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The dynamics of a stratified fluid in which the rotation vector is slanted at an angle with
respect to the local vertical (determined by gravity) is considered for the case where the
aspect ratio of the characteristic vertical scale of the motion D to the horizontal scale L is
not small. In cases where the Rossby number of the flow is small the natural coordinate
system is non-orthogonal and modifications to the dynamics are significant. Two regimes
are examined in this paper. The first is the case in which the horizontal length scale
of the motion, L, is sub-planetary where the quasi-geostrophic approximation is valid.
The second is the case where the horizontal scale is commensurate with the planetary
radius and so the dynamics must be formulated in spherical coordinates with imposing
a full variation on the relevant components of rotation. In the quasi-geostrophic case the
rotation axis replaces the direction of gravity as the axis along which the geostrophic flow
varies in response to horizontal density gradients. The quasi-geostrophic potential vorticity
equation is most naturally written in a non-orthogonal coordinate system with fundamental
alterations in the dynamics. Examples such as the reformulation of the classical Eady
problem are presented to illustrate the changes in the nature of the dynamics. For the
second case where the horizontal scale is of the order of R, the planetary radius, more
fundamental changes occur leading to more fundamental and difficult changes in the
dynamical model.

Key words: stratified flows

1. Introduction
On our planet, Earth, the large-scale motions strongly affected by the planet’s rotation
usually have horizontal scales, L, that are much greater than the vertical scale of those
motions, D. This leads to a great simplification in the vertical equation of motion such
that the vertical component of the Coriolis acceleration can be neglected leading in most
cases to a simple hydrostatic balance. It is natural to wonder whether other planetary
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bodies or astrophysical systems might have thicker gaseous or fluid layers in which the
approximation based on the smallness of δ = D/L might no longer be valid and what
consequences might flow from that. The present paper examines the consequences of
relaxing that approximation.

As shown below, the nature of the dynamics is altered fundamentally. For example,
an imposed density gradient in the northward direction leads to an increase in the zonal
velocity, not in the direction of gravity but, as shown below, in the direction of the
tilted rotation vector. Similar fundamental changes occur with the loss of the hydrostatic
balance due to the vertical component of the Coriolis acceleration, no longer small in the
vertical direction. Also, the potential vorticity equation in the quasi-geostrophic limit is
most naturally written in the non-orthogonal coordinate system of the horizontal axes
with the third axis in the direction of the tilted rotation vector raising the question
of the representation of variables in the non-orthogonal system, also discussed below.
The consequences for the stability of zonal flows in this new system are discussed in a
reformulation and solution of the Eady problem. The nature of the problem changes when
the horizontal scale is of the order of the planetary radius. The reformulation in that case
leads to a more complex dynamics.

In many cases, models of astrophysical phenomena also often assume the smallness of
the aspect ratio in formulating approaches to the solutions of problems of interest (see e.g.
Spiegel & Zahn (1992); but see Julien et al. (2006) for a relaxation of the small-aspect-
ratio assumption). However, this paper focuses more simply on the issue of the alteration
of the standard quasi-geostrophic formulation in some familiar fundamental examples such
as the classic Eady problem, taken up in § 4.

So it is fair to say that the present discussion is driven more by a fundamental curiosity
of what happens if, for some other world, the classical assumption is not true.

2. Formulation of the basic equations: quasi-gesostrophic limit
Consider motions in a rotating system in which the standard scaling applies; that is, the
horizontal coordinates are scaled by L, the horizontal velocities by U and the time by L/U.
The vertical velocity is scaled by UD/L and the pressure anomaly by ρo2ΩU L , where
Ω is the magnitude of the rotation whose axis is now inclined at an angle θ with respect
to the y axis (which, as usual, points northward). The dimensional density is written as
ρ∗ = ρo(1 + 2((ΩU L)/(gD))ρ), where ρ∗ is the dimensional density and ρo is the basic
state density which may also be a function of z, the vertical coordinate. As is standard, the
perturbation density and pressures are small compared with their resting values po and ρo.

The non-dimensional equations of motion are then the momentum equations, which
ignoring friction are

ε
du

dt
− sin θv + δ cos θw= −∂p

∂x
, (2.1a)

ε
dv
dt

+ sin θu = −∂p

∂y
, (2.1b)

εδ2 dw
dt

− δ cos θu = −∂p

∂z
− ρ. (2.1c)

And the incompressibility condition which is valid because of the smallness of the
Rossby number is
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∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (2.1d)

The final equation is the energy equation which we simplify to conservation of
density:

ε
dρ
dt

− Sw= 0. (2.1e)

The symbols are standard and ε is the Rossby number U/2ΩL and is considered a small
parameter. The stratification parameter, S = (N 2 D2)/(4Ω2L2), where N is the Brunt–
Väisälä frequency, will be considered O(1)I as will the aspect ratio, δ. The aspect ratio
now will be considered. The set (2.1) is immediately recognized as the form that the
equations of motion take when written for motion on a sphere except that the metric terms
in spherical coordinates have been replaced by their Cartesian equivalents, i.e. we are using
a tangent plane model of the motion.

The operator d/dt is ∂/(∂t)+ u(∂/∂x)+ v(∂/∂y), the vertical advection term being
negligible from the conservation of density equation (2.1e).

We proceed by an expansion in the Rossby number assuming that the aspect ratio, δ, is
not small, at least in comparison with the Rossby number.

At the lowest order in ε, the above equations yield (assuming small w)

sin θuo = −∂po

∂y
, −δ cos θuo = −∂po

∂z
− ρo, sin θvo = ∂po

∂x
(2.2a,b,c)

The axis of rotation is tilted from the y axis by the angle θ so along that axis ∂z/∂s =
sin θ and along the y axis ∂y/∂s = cos θ , combining (2.2a) and (2.2b):

ρo = −(1/ sin θ)∂po/∂s. (2.3)

It then follows from the lowest-order geostrophic balance that the familiar thermal wind
equations for uo and vo become

(∂uo)/∂s = (∂ρo)/∂y, (∂vo)/∂s = −(∂ρo)/∂x . (2.4a,b)

Note that (2.4b) holds even if δ cos θw is retained in (2.2c). The physical content of
(2.4a,b) involves the tilting of the planetary vorticity vector, which by definition is along
the s axis, into the x and y directions by the velocity shear along that axis, i.e. by the
change along the z axis and the horizontal axes as well. This result has also been found by
de Verdiere & Schopp (2006).

Thus again, it is the axis of rotation that plays the role of the third axis of the problem.
The spatial variation of the horizontal velocity occurs along the tilted rotation axis and not
the vertical determined by gravity and, as a consequence, we will find ourselves dealing
with the non-orthogonal (x, y, s) coordinate system. In each case, the response to the
lateral density gradient which would give rise to a forcing term for production of vorticity
by the cross product of the pressure and density gradients is, instead, balanced by the tilting
of the planetary vorticity. The tilting requires a shear in the horizontal velocity along the
axis of the planetary vortex tube, e.g. the tilted axis of rotation.
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At the next order in Rossby number, order ε, the momentum equations become

duo

dt
− sin θv1 + δ cos θw1 = −∂p1

∂x
, (2.5a)

dvo

dt
+ sin θu1 = −∂p1

∂y
, (2.5b)

−δ cos θu1 = ∂p1

∂z
− ρ1, (2.5c)

∂u1

∂x
+ ∂v1

∂y
+ ∂w1

∂z
= 0, (2.5d)

dρo

dt
− Sw1 = 0, (2.5e)

where the operator d/dt = ∂/∂t + uo(∂/∂x)+ vo(∂/∂y).
Cross-differentiating (2.5a,b) in the usual manner and using (2.5d) we obtain the

vorticity equation:

∂ζo

∂t
+ uo

∂ςo

∂x
+ vo

∂ςo

∂y
= ∂w1

∂s
. (2.6)

Thus, it is the stretching of the vertical component of the planetary vorticity along the
vertical and the tilting of the horizontal component of the planetary vorticity into the
vertical that are dynamically significant in changing the vorticity (see also (7.5) for another
example of the physical content of this result). Using (2.3) and (2.5e) in (2.6) yields the
new quasi-geostrophic potential vorticity equation:

dςo

dt
+ 1

sin θ
d
dt

(
∂

∂s

1
S

∂po

∂s

)
= 0. (2.7)

Again, we see that the variable that replaces the vertical coordinate z is the coordinate
along the rotation axis. Also, from now on since δ is considered an O(1) parameter, I will
just be set equal to 1 to make the algebra slightly neater.

The geostrophic streamfunction is ψ = po/ sin θ , in terms of which (2.7) becomes

d
dt

∇2ψ + d
dt

(
∂

∂s

1
S

∂ψ

∂s

)
= 0, (2.8)

which will be our governing equation. This quasi-geostrophic equation in this form has
appeared before in the literature.

It is important to note that the independent variables in (2.8) (x, y and s) are three
variables that are not mutually orthogonal. Before proceeding further, we must discuss
how to deal with this unusual situation.

Although it is clear from a physical point of view that s, the distance along the axis of
the rotation vector, is the natural third coordinate, it is not clear whether y is the natural
complementary coordinate. This is the focus of our discussion in § 3.

3. The coordinate system revisited
The results of the previous section suggest that the rotation axis, the direction upon which
the motion changes, is a natural third coordinate, called s. What is the complementary
coordinate? To find that direction consider the representation of an arbitrary point in the
(y, z) or (y, s) plane in terms of the unit vectors j and s which, respectively, are aligned
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Figure 1. A schematic showing the (y, z) plane and the s axis aligned with the rotation vector. An arbitrary
point in the (y, z) plane has coordinates z/ sin θ on the s axis and its complementary coordinate yo on the y
axis, as shown.

with the y axis and the s axis. Any vector V in the (y, z) or (y, s) plane can be written as a
linear combination of two vectors in those directions. That is, for any V we can write

V = A j + Bs. (3.1)

To find the coordinates of V in the (y, s) frame, i.e. A and B in this coordinate system, we
can take the inner product of V with each of the unit vectors giving two equations for the
coordinates A and B. The calculation is straightforward and the result is

A = (V · j − (V · s)(s · j))/(1 − (s ∗ j)2), (3.2a)

B = (V · s − (V · j)(s · j))/(1 −
(

s ∗ j)2
)
. (3.2b)

If V = y j + z k, i.e. the position vector, it follows that B, the coordinate along the s axis,
i.e. s, is (note that s · j = cos θ )

B = z

sin θ
= s (3.3a)

just what we would expect from a simple trigonometric argument. However, the natural
coordinate along the y axis is more surprising. From the solution for A it follows that

A =
(

y − z
cos θ
sin θ

)
= (y − s cos θ). (3.3b)

The result (3.3b) may seem odd, but a little thought makes it more natural. First one
can think about how we find those coordinates in the (y, z) system (see figure 1). From the
point (y, z) we move horizontally, i.e. parallel to the y axis, until we intersect the z axis and
that is the coordinate of the point on the z axis. We do the same to find the y coordinate,
i.e. we move parallel to the z axis until we intersect the y axis to find the y coordinate. It is
exactly the same in the tilted s system. From the point (y, z) in the plane we move parallel
to the y axis until we strike the tilted s axis to find the s coordinate at z/ sin θ . Now we
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move parallel to the s axis until we strike the y axis, as shown in figure 1, and we find that
intersection point at

y0 = y − s cos θ, (3.3c)

and this is the result (3.3b). In this system the natural coordinates are x, s and y0.
Before proceeding further, we will examine a simple model problem that will, hopefully,

make this more plausible.
First note that the partial derivative in y at constant z is the same as the derivative with

respect to yo at constant s. Consider the solution to the equation

∇2ψ + ∂

∂s

1
S

∂ψ

∂s
= 0. (3.5)

For the present purpose we consider the case where S is constant and then write the last
term in (3.5) in x, y, z coordinates leading to

S

(
∂2ψ

∂y2 + ∂2ψ

∂x2

)
+ (sinΘ)2

∂2ψ

∂z2 + 2 sinΘ cosΘ
∂2ψ

∂y∂z
+ (cos θ)2

∂2ψ

∂y2 = 0. (3.6)

We can find a solution of the form ψ = φ(z)eily+ikx . The equation for φ(z) is simply

φZ Z + 2ilφz
cos θ
sin θ

sin θ − φ

(
S
(
k2 + l2)
(sin θ)2

)
+ l2

(
cos (θ)
sin (θ)

)2

= 0, (3.7)

the solution of which leads to

ψ = eil(y−s cos θ)+ikx(Ae−K s + BeK s), K 2 = S
(
k2 + l2), (3.8)

where we have used s = z/ sin θ . Note that the first exponential in (3.8) is simply our new
friend, yo. This is an illustration of how the natural coordinates of our problem are the
variables s and yo rather than y and z. We shall profit from this example in the next section
when we take up the Eady problem with the tilted rotation vector.

4. The Eady problem
The model, first proposed by Eady (1949), considers a flow produced by a constant
meridional density gradient in the y direction and the thermal wind thus produced the
basic state whose stability is examined. In Eady’s problem, that gives rise to a flow in the
x direction increasing linearly with height, e.g. z. As we have shown, in our model with
the tilted rotation vector, linear variation occurs with s, the coordinate along the axis of
rotation. Thus, our streamfunction consists of the basic state, a zonal velocity in

Uo = λs. (4.1)

We write the perturbation streamfunction as

φ = Aeikx+il yo−ikct F(s), (4.2)

where the real part is understood, while, as in the example of § 3, F satisfies

Fss − S(k2 + l2)F = 0,

the solution of which as before can be written

F (s)= A sinh (K s)+ B cosh(K s), (4.3)
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where K 2 = S(k2 + l2). The boundary conditions on z = 0 and z = D = s sin θ imply that
D in the classical stability criterion is replaced by D/sin θ and thus the condition becomes,
for δ = 1,

K < 2.3994 sin θ. (4.4)

Thus, as the tilt gets larger, i.e. the rotation axis approaches the horizontal and sin θ
goes to zero, the instability becomes expunged since K has a minimum given by l. The tilt
thus stabilizes the flow. The fundamental reason for this change is that, as in the original
formulation, the Eady model becomes stabilized if the two boundaries are far enough apart
so that they no longer interact, given the exponential decay of the perturbations from the
horizontal boundaries. In the tilted case, the distance between the boundaries is measured
in s and as the tilt becomes larger the distance in s increases like 1/ sin θ .

5. The beta effect
As was remarked upon in § 2, the governing equations given there have the same form
as the equations of motion written on a sphere with θ as the latitude. The Cartesian
coordinates used can be interpreted as the coordinates on the tangent plane to the sphere at
that latitude. In just the same way as is usually done, we can include the spatial variations
of those trigonometric terms by including small variations in the north–south distance y
from the central latitude. Thus if L is a characteristic spatial departure from the central
latitude and if R is the sphere’s radius and if L/R is O(ε), expanding the trigonometric
functions gives us the beta plane extension of the horizontal momentum equations, from
which the vorticity equation directly follows:

dςo

dt
+ 1

sin θ
d
dt

(
∂

∂s

1
S

∂po

∂s

)
+ bvo = 0, (5.1)

where b = (2Ω cos(θ)L2)/(RU ), in which U is the scaling velocity. We recognize (5.1)
as the familiar beta plane version of the potential vorticity equation where vo = ∂ψ/∂x .
If the fluid is contained in a layer of non-dimensional unit thickness (or D in dimensional
units) the frequency corresponding to the linear normal mode is

ψn = A sin(kx + lyo −ωt) ∗ cos(nπs ∗ (sin θ)/S), (5.2)

for n = 0, 1, 2, . . ., and yielding a frequency ω= −bk/(k2 + l2 + (nπ)2((sin(θ)2)/S)).
Thus as the tilt of the rotation axis from the vertical increases and θ approaches zero,
the frequency for any n rather surprisingly approaches that of the barotropic mode, i.e.
independent of the stratification.

6. Quasi-geostrophy: final remarks
The principal change in the quasi-geostrophic dynamics is the loss of the hydrostatic
balance and the emergence of the axis of rotation as the natural direction for the thermal
wind shear alters the basic formulation of the dynamics in the quasi-geostrophic limit.
The new form of the quasi-geostrophic potential vorticity suggests further dynamical
consequences. The familiar stability theorems, such as the Charney–Stern criterion
(Charney & Stern 1962) and similar theorems, follow in modified form, with modifications
similar to those found in the analysis in § 4 of the Eady problem, an exercise also left to
the reader. It raises interesting questions about what the bounds are of the phase speed of
unstable waves.
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7. Planetary-scale geostrophy
We examine now the alteration in the geostrophic (low-Rossby-number) dynamics when
the aspect ratio is of order one and the planetary radius, R, is used for scaling both the
horizontal and vertical dimensions of the motion occurring on a planetary scale.

In the limit of small Rossby number the governing momentum equations are, in
spherical non-dimensional coordinates, where θ, ϕ and r are the latitude, longitude and
radial position of a fluid element,

sin θu = −1
r

∂p

∂θ
, (7.1a)

− sin θv+ cos θw= − 1
r cos θ

∂p

∂ϕ
, (7.1b)

− cos θu = −∂p

∂r
− ρ. (7.1c)

For simplicity, we assume that the fluid is incompressible so that the divergence of the
velocity is zero, which in spherical coordinates yields

1
r2
∂r2w

∂r
+ 1

r cos θ
∂v cos θ
∂θ

+ 1
r cos θ

∂u

∂ϕ
= 0. (7.1d)

The thermodynamic equation for the density will be simplified in consonance with
(7.1d):

∂ρ

∂t
+ u

r cos θ
∂ρ

∂ϕ
+ v

r

∂ρ

∂θ
+w

∂ρ

∂r
=H, (7.1e)

where H represents all non-adiabatic forcings, such as heating or friction that could lead
to changes in density.

Obviously, for gaseous planets a more complex statement of mass conservation and
thermal heating would be necessary but (7.1d) and (7.1e) are sufficient to illustrate some
dynamical novelties for this non-hydrostatic, planetary-scale, dynamics.

To start, let us check on the form that the thermal wind equations take. For the zonal
wind, cross-differentiating (7.1a) and (7.1c) immediately yields

sin θ
∂u

∂r
+ cos θ

1
r

∂u

∂θ
= 1

r

∂ρ

∂θ
= ∂u

∂s
, (7.2)

as in our previous result, where s is the variable along the rotation axis, whose tilt with
respect to the local gravitational vertical is now a function of latitude. The basic result is
the same as the quasi-geostrophic one. The same is not true for the meridional velocity.

Cross-differentiating (7.1b) and (7.1c) after first multiplying (7.1b) by r yields

− sin θ
(
v + r

∂v

∂r

)
+ ∂u

∂ϕ
+ cos θ

∂ (rw)

∂r
= 1

cos θ
∂ρ

∂ϕ
. (7.3a)

Then with use of (7.1d) , i.e. conservation of mass, we obtain

sin θ
∂v

∂r
+ cos θ

1
r

∂v

∂θ
= − 1

r cos θ
∂ρ

∂ϕ
− cos θ

w

r
. (7.3b)

The last term in (7.3b) is an unexpected one and has no equivalent in the smaller-scale
quasi-geostrophic limit. Its origin is the same twisting term in the vector vorticity equation,
(ω · ∇)u, where now the gradient operates on the unit vectors in spherical coordinates
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whose derivatives with respect to latitude are different from zero. The final term in (7.3b)
is slightly difficult to interpret but it can be shown to involve tilting of the rotation vector
by a component of the radial velocity. For large r the term is generally small because the
local surface approaches a flat tangent plane.

If we now construct the lowest-order vorticity balance by cross-differentiating (7.1a) and
(7.1b) and using (7.1d), we easily obtain

v
cos θ

r
= sin θ

r2
∂r2w

∂r
+ 1

r cos θ
∂w(cos θ)2

∂r
, (7.4)

or, carrying out the differentiation in (7.4),

v
cos θ

r
= sin θ

∂w

∂r
+ cos θ

1
r

∂w

∂θ
= ∂w

∂s
, (7.5)

which we recognize as the non-dimensional form of the vorticity equation in which vortex
stretching along the rotation axis leads to northward motion on the beta plane, but here on
the spherical pathway in the planet’s fluid envelope.

The content of (7.5) is, again, slightly richer. The first term on the right-hand side of
(7.5) is clearly the traditional production of vorticity by stretching along the axis of the
fluid column oriented in the radial direction and producing vorticity by the stretching of
the local vertical component of the planetary vorticity. However, the second term on the
right-hand side of (7.5) is a tilting term. The horizontal variation of w in the meridional
direction will tilt that component into the vertical direction, adding (or subtracting) that
effect from the stretching term. The sum of the two produces a northward or southward
movement due to the beta effect, the term on the left-hand side of (7.5).

Further, (7.1a) and (7.1c) together imply that

ρ = − 1
sin θ

∂p

∂s
, (7.6)

as in the quasi-geostrophic limit.
Ertel’s theorem, i.e. the equation for the potential voriticity, follows from the above

relations. As shown in Pedlosky (1986), if a function λ can be written as a function of p
and ρ then the vorticity equation can be written as an equation for the potential vorticity,
q =ωa · ∇λ, where, in the case at hand, ωa is simply, in dimensional units, 2 �Ω . In the case
discussed here, the density itself can be chosen to take the role of λ, so that the potential
vorticity ωa · ∇ρ is, in our non-dimensional units, just

q = ∂ρ

∂s
(7.7)

and its governing equation is

∂

∂t

∂ρ

∂s
+ u

r cos θ
∂

∂ϕ

(
∂ρ

∂s

)
+ v

1
r

∂

∂θ

(
∂ρ

∂s

)
+w

∂

∂r

(
∂ρ

∂s

)
= 0. (7.8)

In (7.8) u and ρ can be written directly in terms of the pressure p and its derivatives,
while w is related to v via (7.5). But these relationships are not easy and the system as a
whole is difficult to work with.
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8. An example
Some progress can be made, however. Combining (7.1b) and (7.5) leads to

∂w

∂s
− (cos θ)2

sin θ
w= 1

r sin θ
∂p

∂ϕ
. (8.1)

If we consider the special case where the radial density gradient is determined by other
thermodynamic processes, this leads to a large radial density gradient existing in the
absence of motion such that the dominant density gradient is radial and

∂ρo

∂r
= S. (8.2)

Where that radial gradient exceeds in magnitude all perturbations of the density ρ , the
linear governing equation would be simply

∂ρ

∂t
+wS = 0. (8.3)

Using (8.1), (8.2) and (8.3) we obtain

∂

∂t

[
∂

∂s

1
S

(
∂p

∂s

)
+ (cos θ)2

sin θ

∂p
∂s

S

]
= − 1

r sin θ
∂p

∂ϕ
. (8.4)

Roughly speaking, (8.4) recalls the form of the potential vorticity equation of § 2
except that on these scales the relative vorticity of the background flow is negligible in
comparison with the planetary vorticity gradient. Motion in that field is given by the term
on the right-hand side of (8.4) while the potential vorticity is dominated by the stretching
of the planetary vorticity, the rate of change of which is given by the left-hand side
of (8.4).

If the pressure field is expanded in a series, then

p =
∑

n

Fn(s)Ψn(ϕ, t), (8.5)

where the functions Fn satisfy

∂

∂s

1
S

(
∂Fn

∂s

)
+ (cos θ)2

sin θ

∂
∂s Fn

S
= −λn

2 Fn, (8.6)

leading to

∂Ψn

∂t
= − 1

r cos θλn
2
∂Ψn

∂ϕ
. (8.7)

This leads to propagation of this long wave always westward. Note that in this
formulation latitude is a parameter of the motion.

Declaration of interests. The author of this paper is retired and received no funding in aid of publication
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