RTA constraints;

• Techniques and elements from the MOO methods can be adopted for solving the optimisa-
tion problem: population-based search methods (EAs), tentative solution (TS) set, ranking
and fitness assignment for the evaluated solutions at a search iteration, searches performed
in the objective space, etc.; and

• The differences relative to classic MOO methods would have to address the population ele-
ments’ ranking and their fitness value assignment, which guides the selection of population
elements for the genetic operations and, therefore, the search.
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3.5.2 The set of candidate flight plans

The RGRID and the set of candidate FPLs (composed of LFPLs and VFPLs) conform to the
models presented in sub-section 3.1. Ideally, the range of altitudes and speeds from which
the altitude/speed pairs that define the VFPL segments are chosen to cover the entire flight
envelope, without extending beyond it. FPLs that have segment parameters outside the air-
craft’s flight envelope or require more fuel than available reduce the search efficiency, as
they spend computational resources without adding information that could guide the search.
Given the complexity/impossibility to determine a priori, at WPTs along the flight trajectory,
the parameters (aircraft’s weight, atmospheric conditions, etc.) that determine the aircraft’s
flight envelope limitations, and to ensure that the entire flight envelope is covered, the range
of speeds and altitudes for the VFPL segments were chosen as follows:

• CAS for climb (descent): CASINIT (CASFINAL) to VMO – 10Kn;
• Climb (descent) MACH: MACH equivalent for CASINIT at altINIT (CASFINAL at altFINAL)

to maximum operational MACH speed limit (MMO) – 0.01;
• Cruise altitudes are multiples of 1,000ft, between a selected minimum cruise altitude and

the service ceiling for the aircraft model; and
• Cruise speeds are multiples of 0.001 MACH, between a minimum selected value and

MMO – 0.01.

At the beginning of the flight, when the aircraft is heavier, the range of valid cruise altitude
and speed combinations are smaller than for the other flight segments. Therefore, the set of
altCRZ_INIT and MACHCRZ_INIT combinations are determined heuristically, as the valid combi-
nations of altitudes multiples of 1,000ft and speeds multiples of 0.001 MACH for an aircraft
weight resulted after a climb at 250Kn, from altINIT to the minimum initial cruise altitude.

3.5.3 Flight plan genetic operations

Due to their different structures, the LFPL and the VFPL genetic operations are different. The
first sub-section presents the genetic operation applied to LFPLs, and the second sub-section
presents the genetic operations applied to VFPLs.

3.5.3.1 Lateral flight plan genetic operations

The LFPL genetic operations are applied in an LFPL WPT selected at random, between the
second and the second-to-last WPT. Performing a crossover at the first or last WPT would
not yield new FPLs, and mutations cannot be performed at these locations. If, at the location
where the crossover must be performed, the difference between the lateral deviations for the
two LFPL WPTs is larger than the maximum lateral deviation step, the crossover cannot be
obtained just by swapping the final LFPL sections. A transition section is constructed, so that
at each step along the ORT the lateral deviation relative to the previous WPT is less than
or equal to the maximum lateral deviation step size. An LFPL mutation changes the lateral
deviation for the WPT situated at the selected location, relative to the previous WPT, to a
new value within the range of possible relative lateral deviations. For the following WPTs,
the deviation relative to their preceding WPT is maintained, and limited to the RGRID.

3.5.3.2 Vertical flight plan genetic operations

The crossover between two VFPLs is applied in the cruise section, at points that delimit
cruise segments, between the WPT at the end of the initial cruise segment and the EOC.
The crossover can be performed on the speed component, the altitude component or on both.
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The VFPL speed component crossover is obtained by swapping the final sections of the VFPL
speed component (between the crossover position and the end of the VFPL). A VFPL speed
component mutation can be performed on any segment by changing the selected segment’s
speed to a value within the range allowed for the segment (see sub-section 3.5.2). If at the
point where the VFPL altitude component crossover is performed the altitudes are identical,
the crossover swaps the final sections (from the crossover position to the end of the VFPL)
between the two VFPLs. If the altitudes are different, given that the descent in cruise is not
accepted, for the VFPL with the higher altitude at the crossover position the swap is performed
at a further location, where the altitude on the other parent profile is equal or higher (if it
exists). For the FPL with a lower altitude, the swap is performed at the crossover location. The
mutation is obtained by modifying the cruise altitude of a randomly selected cruise segment.
The new altitude is selected from the range of altitudes considered for that segment. The
altitudes for the cruise segments that follow are modified, if necessary, to be equal to or higher
than the selected new altitude (no descent in cruise).

3.5.4 Search method description

The proposed method uses an EA, based on GAs, derived from the NSGA-II algorithm(72).
The differences between the proposed method and the NSGA-II method presented in(72) con-
sist in the methods used for non-dominance/ranking determination, the fitness assignment for
crossover element selection, the TS set construction and update, and its propagation to the
extended population. In the proposed method, the tentative set size is equal to the number
of RTA constraints and is initially empty. Each TS set member is associated with an RTA
constraint. In each iteration, a population member that yields a flight time within an RTA
constraint bounds will replace the tentative solution element for that RTA if the fuel burn is
lower, and will not affect the other TS set members. A high-level block diagram representa-
tion of the proposed search method is shown in Fig. 3. A detailed description is presented in
the paragraph below.

An initial population (P0), with N elements, is randomly created according to the RGRID,
LFPL and VFPL templates, and the parameter value ranges for each FPL component. The
initial population FPLs are evaluated, and the fuel burn and flight times are calculated. During
the accelerated flight simulation of the first population, the FPLs that are invalid relative to
the aircraft’s flight envelope are corrected and updated in the population, so that the search
starts with the largest number of valid candidate solutions and, therefore, better information
to guide the search. For invalid FPLs (caused in the first population by FPLs that require
more fuel than available and, for the next populations also due to aircraft envelope limits
violation), the fuel burn and flight time are assigned penalty values, larger than for any valid
FPL. The range of flight times between the initial and final points that cover the entire set
of possible flight times along the set of candidate FPLs are estimated heuristically. In the
next step, the population elements are evaluated relative to the RTA values and fuel burn, and
assigned ranking and fitness. Similar to the method proposed by Jensen(73), the population
elements’ ranking is performed by first sorting the population based on the two cost function
components (first by flight time, and then by fuel burn), and then assigning them to optimal
fronts (sets of population elements with the same ranking/level of optimality). The elements
of the ordered list that have a flight time within the RTA constraint bounds of an RTA value
are successively retrieved, ordered as a function of fuel burn, and then ranked. The element
with the lowest fuel burn is assigned rank 1 (assigned to front 1), the next is assigned rank 2
(assigned to front 2) and so on. The best element for the RTA constraint value (the element
having rank 1) is copied to the TS set. The uniform distribution of the solutions along the
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Figure 3. Proposed search method block diagram.

Figure 4. Example of solution fronts for a population (the image does not show the last front:
the non-valid FPLs).

optimal front results from the rank assigning method. The non-valid population elements
(those that have a flight time outside the RTA constraint set bounds or are invalid) are assigned
the lowest rank (highest rank value) and form the last/least optimal front.

An example of fronts (solutions with the same ‘level of optimality’) for an FPL population
is shown in Fig. 4 (the last front, corresponding to non-valid FPLs, is not represented). It can
be noted that, for the case represented in Fig. 4, the tentative optimal solutions are present for
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Figure 5. Example of valid solutions in a population: detailed view of the RTA constraints from Fig. 4
delimited by the interval (24073 24133] seconds.

every target RTA constraint. However, the number of non-optimal solutions and their quality
(fuel burn value relative to the optimal solution for the RTA constraint) differ for each RTA.
In general, the presence in a population of an optimal solution for an RTA constraint, its
performance relative to the global optimum and the number of non-optimal solutions are a
function of the evolution of the search process.

Figure 5 gives a detailed view of three adjacent RTA constraints represented in Fig. 4 and
delimited by the time interval (24073 24133] seconds. It can be noticed that some solutions
from adjacent fronts could be very close: e.g. the tentative optimal solution (front 1) and the
next, near-best solution (front 2) for the RTA constraint bounded by the time domain (24113
24133] seconds. The choice to assign different sizes for the dots that represent solutions from
different fronts was determined by the fact that, in such cases, dots of identical size would
overlap, rendering some solutions not visible.

In the next step, an extended population (P_extended) is created by copying the current
population’s N elements, then by adding N elements generated by N /2 crossover operations,
followed by a mutation with probability p = 0.1 – in a similar manner to the NSGA-II method.
The difference is that, in the proposed method, the Mi non-empty TS set members are mutated
and added to the extended population (a local search).

The selection of population elements for crossover is performed at random. Four different
elements are selected and compared two by two. If the two elements have different ranks,
then the element with the lowest rank (highest fitness) is selected as a ‘parent’. If the ele-
ments have the same rank and are valid FPLs, then the element with the smallest number of
elements within the RTA constraint bounds is selected. If they both have an identical number
of elements within the RTA bounds, the FPL with the lowest fuel burn is selected. If the fuel
burn is also identical, the FPL with a flight time closer to the RTA constraint is selected. If the
FPLs also have the same flight time difference relative to their respective RTA constraints, the
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Figure 6. Example of fitness for the non-valid FPLs of a population, calculated based on the Euclidian
distance, in the normalised objective space, between the FPL’s projection and the reference point.

parent is randomly selected among the two. If the two elements have the same rank and are
non-valid, the parent is selected based on the Euclidian distance, in the normalised objective
space, between the element’s projection on the normalised objective space, and a reference
point with coordinates corresponding to the minimum fuel burn obtained for the population
and the central RTA constraint value (RTA0). The element with the smallest distance to the ref-
erence point is selected as a parent. If both elements have the same distance, then the element
with the lowest fuel burn is selected. If the fuel burn is also identical, the parent is selected
at random between the two elements. An illustration of the fitness values for non-valid FPLs,
expressed as the Euclidian distance to a reference point in the normalised objective space, is
given in Fig. 6. Here also the number of invalid FPLs and their fitness are a function of the
evolution of the search process. In the example shown in Fig. 6, the best-fit invalid FPL (the
dark-brown dot) is located near the minimum RTA constraint set bound and has a low (nor-
malised) fuel burn. The least-fit FPL is the dark-blue dot, located in the upper right corner of
Fig. 6, which has the largest fuel burn and flight time, and is the farthest from the reference
point.

The children elements, the new extended population members, are generated by crossover
between the two winning parents, where the crossover is performed on the lateral or vertical
FPL component, selected at random.

The subsequent step is similar to that of the NSGA-II method. The new elements in the
extended population are evaluated, and the extended population is ranked and assigned to
optimal fronts. If the extended population contains mi elements that are new solutions (for
RTA constraints with empty Tentative Solution element) or better solutions (lower fuel burn
than the Tentative Solution element), then the mi solutions update the TS set. The new pop-
ulation (P1), for the next iteration, is composed of the best N elements from the extended
population – as in the NSGA-II method. The copied elements are retrieved, successively,
from the optimal fronts associated with the ‘extended population’, starting with the optimal
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front elements (rank 1), and continuing with the elements from the subsequent, less optimal
fronts (higher ranks), until N elements are retrieved. If the remaining number of elements
to be retrieved, NR, is less than the number of elements in the current front, then the first
NR elements are copied from the front. The steps listed above are repeated until the selected
number of iterations is reached. The TS set at the end of the optimisation is the set of optimal
solutions. Given the randomness associated with GAs and the flight trajectory optimisation
problem characteristics, the solution set could contain solutions for all RTA constraints, for
some, or for none, and the solutions may be optimal, near optimal or not optimal.

The impacts of different possible changes in the proposed method are evaluated using seven
method variants. The first variant is the one described above. The other six variants differ as
follows:

• Non-valid FPLs’ fitness assigned based on the absolute time difference to the central RTA
constraint (RTA0) – not the Euclidian distance to the reference point;

• The extended population does not include mutated TS set versions (local search);
• Non-valid FPLs’ fitness assigned based on the absolute time difference to the central RTA

constraint (RTA0), and the extended population does not include mutated TS set versions
(local search);

• The extended population is created by crossover applied on both LFPL and VFPL;
• The initial population FPLs are not corrected relative to the aircraft flight envelope; and
• Different number of iterations used in the optimisation.

4.0 RESULTS
This section presents the results of tests performed to evaluate the performance of the pro-
posed FPL optimisation method. First, sub-section (4.1) presents the test environment used in
the evaluation. Then, sub-section 4.2 describes the test scenario used to perform the evalua-
tion. Sub-sections 4.3 and 4.4 present the research questions investigated in this study and the
test cases devised for this purpose. Finally, sub-section 4.5 presents and discusses the results.

4.1 Simulation environment
The proposed method was evaluated on a PC-based platform with a 2.8GHz AMD Phenom
II X4 B93 processor, 8 GB of RAM and Windows 10 Enterprise, using code developed in
MATLAB (R2108a). The flight performance parameters for candidate FPLs were calculated
using a module developed in-house, in MATLAB, based on the Boeing 777-300ER BADA
4.0 APM published by Eurocontrol.

4.2 Test scenario
The test scenario was the optimisation of a flight section that starts in climb, at 10,000ft and
250Kn CAS, and ends in descent, at 10,000ft and 250Kn CAS. The aircraft was considered to
be in normal operation (no malfunctions) and in clean configuration (retracted landing gear,
flaps and spoilers). The aircraft weight and fuel at the initial point were taken to be 0.5 and
0.7, respectively, of their maximum allowed values for the aircraft model. For a ‘realistic’
evaluation (attainable constraint times for the selected flight section, atmospheric conditions
and aircraft model), the initial and final FPL points and their crossing times were recovered
from real flight track data, retrieved from the FlightAware website (www.flightaware.com).
The selected flight was American Airlines AAL107(79), between London Heathrow (LHR)
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and New York John F. Kennedy (JFK) airports, flown on February 25, 2019, chosen at random
from the flights performed that day with the same aircraft model as the aircraft performance
model available to the authors.

Currently, the North Atlantic traffic observes specific navigation policies, and the aircraft
follow predetermined tracks: the North Atlantic Organized Track System (NAT-OTS). This
study/proposed method assumes possible future navigation paradigms, such as TBO or free
flight, where the aircraft can fly along the FPL/trajectory that is best suited for the mission
(aircraft type, load, atmospheric conditions and departure–destination pair).

The reference points and the crossing times were selected as the track data points, in climb
and descent, where the aircraft was closest to the altitude of 10,000ft:

• Initial point (WPT init): Lat. 51.5144 N, Lon. 1.0188 W, Time 12:27:50 EDT; and
• Final point (WPTfinal): Lat. 40.3386 N, Lon. 73.8018 W, Time 19:07:28 EDT.

The set of N adjacent RTA constraints were calculated based on the aircraft’s crossing time
at WPTfinal, considered as the primary RTA constraint (RTA0), defined by RTA values within
a range of RTA0 ± 5min (RTA = RTA0 + k × �RTA, with k ∈Z, −15 ≤ k ≤ 15), and window
width �RTA = 20s. This produced 31 RTA constraints, and therefore, the optimisation was
expected to produce 31 optimal FPLs, one for each RTA value. The RTA constraint bounds
were selected as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
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· · · (1)

The set of RTA values at WPTfinal were transformed into total flight time constraints, calcu-
lated as a difference, in seconds, between the RTA at WPTfinal and the aircraft crossing time
at WPT init:

ftRTAn = (
RTAn − tWPTinit

) × 3600 · · · (2)

where

• ftRTAn is the total flight time constraint for the nth RTA (RTAn); and
• tWPTinit is the aircraft crossing time at WPT init.

The value obtained for ftRTA0was

ftRTA0 = RTA0 − tWPTinit = tWPTfinal − tWPTinit

= 19h 07min 28s − 12h 27min 50s = 6h 39min 38s = 24023s
· · · (3)

The set of flight time constraints were obtained by replacing RTA0 with ftRTA0 in Equation (1).
The selected RGRID parameters were a maximum ORT sub-segment SLL of 50NM, a max-
imum lateral deviation of 500NM from the ORT, a lateral deviation step of 10NM and a
maximum of two lateral deviation steps that can be performed at one time. The resulted
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Figure 7. The RGRID for the set of LFPLs evaluated for the flight AAL107(79) optimisation.

RGRID (Fig. 7) has the ORT divided into 60 equal sub-segments with an SLL of 49.71NM,
and a maximum of 50 deviations (WPTs) on each side of the orthodrome.

The parameters selected for the candidate VFPLs were:

• Climbs at constant [CAS, MACH] and MCMB TLA: [250 to VMO – 10] Kn CAS, and
[0.452 (250Kn CAS at 10,000ft) to MMO – 0.01] MACH;

• Descents at constant [CAS, MACH] and IDLE TLA. Speed ranges as for climb;
• Climb in cruise performed at constant MACH, MCMB TLA, and 500fpm climb rate;
• Accelerations in cruise performed at maximum cruise (MCRZ) TLA and decelerations at

IDLE TLA;
• The sets of valid initial cruise altitude and valid cruise speeds are determined heuristically

(see sub-section 3.5.2);
• A constant altitude (initial cruise altitude) and MACH speed (initial cruise MACH speed)

from the TOC to the eighth LFPL WPT (approx. 400NM from WPT init);
• EOC is placed at the 53rd LFPL WPT (approx. 400NM before WPTfinal);
• From the eighth LFPL WPT to the EOC, the cruise section defines constant altitude and

speed segments with a length of approximately 250NM (five LFPL segments). The cruise
altitude and/or speed changes can occur at the LFPL WPTs [8, 13, 18, 23, 28, 33, 38, 43,
48]; and

• The cruise phase altitude and speed values and the MACH speed for the final cruise seg-
ment (from WPT 53 to TOD) are selected at random: altitudes between 28,000ft and
43,000ft, and speeds between 0.68 and 0.9 MACH.

Next, the ADM was constructed based on the RGRID, the range of VFPL altitudes, and the
time domain that covered all flights along the candidate FPLs. The maximum flight time for a
flight between WPT init and WPTfinal was assumed to be 10h 00′ 34′′ (1.5 × ftRTAo ). Therefore,
the time domain of interest for the atmospheric data is

ftdomain = [
tWPTinit , tWPTinit + 1.5 ftRTA0

] = [12 : 27 : 50, 22 : 28 : 24]EDT · · · (4)

The population size for the algorithm implementing the proposed method was selected to
be 62, twice the number of searched FPL solutions. Given the proposed method’s stochastic
nature, ten test runs were conducted for each optimisation method variant.
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4.3 Research questions
The research questions evaluated in this study are:

• Does the optimisation method identify solutions for all RTA constraints?
• How fast (in what generation) does the first tentative solution for an RTA value appear?
• What is the fuel burn difference between a ‘random’ FPL that satisfies the RTA constraint

(the first identified tentative solution) and the final solution?
• How many iterations are necessary until a tentative solution reaches a fuel burn that is 1%,

0.1%, 100kg and 50kg over the final solution, or the final solution?
• How different are the solutions identified in the ten test runs of a test case?
• Does adding mutated tentative solutions to the extended population (local search) improve

the results?
• Does a FPL correction relative to the flight envelope, in the initial population, improve the

results?
• How does the method’s performance change if the extended population is generated by

crossover solely on the LFPL or VFPL (chosen at random), or on both?
• What is the effect of assigning the fitness value for non-valid FPLs as a function of

Euclidian distance to a reference point versus the absolute time difference relative to the
primary flight time constraint ftRTA0?

• Does an increase of the number of iterations (generations) improve the results?
• What are the differences between an optimisation performed for 300 generations versus

one performed for 1,000 generations?

4.4 Test cases
A test case configuration synopsis of the optimisation method variants is presented in Table 1.

For an invalid FPL, the flight time and fuel burn were assigned penalty values: 3 × ftRTA0

for the flight time, and 1.5 times the initial fuel quantity for fuel burn (see Fig. 8).
In the first population, where all the FPLs are generated at random, one, multiple or all

FPLs may be non-valid. Since all invalid FPLs have the same values for fuel burn and flight
time, this could affect the algorithm’s ability to properly guide the search. For test cases 1–5
and 7, the invalid FPLs in the initial population were corrected (see sub-section 3.4). For test
case 6, the invalid FPLs in the initial population were not corrected, to evaluate their influence
on results.

4.5 Results and discussion
The number of invalid profiles in the initial generation when the FPLs were corrected (test
cases 1–5 and 7) was between 0 and 3 (4.84%). For test case 6, the number of invalid FPLs
was between 19 and 24 (30.65–38.71%). However, over the entire set of 70 test runs, the first
population (G0) contained tentative solutions for a minimum of 2 and a maximum of 20 RTA
values (mean 11.27, median 12, standard deviation 3.937). Moreover, for all test cases, test
runs and RTA values, the first tentative solution appeared after a maximum of eight genera-
tions (Table 2). Therefore, in all test cases, by the eighth generation a complete TS set was
found and, as a result, the final solution contained optimal FPLs for all RTAs. Table 2 presents
the statistical data for the first RTA value tentative solution occurrence.

The results show that the invalid FPLs generated in the first population do not have a large
impact on the ability to obtain, within the first few iterations, tentative FPL solutions for all the
RTA values. An illustration of the FPLs generated in the first population for test case 1–test
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Table 1
Test case configuration synopsis
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Figure 8. Initial population (G0) represented in the objective space (fuel burn – flight time) for test case 1,
test run 1.
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Table 2
Flight plan solution occurrence for an RTA constraint value

Number of RTA
constraint values for

which no solution
was found

Number of generations until first tentative optimal
FPL for an RTA constraint value was found

Standard
Test case Min Max Mean Median deviation

1 6 1.032258 1.122984
2 5 0.9903226 1.116181
3 7 1.254839 1 1.373428
4 0 0 7 1.387097 1.422824
5 5 1.074194 1.063203
6 8 2.335484 2 1.456055
7 5 0.9032258 1 1.009817

Figure 9. Initial population (G0) FPLs represented in the objective space, (flight parameters within the
aircraft’s flight envelope) for test case 1, test run 1.

run 1, represented in the objective space (fuel burn versus flight time), is given in Fig. 8.
Among the 62 randomly generated initial FPLs, 16 were valid (the blue dots in Fig. 8), and 46
were non-valid (the red dots in Fig. 8). Among the 46 non-valid FPLs, one required more fuel
than available (the red dot in the upper right corner of Fig. 8). A more detailed illustration, for
FPLs with parameters within the aircraft’s flight envelope, is given in Fig. 9.

Figure 10 shows an example of global optimisation evolution obtained for test case 1–test
run 1. The initial population (G0) yielded only 11 tentative solutions, with a fuel burn
difference relative to the final solutions (optimal solutions for the same RTA values at G300)
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Figure 10. Example of global TS set evolution for test case 1, test run 1.

between 10192.47kg (17.961%), for RTA ftRTA0 − 15 × �RTA, and 887.45kg (1.559%), for
RTA ftRTA0 − 2 × �RTA. At the 50th generation (G50), the differences were found to be
between 262.56kg (0.462%), for RTA ftRTA0 − 13 × �RTA, and 167.84kg (0.295%), for RTA
ftRTA0 − 5 × �RTA.

The results presented in Table 3, column A, show a synopsis of the fuel burn reduction
between the initial, random, tentative solutions and the optimal FPLs at the end of the opti-
misation. The seven method variants (test cases) yielded similar results. These results are
influenced by how far the random initial population (G0) candidate FPLs are from the opti-
mal solutions. Column B of Table 3 shows how close (in terms of fuel burn) are the optimal
solutions found for ten runs of an identical test case and RTA value. The worst results (the
maximum difference between test run results, and the maximum variance) were obtained for
the test cases 3 and 4, where no local search was performed. The best results were obtained
for the optimisation method variants 1 and 7, where the initial population’s invalid FPLs were
corrected, a local search was performed and the fitness for the non-valid FPLs was computed
using the Euclidian distance to the reference point. Among the two (test cases 1 and 7), the
best results were obtained for test case 7, when the optimisation was performed for 1,000
iterations.

Column C of Table 3 shows the results of a comparison between the optimal FPL fuel
burn for an RTA value and a test run, with the ‘global optimum’ for the RTA value (the best
fuel burn for the RTA value obtained from the 70 test runs – the 10 test runs for each of
the seven test cases). Once again, the best results were obtained for the test cases 7 and 1,
with maximum fuel burn differences relative to the ‘global optimum’ of 62.54kg (0.11%) and
69.95kg (0.12%), respectively.

The worst results were obtained for test cases 3 and 4, with maximum fuel burn differences
of 321.81kg (0.56%) and 290.68kg (0.51%), respectively. It can be concluded that the local
search significantly improves the optimisation results. The improvement is obtained at the
expense of computation time; the extended population increases by up to 31 elements, and
therefore, a higher number of flight performance calculations must be conducted.
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Table 3
Synopsis for the optimisation results obtained using the proposed method
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kg % kg % kg %

Min 518.11 0.91 0.00 0.00 0.00 0.00
Max 12,343.47 21.70 65.79 0.12 69.95 0.12

1 Mean 3,597.01 6.32 18.80 0.03 22.34 0.04
Median 3,072.48 5.40 15.19 0.03 19.16 0.03
Standard deviation 1,989.75 3.49 16.75 0.03 16.75 0.03

Min 589.95 1.04 0.00 0.00 1.50 0.00
Max 13,584.85 23.83 95.23 0.17 105.46 0.19

2 Mean 3,596.52 6.31 24.54 0.04 35.07 0.06
Median 3,233.15 5.68 19.42 0.03 31.82 0.06
Standard deviation 2,021.86 3.55 21.67 0.04 21.80 0.04

Min 537.94 0.95 0.00 0.00 20.19 0.04
Max 12,909.97 22.64 185.38 0.33 321.81 0.56

3 Mean 3,945.01 6.92 61.08 0.11 110.79 0.19
Median 3,770.00 6.60 47.64 0.08 105.50 0.19
Standard deviation 1,950.29 3.42 48.62 0.09 61.07 0.11

Min 628.53 1.11 0.00 0.00 3.77 0.01
Max 1,4218.05 24.91 264.33 0.46 290.68 0.51

4 Mean 3,702.58 6.49 60.80 0.11 90.55 0.16
Median 3,270.22 5.74 39.83 0.07 66.75 0.12
Standard deviation 1,927.02 3.38 61.48 0.11 65.56 0.11

Min 646.20 1.13 0.00 0.00 0.00 0.00
Max 13,699.90 24.10 77.47 0.14 82.12 0.14

5 Mean 3,480.00 6.11 29.25 0.05 35.10 0.06
Median 3,158.54 5.54 29.09 0.05 35.30 0.06
Standard deviation 1,792.86 3.15 17.68 0.03 17.63 0.03

Min 407.12 0.72 0.00 0.00 0.00 0.00
Max 14,104.33 24.83 88.31 0.16 89.83 0.16

6 Mean 3,386.59 5.95 24.19 0.04 29.11 0.05
Median 2,869.56 5.03 12.80 0.02 17.04 0.03
Standard deviation 2,174.58 3.82 24.80 0.04 24.79 0.04

Min 631.49 1.11 0.00 0.00 0.00 0.00
Max 12,455.23 21.87 62.12 0.11 62.54 0.11

7 Mean 3,438.50 6.04 21.63 0.04 22.05 0.04
Median 2,911.92 5.12 15.32 0.03 15.66 0.03
Standard deviation 1,990.90 3.49 18.73 0.03 18.70 0.03
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Figure 11. Example of tentative FPL solution evolution for test case 1, test run 1, and RTA constraint value
ftRTA0 − 13× �RTA.

Comparing the results obtained for test cases 1 and 2, where the only difference between the
two test cases is the fitness assignment method for the non-valid FPLs, it can be seen that test
case 1 yields better results. The maximum fuel burn difference relative to the global optimum
for an RTA constraint for the test case 2 is larger with 35.51kg (0.07%) than that obtained for
the test case 1. It can be concluded that the non-valid FPL fitness calculation based on the
time difference to a reference point, although easier to implement and less computationally
expensive, degrades the optimisation results. A comparison between the results obtained for
test cases 1 and 5 shows that the results obtained for test case 1 (crossover is performed on
only one component of the FPL) are better both in terms of maximum difference between the
results for ten identical test runs and the maximum fuel burn difference relative to the ‘global
optimum’. A comparison of the results obtained for test case 6 and test case 1 shows that
correcting the invalid initial candidate FPLs, generated randomly for population G0, improves
the optimisation results.

An illustration of a tentative solution evolution for an RTA value (test case 1, test run 1,
ftRTA0 − 13 × �RTA) is given in Fig. 11:

• The first tentative FPL solution appeared in the second generation (G2);
• A fuel burn value equal to 1% higher than the final solution (G300) was achieved in G10;
• Less than 0.1% over the fuel burn for G300 was reached at G145;
• Less than 100kg over fuel burn at G300 was reached at G119;
• Less than 50kg over fuel burn at G300 was reached at G145; and
• The final solution was reached at G161.

The final solution uses 1435.40kg (2.466%) less fuel than the initial tentative FPL solution.
Table 4 presents the number of iterations until the tentative FPL solutions reached a selected

threshold relative to the final solution fuel burn. For each test case, the analysis is performed
over the ten test runs and for the entire set of RTA values. In this case too, the optimisation
method versions 3 and 4 (test cases 3 and 4) yield the worst results among test cases 1–6,
in which the optimisation was performed for 300 generations. The results suggest that test
case 7 yields the worst results (converges after a large number of iterations). However, the
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Table 4
Number of algorithm iterations until the tentative solution reaches a fuel
burn (FB) below a threshold value relative to the final solution (FBfinal)

The test run generation where the first occurrence of a tentative
solution for the RTA value reaches a threshold value relative to the

final, optimal solution fuel burn value:
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Min 0 18 16 18 58
Max 58 219 206 219 300

1 Mean 17.73 94.17 66.17 99.51 246.16
Median 16 83 55 85.50 260
Standard deviation 7.86 49.29 35.71 50.84 48.98

Min 2 23 20 26 76
Max 41 290 155 290 300

2 Mean 15.72 84.59 62.00 91.41 237.37
Median 14 70 55 77 251
Standard deviation 7.60 46.00 30.59 50.02 50.60

Min 0 63 49 77 104
Max 97 295 276 295 300

3 Mean 27.17 151.11 119.08 157.14 255.29
Median 19 150 114.50 155 278
Standard deviation 21.82 50.53 44.44 50.38 49.18

Min 5 40 33 41 104
Max 80 299 299 299 300

4 Mean 25.79 143.29 121.20 149.63 256.56
Median 22 123.50 99.50 131.50 268
Standard deviation 14.79 63.90 59.83 64.31 38.63

Min 4 22 14 23 61
Max 53 239 145 239 300

5 Mean 14.76 73.98 53.71 78.40 230.64
Median 12 72 47.50 74 236.50
Standard deviation 8.77 36.19 25.90 37.76 50.05

Min 3 20 9 20 72
Max 46 247 137 247 300

6 Mean 20.75 94.66 72.80 98.55 233.45
Median 20 89 68.50 92 245.50
Standard deviation 8.40 35.54 28.29 37.56 52.28

Min 2 35 22 35 116
Max 36 260 207 269 1, 000

7 Mean 15.80 91.57 63.44 99.09 660.91
Median 15 88 59 95.50 708.50
Standard deviation 5.79 41.43 27.93 44.14 242.57

https://doi.org/10.1017/aer.2021.19 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.19


DANCILA AND BOTEZ NEW FLIGHT PLAN OPTIMISATION METHOD UTILISING... 1737

optimisation was performed for 1,000 iterations (3.3 times more than for test cases 1 to 6), and
therefore, new tentative solutions appear late in the optimisation, beyond the 300th iteration.

A comparison of the results in column C, between cases 1 and 7, reveals that the maximum
fuel burn reduction relative to the general optimum (7.41kg, or 0.01%) may not justify the
additional 700 iterations. The results obtained for test cases 1, 2, 5 and 6 are close, and suggest
that test case 1 converges faster to the selected threshold fuel burn values (except for 100kg
over the final solution fuel burn, where it performed the worst).

Table 5 presents the fuel burn reduction, relative to the ‘global’ optimum, at different points
(iterations) during the optimisation. Test cases 1 and 7 have identical optimisation method
configurations, except for the number of iterations. For an FPL solution at the 300th iteration,
the maximum fuel burn differences relative to the ‘global’ optimum for an RTA value are
different (a difference of 12.28kg or 0.02%), due to the optimisation method’s stochastic
nature (due to the randomness characteristic for EAs).

Together, the results for test cases 1 and 7, at the 300th iteration, are equivalent to running
test case 1 for 20 times. As such, relative to the ‘global’ optimal solutions, variant 1 of the
optimisation method found solutions that had a higher fuel burn: between 0kg and 82.23kg
(0.14%), with a mean of 27kg (0.04%), a median of 23.58kg (0.04%) and a standard deviation
of 19.37kg (0.03%). These results confirm that test case 1 still produced the best results;
however, they are just marginally better relative to results obtained for test cases 5 and 6.

The execution times for the tests performed in this paper are presented in Table 6. These are
total execution times, from the start of the optimisation (initialisations), and include loading
the aircraft performance model and the reference track data, processing the reference track
data, RGRID construction, loading the atmospheric data and storing the large amounts of data
needed to analyse the evolution and the performance of each test run.

The execution times are affected by the fact that the code was written in MATLAB (inter-
preted code) in a Windows environment (the processor time for a task is allocated by the
operating system according to its own priorities), with large data structures stored in the
memory.

A comparison of the execution times between test cases 1 and 3, and 2 and 4, shows that the
local search performed during the optimisation increased the execution time by approximately
1,568.39–1,591.89s (an increase of close to 30%), which was expected. As more tentative
FPL solutions for the RTA constraint set are identified, mutated and added to the extended
population set, more FPL performance calculations must be performed (93 FPL evaluations
in every iteration, in comparison with 62 FPL evaluations if the local search is not performed).
The local search produced a maximum reduction in fuel consumption of between 250kg (test
case 1 versus test case 3) and 185kg (test case 2 versus test case 4) (see Table 3 column C).
The effect of generating the extended population FPLs through crossover on both lateral and
vertical FPLs (test case 5) was an increase in execution time by a maximum of 36s and did
not yield better results. This result could be due to the specifics of the FPL components’
crossover, and to the fact that performing a crossover on both the LFPL and VFPL components
produces child FPLs that are too different from the parents, and thus results in a loss of
good genetic information. The invalid FPL parameters’ correction (test cases 1 versus 6)
resulted in a maximum increase in execution time of 260s and reduced the maximum fuel
burn difference with respect to the reference profile by 20kg. Finally, increasing the number of
optimisation iterations beyond 300 (test case 7 versus test case 1) did not produce significantly
better solutions; however, for the 1,000 iterations performed for test case 7, the execution time
increase was of approximately 11,300s, or 220% more than for test case 1.
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Table 5
Synopsis of the fuel burn improvement for the tentative FPL solution for the set of RTA constraints, relative to the

‘global’ optimal solutions, at a set of points (iterations/generations) during the optimisation

Generation G50 G100 G150 G200 G250 G300 G500 G1000
Fuel burn over the

Test case ‘global’ optimum kg % kg % kg % kg % kg % kg % kg % kg %

Min 7.30 0.01 4.99 0.01 3.39 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Max 688.18 1.21 257.58 0.45 239.12 0.42 140.55 0.25 110.71 0.19 69.95 0.12

1 Mean 164.08 0.29 75.29 0.13 49.81 0.09 34.88 0.06 26.30 0.05 22.34 0.04
Median 147.11 0.26 59.47 0.10 35.72 0.06 25.79 0.05 21.64 0.04 19.16 0.03
Standard deviation 112.30 0.20 57.06 0.10 43.06 0.08 29.75 0.05 19.34 0.03 16.75 0.03

Min 16.61 0.03 8.22 0.01 7.51 0.01 3.75 0.01 1.50 0.00 1.50 0.00
Max 569.99 1.00 284.95 0.50 186.13 0.33 165.21 0.29 155.85 0.27 105.46 0.19

2 Mean 178.35 0.31 81.27 0.14 55.99 0.10 45.21 0.08 40.49 0.07 35.07 0.06
Median 140.79 0.25 64.19 0.11 43.11 0.08 37.46 0.07 33.65 0.06 31.82 0.06
Standard deviation 118.98 0.21 58.51 0.10 38.82 0.07 33.44 0.06 30.20 0.05 21.80 0.04

Min 158.87 0.28 70.28 0.12 23.51 0.04 20.19 0.04 20.19 0.04 20.19 0.04
Max 1, 683.88 2.95 819.21 1.43 489.72 0.86 367.16 0.64 354.81 0.62 321.81 0.56

3 Mean 472.24 0.83 267.17 0.47 179.63 0.32 138.33 0.24 124.32 0.22 110.79 0.19
Median 373.00 0.66 220.71 0.39 158.93 0.28 131.55 0.23 123.80 0.22 105.50 0.19
Standard deviation 307.06 0.54 155.14 0.27 88.68 0.16 73.32 0.13 67.00 0.12 61.07 0.11

Min 62.52 0.11 30.62 0.05 23.97 0.04 20.01 0.04 20.01 0.04 3.77 0.01
Max 924.57 1.62 707.42 1.24 707.42 1.24 492.70 0.86 370.53 0.65 290.68 0.51

4 Mean 386.56 0.68 227.90 0.40 171.42 0.30 133.10 0.23 104.08 0.18 90.55 0.16
Median 351.02 0.62 189.46 0.33 141.87 0.25 114.15 0.20 82.99 0.15 66.75 0.12
Standard deviation 202.73 0.36 151.15 0.26 126.78 0.22 85.61 0.15 71.16 0.12 65.56 0.11
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Table 5
Continued

Generation G50 G100 G150 G200 G250 G300 G500 G1000
Fuel burn over the

Test case ‘global’ optimum kg % kg % kg % kg % kg % kg % kg % kg %

Min 52.33 0.09 6.68 0.01 5.17 0.01 2.60 0.00 0.00 0.00 0.00 0.00
Max 715.41 1.25 192.51 0.34 129.69 0.23 121.90 0.21 96.32 0.17 82.12 0.14

5 Mean 158.95 0.28 67.54 0.12 49.73 0.09 44.08 0.08 38.18 0.07 35.10 0.06
Median 121.80 0.21 63.38 0.11 50.26 0.09 44.80 0.08 37.11 0.07 35.30 0.06
Standard deviation 111.26 0.20 34.31 0.06 23.13 0.04 22.08 0.04 19.27 0.03 17.63 0.03

Min 28.89 0.05 5.73 0.01 1.52 0.00 1.52 0.00 0.00 0.00 0.00 0.00
Max 587.78 1.03 222.09 0.39 113.42 0.20 113.42 0.20 94.70 0.17 89.83 0.16

6 Mean 219.11 0.38 84.76 0.15 46.27 0.08 35.52 0.06 31.32 0.06 29.11 0.05
Median 212.74 0.37 77.62 0.14 44.41 0.08 26.11 0.05 18.53 0.03 17.04 0.03
Standard deviation 109.85 0.19 49.79 0.09 27.93 0.05 25.43 0.04 24.94 0.04 24.79 0.04

Min 41.77 0.07 4.82 0.01 1.41 0.00 1.21 0.00 1.21 0.00 0.63 0.00 0.00 0.00 0.00 0.00
Max 443.57 0.78 204.28 0.36 163.04 0.29 140.41 0.25 92.64 0.16 82.23 0.14 78.18 0.14 62.54 0.11

7 Mean 153.44 0.27 69.82 0.12 49.18 0.09 40.46 0.07 33.95 0.06 31.75 0.06 26.04 0.05 22.05 0.04
Median 149.51 0.26 61.72 0.11 45.55 0.08 40.16 0.07 34.42 0.06 32.92 0.06 19.29 0.03 15.66 0.03
Standard deviation 72.56 0.13 38.44 0.07 25.86 0.05 24.87 0.04 21.07 0.04 20.67 0.04 20.98 0.04 18.70 0.03
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Table 6
Execution times obtained for the seven variants (test cases) of the proposed

optimisation method

Test case
1 2 3 4 5 6 7

Min (s) 4,992.59 5,041.32 3,420.88 3,449.43 4,976.35 4,785.86 16,117.74
Max (s) 5,133.54 5,172.87 3,557.71 3,604.48 5,069.75 4,873.95 16,430.31
Mean (s) 5,047.47 5,096.34 3,490.67 3,525.96 5,034.87 4,812.08 16,303.89
Median (s) 5,038.60 5,095.38 3,478.28 3,537.66 5,042.21 4,799.44 16,324.68
Standard

deviation (s) 48.78 38.64 45.64 66.53 30.42 31.36 100.70

5 CONCLUSION
This paper presents a new optimisation method that addresses a flight planning problem where
the flight planner/DM has a preferred time domain for an aircraft crossing time at a WPT or
they must include an RTA constraint. The proposed method was able to quickly identify,
within the first eight iterations, tentative solutions for the entire set of 31 selected RTA values.
These initial tentative solutions are not optimal; they are random FPLs that satisfy the opti-
misation objective’s time constraint (not the minimum fuel requirement). Seventy test runs
were conducted for the same optimisation problem (ten runs for each optimisation method
variant). The best solutions (FPLs that yield the minimum fuel burn) for each of the 31 RTA
values were considered the ‘global’ optimums and were used as references, to evaluate the
performance of the proposed method and its variants (i.e. the influence of various techniques
applied during the optimisation, such as adding a local search).

The tests showed that, relative to the initial, random, tentative FPL solutions, the optimi-
sation method can yield a fuel burn reduction of up to 14,000kg, depending on how far from
the optimum profile the initial FPL is. Although a local search performed in each iteration
increases the execution time by 30%, it also increases the solution’s quality, both in terms
of reduction of the maximum fuel burn variation between FPL solutions for two runs of the
optimisation, and in a reduction of the maximum fuel burn difference relative to the ‘global’
optimum, from 321kg to 69kg (a better convergence to a ‘global’ optimum). Performing a
correction of the invalid FPLs in the initial population improves the solution quality, with a
relative minimal increase in execution time (200s).

The proposed optimisation method successfully identified optimal FPL solutions for the
entire set of RTA constraint values and had a good convergence: solutions of 0–82 kg (0.14%)
fuel burn over the ‘global’ optimum. Given the long execution time, and the solution ran-
domness (in the parameter space), the optimisation method is found to be appropriate for the
flight-planning phase, as it can provide the DM with a set of optimal FPLs from which to
choose, according to specific criteria. If the ATM rejects the selected FPL, the DM can select
the next best FPL/RTA value without having to perform a new optimisation.

Future work could investigate an optimisation method that can determine the set of opti-
mal FPLs for a set of RTA constraints that are not clustered (non-contiguous RTA constraint
bounds). Another direction of research would be to investigate whether other methods,
derived from other MOO techniques, can be successfully applied for the optimisation of
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flight trajectories with RTA constraints. A third direction of investigation would be to apply
the proposed optimisation approach for flight trajectories with multiple RTA constraints, at
points along the flight trajectory, where each time constraint would add another dimension to
the objective space. A fourth study could investigate the implementation of avoidance areas
by assigning time (and possible altitude) dependent crossing restrictions for the nodes of the
RGRID.
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