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A theoretical study is carried out for bubble oscillation in a compressible liquid
with significant acoustic radiation based on the Keller–Miksis equation using a
multi-scaled perturbation method. The leading-order analytical solution of the bubble
radius history is obtained to the Keller–Miksis equation in a closed form including
both compressible and surface tension effects. Some important formulae are derived
including: the average energy loss rate of the bubble system for each cycle of
oscillation, an explicit formula for the dependence of the oscillation frequency on the
energy, and an implicit formula for the amplitude envelope of the bubble radius as a
function of the energy. Our theory shows that the frequency of oscillation does not
change on the inertial time scale at leading order, the energy loss rate on the long
compressible time scale being proportional to the Mach number. These asymptotic
predictions have excellent agreement with experimental results and the numerical
solutions of the Keller–Miksis equation over very long times. A parametric analysis
is undertaken using the above formula for the energy of the bubble system, frequency
of oscillation and minimum/maximum bubble radii in terms of the dimensionless
initial pressure of the bubble gases (or, equivalently, the dimensionless equilibrium
radius), Weber number and polytropic index of the bubble gas.
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1. Introduction
Bubble dynamics is a classical field associated with wide and important applications

in science and technology (Young 1989; Leighton 1994; Brennen 2013). Its study
was started in 1917 by Lord Rayleigh during his work with the Royal Navy to
investigate cavitation damage on ship propellers. Over several decades his work was
refined and developed by Plesset, Prosperetti and others (Plesset & Prosperetti 1977;
Tomita & Shima 1977; Vokurka 1986; Feng & Leal 1997; Prosperetti 2004; Zhang
& Li 2012). The resulting equation, known as the Rayleigh–Plesset equation, models
the oscillations of a gas-filled spherical cavity in an infinite incompressible liquid.
Gilmore (1952) was the first to incorporate sound radiation into the liquid from the
oscillating bubble. Keller & Miksis (1980) also incorporated sound radiation from the
oscillating bubble, leading to a more popular model, the Keller–Miksis equation.

† Email addresses for correspondence: W.Smith@bham.ac.uk, Q.X.Wang@bham.ac.uk
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2 W. R. Smith and Q. X. Wang

Both the Rayleigh–Plesset equation and the Keller–Miksis equation are nonlinear
and therefore are often analysed numerically (see, for example, Lauterborn &
Kurz 2010). However, in recent years, approximate analytical solutions have been
sought to these equations, since analytical analysis is a powerful tool for improved
understanding of the qualitative behaviour and trends of phenomena.

Obreschkow, Bruderer & Farhat (2012) derived accurate explicit analytical
approximate solutions of the Rayleigh equation for the collapse of an empty spherical
bubble. Amore & Fernández (2013) developed a rigorous justification and explanation
for the remarkable accuracy of these approximations. Kudryashov & Sinelshchikov
(2014) found an implicit analytical solution to the Rayleigh equation for an empty
bubble (in terms of the hypergeometric function) and for a gas-filled bubble (in
terms of the Weierstrass elliptic function). Mancas & Rosu (2016) obtained the
parametric rational Weierstrass periodic solutions using the connection between the
Rayleigh–Plesset equation and Abel’s equation. Van Gorder (2016) made a theoretical
study for N-dimensional bubbles with arbitrary polytropic index of the bubble gas.

Both viscous and compressible effects are neglected in the above theoretical studies.
However the viscous effects are significant for microbubbles (Smith & Wang 2017)
and the compressible effects are essential for inertial collapse of bubbles (Leighton
1994; Lauterborn & Kurz 2010). Compressible effects were studied by Shapiro
& Weinstein (2011) and Costin, Tanveer & Weinstein (2013), in the linearized
approximation. In particular, they proved that the amplitude of bubble oscillation
decays exponentially, in the form e−Γ t, Γ > 0, as time advances. Furthermore the
decay rate parameter Γ was derived in terms of the Mach number and the Weber
number.

We will study bubble oscillation at large amplitude with significant nonlinear
compressible effects, which is associated with the loss of energy of a bubble
system due to acoustic radiation to the far field (Prosperetti & Lezzi 1986; Lezzi
& Prosperetti 1987; Fuster, Dopazo & Hauke 2011; Wang 2013, 2016). We will
investigate the decay of large-amplitude bubble oscillation, to evaluate the time
histories of the energy, frequency and maximum and minimum radii of an oscillating
bubble. Inertial bubble dynamics is associated with important applications such as
cavitation damage to pumps, turbines and propellers (Young 1989; Duncan & Zhang
1991; Zhang, Duncan, & Chahine 1993; Brennen 2013) and underwater explosions
(Wang 2013; Zhang et al. 2015). Ultrasound-driven microbubbles are widely used in
biomedical technology (Klaseboer et al. 2007; Wang & Blake 2010, 2011; Wang &
Manmi 2014; Wang, Manmi & Liu 2015), sonochemistry (Suslick & Crum 1997)
and ultrasonic cavitation cleaning (Ohl et al. 2006).

Compressible bubble dynamics can be described approximately by a short time
scale associated with inertial oscillation and a long time scale associated with acoustic
radiation damping, and is thus analysed using the multi-scaled perturbation method
of Kuzmak (1959) and Luke (1966), which was developed for studying nonlinear
oscillations and the nonlinear dispersive wave problems. This asymptotic method
has successfully determined the decay rate of large-amplitude oscillations of an
incompressible viscous drop (Smith 2010), a generalization of the Landau equation
for travelling waves in two-dimensional plane Poiseuille flow (Smith & Wissink
2015) and necessary conditions for the invariant manifold of the turbulent attractor in
two-dimensional Kolmogorov flow (Smith & Wissink 2017). It is particularly suitable
for the multi-scaled nonlinear oscillations which occur in fluid mechanics.

The remainder of the paper is organized as follows. The mathematical model
for the radiative decay of bubble oscillations is described in § 2. In § 3, the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

65
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.658


Radiative decay of bubble oscillations 3

Keller–Miksis equation is analysed using a multi-scaled method with a short time
scale associated with inertial oscillation and a long time scale with radiation damping.
The leading-order problem is solved analytically on the inertial oscillation time scale.
In § 4, the analytical solutions are firstly compared with the numerical solutions of
the Keller–Miksis equation and experimental observations. A parametric analysis is
then carried out with the above theory for the energy of the bubble system, frequency
and amplitude of oscillation in terms of the dimensionless initial pressure of the
bubble gases, Weber number and polytropic index of the bubble gas. Finally, in § 5,
this study is summarized and the key outcomes are identified.

2. Mathematical model
We study the Keller–Miksis equation for a spherical gas bubble in a compressible

liquid under adiabatic conditions(
1−

1
c

dR̄
dt̄

)
R̄

d2R̄
dt̄2
+

3
2

(
dR̄
dt̄

)2 (
1−

1
3c

dR̄
dt̄

)
=

(
1+

1
c

dR̄
dt̄

)
p̄l

ρ
+

R̄
ρc

dp̄l

dt̄
, (2.1)

in which p̄l is the pressure of liquid at the bubble surface and given as follows

p̄l = p̄g0

(
R̄max

R̄

)3κ

−
2σ
R̄
− (p̄∞ − p̄v)−

4µ
R̄

dR̄
dt̄
, (2.2)

where R̄(t̄) is the spherical bubble radius at time t̄, c is the speed of sound in the
liquid, R̄max the initial maximum bubble radius, ρ the liquid density, p̄∞ the hydrostatic
pressure of the liquid, p̄v the vapour pressure of the liquid, p̄g0 the initial pressure of
the bubble gases, κ > 1 the polytropic index, σ the surface tension and µ the liquid
viscosity.

The Keller–Miksis equation (2.1) is well established and its advantages and
limitations have been widely discussed in the literature. Among the limitations, it is
well known that it has problems capturing all the damping mechanisms occurring
during the collapse, which is translated into an over-estimation of the amplitude of
the rebound intensity for very intense collapses.

Equation (2.1) is scaled using R̄= R̄maxR and t̄= R̄maxt/U, where

∆= p̄∞ − p̄v, U =

√
∆

ρ
, (2.3a,b)

in which ∆ is the characteristic pressure of the liquid and U is a reference velocity.
The dimensionless Keller–Miksis equation takes the form(

1− ε
dR
dt

)
R

d2R
dt2
+

3
2

(
dR
dt

)2 (
1−

ε

3
dR
dt

)
=

(
1+ ε

dR
dt

)
pl + εR

dpl

dt
, (2.4)

in which
pl =

pg0

R3κ
−

2
WeR
− 1−

4
ReR

dR
dt
, (2.5)

where

Re=
ρUR̄max

µ
, We=

R̄max∆

σ
, pg0 =

p̄g0

∆
< 1, ε =

U
c

(2.6a−d)
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4 W. R. Smith and Q. X. Wang

are the large Reynolds number, the Weber number, the dimensionless initial pressure
of the bubble gases and the small Mach number, respectively. For convenience, we
choose the initial time at the maximum bubble radius R̄max. The initial conditions are

R(0)= 1,
dR
dt
(0)= 0. (2.7a,b)

With the choice of the maximum radius R̄max as the reference length, the initial
conditions become (2.7). The essential independent dimensionless parameters for
the system are limited to four parameters: the Mach number ε, the dimensionless
minimum pressure pg0 of the bubble at the maximum radius during the first cycle,
the polytropic index κ of the bubble gas and the Weber number We. The analysis
is thus simplified using this combination of the initial conditions and dimensionless
parameters.

The dimensionless equilibrium radius Req is defined by Req = R̄eq/R̄max, where R̄eq

is the dimensional equilibrium radius which is more easily measured in experiments
than the dimensionless initial pressure of the bubble gases pg0. These quantities are
linked via the equation

pg0 = R3κ
eq

{
1+

2
WeReq

}
. (2.8)

After multiplying by 2R2 dR/dt, equation (2.4) can be rewritten in the form

dE
dt
= R2 dR

dt

[
εF−

4
ReR

dR
dt
+O

( ε
Re

)]
, (2.9)

in which

F= R
dR
dt

d2R
dt2
+

1
2

(
dR
dt

)3

+
dR
dt

(
pg0

R3κ
−

2
WeR
− 1
)
+ R

d
dt

(
pg0

R3κ
−

2
WeR

)
, (2.10)

where the energy of a bubble system E(t) is defined as follows

E(t)=
1
2

R3

(
dR
dt

)2

+
pg0

3(κ − 1)
R−3(κ−1)

+
1
3

R3
+

R2

We
. (2.11)

The first term on the right-hand side of (2.11) is associated with the kinetic energy
of the surrounding liquid, the second and third terms the potential energy of the
bubble gas and the last term the potential energy associated with surface tension at
the interface. The kinetic energy of the gas is negligible since the density of gases is
usually three orders of magnitude smaller than that of liquids. The initial condition
for energy is

E(0)=
pg0

3(κ − 1)
+

1
3
+

1
We
. (2.12)

Henceforth, we assume that 1/Re� ε � 1, so that compressibility effects dominate
viscous effects.
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Radiative decay of bubble oscillations 5

3. Strongly nonlinear analysis
The damped oscillations of a bubble in a compressible Newtonian fluid are modelled

using two time scales. The bubble radius R varies significantly over a time scale
corresponding to the period 2π/ω of inertial oscillation, where the (angular) frequency
is ω. The period (or frequency) and the minimum/maximum bubble radii change on
a time scale of the order of the reciprocal of the Mach number 1/ε associated with
compressibility. We therefore introduce two time variables ti and tc associated with the
inertial and compressible time scales (Kuzmak 1959; Kevorkian & Cole 1981; Smith
2005), respectively,

dti

dt
=ω, (3.1a)

tc = εt, (3.1b)
d
dt
=ω

∂

∂ti
+ ε

∂

∂tc
, (3.1c)

where the (angular) frequency of oscillation ω needs to be chosen so that, in terms
of ti, the period of oscillation of the leading-order solution is independent of tc. The
period on this ti scale is then an arbitrary constant which we specify to be 2π without
loss of generality. In other words, the leading-order solution is periodic in ti, with
period precisely 2π, so that the changes in the frequency of the original problem are
accounted for by determining a separate equation for ω below.

Using (3.1c), the Keller–Miksis equation (2.4) becomes

R
(
ω2 ∂

2R
∂t2

i
+ 2εω

∂2R
∂ti∂tc

+ ε
dω
dtc

∂R
∂ti
+ ε2 ∂

2R
∂t2

c

)
+

3
2

(
ω
∂R
∂ti
+ ε

∂R
∂tc

)2

=
pg0

R3κ
−

2
WeR
− 1+ εF−

4ω
ReR

∂R
∂ti
+O

( ε
Re

)
. (3.2)

We introduce an expansion for the bubble radius of the form

R∼ R0(ti, tc)+ εR1(ti, tc), F∼ F0(ti, tc), (3.3a,b)

as ε→ 0. At leading order in (3.2) we obtain

ω2R0
∂2R0

∂t2
i
+

3
2
ω2

(
∂R0

∂ti

)2

=
pg0

R3κ
0
−

2
WeR0

− 1. (3.4)

We also introduce an expansion for the energy of the bubble system of the form

E∼ E0(tc)+ εE1(ti, tc), (3.5)

where the dependence of E0 only on tc and

E0(tc)=
1
2
ω2R3

0

(
∂R0

∂ti

)2

+
pg0R−3(κ−1)

0

3(κ − 1)
+

R3
0

3
+

R2
0

We
(3.6)

follow from (2.9) and (2.11), respectively. The energy of a transient bubble system
decreases during a very short period of time at the end of the collapse due to acoustic
radiation (Wang 2016). In the present approach, we consider the loss of the average
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6 W. R. Smith and Q. X. Wang

energy for each cycle of oscillation rather than the transient time history of the
energy during that cycle. It is shown in (3.5) that the average energy of a bubble
system changes on the long compressible time scale of the order 1/ε. We also show
subsequently that the period of the oscillation, maximum and minimum bubble radii
all change on the long compressible time scale of the order 1/ε.

Equation (3.4) is readily integrated to yield

Q2
=ω2

(
∂R0

∂ti

)2

=
1
R3

0

{
−

2pg0R−3(κ−1)
0

3(κ − 1)
−

2R2
0

We
−

2R3
0

3
+ 2E0(tc)

}
, (3.7)

where

Q=ω
∂R0

∂ti
=±

√√√√ 1
R3

0

{
−

2pg0R−3(κ−1)
0

3(κ − 1)
−

2R2
0

We
−

2R3
0

3
+ 2E0(tc)

}
. (3.8)

The collapse stage from the maximum bubble radius to the minimum bubble radius
corresponds to the negative sign and the expansion stage from the minimum bubble
radius to the maximum bubble radius corresponds to the positive sign.

An oscillating bubble attains its maximum or minimum when ∂R0/∂ti = 0.
Using (3.7), the maximum radius Rmax(E0, pg0, κ, We) and the minimum bubble
radius Rmin(E0, pg0, κ,We) are defined to be two successive roots of

g(R0, E0, pg0, κ,We)≡−
2pg0R−3(κ−1)

0

3(κ − 1)
−

2R2
0

We
−

2R3
0

3
+ 2E0 = 0 (3.9)

such that g(R0, E0, pg0, κ,We) > 0 for 0< Rmin < R0 < Rmax.
We note that Q is an odd function of ti from (3.8) and it follows that R0 is an even

function of ti. Thus, the dependence of R0 and Q on ti are fully determined if they are
specified on half a period of oscillation. The half-period corresponding to the collapse
stage is adopted. More precisely, if we denote ti=−Ψ at the maximum bubble radius
R0=Rmax, then ti=π−Ψ at the minimum bubble radius R0=Rmin, in which Ψ (tc) is
the phase shift. Therefore, the leading-order solution Q for ti + Ψ (tc) ∈ (0, π) or the
collapse stage is

Q=ω
∂R0

∂ti
=−

√
1
R3

0
g(R0, E0, pg0, κ,We). (3.10)

The corresponding leading-order solution R0 is obtained by integrating (3.10) from ti=

−Ψ , at the maximum bubble radius R0 = Rmax, to ti <π−Ψ as follows∫ R0

Rmax(E0,pg0,κ,We)

−

√
R̂3 dR̂√

g(R̂, E0, pg0, κ,We)

=
1

ω(E0, pg0, κ,We)

∫ ti

−Ψ (tc)
dt̂=

1
ω(E0, pg0, κ,We)

(ti +Ψ (tc)). (3.11)

Otherwise, if ti + Ψ (tc) 6∈ (0, π), then R0 and Q may be calculated using the parity
and periodicity properties

R0(ti +Ψ , tc)= R0(2π− (ti +Ψ ), tc), Q(ti +Ψ , tc)=−Q(2π− (ti +Ψ ), tc),
(3.12a,b)
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Radiative decay of bubble oscillations 7

R0(ti +Ψ , tc)= R0(ti +Ψ − 2nπ, tc), Q(ti +Ψ , tc)=Q(ti +Ψ − 2nπ, tc), (3.12c,d)

for any integer n. We thus specify the phase shift Ψ by taking R0 to be even (and Q
to be odd) about ti + Ψ = nπ, with Q< 0 for 0< ti + Ψ < π. We may then express
ω in terms of E0(tc), pg0, κ and We via

ω(E0, pg0, κ,We)
∫ Rmax(E0,pg0,κ,We)

Rmin(E0,pg0,κ,We)

√
R̂3 dR̂√

g(R̂, E0, pg0, κ,We)
=π. (3.13)

If the Mach number is set to zero and the Reynolds number is set to infinity, then the
Rayleigh collapse problem is exactly recovered in the first half-period of the analysis
above. The energy E0(tc) of the bubble system and the phase shift Ψ (tc) remain to
be determined. The secularity conditions to derive E0(tc) will be obtained from the
equation for R1 in § 3.1.

3.1. The first correction
At next order in (3.2) we have

ω2R0
∂2R1

∂t2
i
+ 3ω2 ∂R0

∂ti

∂R1

∂ti
+

(
ω2 ∂

2R0

∂t2
i
+

3κpg0

R1+3κ
0

−
2

WeR2
0

)
R1

=−2ωR0
∂2R0

∂ti∂tc
−

(
dω
dtc

R0 + 3ω
∂R0

∂tc

)
∂R0

∂ti
+ F0, (3.14)

where

F0 = ω
∂R0

∂ti
R0ω

2 ∂
2R0

∂t2
i
+

1
2
ω3

(
∂R0

∂ti

)3

+ω
∂R0

∂ti

[
pg0

R3κ
0
−

2
WeR0

− 1
]

+ωR0
∂

∂ti

[
pg0

R3κ
0
−

2
WeR0

]
. (3.15)

Using (3.4) and (3.7), the expression for F0 may be simplified to

F0 =−ω
∂R0

∂ti
f (R0, E0, pg0, κ), (3.16)

in which

f (R0, E0, pg0, κ)=
2E0

R3
0
+

4
3
−

pg0

R3κ
0

(
2− 3κ −

2
3(1− κ)

)
. (3.17)

Secular terms may be found on the right-hand side of (3.14). These terms must be
eliminated if R1 is to have bounded solutions and the asymptotic expansion for R is
to remain uniform. We seek to eliminate secular terms in this subsection.

The method of variation of parameters may be employed to solve the linear equation
(3.14) provided that two linearly independent solutions of its homogeneous equation
are known. Differentiation of (3.4) with respect to ti and E0 reveals that two solutions
of the homogeneous problem for (3.14) are Q and

S=
∂R0

∂E0
(ti, tc; E0, pg0, κ,We), (3.18)
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8 W. R. Smith and Q. X. Wang

respectively, in which ω(E0,pg0, κ,We) in (3.10)–(3.12) is treated as independent of E0.
It is still necessary to show that these two solutions are linearly independent; therefore,
the Wronskian,

W = S
∂Q
∂ti
−Q

∂S
∂ti
, (3.19)

is determined. The evaluation of the Wronskian requires us to differentiate (3.7) with
respect to E0 in which, again, ω(E0(tc), pg0, κ, We) is treated as independent of E0.
We also require (3.4) in order to derive the result

W =−
1
ωR3

0
. (3.20)

This expression for the Wronskian is clearly non-zero and we deduce that Q and S
are linearly independent.

The method of variation of parameters may now be applied to solve (3.14) by
writing

R1 = α(ti, tc)Q+ β(ti, tc)S, (3.21)

in which α(ti, tc) and β(ti, tc) are the parameters to be determined. Following the
standard procedure, the following restriction is imposed on α(ti, tc) and β(ti, tc)

Q
∂α

∂ti
+ S

∂β

∂ti
= 0. (3.22)

Substituting (3.21) into (3.14) and utilizing (3.22) yields

ω2R0

(
∂Q
∂ti

∂α

∂ti
+
∂S
∂ti

∂β

∂ti

)
=−2ωR0

∂2R0

∂ti∂tc
−

(
dω
dtc

R0 + 3ω
∂R0

∂tc

)
∂R0

∂ti
+ F0. (3.23)

In order to assist us in the identification of the secular terms, it is helpful to express
the right-hand side of (3.21) in terms of two periodic functions. Unfortunately, S is
not periodic in ti+Ψ . The structure of the leading-order solution (3.10)–(3.12) allows
us to express

R0 = R0

(
ti +Ψ (tc)

ω(E0(tc), pg0, κ,We)
; E0(tc), pg0, κ,We

)
, (3.24a)

Q=Q
(

ti +Ψ (tc)

ω(E0(tc), pg0, κ,We)
; E0(tc), pg0, κ,We

)
. (3.24b)

If we differentiate R0 above with respect to tc, then we find that X, defined by (Smith
et al. 1999)

X = S−
dω/dtc(ti +Ψ )

ω2 dE0/dtc
Q, (3.25)

is periodic in ti + Ψ , with period 2π, and is even about ti + Ψ = nπ. We may now
rewrite R1 in (3.21) in terms of the two periodic functions Q and X. The solution for
R1 is now of the form

R1 = γQ+ βX, (3.26)

where
γ (ti, tc)= α(ti, tc)+

dω/dtc(ti +Ψ )

ω2 dE0/dtc
β(ti, tc). (3.27)
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Radiative decay of bubble oscillations 9

The system of two equations (3.22) and (3.23) for the two unknowns ∂α/∂ti and
∂β/∂ti may be readily solved. Thus, we obtain

∂β

∂ti
=

R2
0Q
ω

[
−2ωR0

∂2R0

∂ti∂tc
−

(
dω
dtc

R0 + 3ω
∂R0

∂tc

)
∂R0

∂ti
+ F0

]
, (3.28)

∂γ

∂ti
=

dω/dtc

ω2 dE0/dtc
β −

R2
0X
ω

[
−2ωR0

∂2R0

∂ti∂tc
−

(
dω
dtc

R0 + 3ω
∂R0

∂tc

)
∂R0

∂ti
+ F0

]
. (3.29)

We now require that the right-hand sides of (3.28) and (3.29) to have zero average
over a single cycle of oscillation in order to suppress the secular terms in (3.14).

If we differentiate (3.6) with respect to tc, then we obtain

dE0

dtc
= ω

dω
dtc

R3
0

(
∂R0

∂ti

)2

+ω2R3
0
∂R0

∂ti

∂2R0

∂ti∂tc

+R2
0
∂R0

∂tc

[
3
2
ω2

(
∂R0

∂ti

)2

−
pg0

R3κ
0
+

2
WeR0

+ 1

]

= ω
dω
dtc

R3
0

(
∂R0

∂ti

)2

+ω2R3
0
∂R0

∂ti

∂2R0

∂ti∂tc
−ω2R3

0
∂R0

∂tc

∂2R0

∂t2
i
. (3.30)

Substituting (3.30) into (3.28), we find that

∂β

∂ti
=−ω

∂

∂ti

(
R3

0
∂R0

∂ti

∂R0

∂tc

)
−

1
ω

dE0

dtc
− R2

0Q
∂R0

∂ti
f (R0, E0, pg0, κ). (3.31)

In order to suppress the secular terms in (3.28), we need to establish that〈
∂β

∂ti

〉
= 0, (3.32)

in which

〈·〉 =
1

2π

∫ 2π−Ψ

−Ψ

· dti (3.33)

denotes the average value over a single cycle of oscillation. The first term on the
right-hand side of (3.31) has zero average owing to periodicity. Therefore, we obtain

dE0

dtc
=−〈R2

0Q2f (R0, E0, pg0, κ)〉. (3.34)

Equation (3.34) is the secularity conditions for E0 which we sought to obtain in this
subsection. In fact, it may be derived much more directly from (2.9).

4. Numerical results
4.1. Validation

Equation (3.34) governs the average energy loss rate for a bubble system, which may
be expressed as follows

dE0

dtc
=
ω

π

∫ Rmax(E0,pg0,κ,We)

Rmin(E0,pg0,κ,We)
R2

0Qf (R0, E0, pg0, κ) dR0. (4.1)
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10 W. R. Smith and Q. X. Wang

Substituting (3.10) and (3.13), the right-hand side may be rewritten entirely as a
function of E0, pg0, κ and We in the form

dE0

dtc
=−

∫ Rmax(E0,pg0,κ,We)

Rmin(E0,pg0,κ,We)

√
R̂g(R̂, E0, pg0, κ,We)f (R̂, E0, pg0, κ) dR̂

∫ Rmax(E0,pg0,κ,We)

Rmin(E0,pg0,κ,We)

√
R̂3 dR̂√

g(R̂, E0, pg0, κ,We)

. (4.2)

An important conclusion can be draw from (4.2) that dE0/dt = O(ε), therefore the
energy loss due to acoustic radiation is proportional to the Mach number.

Using (2.12), the initial condition for E0 is

E0(0)=
pg0

3(κ − 1)
+

1
3
+

1
We
. (4.3)

The initial value problem (4.2)–(4.3) allows the calculation of the energy of the bubble
system E0(tc) without evaluating the leading-order solution R0.

Euler’s method is utilized to evaluate the first derivative in (4.2) and the NAG
routine D01ATF for the integrals in (4.2). Once the energy E0 is known, the bisection
algorithm may be exploited to compute the upper and lower bounds on the radius
in (3.9). In order to facilitate comparison with the numerical solution, the NAG routine
D02EJF is employed to solve the Keller–Miksis initial value problem (2.4)–(2.7).

We consider the case of a special detonator equivalent to 1.32 g of trinitrotoluene
which is 1.5 m below the water surface (Hung & Hwangfu 2010). A laboratory tank
of dimension 4 m cubed is employed to undertake the experiments. The following
values for gas bubbles in water are adopted following the experimental conditions
∆= 1.16× 105 kg m−1 s−2, σ = 0.0725 Nm−1, κ = 1.667 (noble gas), µ= 0.001 Pa s,
c= 1500 ms−1, ρ = 998 kg m−3 and R̄max = 0.17 m. From the above parameters, we
deduce that the Reynolds number Re≈ 1.9× 106, the Weber number We≈ 2.7× 105

and the Mach number ε ≈ 0.0073. The dimensionless initial pressure of the bubble
gases pg0 ≈ 1.22 × 10−3 is chosen to fit with the experimental results. In order to
validate the asymptotic analysis, a numerical solution is obtained for these parameter
values. Figure 1 compares the amplitude envelope of the bubble radius, Rmax and
Rmin, with the experimental results and a full numerical solution of (2.4)–(2.7), the
agreement being excellent.

Another case for comparison corresponds to a tetryl charge of 0.249 kg detonated
91.44 m below the water surface (Cole 1948). The following values for gas bubbles
in water are adopted following the experimental conditions ∆= 9.9× 105 kg m−1 s−2,
σ = 0.0725 Nm−1, κ = 1.25, µ = 0.001 Pa s, c = 1500 ms−1, ρ = 998 kg m−3 and
R̄max= 0.47 m. With the above parameters, we deduce that the Reynolds number Re≈
1.5× 107, the Weber number We≈ 6.4× 106 and the Mach number ε ≈ 0.0214. The
dimensionless initial pressure of the bubble gases pg0 ≈ 1.63 × 10−2 is chosen to fit
with the experimental results. Figure 2 compares the amplitude envelope of the bubble
radius, Rmax and Rmin, with the experimental results and a full numerical solution of
(2.4)–(2.7). The theoretical results for Rmax and Rmin agree with the Keller–Miksis
equation, but there are some discrepancies between the theoretical results and the
experimental results. This is because that the bubble becomes non-spherical due to
buoyancy after the first cycle of oscillation (Hung & Hwangfu 2010; Wang 2013).
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FIGURE 1. (Colour online) Comparison of the time histories of a spherical underwater
explosion bubble using a full numerical solution of the Keller–Miksis equation (2.4)–(2.7),
the amplitude envelope of the bubble radius and experimental results (Hung & Hwangfu
2010). In this experiment, a special detonator equivalent to 1.32 g of trinitrotoluene is
1.5 m below the water surface. The amplitude envelope employs the solution to (4.2)–(4.3)
and the roots of (3.9). The parameter values used in the calculations are the Reynolds
number Re≈ 1.9× 106, the Weber number We≈ 2.7× 105, pg0 ≈ 1.22× 10−3 (Req = 0.26)
and the Mach number ε ≈ 0.0073.

The Rmin and Rmax obtained here are the approximated maximum and minimum radii
during each cycle of oscillation, which thus only provide an approximate envelope for
the oscillating radius history. The errors in our asymptotic approach are of the order
of the Mach number ε. It is clear that the errors in our approach, when compared
with the numerical solution, are greater in figure 2 for the Mach number ε ≈ 0.0214
than in Figure 1 for ε ≈ 0.0073.

4.2. Energy loss rate: dE/dt
In view of (3.1b) and (4.2), the loss rate dE0/dt of the energy of the bubble system
is proportional to the Mach number ε. From (4.2)–(4.3), we deduce that dE0/dtc(0)=
h(pg0, κ,We) which allows us to analyse how dE0/dtc(0) varies with pg0, κ and We.

Figure 3(a) shows dE0/dtc(0) versus pg0 in the range [0.01, 0.99] for We= 10 and
κ = 1.25, 1.4 and 1.667, respectively. The magnitude of the energy loss rate decreases
with the minimum bubble pressure pg0, since a bubble at a smaller minimum pressure
is associated with a larger pressure difference with the ambient pressure. It thus
follows that a stronger collapse is associated with increased energy loss due to
acoustic radiation at the end of collapse. The magnitude of the energy loss rate
increases inversely with the polytropic index κ , as a smaller κ is associated with
stronger collapse. For a smaller κ , the pressure of the bubble gas increases slower
during the collapse for the same change in volume, thus leading to a relatively
stronger collapse.

Figure 3(b) shows dE0/dtc(0) versus We in the range [10, 200] for pg0 = 0.01 and
κ = 1.25, 1.4 and 1.667, respectively. The magnitude of the energy loss rate decreases
with the We number. The surface tension effects are more prominent at a smaller value
of κ .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

65
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.658


12 W. R. Smith and Q. X. Wang

3010 20 40 50 60 70 800
t (ms)

5

10

15

20

R
 (

in
ch

)

Upper bound
Lower bound
Experiment

Numerical solution

FIGURE 2. (Colour online) Comparison of the time histories of a spherical underwater
explosion bubble using a full numerical solution of the Keller–Miksis equation (2.4)–(2.7),
the amplitude envelope of the bubble radius and experimental results (Cole 1948). The
experiment corresponds to a tetryl charge of 0.249 kg detonated 91.44 m below the water
surface. The amplitude envelope employs the solution to (4.2)–(4.3) and the roots of (3.9).
The parameter values used in the calculations are the Reynolds number Re ≈ 1.5 × 107,
the Weber number We≈ 6.4× 106, pg0 ≈ 1.63× 10−2 (Req = 0.33) and the Mach number
ε ≈ 0.0214.
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FIGURE 3. The logarithm of the rate of change of energy ln |dE0/dtc(0)| in (4.2) as a
function of (a) the logarithm of the dimensionless initial pressure of the bubble gases
ln(pg0) for We= 10 and three values of κ = 1.25, 1.4, 1.667 and (b) the logarithm of the
Weber number ln(We) for pg0= 0.01 and three values of κ = 1.25, 1.4, 1.667. The energy
corresponds to the initial condition for E0 in (4.3).

4.3. Influence of the first collapse
Figure 4 shows the influence of the intensity of the first collapse through the
parameter pg0. In this figure, we have introduced the energy difference between
the total energy and the energy of the system in the final equilibrium state Eeq

defined by
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FIGURE 4. The influence of the first collapse through the parameter pg0 on (a) E0(0)−Eeq,
(b) Rmin(E0(0), pg0, κ,We), (c) ω(E0(0), pg0, κ,We) for three values of κ = 1.25, 1.4, 1.667
and We= 10.

Eeq =−
pg0

3(1− κ)
R3(1−κ)

eq +
R2

eq

We
+

1
3

R3
eq. (4.4)

Figure 4(a) shows that the loss rate of the average energy of a bubble system per cycle
decreases with the minimum pressure pg0 at the maximum bubble radius. A smaller pg0

reflects a larger imbalance of the bubble gas pressure with the ambient pressure and
thus is associated with a stronger collapse and greater energy loss. Figure 4(a) also
shows that the loss rate of the average energy decreases with the polytropic index κ
of the bubble gas, as a smaller κ is associated with a stronger collapse. The minimum
bubble radius thus increases with pg0 and κ , as shown in figure 4(b). Figure 4(c) shows
that the frequency of bubble oscillation decreases with pg0 but increases with κ .

4.4. The behaviour over many cycles
Figure 5 compares the numerical solutions of the Keller–Miksis equation (2.4)–(2.7)
and the upper and lower bounds evaluated by the present theory. The parameter
values used are ε = 0.00667, pg0= 0.05 and κ = 1.4 and We= 1.38, 13.8, 138, which
are corresponding to the dimensional maximum bubble radii R̄max = 1, 10, 100 µm,
respectively, for a bubble in water with σ = 0.0725 Nm−1. The bubble undergoes
damped oscillation due to acoustic radiation, with the minimum radius increasing,
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Numerical solution
Upper bound
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FIGURE 5. Comparison of the numerical solution to the Keller–Miksis equation (2.4)–(2.7)
and the upper and lower bounds evaluated using the solution to (4.2) and the roots of (3.9).
The parameter values are We= 1.38 (Req = 0.33) for (a), We= 13.8 (Req = 0.45) for (b),
We= 138 (Req = 0.47) for (c), ε = 0.00667, pg0 = 0.05 and κ = 1.4.

maximum radius decreasing and both of them achieving an equilibrium radius
ultimately. They approach the equivalent radius slower for a larger Weber number
(or a larger bubble). The upper and lower bounds predicted by the theory agrees
excellently with the numerical results for a number cycles of oscillation.

Figure 6 displays the time histories of the difference between the total energy
and the equilibrium energy of the bubble system, maximum and minimum radii
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FIGURE 6. The time histories of (a) the difference between the total energy and the
equilibrium energy of the bubble system E0 − Eeq, (b) the maximum bubble radius Rmax,
(c) the minimum bubble radius Rmin and (d) the oscillation frequency ω of the bubble.
The initial condition for (4.2) is taken from the second maximum value of the radius
in the numerical solution. The parameter values are We = 1.38, 13.8, 138, ε = 0.00667,
pg0 = 0.001 and κ = 1.4.

and oscillation frequency of the bubble. The energy difference of the bubble system
E0 − Eeq initially decreases rapidly and the rate of change decreases rapidly too
(figure 6a). For a larger We number (or a larger bubble), the energy decreases slower.
For a larger We number (or a larger bubble), the maximum radius decreases slower,
reaching an equilibrium status later but at a larger equilibrium radius (figure 6b,c).
The oscillation frequency increases with time, increasing faster and reaching at a
larger equilibrium value at a short period for a smaller We number (or a smaller
bubble) (figure 6d).

5. Summary and conclusions

A theoretical study has been carried out to investigate the acoustic decay of
nonlinear oscillations of a spherical bubble in a compressible inviscid fluid, using
the Keller–Miksis equation. This is a multi-scaled problem with a short time scale
associated with inertial oscillation and a long time scale associated with acoustic
damping, their ratio being the Mach number. A multi-scaled perturbation method
is thus employed to solve the Keller–Miksis equation. The techniques of strongly
nonlinear analysis result in several important analytical formulae including the
following.
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(i) The leading-order analytical solution of the bubble radius history is obtained to
the Keller–Miksis equation in a closed form including both compressible and
surface tension effects.

(ii) An explicit expression for the average energy loss rate for the bubble system for
each cycle of oscillation, which allows the calculation of the energy loss without
prior knowledge of the bubble radius history.

(iii) An explicit formula is obtained for the dependence of the frequency of oscillation
on the energy.

(iv) Implicit formulae are obtained for the maximum and minimum radii of the bubble
during each cycle of oscillation.

These asymptotic predictions have excellent agreement with experimental results
and the numerical solutions of the Keller–Miksis equation over the long lifetime of
the damped oscillations of a transient bubble in a compressible liquid. Theoretical
and numerical studies are undertaken with the above formulae for the energy of the
bubble system, frequency of oscillation and minimum/maximum bubble radii in terms
of the dimensionless initial pressure of the bubble gases pg0, the Weber number We
and polytropic index of the bubble gas κ . The following new phenomena/features are
observed:

The energy loss rate of a bubble system is proportional to the Mach number ε.
This is as expected since the energy loss is associated with acoustic radiation, which
increases with the Mach number.

The energy loss rate decreases with the minimum bubble pressure pg0 and the
polytropic index κ of the bubble gas. A smaller pg0 reflects the stronger imbalance
between the bubble internal pressure and ambient pressure, and thus is associated
with stronger collapse. A smaller κ is associated with weaker collapse.

For a smaller We (or stronger surface tension), the equilibrium bubble radius and
equilibrium energy increase, since surface tension acts as an elastic parameter of the
oscillation bubble system.
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