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Electrohydrodynamics of deflated vesicles:
budding, rheology and pairwise interactions
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We develop a new boundary integral method for solving the coupled electro- and
hydrodynamics of vesicle suspensions in Stokes flow. This relies on a well-conditioned
boundary integral equation formulation for the leaky-dielectric model describing
the electric response of the vesicles and an efficient numerical solver capable
of handling highly deflated vesicles. Our method is applied to explore vesicle
electrohydrodynamics in three cases. First, we study the classical prolate–oblate–
prolate transition dynamics observed upon application of a uniform DC electric
field. We discover that, in contrast to the squaring previously found with nearly
spherical vesicles, highly deflated vesicles tend to form buds. Second, we illustrate
the capabilities of the method by quantifying the electrorheology of a dilute vesicle
suspension. Finally, we investigate the pairwise interactions of vesicles and find
three different responses when the key parameters are varied: (i) chain formation,
where they self-assemble to form a chain that is aligned along the field direction; (ii)
circulatory motion, where they rotate about each other; (iii) oscillatory motion, where
they form a chain but oscillate about each other. The last two are unique to vesicles
and are not observed in the case of other soft particle suspensions such as drops.

Key words: capsule/cell dynamics, membranes, suspensions

1. Introduction

The electrohydrodynamics (EHD) of the so-called giant unilamellar vesicles has
received much attention in the recent past (Perrier, Rems & Boukany 2017; Vlahovska
2019). Vesicles share the same structural component of a biological cell, the bilipid
membrane, and hence their EHD has been a paradigm for understanding how general
biological cells behave under an electric field. The dynamics of this system is
characterized by a competition between viscous, elastic, and electric stresses on the
individual membranes and the non-local hydrodynamic interactions. Studying the
microstructural response of isolated vesicles and vesicle pairs subjected to electric
fields can bring insights into the macroscopic properties of vesicle suspensions.
Several recent theoretical and numerical works have focused on isolated, nearly
spherical (or circular) vesicles; however, the dynamics of highly deformable deflated
vesicles as well as the pairwise dynamics of vesicle suspensions remain largely
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unexplored. The primary focus of this work is to develop a robust numerical scheme
to enable study of these dynamics.

Theoretical investigation of vesicle EHD has been done via small deformation
theory (Vlahovska et al. 2009; Schwalbe, Vlahovska & Miksis 2011) and semi-
analytic studies using spheroidal models (Nganguia & Young 2013; Zhang et al.
2013). Numerical solutions of the coupled electric, elastic and hydrodynamic
governing equations were computed using boundary integral equation (BIE) methods
(McConnell, Miksis & Vlahovska 2013; Salipante & Vlahovska 2014; Veerapaneni
2016) and immersed interface or immersed boundary methods (Kolahdouz & Salac
2015; Hu et al. 2016). Advantages of BIE methods are well known – exact
satisfaction of far-field boundary conditions eliminating the need for artificial
boundary conditions, reduction in dimensionality leading to reduced problem sizes,
and well-conditioned linear systems through carefully chosen integral representations.

All of the aforementioned works, however, considered the EHD of a single
vesicle only. Vesicles are known to segregate when subjected to electric fields
(Ristenpart et al. 2010), and thus pose significant challenges for direct numerical
simulations. In the case of BIE methods, for instance, the integral representations of
the hydrodynamic and electric interaction forces become nearly singular, requiring
specialized quadratures. Domain discretization methods, on the other hand, require
finer meshes (locally, in the case of adaptive methods), worsening the conditioning
issue of linear systems and increasing the overall computational cost.

Leveraging on our recently developed spectrally accurate algorithm for evaluating
nearly singular integrals (Barnett, Wu & Veerapaneni 2015) and the second-kind BIE
formulation for three-dimensional vesicle EHD (Veerapaneni 2016), we develop a
BIE method for simulating multiple vesicle EHD in this work. We apply the method
to analyze the pairwise interactions in a monodisperse suspension. We provide the
integral equation formulation and the description of our numerical method in § 2,
followed by analysis and discussion of the results in § 3.

2. Problem formulation
2.1. Governing equations

Let us first consider a single vesicle suspended in a two-dimensional unbounded
viscous fluid domain, subjected to an imposed flow v∞(x), for any x ∈ R2. The
vesicle membrane is denoted by γ . Assume that the fluids interior and exterior
to γ have the same viscosity µ and the same dielectric permittivity ε while their
conductivities differ, given by σi and σe, respectively. In the vanishing Reynolds
number limit, the governing equations for the ambient fluid can then be written as

−∇p+µ4v = 0 in R2
\ γ , (2.1a)

∇ · v = 0 in R2
\ γ , (2.1b)

v(x)→ v∞(x) as ‖x‖→∞. (2.1c)

The fluid motion is coupled to the membrane motion via the kinematic boundary
condition ẋ= v on γ , where x is a material point on the membrane. Using the BIE
formulation, we can now write the membrane evolution equation by combining the
kinematic condition with the governing equation (2.1) as (Veerapaneni et al. 2009)

ẋ= v∞(x)+
∫
γ

Gs(x− y)f hd(y) dγ (y), ∇γ · ẋ= 0, (2.2a,b)
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where f hd is the hydrodynamic traction jump across the membrane and Gs is the free-
space Green function for the Stokes equations, given by

Gs(x− y)=
1

4πµ

(
−log ‖x− y‖I +

(x− y)⊗ (x− y)
‖x− y‖2

)
. (2.3)

Equation (2.2b) expresses the local inextensibility constraint on the membrane.
For a given vesicle configuration, f hd can be evaluated by performing a force

balance at the membrane. The elastic forces acting on the membrane are comprised
of the bending and the tension forces, defined respectively as

f b = κB

(
κss +

κ3

2

)
n, f λ = (λxs)s, (2.4a,b)

where κB is the bending modulus, κ is the curvature, s is the arclength parameter, n is
the outward normal to γ and the tension λ acts as a Lagrange multiplier to enforce the
inextensibility constraint. A force balance at the membrane yields f hd = f b + f λ − f el,
where f el is the electric force that is determined by solving for the electric potential.

In the leaky-dielectric model, the electric charges are assumed to be present only
at the interface and not in the bulk. Let φ(x) be the electric potential at x, so that
E=−∇φ. Assuming that the vesicle membrane is charge-free and has a conductivity
Gm and a capacitance Cm, the boundary value problem for the electric potential can
be summarized as (Schwalbe et al. 2011)

−4φ = 0 in R2
\ γ , (2.5a)

−∇φ(x)→E∞(x) as ‖x‖→∞, Jn · (σ∇φ)Kγ = 0, JφKγ = Vm, (2.5b−d)

CmV̇m +GmVm =−n · (σi∇φi) on γ . (2.5e)

Here, E∞ is the imposed electric field, J·Kγ denotes the jump across the interface
(e.g. Jσ Kγ = σi − σe) and Vm is the transmembrane potential. The electric force on
the membrane is then defined by f el = Jn · Σ elKγ , where the Maxwell stress tensor
Σ el
= εE ⊗ E − (1/2)ε‖E‖2I . Therefore, we need to determine the electric field on

both sides of the membrane by solving (2.5) to evaluate f el.
Since we are only interested in interfacial variables and (2.5) is a linear partial

differential equation, we can recast it as a BIE with the unknowns residing only on
the interface. We will employ an indirect integral equation formulation to solve for
the electric potential φ. Assume that the electric potential in the domain interior and
exterior of the membrane is given by Veerapaneni (2016),

φ(x)= φ∞(x)+ S[q](x)−D[Vm](x), (2.6)

where the membrane charge density q= J∂φ/∂nKγ , and the Laplace single and double
layer integral operators are defined by

S[q](x)=
∫
γ

G(x− y)q(y) dγ (y) and D[Vm](x)=
∫
γ

∂G(x− y)
∂n(y)

Vm(y) dγ (y),

(2.7a,b)
respectively. Here G(·) is the Laplace fundamental solution in the free space.
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Note that, by construction, equation (2.6) implies JφKγ = Vm since the single layer
potential is continuous across γ . Applying the current continuity condition and using
the standard jump conditions for the Laplace layer potentials, we arrive at the second-
kind integral equation for the unknown q:(

1
2 + ηS

′
)

q= ηE∞ · n+ ηD′[Vm], (2.8)

where η = (σi − σe)/(σi + σe), and S ′ and D′ denote the normal derivatives of the
single and double layer potentials, respectively. Furthermore, the interfacial conditions
J∂φ/∂nKγ = q and Jσ∂φ/∂nKγ = 0 imply that −n · (σi∇φi) = (σiσe/(σi − σe))q.
Substituting this result in (2.5e) and using (2.8), we arrive at the following
integro-differential equation for the evolution of Vm:

CmV̇m +GmVm =
σiσe

σi + σe

(
1
2
+ ηS ′

)−1

(E∞ · n+D′[Vm]). (2.9)

The steps involved within a time-stepping procedure for the electric problem for a
given vesicle shape can now be summarized as follows: update Vm using (2.9), which
also gives q since the right-hand side of (2.9) is just (σiσe/(σi − σe))q, then evaluate
the membrane electric force f el by computing Ei and Ee using (2.6).

Finally, the formulation generalizes to the two- (or multiple-) vesicle case in a trivial
manner. Let γ now denote the union of the vesicle membranes, i.e. γ =

⋃2
i=1 γi, where

γi is the boundary of the ith vesicle. Then the definitions of the boundary integral
operators introduced earlier hold unchanged; for example,

S[q](x)=
∫
γ

G(x− y)q(y) dγ (y) :=
2∑

j=1

∫
γj

G(x− y)q(y) dγj(y). (2.10)

2.2. Numerical method
We now describe a numerical scheme to solve the coupled integro-differential
equations for the evolution of vesicle position (2.2) and its transmembrane potential
(2.9). It directly follows from ideas introduced in Veerapaneni et al. (2009), Barnett
et al. (2015) and Veerapaneni (2016). Each vesicle boundary is parameterized by
a Lagrangian variable α ∈ [0, 2π] and a uniform discretization in α is employed.
Derivatives of functions defined on the boundary are then computed using spectral
differentiation in the Fourier domain, accelerated by the fast Fourier transform.

2.2.1. Evaluating boundary integrals
We use the standard periodic trapezoidal rule for computing boundary integrals that

are smooth (e.g. the double-layer potential defined in (2.7)), which yields spectral
accuracy. On the other hand, we discretize the weakly singular operators such as
the single-layer potential defined in (2.7) using a spectrally accurate Nyström method
(with periodic Kress corrections for the log singularity (Kress 1999, § 12.3)). The same
method is also applied for computing the Stokes single-layer potential (2.2).

The operator D′[·] requires special attention as its kernel is hyper-singular. We
employ the following standard transformation (Hsiao & Wendland 2008) to turn it
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into a weakly singular integral:

D′[Vm](x)=
∂

∂n(x)

∫
γ

∂G(x− y)
∂n(y)

Vm(y) dγ =
∂

∂s(x)

(∫
γ

G(x− y)
∂Vm(y)
∂s(y)

dγ
)
∀x∈ γ .

(2.11)
The surface gradients, ∂/∂s(x) and ∂/∂s(y), are computed via spectral differentiation.

Lastly, when the vesicles are located arbitrarily close to each other, the boundary
integrals evaluating the interaction forces become nearly singular. For example,
consider the integral ∫

γ1

G(x− y)q(y) dγ1(y), where x ∈ γ2. (2.12)

The periodic trapezoidal rule loses its uniform spectral convergence in evaluating this
integral as x approaches γ1; moreover, the singular quadrature rule is also ineffective
for this integral. These inaccuracies, in turn, may lead to numerical instabilities
and breakdown of the simulation. To remedy this problem, we employ the recently
developed close evaluation scheme of Barnett et al. (2015) whenever vesicles are
located closer than a cut-off distance (which is heuristically chosen to be five times
the minimum spacing between the nodes, the so-called ‘5h rule’). This scheme
achieves spectral accuracy in evaluating (2.11), regardless of the distance of x from
γ1. We use this scheme to accurately evaluate the Stokes layer potential in (2.2) as
well.

2.2.2. Time-stepping scheme
The numerical stiffness associated with the bending force on the vesicle membranes

is overcome by using the semi-implicit scheme proposed in Veerapaneni et al. (2009)
to discretize (2.2) in time. Following McConnell et al. (2013) and Veerapaneni
(2016), we treat the electric force on the membrane explicitly, thereby decoupling the
evolution equations (2.2) and (2.9). Then we use a semi-implicit scheme to evolve
the transmembrane potential independently, which we describe next.

Let 1t be the time-step size, and let Vn
m(x) be the transmembrane potential at time

n1t at a point x on the membrane. Our semi-implicit time-stepping scheme for (2.9)
is given by

Cm
Vn+1

m − Vn
m

1t
+GmVn+1

m =
σiσe

σi + σe

(
1
2
+ ηS ′

)−1

(E∞ · n+D′Vn+1
m ), (2.13)

where the boundary integral operators are treated explicitly, i.e. evaluated using the
boundary position at n1t. This linear system for the unknown Vn+1

m is solved using
an iterative method (GMRES).

3. Results and discussions

We now turn to analysing the simulation results obtained using the numerical
method outlined above. We first compare our results on single vesicle EHD with those
obtained in prior studies and present some new insights on dynamics and rheology of
dilute suspensions, followed by analysis of pairwise dynamics. Let A and L denote
the area and perimeter of the vesicle, respectively. Setting the characteristic length
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(a)

(b)

E∞

FIGURE 1. Snapshots from two different simulations of a single vesicle subjected to
an external electric field, with Λ = 0.1, G = 0, Ca = 0 and (a) ∆ = 0.9, β = 3.2 and
(b) ∆ = 0.5, β = 12.8. While the vesicle undergoes a prolate–oblate–prolate transition,
the transient ‘square-like’ shapes observed here (in (a)) and in prior numerical studies
cannot be observed when the reduced volume is lowered. Instead, to sustain the electric
compression forces, the vesicle forms buds as it undergoes the POP transition (more
details on this phase are shown in figure 2).

scale as a= L/2π, we characterize our results on the following six non-dimensional
parameters:

reduced volume: ∆= 4πA/L2,

conductivity ratio: Λ= σi/σe,

membrane conductivity: G= aGm/σe,

electric field strength: β = ε|E∞|2aCm/µσe,

capillary number: Ca=µγ̇ a3/κB,

bending rigidity: χ =CmκB/σeµa2,

where γ̇ is the shear rate, e.g. for imposed linear shear flow, we have v∞(x)= (γ̇ x2,0).
In all the simulations, the time is non-dimensionalized by the bending relaxation time
scale tκB =µa3/κB and the bending rigidity χ ≈ 0.08.

3.1. Isolated vesicle EHD: transition from squaring to budding in POP
When an arbitrarily shaped vesicle is subjected to uniform electric field, it is known
to transform into either a prolate shape or an oblate shape at equilibrium (Riske &
Dimova 2005; Sadik et al. 2011). Since ours is a 2-D construct, we refer to ellipses
whose major axis aligns with the electric field direction as ‘prolates’; similarly, those
whose minor axis aligns as ‘oblates’. A classical observation in vesicle EHD studies
is the prolate–oblate–prolate (POP) transition that arises in certain parameter regimes.
Figure 1(a) illustrates the POP transition simulated using our numerical method.

Three conditions are generally required for a vesicle to undergo POP transition:
(i) G is very small so that the vesicle membrane acts more like a capacitor than a
conductor; (ii) Λ is less than one; and (iii) β is strong enough. Since Λ< 1, charges
accumulate faster on the membrane exterior initially, and thus the vesicle appears to
be negatively charged at the top and positively charged at the bottom, leading to a
compressional force from the applied electric field, and the vesicle transitions from a
prolate to an oblate shape. At longer times, once the membrane, acting as a capacitor,
is fully charged, the apparent charge becomes zero and the vesicle transforms back
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ı = 12.8
ı = 161.0

0.5
0
-0.5
-1.0
-1.5

(a) (b) (c)

FIGURE 2. (Colour online) Streamlines (a) and electric field lines (b) plotted at the
moment when the vesicle with ∆= 0.5 shown in figure 1(b) forms buds while undergoing
POP transition. In (a) the membrane colour indicates the magnitude of tension, while in
(b) it indicates the magnitude of the transmembrane potential. (c) A closer look at the
narrowest buds formed under different values of β, where the times corresponding to this
state for β = 9.6, 12.8 and 16 are t= 0.253, 0.216 and 0.184, respectively. The neck of
the buds becomes narrower as β increases.

3.0

P
O
POP0.4

0.3

0.2

0.1

0 0.5 1.0 1.5 2.0 2.5
ı

G

0.4

0.3

0.2

0.1

0
ı

0.4

0.3

0.2

0.1

0
ı

3 4 5 6 7 8

Ò = 0.1, Î = 0.9 Ò = 0.1, Î = 0.8 Ò = 0.1, Î = 0.6

61 2 3 4 5

FIGURE 3. (Colour online) Phase diagrams of vesicle dynamics for different reduced
volumes as a function of the membrane conductivity G and electric field strength β. Here,
the different phases of the dynamics are indicated by O when the vesicle remains oblate
for all times, P when it remains prolate or POP when it transitions from prolate to oblate
to prolate shapes. For all the cases, the conductivity ratio Λ is set to 0.1, Ca= 0.

into a prolate shape, which minimizes the electrostatic energy (McConnell, Vlahovska
& Miksis 2015).

A notable feature of the POP transition is the squaring effect – a transient shape
of the vesicle with four smoothed corners (as can be observed in figure 1a) –
which attracted attention of researchers due to its implications for electroporation.
Since the reduced volume of a square is around 0.785, a question naturally arises:
what transient shapes would a vesicle with much lower reduced volume assume? In
figure 1(b), we illustrate the POP transition of a vesicle with ∆ = 0.5. Since the
fluid incompressibility acts to preserve its enclosed area, the vesicle forms small
protrusions or ‘buds’ to sustain the electrical compression forces. Figure 2 shows
more details of this bud formation phase. The tension becomes negative, as expected,
in the neck region of the buds. These intermediary shapes are reminiscent of those
obtained by growing microtubules within the vesicles (Fygenson, Marko & Libchaber
1997); the notable feature here, however, is that only body forces are applied as
opposed to local microtubule-membrane forces.

We further characterize the POP mechanism in figure 3 for different reduced
volumes. In all cases, we observe that there exists some critical field strength β0
for POP transition to happen (e.g. from the figure, for G = 0, β0 ≈ {1.9, 2.6, 5.1}
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Ò
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u 
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Ò
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Ò
10-2

(a) (b) (c)

FIGURE 4. (Colour online) Single vesicle rheology when G = 4, β = 6.4 and Ca = 10.
Plots of the effective viscosity (a), angle of inclination (b) and the tangential velocity
(c) when a vesicle is suspended in a linear shear flow as a function of the conductivity
ratio. We can observe that the inclination angle increases as Λ is increased, i.e. the vesicle
tries to align with the electric field direction and away from the direction of shear. It
thereby presents more resistance to imposed flow, leading to higher effective viscosity. One
remarkable effect of low reduced volume, as is evident from panel (c), is that the vesicle
tank-treads in the opposite direction compared to high reduced volume vesicles when Λ
is small.

corresponding to ∆= {0.9, 0.8, 0.6}, respectively). On the other hand, when the field
strength is weak the vesicle remains a prolate, and when the membrane conductivity
is high it transitions to an equilibrium oblate shape. These results are in qualitative
agreement with McConnell et al. (2015), where similar phase diagrams were presented
but only for higher reduced volume vesicles. Thus the phase diagrams in figure 3
show that the POP mechanism works consistently for different ∆.

Finally, when Λ > 1, the EHD forces act to extend the vesicle and it remains a
prolate throughout the simulation.

3.2. Electrorheology in the dilute limit
We next look at the combined effect of an imposed shear flow and a DC electric
field on a single vesicle. In the presence of both fields, the dynamics is characterized
by a competition between the electrical and hydrodynamical shear stresses and the
migration of electric charges along the vesicle membrane.

Figure 4 shows the rheological properties of a vesicle subjected to an applied linear
shear and an applied uniform electric field. In this case, where the membrane has
non-zero G, we observe that the vesicles with different reduced volumes all stabilize
into a tank-treading motion and that the tank-treading speed and angle of inclination
are affected nonlinearly by the conductivity ratio Λ. Note that as Λ is increased, the
vesicle tries to align with the electric field direction and away from the direction of
shear, presenting higher resistance to the imposed flow and hence leading to higher
effective viscosity. Here, the effective viscosity [µ] is computed using the usual
formula (Rahimian, Veerapaneni & Biros 2010):

[µ] :=
1

γ̇ µ(Te − Ti)

∫ Te

Ti

〈σ
p
12〉 dt, where 〈σ p

〉 =
1
A

∫
γ

(f b + f λ − f el)⊗ x ds. (3.1)

Here A is the area of the vesicle and σ p represents the perturbation in the stress due
to membrane forces. After the vesicle reaches a steady state, the effective viscosity is
measured over an arbitrary time interval [Ti, Te].
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FIGURE 5. (Colour online) Dependence of effective viscosity [µ] on β and ∆.
Conductivity G = 4 and Ca = 10 (a,b) or Ca = 50 (c,d). We note that (i) [µ] is
higher whenever the equilibrium angle at which the vesicle tank-treads is away from the
direction of shear, and (ii) when ∆ is close to 1 (vesicle closer to a circle), [µ] is nearly
β-independent and shear-independent (as can be expected).

We further characterize the rheology in figure 5 by plotting the effective viscosity as
∆ is varied. Highly deflated vesicles prominently display shear-rate and β-dependent
rheology since their shapes at equilibrium tank-treading dynamics are different,
thereby presenting varied resistance to applied shear.

When G is set to zero, the rheological behaviour becomes much more complex,
primarily because of the tendency of vesicles to undergo a POP transition while at
the same time tank-treading due to the applied shear. For different values of Λ and
∆, we observed various behaviours such as tumbling, staggering (tank-treading with
periodically varying inclination angles), ‘mirrored’ tank-treading (tank-treading in the
opposite direction and with inclination against the applied shear direction), and even
chaotic staggering. A detailed analysis and characterization of these dynamics are
currently under way and will be reported at a later date.

3.3. Two-body EHD interactions
Next we present results from simulation of two-body vesicle interactions in an applied
electric field and in the absence of imposed flow. As before, we assume that the
viscosity and permittivity of the interior and exterior fluids are the same. We set the
initial shape of both the vesicles to be identical and their initial location not symmetric
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Chain formation
(with POP)

Circulatory motion
(counterclockwise)

Circulatory motion
(clockwise)Oscillatory motion

Chain formation (oblates) Chain formation (prolates)

G = 0

G > 0

Λ = 0.1 Λ = 0.3 Λ = 0.5 Λ > 1

FIGURE 6. A summary of pairwise vesicle EHD interactions (∆= 0.9, β = 3.2, Ca= 0).

with respect to the electric field direction. (When they are aligned along E∞ they
simply attract each other (after transient shape changes), and when aligned in the
perpendicular direction they simply repel each other. Both results are consequences of
one vesicle appearing to the other as a dipole with the same orientation.) We apply a
DC electric field, pointing upwards, strong enough to cause the POP transition when
Λ = 0.1 (i.e. β > β0). Under these conditions, the different representative classes of
dynamics observed are summarized in figure 6.

The complex nature of these pairwise interactions can be understood from three
predominant, competing mechanisms: (i) the electrically driven vesicle alignment
due to one vesicle appearing as a dipole (to leading order) in the far-field electrical
disturbance produced by the second vesicle (the two vesicles always tend to form
a chain along the direction of dipole orientation); (ii) the EHD flow induced by
the tangential electrical stresses at the fluid-vesicle interfaces, driving the vesicles
to rotate about each other; (iii) the prolate–oblate deformation mentioned in § 3.1,
generating extensional flows around each vesicle.

First, let us consider the case of G= 0, i.e. the vesicle membranes are impermeable
to charges. Three different types of dynamics can be observed from figure 6. The
first is chain formation, observed when Λ is small enough, wherein pronounced
deformation, due to mechanism (iii), induces flows that dominate the circulatory flow
of mechanism (ii). Thereby, it completely halts the tank-treading motion. At the end
of their POP cycle, both vesicles become almost vertically aligned. Then, mechanism
(i) slowly drives them to form a stable chain. From our numerical experiments, we
noticed that the thin layer of fluid between the vesicles gets continuously drained,
albeit at a very slow pace (the distance between them decays exponentially with
time).

The second type is a circulatory motion, observed when Λ is large enough,
wherein mechanism (iii) becomes negligible. As the two vesicles move to form a
chain, mechanism (ii) causes both of them to tank-tread. Consequently, the induced
disturbance flow on each vesicle becomes dominant and they start to rotate about
each other. The tank-treading motion also causes the vesicles to appear as tilted
dipoles, so they tend to form a tilted chain. The circulatory motion is periodically
reinforced by the tilted-chain-formation process. The direction of rotation depends on
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FIGURE 7. (Colour online) Snapshots from a simulation of two vesicles undergoing
circulatory motion described in figure 6 with G= 0 and Λ= 0.5. Here, one of the vesicles
is coloured by the magnitude of Vm (yellow indicates positive and blue indicates negative
values, respectively). We can observe that each vesicle undergoes tank-treading motion on
its own (as indicated by the streamlines), they rotate about each other and the vesicles
viewed as dipoles are always tilted with respect to the applied field direction.

0

90
90

4 0 40 10

180

-180

t

œ

t t

(a) (b) (c)

FIGURE 8. (Colour online) Insensitivity of the EHD pairwise interactions to the initial
offset from the aligned position. θ measures the angular offset of the two vesicles relative
to the horizontally aligned position. (a) Chain formation. (b) Oscillatory motion. (c)
Circulatory motion. In each case, the same pattern is observed regardless of the initial
θ > 0.

the net torque on each vesicle, which has opposite orientations for Λ> 1 and Λ6 1.
A sample simulation displaying this dynamics is shown in figure 7.

The last type is an oscillatory motion, where the two vesicles form an unstable
chain and oscillate about each other. This is a transitional situation between the
first two types, observed when Λ is between the values of those types. In this
case, neither the circulatory flow of mechanism (ii) is strong enough to keep
vesicles rotating about each other nor the deformational flow of mechanism (iii)
is strong enough to completely halt the rotations. The two vesicles tend to form a
chain that is periodically tilted one way or the other; each time the vesicles pass a
tilted-chain position, tank-treading slows down and the dipole orientation oscillates
back. Therefore, mechanisms (i) and (ii) collaborate to keep the vesicles oscillating
near the vertical chain position.

On the other hand, the dynamics is much simpler when the membrane is permeable
to charges, i.e. G�0. After a very short period of initial charging, the electric stresses
become almost normal to the surface of each vesicle, so mechanism (ii) does not
arise at all. By mechanism (iii) the vesicles eventually become oblate when Λ < 1
(with strong enough β) and become prolate when Λ > 1, and mechanism (i) drives
the vesicles to form a vertical chain.

3.3.1. Sensitivity to positions and shapes
Note that all of the aforementioned dynamics are insensitive to the initial offset or

shapes of the vesicles. In figure 8, we demonstrate that for different initial angular
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Î = 0.7, Ò = 0.1

Î = 0.7, Ò = 0.3

Î = 0.7, Ò = 5

Î = 0.99, Ò = 0.1

Î = 0.99, Ò = 0.3

Î = 0.99, Ò = 5

FIGURE 9. (Colour online) Pairwise interactions for G = 0 vesicles of reduced volumes
∆= 0.7 (with β = 4.8) and ∆= 0.99 (with β = 2.4). Ca= 0. The behaviours (e.g. chain
formation, oscillatory motion, circulatory motion) are the same as in the ∆ = 0.9 case
(figure 6), showing that the mechanism of pairwise interactions is insensitive to the
reduced volume. Note that the bud formation also happens in the case ∆= 0.7, Λ= 0.1.

offsets from the aligned position, the vesicles undergo the same type of pairwise
interaction that corresponds to the given Λ and G. Furthermore, figure 9 shows that
a similar kind of dynamics is observed for vesicles with different reduced volumes,
therefore, the pairwise EHD interaction mechanisms appear to be consistent for highly
deflated or close-to-circular vesicles.

3.3.2. Continuous transition
Finally, we note that the dynamics transitioning from G= 0 to G> 0, as shown in

figure 6, is not abrupt. To illustrate this, we show in figure 10 the pairwise dynamics
of vesicles with Λ = 0.1, demonstrating a continuous transition from a chain of
prolates (G= 0) to a chain of oblates (G� 0); for certain intermediate values of G,
one can even observe interesting kidney-like shapes as well as decaying oscillations
of the vesicles as they settle into their equilibrium shapes.

4. Conclusions

We presented a well-conditioned BIE formulation for solving the leaky-dielectric
model describing the EHD of deformable vesicles. A collection of numerical advances
(semi-implicit time-stepping, spectrally accurate evaluation of weakly singular, nearly
singular and hyper-singular integrals) enabled us to shed light onto the mechanics
of highly deflated vesicles, and study their rheology and pairwise dynamics in DC
electric fields. We showed that a much richer set of pairwise interactions can be
observed when the membranes are impermeable to charges. This is somewhat unique
to vesicle EHD compared to other systems such as drops (Baygents, Rivette & Stone
1998), driven mainly by the capacitative nature of the membranes. However, we
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0 0.048 0.096 0.144 0.192 0.32 0.64 0.96
G

With decaying oscillatory motion

0 3
t

0 3
t

90 90

œ
G = 0.096
G = 0.144

G = 0
G = 0.048
G = 0.32
G = 0.64
G = 0.96G = 0.192

(a)

(b) (c)

FIGURE 10. (Colour online) (a) Final configurations of eight separate simulations, each
corresponding to a different membrane conductivity G. There is a continuous transition
from a chain of prolates (G≈ 0) to a chain of oblates (G� 0). For certain intermediate
value of G (e.g. G= 0.096, 0.144, 0.192) the chain formation process is accompanied by
decaying oscillatory motions (b), while for more extreme values of G the vesicles directly
form a chain without oscillations (c). For all simulations β = 3.2, Λ= 0.9 and Ca= 0.

explored only a small fraction of the possible dynamics; relaxing our simplifying
assumptions (varying the viscosity and permittivity contrasts, imposing an AC electric
field, accounting for charge convection along the membrane) is expected to enrich
the space much further. We are currently exploring these as well as analysing the
collective dynamics of dense suspensions in periodic domains using the periodization
techniques developed recently in Marple et al. (2016) and Barnett et al. (2018).
Another important direction we are currently pursuing is to extend our numerical
scheme to handle more general EHD models such as those discussed in the recent
work of Mori & Young (2018).
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