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SUMMARY
In this research study, trajectory planning of mobile robot is accomplished using two techniques,
namely, a new variant of multi-objective differential evolution (heterogeneous multi-objective dif-
ferential evolution) and popular elitist non-dominated sorting genetic algorithm (NSGA-II). For this
research problem, a wheeled mobile robot with differential drive is considered. A practical, feasible
and optimal trajectory between two locations in the presence of obstacles is determined through the
proposed algorithms. A safer path is obtained by optimizing certain objectives (travel time and actu-
ators effort) taking into account the limitations of mobile robot’s geometric, kinematic and dynamic
parameters. Robot motion is represented by a cubic NURBS trajectory curve. The capability of the
proposed optimization techniques is analyzed through numerical simulations. Results ensure that the
proposed techniques are more desirable for this problem.

KEYWORDS: Wheeled mobile robot; Differential drive; Optimal trajectory; HMODE; NSGA-II;
NURBS.

1. Introduction
Wheeled mobile robot (WMR) is increasingly employed in a great number of potential applications
in indoor environments (e.g., cleaning, search and rescue operations, surveillance, helping the hand-
icapped or senior people) and outdoor environments (e.g., material transport, security patrols). An
important characteristic of robot–environment interaction is given by the ability of the control sys-
tem to autonomously navigate through both unstructured and structured environments. A structured
environment is fundamentally a predictable space that is evidently and precisely defined. This kind
of environment is stationary and it has no variables (i.e., a robot knows what to anticipate when
traversing through it at all times). The unstructured environment is an unpredictable and messy envi-
ronment with unforeseen and infinite variables such as human intervention, moisture, temperature,
lighting, etc. Navigation in this environment is an arduous task for a mobile robot since it must be
accomplished by recognizing and adapting to these vicissitudes.

Trajectory planning of a mobile robot refers to the task of discovering an optimal path by opti-
mizing certain objective functions like the travelling time, joints accelerations and actuator efforts
while satisfying certain kinematic and dynamic constraints for avoiding obstacles. It is an unavoid-
able major issue for the purpose of designing and programming of the mobile robot, and, by virtue
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of trajectory planning, only the WMR completes its missions. In a mobile robot, the trajectory plan-
ning software module does trajectory planning. To increase the operational speed of the robot, which
influences industrial productivity, it is essential to diminish the overall travelling time. Since most of
the mobile robots are batteries powered, their operation times and energy are limited. Hence, in what
way to minimize energy consumption and keep mobile robots to navigate toward the target becomes
a significant issue. Energy conservation for robotic applications can be accomplished in many dif-
ferent ways, for instance, by means of energy-efficient devices, energy-efficient motion planning,
etc. Therefore, the minimum energy consumption and the minimum travelling time of the drive are
considered as the main criteria of trajectory planning. Moreover, during the navigation of the mobile
robot, it has to avoid moving and stationary obstacles. For smooth and practical trajectory planning,
both kinematic and dynamic limitations of the mobile robot are to be considered.

There have been many different decision criteria like the shortest trajectory or path length, kinetic
energy, potential energy, loss of kinetic energy, reducing steering actions of mobile robot actua-
tors, actuator efforts, the smoothness of the trajectory, motor energy consumption used by many
researchers for energy optimal trajectory planning. In this work, both the minimum traveling time
and the minimum actuators effort are considered together as objective functions. According to the
nature of the environment present around the mobile robot, trajectory planning is done in off-line
as well as online. If the environment around the robot is structured and well known to the robot,
off-line motion planning is the best option. Conversely, for an unknown unstructured environment,
online motion planning has to be carried out. Many implicit and explicit methods are proposed in the
literature for solving energy-efficient trajectory planning problem. Likewise, many researchers have
treated this complex problem using traditional and intelligent algorithms.1–4

Here is an account of various research in mobile robot trajectory planning. Kim and Kim5 pre-
sented a trajectory planning approach for a differential drive WMR. They considered static obstacles
to the robot path. They presented some simulation results using the bang-bang principle to minimize
the overall travelling time by considering the dynamics of the robot. Walambe et al.6 suggested a
trajectory planning technique for the prototype of a car. They considered the non-holonomic system
(i.e., its wheels assumed to be rolling without slipping and skidding conditions) of the car with side-
ways movements as constraints. They developed a spline-based framework to handle the problem
of parametric singularities. Kim and Kim.7 suggested an optimal energy trajectory planning method
of a mobile robot using Pioneer 3-AT platform. Minimizations of robot velocity and battery voltage
(energy) were considered as objective functions.

Sgorbissa and Zaccaria8 presented a method of robot navigation in a partially unknown environ-
ment. They taught the robot to have both prior knowledges related to the environment and local
perceptions. They conducted a few real-world experiments to train the robot to have safe movement.
Another work focused on the time-optimal motion designing strategy for a car shape mobile robot
was developed by Li and Shao9 The authors used interior-point method and an optimality index
based on Hamiltonian to find and evaluate the trajectories. Further, they considered few kinematic
constraints (terminal constraints), physical parameters bounds and collision avoidance constraints.

Liu and Sun10 employed a method for optimization of energy consumption of the WMR. A* algo-
rithm was used. Time and velocity constraints were considered. Han et al.11 applied an optimal
trajectory planning algorithm for a WMR with a differential drive. They used a single curva-
ture trajectory planning method and considered tracking error as a criterion to be minimized. The
authors conducted few experiments using a two-wheeled mobile robot. Korayem et al.12 introduced a
methodology for motion designing for Scout mobile manipulator in chaotic environments. A collision
avoidance criterion was considered as the main goal. All parts of mobile robot and obstacles were
considered as ellipsoids. Using ellipsoid equations, they verified the obstacle avoidance algorithm in
both simulations and experiments.

Boryga et al.13 modeled and investigated the planning rectilinear-arc polynomial trajectory (PR-
APT) approach for trajectory planning of a tomato harvesting mobile manipulator by considering
few kinematic constraints like displacement, velocity and acceleration. To represent a trajectory,
two rectilinear curve segments had been used. A trajectory planning strategy for a system com-
posed of a WMR was studied by Korayem et al.,14 where the robot is equipped with both rigid and
elastic joints. They modeled WMR as a non-holonomic system and used a joint coordinate system
for trajectory planning. To derive kinematic and dynamic equations of robot and to reduce com-
puting complexity, the Lagrange multipliers and recursive Gibbs–Appell (G–A) formulation were
used. Korayem et al.15 also presented a mathematical modeling and trajectory planning method
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of a two-link flexible non-holonomic mobile manipulator using Pontryagin’s minimum principle.
They considered kinematic and dynamic parameters of the mobile robot. Mirzaeinejad and Shafei16

proposed a new solution which combines some prediction-based and G–A-based approaches for
trajectory modeling and tracking control of a WMR. Each method discussed in literature1–16 has
its own limitations. Further, the conventional optimization methods3–16 presented in the literature
are not powerful enough to solve high-complexity robot trajectory optimization problems. Thus,
it is necessary to reinvestigate an efficient approach for the motion designing of WMR in clut-
tered environments, which encompasses a simple, yet powerful technique to avoid collision with
obstacles.

The process of finding an optimal path includes consideration of decision criteria and con-
straints. The optimal path has to yield optimal objective functions and satisfy certain constraints.
The optimal path has to be selected based on several aspects, viz., the short-time approaches,
energy-saving needs, obstacle avoidance, collision avoidance, path smoothness, path safety, limiting
parameters like changing velocity and direction, etc. An optimal path is a collision-free trajectory
in between two locations. Hence, an optimal path finding is a multi-objective optimization prob-
lem.17 The path-finding algorithm has to simultaneously optimize multiple objective functions and
ensure that the constraints (i.e., limitations on certain geometrical and motion parameters) are satis-
fied. Also, the path-finding algorithm is associated with obstacle detection and collision avoidance.18

To solve this high-complexity multi-model problem, evolutionary techniques are generally proposed.
Nevertheless, the main drawbacks of nature-inspired algorithms are time-consuming and high com-
putational cost in finding an optimal solution. In some cases, they yield locally optimal solutions.
Consequently, several research attempts have been made to enhance the performance of evolutionary
techniques.

At present, evolutionary techniques are the most salient and promising research areas for multi-
modal and multi-objective optimization problems,19–21 which have experienced a hasty development
and have become powerful tools in a wide range of applications. They are very effective and robust
in finding trade-off solutions. But, conventional techniques can handle a single criterion or a single
objective function at a time. They cannot deal with optimization problems involving two or more
objectives to be optimized concurrently. So, a combined objective function is formed by mathemat-
ically aggregating two or more individual objective functions. A weightage value is introduced into
the combined objective function equation to reflect its relative importance. Evolutionary techniques
consider all the objective functions and the necessary constraints and treat each objective function
separately. Instead of finding one global optimum, multi-objective optimization methods must find
a set of solutions, called as the Pareto optimal frontier, which gives more choice of user selection.
Improved evolutionary algorithms find the best Pareto fronts with less execution time and less number
of iterations. Further, they may discover a global optimal solution.

In this research, a new variant of differential evolution (DE), namely heterogeneous multi-
objective differential evolution (HMODE) strategy is implemented for trajectory planning of WMR.
Additionally, another popular multi-objective optimization algorithm, called elitist non-dominated
sorting genetic algorithm (NSGA-II) is implemented in this study. A WMR with the differential
drive is considered. The proposed algorithms determine a feasible and optimal trajectory between
two locations by avoiding few obstacles and optimizing certain criteria such as travelling time and
actuators effort. Also, the algorithms yield a safer path by considering geometric, kinematic and
dynamic limitations of mobile robot. Five applications of WMR are considered in this study. A cubic
Non Uniform Rational B-Spline trajectory curve is employed to represent the robot motion. Average
fuzzy membership function (AFMF) method is used to select the best optimal trade-off solution from
the Pareto optimal front. The strength and weakness of the solutions (i.e., Pareto optimal fronts) are
determined by the metrics such as ratio of non-dominated individuals (RNI) and solution spread
measure (SSM). Also, algorithm effort (AE) and optimizer overhead (OO) are applied to analyze the
computational effort of the algorithms.

The remaining part of this article is structured as follows: Section 2 defines the multi-objective
optimal motion planning problem addressed in this work. Section 3 formally describes the proposed
algorithms viz., NSGA-II and HMODE and their implementations. Section 4 enumerates the per-
formance measures used for analyzing the effectiveness of the proposed methods. Section 5 details
five numerical simulations for a WMR with a differential drive in the presence of static and moving
obstacles and also presents evaluation criteria supporting our statements. Section 6 summarizes the
conclusions derived from this research work.
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2. Problem Formulation

2.1. Optimal trajectory planning
The goal of this research is to find the best optimal trajectory planning for a WMR in five different
applications. WMR starts its motion from the start point (S) and reaches the goal point (G). At the
same time, it has to avoid the collision risk with obstacles in the environment. We consider a robot
with five different applications. Application 1 has two fixed vertical obstacles. Application 2 has
WMR motion within a room which has four walls and two fixed obstacles. Application 3 has nine
fixed obstacles. Application 4 has three moving obstacles. In Application 5, the goal point is not
fixed. It is moving.

2.2. Multi-objective optimization problem
The focus of the paper is to move the mobile robot from initial position to target point through
stationary and moving obstacles, and finding the optimal path to reach the final position without
collision. The mobile robot motion has to be accomplished by minimizing the travelling time and
actuator efforts and with obstacle avoidance. To get a feasible and smooth motion, the geometric,
kinematic and dynamic constraints of the mobile robot have to be satisfied. The mathematical model
of problem formulation is presented here. Two objective optimization functions are proposed for
minimizing travelling time F1(P) and actuators effort F2(P).

F1(P) = T =
n∑

i=1

dt

F2(P) =
∫ T

0

2∑
i=1

[
τi(t)

τmax
i

]2

dt

Here, τ is actuator torque (i.e., DC motor torque), T is travelling time of the robot.
Constraints considered are as follows:

1. Geometric constraints:
(a) Initial and final configurations, that is, positional values are as defined by the user.
(b) Obstacle avoidance constraint, that is, the distance between the driving wheels and the

obstacle are to be greater than zero.
2. Kinematic constraints:

(a) Initial and final velocities are zero.
(b) The velocity of the robot < maximum velocity.
(c) Acceleration of the robot < maximum acceleration.
(d) Jerk of the robot < maximum jerk.

3. Dynamic constraint:
The torque of the robot actuators < maximum torque of actuators.

2.3. Description of the mobile robot
We consider herein is a WMR with a differential drive. It has two autonomously controlled active
wheels and two supporting passive wheels. The geometrical representation of WMR with a differen-
tial drive is given by Fig. 1. The moving configuration of the mobile robot (q) in the frame (O, X,
Y, Z) is given by the following equation. Here (x, y) is the centre position of the robot and θ is the
rotation angle about the Z-axis:

q = [x, y, θ]T (1)

2.4. WMR kinematics22

The kinematic model of a WMR is detailed as below:

q̇ = S(q)v (2)
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Fig. 1. Geometrical configuration of wheeled mobile robot.

Here,

v = [vω]T , S(q) =
⎡
⎣ cos θ 0 0

sin θ 0 0
0 0 1

⎤
⎦ (3)

v and ω are the linear and angular velocity of the WMR, respectively. Then, Eqs. (2) and (3) can be
rewritten as

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω (4)

Owing to the non-holonomic nature of the system, the constraint equation satisfies the ideal no-slip
condition as given below:

C(q)q̇ = 0 (5)

Here,

C(q) = ⌊
sin θ − cos θ 0

⌋
(6)

From Eqs. (3) and (4), the important kinematic parameters v, v̇, θ , θ̇ and θ̈ are derived as follows:

v =
√

ẋ2 + ẏ2 (7)
θ = arctan (ẏ/ẋ) (8)

v̇ = (ẋẍ + ẏÿ)/
(√

ẋ2 + ẏ2
)

(9)

θ̇ = (ẋÿ + ẏẍ)/(ẋ2 + ẏ2) (10)

θ̈ = (
(ẋ2 + ẏ2)(ẋÿ − ẏẍ) − 2(ẋẍ + ẏÿ)(ẋÿ + ẏẍ)

)
/(ẋ2 + ẏ2)

2
(11)

2.5. WMR dynamics22

The dynamic model of a WMR is obtained from the Lagrange’s equations as below and the model
satisfies the robot’s kinematic constraints (Eq. (5)):

d

dt

(
∂T

∂ q̇

)
− ∂T

∂q
+ CTλ = Q (12)

where q = generalized coordinate vector, q̇ = a vector of longitudinal and angular velocities of gen-
eralized coordinates, KE = the kinetic energy of the robot, λ = a vector of a Lagrange multiplier and
C is derived from Eq. (6). Equation (12) is rewritten as below:

M(q)q̈ + V(q, q̇) = E(q)τ − CT(q)λ (13)
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Here,

M =
⎛
⎝m 0 0

0 m 0
0 0 Iz

⎞
⎠, V = 0 (14)

E = 1

r

⎛
⎝ cos θ sin θ

sin θ cos θ

b −b

⎞
⎠, τ =

(
τr

τl

)
(15)

where M = inertia matrix of the system, m = m1 + 2m2, m1 = the mass of the robot’s platform, m2 =
the mass of one robot’s wheel, Iz = the inertia moment of robot’s platform about (O, Z), r = the radius
of the wheels, b = half of the distance between the two wheels. τl and τr are torques provided by the
actuators acting on left and right wheels, respectively. This model assumes that the inertia moments
of wheels are very small and negligible. The differentiation of Eq. (2) gives the acceleration:

q̈ = Ṡ (q) v + S(q)v̇ (16)

By replacing q̈ in Eq. (13), and by doing pre-multiplication of ST , the expression for v̇ is

v̇ = f τ (17)

Here,

f = (STMS)−1STE, v̇ = [
v̇ ω̇

]T
(18)

Then, the DC motors torque is described as
(

τr

τl

)
= f −1

(
v̇
ω̇

)
(19)

f −1 =

⎛
⎜⎜⎝

mr

2

rIz

2b
mr

2

−rIz

2b

⎞
⎟⎟⎠ (20)

2.6. Path representation
NURBS curve has various highly desirable properties like smoothness and possibility of local mod-
ifications. These properties are crucial for curve designing because one can change a curve locally
without modifying their underlying geometry in a global way. Therefore, the NURBS curve is widely
employed in computer graphics, CAD, CAM, CIM and robotics. In this work, a cubic NURBS func-
tion is used to represent the trajectory of the autonomous mobile robot. The parametric representation
of a general NURBS curve is given below:

P(u) =

n∑
i=0

Ni,k(u)WiVi

n∑
i=0

Ni,k(u)Wi

=
n∑

i=0

ViRi,k(u) (21)

and

Ri,k(u) = Ni,k(u)Wi
n∑

i=0
Ni,k(u)Wi

(22)

In the above formulae, P(u) represents robot displacement, Ni,k(u) denotes kth-order basis function,
Vi represents the control point, Wi represents weighting factor of the control point, n is the number
of the control points, k is the order of NURBS curve and Ri,k(u) denotes the kth order rational basis
function.
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Fig. 2. A segment of cubic NURBS curve.

Fig. 3. Flowchart for the proposed method of doing optimal motion planning.

Totally four segments are considered in the path of initial and ending points. Three intermediate
points are considered for each segment. As mentioned above, each segment is defined by a cubic
NURBS curve with four control points as given in Fig. 2. Wi = {1, 2, 2, 1} is the weight vector
assumed for the control points in all curve segments. A NURBS curve is completely determined by
its control point (i.e., the curve change in an anticipated way along with the movement of control
points). The weighting factor Wi plays a vital role in the fitting process since these factors determine
how much a control point influences locally the geometry of the curve. If the value of the weight
increases, it pulls the NURBS curve toward the control point. If the weight value decreases, it pushes
the NURBS curve far from the control point. If the value of Wi is infinity, the curve will go through
the control point. If the value of Wi is zero, then control points do not have an impact on the curve. If
the number of control point increases, more accurate and better curve fit is achieved. But, the number
of control points increasing leads to the need for more computational effort and time. The positions
of control points Vi are considered as decision variables in this multi-objective optimal robot motion
planning problem.

3. Proposed Methods
Generally, traditional optimization methods yield sub-optimal results. But intelligent optimization
algorithms yield optimal solutions. Especially evolutionary algorithms, viz., genetic algorithm (GA),
NSGA-II, DE, etc., give optimal solutions. Then, these optimal solutions can be converted into a
global optimum. The effective and robust nature of these evolutionary algorithms makes them the best
fit for the multi-objective optimization problems. The outcome of the multi-objective optimization
algorithm is the Pareto-optimal front. It gives more trade-off solutions to users’ choice. A number of
performance measures are available to find the effectiveness of a multi-objective optimization algo-
rithm.19 In this research work, both HMODE and NSGA-II algorithms are used for multi-objective
motion planning of a WMR. Figure 3 explains the procedure involved in this multi-objective optimal
motion planning problem.

3.1. NSGA-II
NSGA-II is a variant of GA and it is a most popular algorithm for an optimization problem with multi-
objectives.23 Major differences between NSGA and NSGA-II are as follows: (1) Elitism principle
is implemented in the NSGA-II for preserving good solutions found in previous iterations. (2) As
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Table I. CP vs. MP.

CP

MP 0.5 0.6 0.7 0.8 0.9

0.01 22.6 22.5 22.4 22.5 22.6
0.02 22.6 22.5 22.5 22.6 22.6
0.03 22.7 22.6 22.5 22.6 22.6
0.04 22.7 22.6 22.5 22.6 22.7
0.05 22.8 22.6 22.5 22.6 22.7
0.06 22.9 22.7 22.5 22.7 22.7
0.07 23 22.7 22.5 22.7 22.7
0.08 23.1 22.7 22.6 22.7 22.7
0.09 23.1 22.7 22.6 22.7 22.8
0.1 23.1 22.8 22.6 22.7 22.8

Note: The least value is given in bold.

Fig. 4. The step by step procedure of NSGA-II.

compared to NSGA, the sorting procedure of the NSGA-II is faster. (3) The tunable parameter is not
needed in NSGA-II. So, NSGA-II algorithm does not dependent on the programmer. Figure 4 shows
the step-by-step procedure in NSGA-II algorithm.

3.1.1. NSGA-II operators. Deb et al.23 recommended that crossover probability (CP) can be fixed
between 0.5 and 0.9, mutation probability (MP) can be fixed between 0.01 and 0.1, real-parameter
mutation parameter is 100 and simulated binary crossover (SBX) value of real parameter is 10. So
to fix the CP and MP, an analysis was made by varying CP value from 0.5 to 0.9 and MP value from
0.01 to 0.1, the optimal travel time (F1) in Application 1 was found. The results are given in Table I.

From Table I, it is observed that when the value of CP is 0.7 and MP is 0.01, we have got the
minimum value for F1. So, CP value is fixed as 0.7 and MP is fixed as 0.01. NSGA-II parameters
value are: population size is 100, variable type is real, CP is 0.7, real-parameter mutation parameter
and probability are 100 and 0.01, respectively, SBX value of real-parameter is 10 and maximum
number of generations is 100.

3.2. HMODE
MODE algorithm24 is a variant of GA for multi-objective function optimization. It is an extended
version of DE algorithm. MODE is an evolutionary algorithm with floating-point-encoded scheme.
Since the context of the MODE is very simple, it needs less computational work, less storage space
and less CPU run time. Due to its simple configuration, robustness, speed and ease of use, MODE
gained much attention. Also, it is used to resolve a multi-objective optimization problem of all
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Fig. 5. Flowchart of HMODE procedure.

fields. MODE algorithm provides the best Pareto-optimal frontier for more choice of users. Babu
and Anbarasu24 used MODE for solving chemical engineering problems. But, the limitations of
their work are: (1) They used only one variant of DE (i.e., DE/rand/1/bin). They have not consid-
ered important and best-performing variants, namely DE/current-to-best/1, DE/rand-to-best/1 and
DE/TSDE. (2) Further, the Scaling factor F is fixed one. However, flexible F-value leads to the best
solutions.

With multiple forms of schemes for generating noisy vector by differential mutation, there exist
new variants of DE. The DE algorithm has been employed in several fields of science and engineer-
ing. But, no single DE variant can solve multi-model, complex and real-world problems. Each DE
variant has its own preferences than another. To give the global best solution to the real-world prob-
lem, a DE variant needs to have all the necessary advantages and the best possible solution strategies.
One simple idea to have such a DE variant is that the creation of the best heterogeneous differen-
tial evolution (HDE) variant. Two to five different best performing DE variants can be integrated. It
creates an environment which has HDE variants that work on an island-based distributed structure.
Thangavelu and Shunmuga Velayutham25 carried out a study about the consequences of integrating
different DE variants. They have conducted an investigation in a distributed framework and proved
that HDE works well. However, the limitations of their work are: (1) They considered only four
basic DE variants such as DE/rand/1/bin, DE/best/2/bin, DE/best/1/bin and DE/rand/2/bin, and they
have not considered important and best-performing variants, namely DE/current-to-best/1, DE/rand-
to-best/1 and DE/TSDE. (2) Further, they have not tested their method in a real-world situation. (3)
They have not verified their findings for a constrained problem. (4) They have not tested their method
for a multi-objective optimization problem.

To overcome the above barriers, the improvements made in the proposed HMODE technique
over the method proposed by Thangavelu and Shunmuga Velayutham25 are: (1) Best-performing
variants, namely DE/current-to-best/1, DE/rand-to-best/1 and DE/TSDE, are considered. (2) The
values of the scaling factors K and F are not same. K and F values are randomly generated in each
iteration. (3) An improved crossover scheme is used. (4) The proposed HMODE variant is tested by
applying it to the real-world and constrained problem with multi-objective functions. The proposed
HMODE technique’s pseudo code is detailed in the Appendix. Figure 5 describes the procedure of
implementing HMODE algorithm for a multi-objective optimization problem.

3.2.1. HMODE operators. To fix the crossover constant (CC), an analysis was made by varying CC
value from 0.1 to 0.95. The optimal travel time (F1) in Application 1 was found. The results are given
in Table II.
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Table II. CC vs. F1.

CC 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
F1 25.4 24.5 23.2 23.1 22.8 22.6 22.3 21.8 21.8
CC 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
F1 21.8 21.7 21.7 21.5 21.4 21.4 21.3 21.3 21.2

Note: The least value is given in bold.

Fig. 6. Fuzzy membership function for a minimization objective function.

From Table II, it is observed that when CC value is 0.95, we got the minimum value for F1.
Therefore, the CC of 0.95, number of population (NP) of 100 and the maximum generations of 100
were found suitable for the HMODE algorithm.

4. Performance Measures for Multi-Objective Optimization
In all multi-criteria optimization processes, there are three important and major goals: (1) to find
solutions that are as close to all the Pareto-optimal solutions in the non-dominated front as pos-
sible, (2) to discover solutions which are diverse and cover all the regions of the front and (3)
to discover the superior behavior of the optimization algorithm. Therefore, to made a comparison
between two or more multi-criteria optimization algorithms, at least three performance metrics (first
one for testing the progress of the optimization toward a desired Pareto-optimal front, the second
one for testing the solution spread of Pareto-front and the third one is to calculate computational
ability of optimization algorithm) are required to be utilized. Moreover, the exact usage of these
three performance measures is imperative. For the above-stated reasons, RNI, SSM and OO metrics
are selected. To select the best solution from the Pareto-optimal front, AFMF method is used. The
strength or weakness of a Pareto-optimal front is assessed by RNI and SSM. The computational
complexity of multi-objective optimization algorithms is analyzed by the performance measures
AE and OO.

4.1. AFMF (μavg) method
AFMF method is the best choice if a decision maker does not know a suitable value of weight to be
assigned to each objective function. Normally, the decision maker may not know the weightage to
be assigned to all the objective functions. Moreover, the weightage given to any objective function is
not deterministic in nature. They are fuzzy type. To handle this situation, an efficient method such as
AFMF is used here for multi-objective performance evaluation.

Figure 6 shows the fuzzy membership function (μ) value of an input (i.e., an objective function
value). Fuzzy membership function (μ) depends on weightage value of each input. Fuzzy member-
ship function (μ) value is one at Fmin and zero at Fmax for a minimization objective function. Fuzzy
membership function (μ) value is zero at Fmin and one at Fmax for a maximization objective function.

Fuzzy membership function for a minimization objective function is calculated as below:

μi = (Fimax − Fi)/(Fimax − Fimin)
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Fi = value of objective function i (i = objective function number = 1, 2 for this problem),
Fmin = minimum value of objective function i,
Fmax = maximum value of objective function i.

The best algorithm will have the highest AFMF value (i.e., μavg).
For this problem, μavg is calculated as below:

μavg = (μ1 + μ2)/2.0 (23)

where

μ11 = (F1max − F1)/(F1max − F1min),

μ2 = (F2max − F2)/(F2max − F2min).

4.2. Ratio of non-dominated individuals
The necessary conditions for a better Pareto-optimal front are (1) it needs to have more Pareto-
optimal solutions. (2) They need to be evenly spread in all sector of the front. Then only, a decision
maker will get more trade-off solutions in all regions or domains. RNI checks the first necessary
condition for the best Pareto-optimal front.

RNI is found from the following formula:

RNI(X) = nondom_indiv/P (24)

Here, nondom_indiv = number of non-dominated solutions present in population X, P = pop-
ulation size. If RNI = 1, then all the solutions are non-dominated. If RNI = 0, then there is no
non-dominated solution present in the population. The desired RNI value should be in the range
above zero and below one. The desired is that there should be at least one non-dominated solution
present. Further, all solutions are to be non-dominated solutions is a rare case. So, an algorithm needs
to offer a good RNI range of 0 < RNI < 1. The best algorithm will have a high RNI value.

4.3. Solution spread measure
The second necessary condition for the best Pareto-optimal front is that Pareto-optimal solutions
need to be well spread in all regions of the front. Then only, a decision maker will get more trade-
off solutions in all regions or domains. SSM checks the second necessary condition for the best
Pareto-optimal front:

SSM =
df + dl +

N−1∑
i=1

∣∣di − d̄
∣∣

df + dl + (N − 1)d̄
(25)

Here, N = number of solutions in the Pareto frontier. There are (N − 1) consecutive distances, di =
the distance (in objective function space) between each solution, d̄ = an arithmetic mean of all di. dl =
Euclidean distance between extreme solutions of Pareto-optimal. df = Euclidean distance between
the boundary solutions and If SSM value is small, there is an excellent distribution of the solutions
in Pareto-optimal frontier. If SSM value is high, then there is no good spread of solutions in Pareto-
optimal set. So, SSM finds distribution capacity of an algorithm. The best algorithm will have a low
SSM value.

4.4. Optimizer overhead
Two computer-related parameters such as the total number of functions assessments and the total time
complexity are used to test the effectiveness of an algorithm. By these parameters, the simplicity, the
number of calculations to be made, memory requirements and the time required to solve can be tested
for an algorithm. The best algorithm will have a simple structure, less number of calculations, less
running time and less memory space requirement. OO is computed as

OO = (TTotal − TPFP)/TPFP (26)

Here, TTotal = total time taken for giving the results. TPFP = time spent for the pure function assess-
ments. If the value of OO is zero, then the algorithm is an efficient one. Also, the algorithm is not
having any overhead. Practically, this is an ideal case and not practicable.
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Table III. WMR geometrical parameters.

Distance between Moment of
Wheel radius (r) wheels (r) Mass (m) inertia (I) τmax

i

0.15 cm 0.1 m 5 kg 26 kg.m2 1 N.m

Fig. 7. Optimal path of WMR in Application 1 from NSGA-II and HMODE.

4.5. Algorithm effort
AE calculates the computational efficiency of an algorithm to find non-dominated solutions. In a fixed
sample time, how many functions are evaluated by the algorithm is called as AE. AE is calculated as
below:

AE = Trun/Neval,

(Trun > T1stgen) ∩ (Teval ∝ Neval) (27)

Here, Neval is the total number of functions evolutions. Trun is a fixed period of simulation time. If
an algorithm is best in terms of computational effort, then it will evaluate a number of functions in
a fixed time (Trun). So, for a good algorithm which has high computational effort, AE value will be
small. The condition to set the fixed time is Trun > T1stgen. Here, T1stgen is the computation time of
first generation. Trun and Trun > 0. Generally, AE value is in the range of (0, ∞).

5. Simulation Results
The mobile robot has two DC motors for driving wheels in the backside. Arduino board and other
electronic components are used for control and programming. All the geometrical parameters like
robot mass, wheel radius, the moment of inertia, etc., are noted for the custom-developed mobile
robot. The geometrical parameters of WMR are detailed in Table III. The kinematic and dynamic
models of a differential drive WMR are derived as detailed Sections 2.4 and 2.5. Five different
applications of WMR have been simulated. The optimal path which has the highest AFMF (μavg) is
selected as the best optimal path.

In Application 1, the starting point of the WMR is (30, 40) cm and goal point is (83, 67) cm. First
obstacle size is 5 cm × 70 cm. Second obstacle size is 5 cm × 50 cm. The best optimal path of WMR
obtained from NSGA-II and HMODE is given in Fig. 7.

In Application 2, the WMR start point is (14, 8) m and goal point is (14, 18) m. WMR moves
inside a room. So the room has four walls and two fixed obstacles as shown in Fig. 8. The best
optimal path of WMR obtained from NSGA-II and HMODE is given in Fig. 8.

In Application 3, the WMR start point is (5, 5) m and goal point is (30, 25) m. WMR has nine
fixed obstacles to its path as shown in Fig. 9. The best optimal path of WMR obtained from NSGA-II
and HMODE is given in Fig. 9.

In Application 4, the WMR start point is (200, 0) cm and goal point is (0, 250) cm. WMR has three
moving obstacles to its path as per Fig. 10. Obstacle 1 is a circle with diameter of 20 cm. Its initial
point is (−50, 250) cm. It moves with a speed of 10 cm/s from left to right as in Fig. 10. Obstacle 2
is a square with 10-cm side length. Its initial point is (100, 250) cm. It moves with a speed of 3 cm/s
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Fig. 8. Optimal path of WMR in Application 2 from NSGA-II and HMODE.

Fig. 9. Optimal path of WMR in Application 3 from NSGA-II and HMODE.

Fig. 10. Optimal path of WMR in Application 4 from HMODE.
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Fig. 11. Optimal path of WMR in Application 5 from HMODE.

Fig. 12. Pareto optimal fronts of NSGA-II and HMODE for Application 1.

as in Fig. 10. Obstacle 3 is a circle of 10-cm diameter. Its initial point is (175, 200) cm. It moves
with a speed of 10 cm/s from right to left as in Fig. 10. The best optimal path of WMR obtained from
HMODE is given in Fig. 10.

In Application 5, the WMR start point is (0, 0) cm and goal point is (200, 200) cm. But the goal
point moves with a speed of 3.5 cm/s as in Fig. 11. The best optimal path of WMR obtained from
HMODE is given in Fig. 11.

Numerical experiments have been performed using evolutionary algorithms like NSGA-II and
HMODE. Then the resultant optimal motions are verified through simulation. The results such as
travelling time and actuator efforts are noted. Pareto-optimal frontiers and the optimal solutions
obtained from the NSGA-II and HMODE algorithms are analyzed and compared.

The values of the multi-objective performance indicators such as RNI, SSM, AE and OO for
NSGA-II as well as HMODE approaches are calculated. A comparison of results from both algo-
rithms is made. Results proved that NSGA-II and HMODE approaches are good for creating optimal
motion planning of differential drive WMR. The Pareto-optimal frontiers achieved from NSGA-
II and HMODE are given in Figs. 12–16. It is observed from Figs. 12–16 that HMODE offers
best Pareto-optimal fronts than those of NSGA-II. Tables IV– VIII illustrate the optimum value of
objective functions obtained from NSGA-II and HMODE approaches.
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Fig. 13. Pareto optimal fronts of NSGA-II and HMODE for Application 2.

Fig. 14. Pareto optimal fronts of NSGA-II and HMODE for Application 3.

Fig. 15. Pareto optimal fronts of NSGA-II and HMODE for Application 4.

Fig. 16. Pareto optimal fronts of NSGA-II and HMODE for Application 5.

The approach which provides the highest μavg, minimum SSM, maximum RNI, minimum AE
and minimum OO values is considered as the most appropriate approach for solving the multi-
objective optimization problem. The solutions obtained from NSGA-II and HMODE are given in
Table IX. It is observed from Table IX that (1) HMODE algorithm provides the maximum RNI value
as compared to NSGA-II approach. (2) Also, it gives minimum SSM value than that of NSGA-II. (3)
Also, HMODE technique is better than NSGA-II with regard to the highest μavg, minimum AE and
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Table IV. Optimal results obtained from NSGA-II and HMODE algorithms for Application 1.

F1 (s) F2 (J) Favg

Fmax 24.8 105.6
Fmin 20.7 88.15
NSGA-II 22.4 98.8 0.4917
HMODE 21.2 93.4 0.79575

Table V. Optimal results obtained from NSGA-II and HMODE algorithms for Application 2.

F1 (s) F2 (J) Favg

Fmax 136.5 608.25
Fmin 121.2 538.4
NSGA-II 130.4 581.8 0.3887
HMODE 124.6 554.7 0.77225

Table VI. Optimal results obtained from NSGA-II and HMODE algorithms for Application 3.

F1 (s) F2 (J) Favg

Fmax 142.3 636.35
Fmin 126.5 562.25
NSGA-II 135.8 606.1 0.4098
HMODE 128.1 569.5 0.90045

Table VII. Optimal results obtained from NSGA-II and HMODE algorithms for Application 4.

F1 (s) F2 (J) Favg

Fmax 43.8 189.1
Fmin 36.4 158.8
NSGA-II 39.5 171.75 0.57685
HMODE 37.4 162.3 0.8747

Table VIII. Optimal results obtained from NSGA-II and HMODE algorithms for Application 5.

F1 (s) F2 (J) Favg

Fmax 27.9 118.5
Fmin 20.2 82.9
NSGA-II 24.4 102.8 0.44775
HMODE 22.6 94.7 0.6784

minimum OO values. (4) It is noted that HMODE approach finds better convergence than NSGA-II.
(5) Likewise, the computational complexity of finding Pareto-optimal frontier in HMODE is less than
that of NSGA-II. Subsequently, HMODE algorithm is significantly faster as compared to NSGA-II
algorithm.

From Figs. 12–16, it is found that HMODE delivers large number of non-dominated solutions
than NSGA-II. Accordingly, HMODE is the most suitable approach for the problem where the users
need large number of solutions to their choice. The results gained from NSGA-II and HMODE
are compared with the results obtained by methods proposed by Patle et al.,26 namely fuzzy logic
(FL), multi-objective genetic algorithm (MGA), ant colony optimization (ACO) and artificial neural
networks (ANN) listed in Table X. From Table X, the points observed are: (1) Both NSGA-II and
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Table IX. The performance metrics values of NSGA-II and HMODE algorithms.

Algorithm Trun (s) Neval AE SSM RNI OO

NSGA-II Application 1 2 105 0.019 0.815 0.23 0.165
Application 2 2 108 0.0185 0.824 0.26 0.176
Application 3 2 112 0.0178 0.861 0.22 0.181
Application 4 2 117 0.017 0.872 0.21 0.182
Application 5 2 122 0.0164 0.804 0.25 0.179

HMODE Application 1 2 135 0.0148 0.973 0.28 0.0653
Application 2 2 141 0.0142 0.981 0.29 0.0671
Application 3 2 147 0.0136 0.984 0.31 0.0712
Application 4 2 154 0.0129 0.986 0.28 0.0725
Application 5 2 161 0.0124 0.978 0.33 0.0721

Table X. Optimal travel time (T in seconds) comparison with Patle et al.26 methods.

Fl26 ANN26 ACO26 MGA26 NSGA-II HMODE

Application 1 25.96 25.17 24.4 23.62 22.4 21.2
Application 5 26.95 28.95 29.45 25.9 24.4 22.6

HMODE provide better performance than the methods proposed by Patle et al.26 (2) HMODE gives
superior solutions than NSGA-II. Hence, HMODE is superior than NSGA-II.

From the results, the following points are observed: (a) HMODE algorithm gives the best optimal
fronts for user choice. The best optimal solution can be selected by using AFMF method. (b) The
strength of optimal fronts is good. (c) The computational effort of HMODE is good. (d) Numerical
experiments proved that NSGA-II and MODE are good algorithms for optimal motion designing of
a differential-driven WMR than the methods proposed by Patle et al.26 and (e) Both NSGA-II and
HMODE do best obstacle avoidance.

The reasons behind the superior performance of HMODE algorithm are: (1) HMODE is an
evolutionary algorithm with floating-point-encoded scheme. (2) The theoretical framework of the
HMODE is very simple. So, it needs less computational work, less storage space and less CPU
run time. HMODE has a simple structure, speed, robustness and ease of use. (3) Best-performing
variants, namely DE/current-to-best/1, DE/rand-to-best/1 and DE/TSDE are included in HMODE.
Furthermore, HMODE has two more variations, viz. DE/rand/1 and DE/rand/2. (4) In HMODE
algorithm, the values of scaling factors K and F are not same. They are randomly generated in
each iteration. (5) An improved crossover scheme is used. (6) HMODE provides better convergence
speed, computational complexity, accuracy (near the global optimal solution), stability, success rate,
final solution quality and robustness.

6. Conclusions
The proposed method finds multi-objective optimal motion planning using two intelligent opti-
mization techniques namely HMODE and NSGA-II for a custom-made WMR with a differential
drive. The conclusions made from this research work are: (1) The numerical results of the experi-
ments proved that both NSGA-II and HMODE are good algorithms for optimal trajectory planning
for differential-driven WMR. (2) All essential constraints like geometric, dynamic and kinematic
restraints of the WMR are satisfied with all trade-off solutions obtained from HMODE and NSGA-
II. (3) Both HMODE and NSGA-II give best moves for the autonomous mobile robot in terms
of obstacle avoidance. (4) HMODE technique gives a minimum value for AE and OO, and max-
imum value for average fuzzy membership function than those of NSGA-II. (5) Also, HMODE
technique gives more trade-off solutions, a minimum value for SSM and maximum value for RNI
than those of NSGA-II. (6) The algorithm running time for HMODE is less than that of NSGA-
II. (7) HMODE algorithm gives the best Pareto-optimal fronts than NSGA-II algorithm. (8) Both
NSGA-II and HMODE provide better performance than the Patle et al.26 methods, namely FL, MGA,
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ANN and ACO. (9) HMODE gives improved results than NSGA-II for optimization problem with
multi-objective. (10) The proposed HMODE algorithm is a more suitable method for multi-objective
optimal trajectory planning of WMR.

The future works are real-time experiments in indoor, outdoor environments. Another future work
is the development of an intelligent WMR robot for all terrain conditions.
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Appendix
HMODE-Pseudo code:

The steps are repeated up to all the selected best NP individuals have the rank number one.

The goal is to minimize all objective functions, fq.

(1) For all Np parent vectors generate box, P by a random-number algorithm, where P is a sequence
of real variables.

(2) Vectors classification procedure by non-domination:
a. Generate new (empty) box, P′, with size, Np.
b. For (i = 1 − N)

{Move ith vector from P to P′,}
c. Compare P with P′ for each member
d. If i, member of P dominates over j, member of P′ in terms of all objective functions, remove

the jth vector from P′ and put it back in its original location in P and vice versa
e. Maintain both i and j in P′ (in sequence), if i and j are non-dominating
f. Repeat the above procedure for all the vectors in P. Now P′ contains a sub-box called first

front. It is a subset of P contains non-dominated vectors. Assign a rank number, Irank, of I
g. Repeat Step 2b above (for the vectors remain in P), create subsequent fronts. Assign ranks

for the subsequent fronts generated, Irank = 2, 3, . . . Thus, the box P′ is a sequence of fronts
generated by all Np vectors.

(3) Spreading out: procedure to calculate crowding distance, Ii,dist. It is a distance from ith vector
which is from any front, j, of P′:
a. Arrange all vectors in front j sequentially to define the nearest neighbor of any vector in the

front. The vectors are arranged in a ascending fashion based on objective functions like fitness
functions.

b. Find the cuboid of largest size which encloses vector i that nearly touches its very nearest
neighbors in f -space.

c. Calculate Ii,dist = 1/2 × (sum of all the sides of the cuboid)
d. The values of largest Ii, dist are solutions at boundaries. It influences the convergence

characteristics.
(4) Do the DE operation on NP target vectors present in the P′ to generate a NP trial vectors, then

save it in P′′.
a. Generate new (empty) box, P′′ of size Np

b. For (i = 1 − N), in P′, allocate solutions to sub populations NP/5, where each node has NP/5
solutions

c. Perform Mutation:
Assign a DE variant to all nodes. Create a noisy vector (Ni,G) in each node by using the below

mentioned scheme:
Node 1: DE/rand/1: Ni,G = Xr1,G + F(Xr2,G − Xr3,G).
Node 2: DE/rand/2: Ni,G = Xr1,G + K(Xr2,G − Xr3,G) + F(Xr4,G − Xr5,G).
Node 3: DE/current-to-best/1: Ni,G = Xi,G + K(Xbest,G − Xr1,G) + F(Xr2,G − Xr3,G).
Node 4: DE/rand-to-best/1: Ni,G = Xr1,G + K(Xbest,G − Xi,G) + F(Xr2,G − Xr3,G).
Node 5: DE/TSDE: Ni,G = Xr1,G + K(Xbest1,G − Xr2,G) + F(Xbest2,G − Xr3,G).
Here, Xi,G is the current solution of a vector, Xr1,G, Xr2,G, Xr3,G, Xr4,G, Xr5,G are randomly chosen

solutions, Xbest1,G, Xbest2,G, Xbest,G are the best solutions in the vector, K and F are scaling
factors = rand[0.3, 0.9] = a random number in between 0.3 and 0.9 generated in every iteration.

If Ni,G > Xmax or Ni,G < Xmin then once again create a new Ni,G by using above mutation schemes.
Combine all new nodes in the box P′′.

d. Calculate P′′ = {trial vector}, where trial vector = {target vector (cross over) noisy random
vector}′.

e. Crossover procedure:
(1) Generate random numbers = problem dimension;
(2) For each of the dimensions: if random no. > CR;
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Assign, trial vector value = the target vector value.
Else, trial vector value = the noisy random vector value.

(5) Elitism: Copy {Np parent vectors} (P′)∧{Np trial vectors} (P′′) ⇒ box PT. Now Box PT =
{2Npvectors}
a. Apply classification procedure mentioned in Step 2 above, to PT to generate 2Np vectors

inside the fronts (box PT ′) using non-domination principle only.
b. Box P′′′ = best Np from box PT ′. The best Np is identified as the one which has the best ranked

chromosome.
If Ii,rank 	= Ij,rank: Ii,rank < Ij,rank;
If Ii,rank = Ij,rank: Ii,dist > Ij,dist.
Now one generation is completed. Stop if the appropriate criteria are satisfied, for example, the

generation number > maximum no. of generations. Else, copy P′′′ into the starting box P. And
Go to the Step 2 above.
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