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COMPARING THE STRENGTH OF DIAGONALLY NONRECURSIVE
FUNCTIONS IN THE ABSENCE OF Σ02 INDUCTION
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Abstract. Weprove that the statement “there is a k such that for everyf there is a k-bounded diagonally
nonrecursive function relative to f” does not imply weak König’s lemma over RCA0 +BΣ

0
2. This answers a

question posed by Simpson. A recursion-theoretic consequence is that the classic fact that every k-bounded
diagonally nonrecursive function computes a 2-bounded diagonally nonrecursive function may fail in the
absence of IΣ02.

§1. Introduction.
It is a truth universally acknowledged, that a single man in possession of a good
k-bounded diagonally nonrecursive function, must be in want of a 2-bounded
diagonally nonrecursive function [2].

An enduring project in recursion theory is to determine the amount of induction
necessary to prove its classic theorems, particularly those concerning the recursively
enumerable sets. Post’s problem and the Friedberg–Muchnik theorem [5,23,29], the
Sacks splitting theorem [23, 29], the Sacks density theorem [16], the infinite injury
method [6,10,11], and even the transitivity of Turing reducibility [17] have all been
investigated.The nonstandardmethods developed in the course of these studies have
been recently applied in reverse mathematics, an analysis of the logical strengths of
ordinarymathematical statements in the context of second-order arithmetic, and led
to solutions of several important open problems in the field. Remarkably, Chong,
Slaman, and Yang proved that stable Ramsey’s theorem for pairs is strictly weaker
than Ramsey’s theorem for pairs [8] and that Ramsey’s theorem for pairs does
not imply induction for Σ02 predicates [9]. Furthermore, nonstandard techniques
are necessarily employed in proofs of conservativity results over systems with lim-
ited induction, such as the Π11-conservativities of the cohesive principle and the
chain-antichain principle over RCA0 plus bounding for Σ02 predicates [7]. Similarly,
Corduan, Groszek, and Mileti proved what may be described as a dual conser-
vativity result: an extension of RCA0 by Π11 axioms proves Ramsey’s theorem for
singletons on the complete binary tree if and only if the extension proves induction
for Σ02 predicates [13]. It follows thatRCA0 plus bounding for Σ

0
2 predicates does not

prove Ramsey’s theorem for singletons on the complete binary tree, which answers
a question from [12]. For a comprehensive introduction to nonstandardmethods in
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recursion theory and reverse mathematics, we refer the reader to the recent survey
by Chong, Li, and Yang [4].
Within this framework of reverse mathematics, we study the logical strengths
of several statements asserting the existence of k-bounded diagonally nonrecursive
functions. Theorem 5 of Jockusch’s classic analysis of diagonally nonrecursive func-
tions [21] states that every k-bounded diagonally nonrecursive function computes a
2-bounded diagonally nonrecursive function. The proof, which Jockusch attributes
to Friedberg, is not uniform, and Jockusch proves that this is necessarily the case:
Theorem 6 of [21] implies that if k > 2 then there is no uniform (i.e., Medvedev)
reduction from the class of k-bounded diagonally nonrecursive functions to the
class of 2-bounded diagonally nonrecursive functions. In a talk given at the 2001
Annual Meeting of the American Philosophical Association [26], Simpson asked if
the reduction from k-bounded diagonally nonrecursive functions to 2-bounded
diagonally nonrecursive functions can be implemented RCA0. Specifically, he asked
if the statement “there is a k such that for every X there a k-bounded diagonally
nonrecursive function relative to X” implies weak König’s lemma (WKL) over
RCA0. Our main result is that although the statement in question indeed implies
WKL over RCA0 plus induction for Σ02 predicates, it does not imply WKL over
RCA0 plus bounding for Σ02 predicates. Consequently, if induction for Σ

0
2 predicates

fails, there may be k-bounded diagonally nonrecursive functions (for some nec-
essarily nonstandard k) that do not compute 2-bounded diagonally nonrecursive
functions. This result expresses a sense in which induction for Σ02 predicates is nec-
essary to prove that every k-bounded diagonally nonrecursive function computes a
2-bounded diagonally nonrecursive function.

§2. Background. We define the fragments of first-order and second-order arith-
metic that we consider in this work. The standard references are Hájek and Pudlák’s
Metamathematics of First-Order Arithmetic [19] for fragments of first-order arith-
metic and Simpson’s Subsystems of Second Order Arithmetic [27] for fragments of
second-order arithmetic in the context of reversemathematics. Reversemathematics
is a foundational program, introduced by Friedman in [14], dedicated to character-
izing the logical strengths of the classic theorems of mathematics when interpreted
in second-order arithmetic. It is thus a fundamentally proof-theoretic endeavor,
although its techniques are primarily recursion-theoretic. We encouragingly refer
the interested reader to the introduction of Simpson’s book for a hearty introduction
to reverse mathematics and its metamathematical motivations.
We pause here to highlight one important notational convention. As is common
when writing about reverse mathematics, throughout this work we use the symbol
‘�’ to refer to the standard natural numbers and the symbol ‘N’ to refer to the
first-order part of whatever structure is (often implicitly) under consideration.

2.1. Fragments of first-order arithmetic. The basic axioms of Peano arithmetic,
here denoted PA−, express that N is a discretely ordered commutative semi-ring
with 1. Peano arithmetic, denoted PA, consists of PA− plus the induction scheme,
which consists of the universal closures of all formulas of the form

[ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n + 1))]→ ∀nϕ(n).
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Fragments of PA are obtained by limiting the quantifier complexity of the for-
mulas ϕ allowed in the induction scheme. For each n ∈ �, the Σ0n (Π0n) induction
scheme is the restriction of the induction scheme to Σ0n (Π

0
n) formulas ϕ, and IΣ

0
n

(IΠ0n) denotes the fragment of PA consisting of PA
− plus the Σ0n (Π

0
n) induction

scheme. We express induction for Δ0n predicates via the Δ
0
n induction scheme, which

consists of the universal closures of all formulas of the form

∀n(ϕ(n)↔ �(n))→ ([ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n + 1))]→ ∀nϕ(n)),

where ϕ is Σ0n and � is Π
0
n. The fragment IΔ

0
n is then PA

− plus the Δ0n induction
scheme.
We also consider fragments of PA obtained by adding so-called bounding schemes
(also called collection schemes). The Σ0n (Π

0
n) bounding scheme consists of the

universal closures of all formulas of the form

∀a[(∀n < a)(∃m)ϕ(n,m) → ∃b(∀n < a)(∃m < b)ϕ(n,m)],
where ϕ is Σ0n (Π

0
n). The fragment BΣ

0
n (BΠ

0
n) is then IΣ

0
0 plus the Σ

0
n (Π

0
n) bounding

scheme.
The following theorem summarizes the relationships among these fragments.

Theorem 2.1 (see [19] Theorem 2.4, [19] Theorem 2.5, and [28]). Let n ∈ �.
Over PA−:

• IΣ0n and IΠ0n are equivalent.
• BΣ0n+1 and BΠ0n are equivalent.
• IΣ0n+1 is strictly stronger than BΣ0n+1, which is strictly stronger than IΣ0n.
• If n ≥ 2, then IΔ0n and BΣ0n are equivalent (the proof uses the totality of the
exponential function, which is provable in IΣ01).

A cut in a modelN of PA− is a set I ⊆N such that ∀n∀m[(n∈I ∧m < n)→ m∈I ]
and ∀n(n ∈ I → n + 1 ∈ I ). A cut I ⊆ N is called proper if I 
= ∅ and I 
= N.
Definable proper cuts witness failures of induction. Suppose that N |= PA−. If the
induction axiom for ϕ fails in N, then �(n) = (∀m < n)ϕ(m) defines a proper cut
in N, and if ϕ defines a proper cut in N, then the induction axiom for ϕ fails in N.
The following lemma, originally noticed by Friedman but by now part of the
folklore, is key to many recursion-theoretic constructions in models with limited
induction, including the main construction in this work.

Lemma 2.2. If N |= BΣ02 + ¬IΣ02, then there are a proper Σ02 cut I ⊆ N and an
increasing, cofinal function c : I → N whose graph is Δ02.

Proof. Let ϕ(n) be a Σ02 formula witnessing the failure of IΣ
0
2. That is, ϕ(0) ∧

∀n(ϕ(n)→ ϕ(n + 1)) ∧ ∃n¬ϕ(n). Let I = {n : (∀m < n)ϕ(m)}. I is a proper cut,
and using BΣ02 one proves that I is Σ

0
2. Let � be Π

0
1 such that I = {n : ∃m�(n,m)}.

Define the function c by c(n) = �m�(n,m) and observe that the graph of c is Δ02.
By IΣ01, if there is an m such that �(n,m), then there is a least such m. Therefore
dom(c) = I . Furthermore, ran(c) is unbounded, for if ∃b(∀n ∈ I )(c(n) < b), then
∀n(n ∈ I ↔ (∃m < b)�(n,m)), which constitutes a violation of IΣ01. If necessary,
using BΣ02 we can dominate c by an increasing function with the same domain whose
graph is still Δ02. �
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2.2. Fragments of second-order arithmetic. Full second-order arithmetic consists
of PA− plus the universal closures of the induction axiom

[0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X )]→ ∀n(n ∈ X )
and the comprehension scheme

∃X∀n(n ∈ X ↔ ϕ(n)),
where ϕ is any formula in the language of second-order arithmetic in which X is
not free. In the setting of second-order arithmetic, formulas may have free second-
order parameters, and ‘universal closure’ means closure under both first-order and
second-order universal quantifiers.
Fragments of second-order arithmetic are obtained by replacing the induction
axiom by an induction scheme as in the first-order case and by limiting the com-
prehension scheme to formulas of a certain complexity. We emphasize again that
in the second-order setting a formula may have free second-order parameters that
are universally quantified in the corresponding induction axiom, hence an induc-
tion axiom holding in some second-order structure means that it holds relative to
every second-order object in that structure. When studying reverse mathematics,
we also produce fragments of second-order arithmetic by adding the statement of
a well-known theorem to another fragment, as is the case in the system WKL0
described below. This work is concerned with the first two of the Big Five fragments
of second-order arithmetic, recursive comprehension axiom (RCA0) and WKL0, as
well as various fragments defined by statements asserting the existence of diagonally
nonrecursive functions.
RCA0 is the fragment consisting of PA

−, the second-order Σ01 induction scheme
(which we still refer to as IΣ01 in this setting), and the Δ

0
1 comprehension scheme,

which consists of the universal closures of all formulas of the form

∀n(ϕ(n)↔ �(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)),
where ϕ is Σ01, � is Π

0
1, and X is not free in ϕ.

The equivalences and implications of Theorem 2.1 hold over RCA0 in the second-
order setting. Most relevant to our purposes are that

• for all n ∈ �, RCA0 + IΣ0n and RCA0 + IΠ0n are equivalent (in particular,
RCA0  IΠ01);

• RCA0 + IΣ02 is strictly stronger than RCA0 + BΣ02, which is strictly stronger
than RCA0; and

• RCA0 +BΣ02  IΔ02 (in particular, models of RCA0 +BΣ02 have no Δ02-definable
cuts).
An important aid to working in RCA0 is the fact that RCA0 proves the bounded
Σ01 comprehension scheme (see [27] Theorem II.3.9), which consists of the universal
closures of all formulas of the form

∀n∃X∀i [i ∈ X ↔ (i < n ∧ ϕ(i))],
where ϕ is a Σ01 formula in which X is not free. Contrastingly, adding the full
Σ01 comprehension scheme to RCA0 is equivalent to adding comprehension for all
arithmetical formulas and results in a stronger system denoted ACA0 (see [27]
Theorem III.1.3).
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RCA0 proves sufficient number-theoretic facts to implement the codings of
sequences of numbers as numbers that are typical in recursion theory. See [27] Sec-
tion II.2 for a carefully formalized development of such a coding. Thus in RCA0 we
can interpret the existence of the set N<N of all finite sequences (also called strings)
and, more generally, give the usual definition of a tree as subset ofN<N that is closed
under initial segments.We now fix our notation and terminology concerning strings
and trees. Let k, s ∈ N, �, � ∈ N

<N, f : N → N be a function, and T ⊆ N
<N be a

tree. Then
• k<N is the set of strings over {0, 1, . . . , k − 1}, ks is the set of strings in k<N of
length exactly s , and k<s is the set of strings in k<N of length less than s ;

• |�| is the length of �;
• � ⊆ � means that � is a substring of �;
• f � n is the string 〈f(0), f(1), . . . , f(n − 1)〉;
• � ⊆ f means that � is an initial segment of f (i.e., � = f � |�|);
• f is a path through T if ∀n(f � n ∈ T ).
WKL is the statement “every infinite subtree of 2<N has an infinite path,” and
WKL0 is the fragment RCA0 + WKL. WKL0 captures compactness arguments,
and WKL is equivalent to many classical theorems over RCA0. For example, the
equivalence of WKL with the Heine–Borel compactness of [0, 1], the extreme value
theorem, Gödel’s completeness theorem, and Brouwer’s fixed point theorem can all
be found in [27].
Suppressing the basic relations and functions, a structure in the language of
second-order arithmetic is officially a pair (N,S), where the first-order part N is
some set and the second-order part S is a collection of subsets of N. However, via
the simple coding of pairs possible in RCA0 and the identification of a function
f : N → N with its graph {〈n,m〉 : f(n) = m}, one immediately sees that it is
equivalent to consider structures in which the second-order part is a collection of
functionsf : N → N. Thus we use the functional variant of second-order structures
because it is the more natural setting for our study.

2.3. Turing reducibility and Turing functionals. The standard definition of Turing
reducibility in RCA0 is [27] Definition VII.1.4, which essentially says that Y ≤T X
if Y is both r.e. and co-r.e. in X .

Definition 2.3 ([27] Definition VII.1.4). Fix a universal lightface Π01 formula
	(e,m,X ) with exactly the displayed variables free. For X,Y ⊆ N, we say that
Y Turing reduces to X (Y ≤T X ) if there are e0, e1 ∈ N such that, for all m,
m ∈ Y ↔ 	(e0, m,X ) and m /∈ Y ↔ 	(e1, m,X ).
Note that in the preceding definition m ∈ Y ↔ ¬	(e1, m,X ), so ¬	(e1, m,X ) is
a Σ01 formula essentially witnessing thatY is r.e. inX . Extending this notion, we can
formalize statements involving recursive functionals as used in [30] Section III.1.
For example, given e ∈ N we write Φfe (n) = m to represent a formula asserting that
there is a coded sequence of configurations of the eth Turing machine that starts
with the machine’s initial configuration for input n, ends with the machine’s output
configuration for output m, and is such that each configuration in the sequence
follows from the previous one by the rules of the machine when equipped with
oracle f. In this way we think of Φfe as a partial f-recursive function as usual, and
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for two functionsf, g : N → N, g ≤T f if and only if there is an e such that g = Φfe .
We make the familiar definitions that Φfe (n)↓ if there is anm such that Φfe (n) = m
and that Φfe (n) ↑ otherwise. Similarly, Φfe,s(n) ↓ if Φfe (n) ↓ within s computational
steps and Φfe,s(n) ↑ otherwise. We follow the usual convention that the number of
steps in a computation relative to a partial oracle is bounded by the first position
where the oracle is undefined, such as with computations of the form Φ�e (n) and
Φf⊕�e (n), where � is some finite string.
The following notion will be useful to verify BΣ02 when constructing models.

Definition 2.4. We say that Y is low relative to X if ΦYe (e) ↓ is equivalent to a
Δ02(X ) statement.

Lemma 2.5 ([4] Proposition 4.14). If Y is low relative to X and BΣ02 holds relative
to X then BΣ02 also holds relative to Y .

2.4. Diagonally nonrecursive functions in the formal setting. We now introduce
the statements expressing the existence of diagonally nonrecursive functions that
are the main focus of this paper.

Definition 2.6. Let f and g be functions N → N, and let k ∈ N.

• The function g is k-bounded if ran(g) ⊆ {0, 1, . . . , k − 1}.
• The function g is diagonally nonrecursive relative to f (g is DNR(f) for short)
if ∀e(g(e) 
= Φfe (e)).

• The function g is k-bounded diagonally nonrecursive relative to f (g is
DNR(k,f) for short) if g is k-bounded and DNR(f).

In a slight overloading of notation we also let DNR(f) denote the formal state-
ment “there is a g that is DNR(f)” and let DNR(k,f) denote the formal statement
“there is a g that is DNR(k,f).”
It is well-known that WKL and ∀fDNR(k,f) are equivalent over RCA0 for
every fixed k ∈ � with k ≥ 2. WKL and ∀fDNR(2, f) are equivalent by the
classic work of Jockusch and Soare [22], and ∀fDNR(2, f) and ∀fDNR(k,f)
are equivalent because if k ∈ � and k ≥ 2, then the proof of [21] Theorem 5 can
be unwound in RCA0. It is also well-known that ∀fDNR(f) is strictly weaker than
WKL over RCA0. In fact, ∀fDNR(f) is strictly weaker than WWKL [1], which is
strictly weaker thanWKL [31]. The purpose of this work is to analyze the strengths
of the statements ∃k∀fDNR(k,f) and ∀f∃kDNR(k,f) over RCA0. With a little
care, it is possible to implement the proof of [21] Theorem 5 in RCA0 + IΣ02. Hence
the statements WKL, ∃k∀fDNR(k,f), and ∀f∃kDNR(k,f) are all equivalent
over RCA0 + IΣ02.

Theorem 2.7. RCA0 + IΣ02 + ∀f∃kDNR(k,f)  ∀fDNR(2, f).
Proof. Suppose g is DNR(2k, f), and think of 2k as the set of strings over {0, 1}
of length k. Define a partial f-computable function b by

b(n) =

⎧⎪⎨
⎪⎩
0 if Φfn (n) = 0,
1 if Φfn (n) > 0,
↑ if Φfn (n)↑,
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let 
 : Nk → N be a partial computable function such that

(∀�n ∈ N
k)(∀x ∈ N)(Φf


(�n)(x) = 〈b(n0), b(n1), . . . , b(nk−1)〉),
and let h : k×N

k → 2 be the partial g-computable function defined by the equation
g(
(�n)) = 〈h(0, �n), h(1, �n), . . . , h(k − 1, �n)〉.

By the Π02 least element principle, a consequence of RCA0 + IΣ
0
2, let i be least

such that

(∀�n ∈ N
i)(∃ �m ∈ N

k−i )(∀j < k − i)(h(i + j, �n� �m) = Φfmj (mj)).
Notice that i > 0, for otherwise we would have an �m ∈ N

k such that (∀j < k)
(h(j, �m) = Φfmj (mj) = b(mj)), in which case g(
( �m)) = Φ

f

( �m)(
( �m)), contra-

dicting that g is DNR(2k, f). Fix �n ∈ N
i−1 such that (∀ �m ∈ N

k−i+1)(∃j <
k − i + 1)(h(i + j, �n� �m) 
= Φfmj (mj)). We can now describe a DNR(2, f)
function that is ≤T f ⊕ g. Given x ∈ N, search for an �m ∈ N

k−i such that
(∀j < k − i)(h(i + j, �n�x� �m) = Φfmj (mj)), then output h(i − 1, �n�x� �m). Such
an �m exists by choice of i , and h(i − 1, �n�x� �m) 
= Φfx (x) by choice of �n. �
In Section 4, we show that RCA0+BΣ02 does not suffice to prove the equivalences
of WKL, ∃k∀fDNR(k,f), and ∀f∃kDNR(k,f). Specifically, we prove
• Theorem 4.9: RCA0 + BΣ02 + ∀f∃kDNR(k,f) � ∃k∀fDNR(k,f), and
• Theorem 4.10: RCA0 + BΣ02 + ∃k∀fDNR(k,f) �WKL.
Hence, overRCA0+BΣ02, wewill prove that∀f∃kDNR(k,f) is strictly weaker than
∃k∀fDNR(k,f), which is strictly weaker thanWKL. These results are, in a sense,
as strong as possible. It is of course natural to ask if there is a reversal of Theorem2.7.
That is, it is natural to ask if RCA0  (∃k∀fDNR(k,f) → WKL) → IΣ02.
However, this is readily seen not to be the case because WKL0 � IΣ02. In fact,
WKL0 � BΣ02. No reversal over RCA0 + BΣ

0
2 is possible either. That is, RCA0 +

BΣ02 � (∃k∀fDNR(k,f) → WKL) → IΣ02. This is because WKL0 + BΣ02 � IΣ02.
These comments all follow from the facts thatWKL0 is Π11-conservative over RCA0
(see [27] Corollary IX.2.6) and that WKL0 + BΣ02 is Π

1
1-conservative over

RCA0 + BΣ02 (see [18] or adapt the proof of [27] Corollary IX.2.6).

§3. A little combinatorics of trees. In this short section we isolate two facts
concerning the combinatorics of finite trees. These facts appear in [1], but we repeat
them here for the sake of completeness and because it is important for our purposes
to emphasize that the proofs are formalizable in the first-order fragment IΣ01 and
hence in RCA0.

Definition 3.1 (see [1] Definition 2.3).

• The trunk of a finite tree T ⊆ N
<N is the longest � ∈ T such that every element

of T is comparable with �.
• A finite tree T ⊆ N

<N with trunk � is ≥n-branching if every � ⊇ � in T that is
not a leaf has at least n immediate successors.

Lemma 3.2 (IΣ01; see [1] Lemma 2.5). Let m ≥ 1, let T ⊆ N
<N be a finite, ≥2m-

branching tree with trunk �, and let P0 and P1 be finite trees such that T ⊆ P0 ∪ P1.
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Then there is a ≥ m-branching tree S ⊆ T with trunk � such that leaves(S) ⊆
leaves(T ) and either S ⊆ P0 or S ⊆ P1.
Proof. For the purposes of this proof, definedepth(T, �)= max{|�|−|�| : �∈ T}
for a finite tree T ⊆ N

<N with trunk �. We prove the lemma by induction on
depth(T, �). If depth(T, �) = 0, then T = � (we identify � with {� : � ⊆ �} for
simplicity). ThusT ⊆ P0∪P1 implies that � ∈ Pi for some i < 2, which implies that
T ⊆ Pi . Now suppose that depth(T, �) = n + 1. Let (�j : j < 2m) be the first 2m
immediate successors of � in T , and for each j < 2m, let Tj = {� ∈ T : � ⊇ �j}.
For each j < 2m, Tj is a ≥ 2m-branching tree with trunk �j , depth(Tj, �j ) ≤ n,
and Tj ⊆ P0 ∪ P1. By induction, for each j < 2m there are an ij < 2 and a
≥m-branching subtree Sj ⊆ Tj with trunk �j such that leaves(Sj) ⊆ leaves(Tj)
and Sj ⊆ Pij . There is then an i < 2 such that ij = i for at least m of the ij . Let
S =

⋃{Sj : j < 2m∧ ij = i}. Then S is a desired≥m-branching subtree of T with
trunk � such that leaves(S) ⊆ leaves(T ) and S ⊆ Pi . �
Lemma 3.3 (IΣ01; see [1] Lemma 2.6). Let m, n ≥ 1, let T be a finite, ≥m2n−1-
branching tree with trunk �, and let (Pi : i < n) be finite trees such that T ⊆ ⋃

i<n Pi .
Then there are an i < n and a ≥ m-branching tree S ⊆ T with trunk � such that
leaves(S) ⊆ leaves(T ) and S ⊆ Pi .
Proof. By induction on n. The case n = 1 is trivial. Suppose that T is a finite,

≥m2n-branching tree with trunk � such that T ⊆ ⋃
i<n+1 Pi . By Lemma 3.2, there

is a ≥m2n−1-branching tree S ⊆ T with trunk � such that leaves(S) ⊆ leaves(T )
and either S ⊆ ⋃

i<n Pi or S ⊆ Pn. If S ⊆ Pn we are done. If S ⊆ ⋃
i<n Pi , then by

induction there are an i < n and a ≥m-branching tree S0 ⊆ S with trunk � such
that leaves(S0) ⊆ leaves(S) ⊆ leaves(T ) and S0 ⊆ Pi as desired. �

§4. LowDNR(k,f) functions that avoidDNR(b, h) functions. Consider a count-
able modelM = (N,S) of RCA0 + BΣ02 with a proper Σ02 cut. Let f ∈ S, n ∈ �, �h
an n-tuple of elements of S, and �b an n-tuple of elements of N be such that
(∀i < n)(hi ≤T f) and (∀i < n)(f computes no DNR(bi , hi) function). Our goal
is to produce a function g (outside of S) that is DNR(k,f) for some k ∈ N but is
such that f ⊕ g computes no DNR(bi , hi) function for any i < n.
In RCA0, define the function K(b, s) by K(b, 0) = 2 and K(b, s + 1) = K(b, s)

2s
2+b+1. Our main technical result is the following theorem.

Theorem 4.1. Let

• M = (N,S) be a countable model of RCA0 + BΣ02 with a proper Σ02 cut I ;
• n ∈ �, f ∈ S, �h an n-tuple of elements of S, and �b an n-tuple of elements of N
be such that
– (∀i < n)(hi ≤T f) and
– (∀i < n)(f computes noDNR(bi , hi) function);

• bmax = max�b;
• k0 ∈ N be such that (∀i ∈ I )(k0 > i);
• k = K(bmax, k0).
Then there is a DNR(k,f) function g such that f ⊕ g is low relative to f and such
that f ⊕ g computes noDNR(bi , hi) function for any i < n.

https://doi.org/10.1017/jsl.2015.43 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.43


COMPARING THE STRENGTHOF DNR FUNCTIONS IN THE ABSENCE OF IΣ02 1219

The conclusion that f ⊕ g is low relative to f in Theorem 4.1 ensures that f ⊕ g
preserves BΣ02.
Before we continue with the proof of Theorem 4.1, we point out that its simplest
case provides an interesting example concerning recursion theory in models with
limited induction.

Corollary 4.2. If N satisfies BΣ02 but not IΣ
0
2, then there is a k ∈ N and a

k-bounded diagonally nonrecursive function that computes no 2-bounded diagonally
nonrecursive function.

In their proof of [1] Theorem 2.1, Ambos-Spies et al. construct a diagonally
nonrecursive function g : � → � (with necessarily unbounded range) that com-
putes no 2-bounded diagonally nonrecursive function. In fact, given a recursive h,
they construct a diagonally nonrecursive g that computes no h-bounded diagonally
nonrecursive function. Our proof of Theorem 4.1 is essentially the proof of [1] The-
orem 2.1 implemented inside of a Σ02 cut as provided by Lemma 2.2. With this
strategy, the Ambos-Spies et al. construction is completed in a bounded number of
steps, thereby producing a diagonally nonrecursive function g with bounded range
that does not compute a 2-bounded diagonally nonrecursive function.
We build a function g satisfying the conclusion of Theorem 4.1 in a sequence
of finite extensions. Throughout the construction, we maintain a coded finite set
D of divergent computations according to the following definition. Fix k as in the
statement of Theorem 4.1. Henceforth and through the proof of Theorem 4.1, all
strings are elements of k<N and all trees are subtrees of k<N.

Definition 4.3. Let f : N → N be a function.

• A string � admits ≥ m-branching f-convergence for 〈e, x〉 if there is a finite
≥m-branching tree T with trunk � such that (∀α ∈ leaves(T ))(Φf⊕αe (x)↓).

• A string � forces ≥ m-branching f-divergence for 〈e, x〉 if � does not admit
≥m-branching f-convergence for 〈e, x〉.

• LetD be a finite coded subset ofN.A string� forces≥m-branchingf-divergence
for D if � forces ≥m-branching f-divergence for every 〈e, x〉 ∈ D.

The following lemma is essentially Lemma 2.8 in [1].

Lemma 4.4 (RCA0; see [1] Lemma 2.8). Suppose � is a string and D is a finite
coded set such that � forces ≥m-branching f-divergence for D, where m2|D| < k.
Then every ≥m2|D|-branching tree with trunk � has a leaf that forces ≥m-branching
f-divergence for D.

Proof. Suppose� forces≥m-branchingf-divergence forD, supposeT is a finite
≥m2|D|-branching tree with trunk �, and suppose for a contradiction that no leaf
of T forces≥m-branching f-divergence forD. EnumerateD asD = {〈ei , xi〉 : i <
|D|}, and, using bounded Σ01 comprehension, define a function j : leaves(T )→ |D|
by letting j(α) be least such that α admits ≥ m-branching f-convergence for
〈ej(α), xj(α)〉. For each i < |D|, let Pi be the tree consisting of the strings in T
extendible to anα ∈ leaves(T )with j(α) = i . ThenT ⊆ ⋃

i<|D| Pi , so byLemma3.3
there is a tree T ′ ⊆ T that has trunk �, is ≥m-branching, and is contained Pi for
some i < |D|. For each α ∈ leaves(T ′), let Tα be a≥m-branching tree with trunk α
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such that (∀ ∈ leaves(Tα))(Φf⊕ei (xi)↓). Then T ′ ∪⋃
α∈leaves(T ′) Tα witnesses that

� admits ≥m-branching f-convergence for 〈ei , xi 〉, a contradiction. �
The construction proceeds in stages. In stages s ≡ 0 mod n + 2, we satisfy
requirements ensuring that g is total. In stages s ≡ i + 1 mod n + 2 for i < n,
we satisfy blocks of requirements ensuring that f ⊕ g computes no DNR(bi , hi)
function. In stages s ≡ n+1 mod n+2, we satisfy blocks of requirements ensuring
that f ⊕ g is low relative to f. In the end, g satisfies ran(g) ⊆ k because we only
consider extensions by strings � ∈ k<N, and g is diagonally nonrecursive relative
to f because we ensure the divergence of Φf⊕ge0 (e0), where e0 is an index such that
(Φf⊕ge0 (e0) ↓) ↔ ∃e(g(e) = Φfe (e)). To make the non-DNR(bi , hi) requirements
more manageable, we condense a block of non-DNR(bi , hi) requirements into a
single requirement.

Definition 4.5. Let b ∈ N, let f : N → b, and let h : N → N. We say that f is
eventually DNR(b, h) if ∃n(∀e > n)(f(e) 
= Φhe (e)).

Define a primitive recursive function d : N3 → N such that, given functions
h ≤T f, an index e such that ∀x(Φfe (x) = Φhx(x)), and bounds a and b, d (e, a, b)
is an index for a program such that, for every 
 ∈ N and function g, Φf⊕g

d(e,a,b)(
)

searches for a pair 〈i, s〉 such that i < a, Φf⊕gi,s (
) < b, and ¬(∃
0 < 
)(Φf⊕gi,
 (
0) =

Φh
0,
(
0)). If such a pair is found, then Φ
f⊕g
d(e,a,b)(
) = Φ

f⊕g
i,s (
) for the first such pair.

Otherwise, Φf⊕g
d(e,a,b)(
)↑.

Lemma 4.6 (RCA0). For any functions f, g, h and e, a, b ∈ N as above, if there is
an i < a such that Φf⊕gi is DNR(b, h), then Φf⊕g

d(e,a,b) is eventually DNR(b, h).

Proof. The fact that Φf⊕gi is DNR(b, h) for some i < a ensures that Φf⊕g
d(e,a,b)

is total. The finite set X = {j < a : ∃
, s(Φf⊕gj,s (
) = Φ
h

,s(
))} exists by bounded

Σ01 comprehension. BΣ
0
1 then provides a bound N such that (∀j ∈ X )(∃
, s < N)

(Φf⊕gj,s (
) = Φ
h

,s (
)). To show that Φ

f⊕g
d(e,a,b) is eventually DNR(b, h), we show that

(∀
 > N)(Φf⊕g
d(e,a,b)(
) 
= Φh
 (
)). Suppose for a contradiction that 
 > N and that

Φf⊕g
d(e,a,b)(
) = Φ

h

 (
). By the definition of d (e, a, b), there is a j < a such that

Φf⊕g
d(e,a,b)(
) = Φ

f⊕g
j (
) and ¬(∃
0 < 
)(Φf⊕gj,
 (
0) = Φ

h

0,

(
0)). The equation

Φf⊕gj (
) = Φf⊕g
d(e,a,b)(
) = Φ

h

 (
) implies that j ∈ X and hence that there are


0, s < N such that Φ
f⊕g
j,s (
0) = Φ

h

0,s
(
0). Now, N < 
 and therefore (∃
0 < 
)

(Φf⊕gj,
 (
0) = Φ
h

0,

(
0)), a contradiction. �

Lemma 4.7 and Lemma 4.8 below aid the construction of a function witnessing
Theorem 4.1. Their proofs are straightforward if one assumes IΣ02. Themore compli-
cated arguments below are necessary for our purposes because they are compatible
with BΣ02 + ¬IΣ02.
Lemma 4.7 (RCA0 +BΣ02). Let f and h be functions and let b ∈ N be such thatf
computes noDNR(b, h) function. Let � be a string, letD be a finite coded set, and let
m ∈ N be such that � forces ≥m-branching f-divergence for D, wherem2|D|+b < k.
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Then for every finite coded set E there are a string � ′ ⊇ � and a finite coded set
D′ ⊇ D such that
(i) |D′| ≤ |D|+ |E|,
(ii) � ′ forces ≥m2|D|+b-branching f-divergence for D′, and
(iii) for each e ∈ E, (∃
 > |�|)(Φf⊕�′e (
) ≥ b), (∃
 > |�|)(Φf⊕�′e (
) = Φh
 (
)),

or ∃
(〈e, 
〉 ∈ D′).

Proof. We prove the lemma in WKL0 + BΣ02, which suffices because WKL0 +
BΣ02 isΠ

1
1-conservative overRCA0+BΣ

0
2 (see [18] or adapt the proof of [27]Corollary

IX.2.6). We thus construct an infinite tree T with trunk � such that every infinite
path through T has an initial segment � ′ and a corresponding set D′ that satisfy
the conclusion of the lemma.
The tree T grows in stages (Ts : s ∈ N). In order to describe the growth of T , we
represent Ts as Ts =

⋃
�∈Rs Ts (�), where Rs ⊆ k<N is finite and, for each � ∈ Rs ,

Ts (�) is the tree ��k<t for some t ∈ N. Notice that Ts (�) has trunk �. As the
construction proceeds, the component trees Ts (�) are either alive, in which case
they are extended, or dead, in which case they are not extended. If Ts(�) is dead,
then no string that is a proper extension of a leaf of Ts (�) is ever added to T .
During the course of the construction, a component tree Ts (�) may be rewritten as
a union of new component trees

⋃
�∈leaves(Ts (�)) Ts+1(�), where Ts+1(�) = � for each

� ∈ leaves(Ts (�)), to allow the branches of Ts (�) to grow according to different
criteria. In this situation, when we update Rs to Rs+1, we remove � and add the
elements of leaves(Ts (�)). To each � ∈ Rs we also associate a finite set M (�) of
requirements that have been met.
At stage 0, let R0 = {�}, T0(�) = �, andM (�) = ∅. T0(�) is alive at stage 0.
At the beginning of stage s+1, we haveTs represented as Ts =

⋃
�∈Rs Ts (�), and

we have the corresponding sequence ofmet requirements (M (�) : � ∈ Rs ). For each
� ∈ Rs do the following:
(a) If Ts (�) is dead, put � in Rs+1 and let Ts+1(�) = Ts (�). Ts+1(�) is dead.
(b) If Ts (�) is alive:

(i) If there are a t ≤ s , a �′ ∈ Rt with �′ ⊆ �, an 〈e, x〉 ∈ D,
and a ≥ m-branching tree S ⊆ k<s with trunk �′ such that (∀α ∈
leaves(S))(Φf⊕αe (x) ↓) (i.e., we learn at stage s that �′ admits ≥ m-
branching f-convergence for some 〈e, x〉 ∈ D), then put � in Rs+1 and
let Ts+1(�) = Ts(�). Ts+1(�) is dead.

(ii) If (i) fails and there are an e ∈ E \M (�), an x with |�| < x ≤ s , and a
≥m2|D|-branching tree S ⊆ Ts(�) with trunk � such that either (∀α ∈
leaves(S))(Φf⊕αe (x) = Φhx,s(x)) or (∀α ∈ leaves(S))(Φf⊕αe (x) ≥ b),
then choose the least such e, the least such x for the chosen e, and the
least such S for the chosen e and x. Put all leaves of Ts(�) in Rs+1.
Let Ts+1(�) = � andM (�) = M (�) ∪ {e} for all � ∈ leaves(Ts (�)). If
� ∈ leaves(Ts (�)) extends a leaf of S, then Ts+1(�) is alive; otherwise
Ts+1(�) is dead.

(iii) If (i) and (ii) fail, then put � in Rs+1 and let Ts+1(�) = Ts (�). Ts+1(�) is
alive.
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Finally, for each � ∈ Rs+1 with Ts+1(�) alive, grow Ts+1(�) by extending each
α ∈ leaves(Ts+1(�)) to α�n for every n < k. This concludes stage s + 1.
The tree T is an (f⊕ h)-recursive subtree of k<N because every α ∈ k<N is either
in Ts (�) for some � in someRs or properly extends some leaf of Ts (�) for some � in
some Rs where Ts (�) is dead.
Claim. T is infinite.
Proof of Claim. We prove that at the end of every stage s there is some � ∈ Rs
such that Ts (�) is alive. Ts (�) thus grows at the end of stage s , and therefore new
strings are added to T at every stage. Hence T is infinite.
For each s , let Qs be the tree of strings extendible to a � ∈ Rs such that either
Ts (�) is alive orTs (�) died by item (b) part (i) at some stage≤ s . IΣ01 suffices to prove
that each Qs is ≥m2|D|-branching with trunk �. This is because a � ∈ leaves(Qs)
is extended in Qs+1 only by the result of acting according to item (b) part (ii) for �
at stage s + 1, in which case the subtree of Ts(�) consisting of strings extendible to
an � ∈ leaves(Ts (�)) with Ts+1(�) alive is ≥m2|D|-branching with trunk �. Thus in
Qs+1, � is appended by a ≥m2|D|-branching tree.
Suppose for a contradiction that, at some stage s , Ts (�) is dead for all � ∈ Rs .
Thus each Ts(�) for � ∈ leaves(Qs ) died by item (b) part (i) at some stage ≤ s .
For each � ∈ leaves(Qs ), let �′ ⊆ � be such that �′ admits ≥ m-branching f-
convergence for some 〈e, x〉 ∈ D as in item (b) part (i) at the time of Ts (�)’s death.
Let R = {�′ : (� ∈ leaves(Qs)) ∧ ¬(∃� ∈ leaves(Qs ))(�′ ⊂ �′)}. Let S be the tree of
strings extendible to some �′ ∈ R. S is ≥m2|D|-branching with trunk �, but no leaf
of S forces ≥m-branching f-divergence for D. This contradicts Lemma 4.4. �
ByWKL0, let p be an infinite path throughT . Using bounded Σ01 comprehension,
let s ∈ N and � ′ ⊂ p maximize |M (� ′)| over all s ∈ N and � ′ ∈ Rs with � ′ ⊂ p.
Observe that the construction never acts on Tt(� ′) according to item (b) part (i) or
item (b) part (ii) at any stage t > s . If the construction acts at stage t > s according
to item (b) part (i), then Tt(� ′) dies and p could not be a path through T . If the
construction acts at stage t + 1 > s according to item (b) part (ii), then p must
extend some � ∈ leaves(Tt(� ′)) with Tt+1(�) alive, and |M (�)| > |M (� ′)| for all
such �. This contradicts the choice of � ′ and s . It follows that � ′ ∈ Rt for all stages
t ≥ s .
To find D′, we define a 
e,t ∈ N for every e ∈ E \M (� ′) and every t > s as
follows. Let 
e,t be least > |�| such that no tree S ⊆ Tt(� ′) with trunk � ′ witnesses
that � ′ admits ≥m2|D|+b-branching f-convergence for 〈e, 
e,t〉.
Claim. (∀e ∈ E \M (� ′))(∃t > s)(∀t′ > t)(
e,t′ = 
e,t).
Proof of Claim. Let e ∈ E \M (� ′). The numbers 
e,t are increasing in t, so
if (∃t)(∀t′ > t)(
e,t′ = 
e,t) fails, then it must be that limt→∞ 
e,t = ∞. Thus
suppose for a contradiction that limt→∞ 
e,t =∞. We then compute an eventually
DNR(b, h) function from f, contradicting the hypothesis that f computes no
DNR(b, h) function and hence no eventually DNR(b, h) function.
Given x ∈ N, if x ≤ |�| then output 0. If x > |�|, run the construction to a
stage t > s such that t, 
e,t > x and there are an i < b and a ≥m2|D|-branching
tree S ⊆ Tt(� ′) such that (∀α ∈ leaves(S))(Φf⊕αe (x) = i). Then output the least
such i . This procedure describes a b-valued partial f-recursive function Φf . To see
that Φf(x) converges for x > |�|, observe that there is a t > s, x such that 
e,t > x
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because limt→∞ 
e,t = ∞ and that at such a stage t, by the definition of 
e,t ,
there must be a tree S′ ⊆ Tt(� ′) with trunk � ′ witnessing that � ′ admits≥m2|D|+b-
branchingf-convergence for 〈e, x〉. For each i < b, letPi be the tree consisting of the
strings in S′ that are extendible to an α ∈ leaves(S′) such that Φf⊕αe (x) = i , and let
Pb be the tree consisting of the strings in S′ that are extendible to an α ∈ leaves(S′)
such that Φf⊕αe (x) ≥ b. Then S′ ⊆ ⋃

i<b+1 Pi , so by Lemma 3.3 there is a≥m2|D|-
branching tree S ⊆ S′ with trunk � ′ such that S ⊆ Pi for some i < b+1. If S ⊆ Pb ,
then the construction would have acted on Tt′(� ′) according to item (b) part (ii) at
some stage t′ > s , contradicting the choice of s . Thus S ⊆ Pi for some i < b. Thus
there are indeed a stage t > s with t, 
e,t > x, an i < b, and a ≥m2|D|-branching
tree S ⊆ Tt(� ′) such that (∀α ∈ leaves(S))(Φf⊕αe (x) = i). So Φf is total. To see
that Φf(x) 
= Φhx(x) for all x > |�|, suppose for a contradiction that x > |�| is
such that Φf(x) = Φhx(x). By the definition of Φ

f(x), there are a stage t > s and a
≥m2|D|-branching treeS ⊆ Tt(� ′) such that (∀α ∈ leaves(S))(Φf⊕αe (x) = Φhx(x)).
Then the construction would have acted on Tt′(� ′) according to item (b) part (ii) at
some stage t′ > s , contradicting the choice of s . Thus Φf is eventually DNR(b, h),
contradicting thatf computes no such function. Therefore we cannot have limt→∞

e,t =∞, hence (∃t)(∀t′ > t)(
e,t′ = 
e,t) as desired. �
Applying BΣ02 to the claim, we have that, in fact, (∃t0 > s)(∀e ∈ E\M (� ′))(∀t′ >
t0)(
e,t′ = 
e,t0). For each e ∈ E \M (� ′), let 
e = 
e,t0 . Then let D′ = D ∪ {〈e, 
e〉 :
e ∈ E \M (� ′)}. We show that � ′ and D′ satisfy the conclusion of the lemma. The
inequality |D′| ≤ |D|+ |E| is clear.
First, � ′ forces ≥ m-branching f-divergence (and hence ≥ m2|D|+b-branching
f-divergence) for D, otherwise the construction would act according to item (b)
part (i) at some stage past s . To see that� ′ forces≥m2|D|+b-branchingf-divergence
for each of the 〈e, 
e〉 with e ∈ E \ M (� ′), suppose not and let 〈e, 
e〉, with
e ∈ E \ M (� ′), and S, a tree with trunk � ′, be such that S witnesses that � ′
admits ≥m2|D|+b-branching f-convergence for 〈e, 
e〉. As the construction never
acts on Tt(� ′) for t > s , there is a stage t > t0 with S ⊆ Tt(� ′). Thus at
stage t + 1 there is a tree S ⊆ Tt(� ′) with trunk � ′ witnessing that � ′ admits
≥m2|D|+b-branching f-convergence for 〈e, 
e〉 = 〈e, 
e,t〉, contradicting the choice
of 
e,t .
Finally, we show that, for each e ∈ E, either (∃
 > |�|)(Φf⊕�′e (
) ≥ b), (∃
 >

|�|)(Φf⊕�′e (
) = Φh
 (
)), or ∃
(〈e, 
〉 ∈ D′). By the definition ofD′, if e ∈ E\M (� ′)
then there is an 
 such that 〈e, 
〉 ∈ D′. Thus we need to show that if e ∈ M (� ′)
then either (∃
 > |�|)(Φf⊕�′e (
) ≥ b) or (∃
 > |�|)(Φf⊕�′e (
) = Φh
 (
)). Suppose
that e ∈ M (� ′), and let t + 1 ≤ s be least such that e ∈ M (�) for some � ⊆ � ′
with � ∈ Rt+1. Then e entered M (�) at stage t + 1 by an action according to
item (b) part (ii). Thus at stage t + 1 there must have been a � ∈ Rt with � ∈
leaves(Tt(�)) and a least x with |�| < x ≤ t having a least ≥m2|D|-branching tree
S ⊆ Tt(�) with trunk � such that either (∀α ∈ leaves(S))(Φf⊕αe (x) = Φhx,t(x))
or (∀α ∈ leaves(S))(Φf⊕αe (x) ≥ b). Moreover, � must extend a leaf of S because
Tt+1(�) must be alive because � is an initial segment of a path through T . So if
(∀α ∈ leaves(S))(Φf⊕αe (x) = Φhx,t(x)), then (∃
 > |�|)(Φf⊕�′e (
) = Φh
 (
)), and if

(∀α ∈ leaves(S))(Φf⊕αe (x) ≥ b) then (∃
 > |�|)(Φf⊕�′e (
) ≥ b). �
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Lemma 4.8 (RCA0). Letf be a function, let� be a string, and letD be a finite coded
set such that � forces ≥m-branching f-divergence for D, where m2|D| < k. Then
for every finite coded set E there is a string � ′ ⊇ � with the following property. Let
E ′ = {e ∈ E : Φf⊕�′e (e) ↑}, and let e′ be an index for a program such that, for any
function g, (Φge′ (e

′) ↓) ↔ (∃e ∈ E ′)(Φge (e) ↓). Then � ′ forces ≥ m2|D|-branching
f-divergence for D ∪ {〈e′, e′〉}.
Proof. The proof is similar to that of Lemma 4.7.We prove the lemma inWKL0,
which suffices because WKL0 is Π11-conservative over RCA0 (see [27] Corol-
lary IX.2.7). Thus we construct an infinite tree T with trunk � such that every
infinite path through T has an initial segment � ′ that satisfies the conclusion of the
lemma.
As in Lemma 4.7, T grows in stages (Ts : s ∈ N), where Ts =

⋃
�∈Rs Ts (�) and,

for each � ∈ Rs ,Ts (�) is ��k<t for some t ∈ N. The component trees are either alive
or dead, as before. To every s ∈ N and � ∈ Rs we associate the set E(�) = {e ∈ E :
Φf⊕�e (e)↑} and the index e(�), where (Φg

e(�)(e(�))↓)↔ (∃e ∈ E(�))(Φge (e)↓).
At stage 0, let R0 = {�} and T0(�) = �. T0(�) is alive at stage 0.
At the beginning of stage s+1wehaveTs represented asTs =

⋃
�∈Rs Ts (�), andwe

have the corresponding auxiliary information (E(�) : � ∈ Rs ) and (e(�) : � ∈ Rs ).
For each � ∈ Rs do the following:
(a) If Ts (�) is dead, put � in Rs+1 and let Ts+1(�) = Ts (�). Ts+1(�) is dead.
(b) If Ts (�) is alive:

(i) If there are a t ≤ s , a �′ ∈ Rt with �′ ⊆ �, an 〈e, x〉 ∈ D,
and a ≥ m-branching tree S ⊆ k<s with trunk �′ such that (∀α ∈
leaves(S))(Φf⊕αe (x) ↓) (i.e., we learn at stage s that �′ admits ≥ m-
branching f-convergence for 〈e, x〉 ∈ D), then put � in Rs+1 and let
Ts+1(�) = Ts(�). Ts+1(�) is dead.

(ii) If (i) fails and there is a ≥m2|D|-branching tree S ⊆ Ts (�) with trunk
� such that (∀α ∈ leaves(S))(Φf⊕α

e(�) (e(�))↓), then choose the first such
S. Put all leaves of Ts (�) in Rs+1, and let Ts+1(�) = � for all � ∈
leaves(Ts (�)). If � ∈ leaves(Ts (�)) extends a leaf of S, then Ts+1(�) is
alive; otherwise Ts+1(�) is dead.

(iii) If (i) and (ii) fail, then put � in Rs+1 and let Ts+1(�) = Ts (�). Ts+1(�) is
alive.

Finally, for each � ∈ Rs+1 with Ts+1(�) alive, grow Ts+1(�) by extending each
α ∈ leaves(Ts+1(�)) to α�n for every n < k. This concludes stage s + 1.
The tree T is an infinite f-recursive subtree of k<N by arguments similar to
those in the proof of Lemma 4.7. By WKL0, let p be an infinite path through
T . Using bounded Σ01 comprehension, let s ∈ N and � ′ ⊂ p minimize |E(� ′)|
over all s ∈ N and � ′ ∈ Rs with � ′ ⊂ p. Then � ′ satisfies the conclusion of the
lemma. Note that the corresponding e′ is e(� ′). As in the proof of Lemma 4.7, the
construction never acts on Tt(� ′) according to item (b) part (i) or item (b) part (ii)
at any stage t > s . Consequently, � ′ forces ≥ m-branching f-divergence (and
hence ≥m2|D|-branching f-divergence) for D because otherwise the construction
would act according to item (b) part (i) at some stage past s . Similarly, � ′ forces
≥m2|D|-branching f-divergence for 〈e′, e′〉 = 〈e(� ′), e(� ′)〉 because otherwise the
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construction would act on Tt(� ′) according to item (b) part (ii) at some stage t > s .
Thus � ′ forces ≥m2|D|-branching f-divergence for D ∪ {〈e′, e′〉}. �

Proof of Theorem 4.1. LetM , I , n,f, �h,�b, bmax, k0, andk be as in the statement
of Theorem 4.1. For each i < n, fix an indexwi such that ∀x(Φfwi (x) = Φhix (x)). The
proof of Lemma 2.2 shows that there is an increasing, cofinal function c : I → N

whose graph is Δ02.
We build a Δ02(f) sequence (〈�s ,Ds 〉 : s ∈ J ) in stages, where J ⊆ I is a Σ02(f) cut
determined during the course of the construction. In the end, we set g =

⋃
s∈J �s .

Let e0 be an index such that, for any g and x, (Φ
f⊕g
e0 (x) ↓) ↔ ∃e(g(e) = Φfe (e)).

At stage 0, set �0 = ∅ and set D0 = {〈e0, e0〉}.

• At stage s + 1 ≡ 0 mod n + 2, search for the least �s+1 ⊇ �s such that
|�s+1| > max{c(s), Ds} (where here Ds is interpreted as the number coding
the set Ds) and that �s+1 forces ≥K(bmax, s + 1)-branching f-divergence for
Ds . Let Ds+1 = Ds .

• At stage s+1 ≡ i+1 mod n+2 for an i < n, search for the least pair 〈� ′, D′〉
as in the conclusion of Lemma 4.7 for f, h = hi , b = bi , � = �s , D = Ds ,
m = K(bmax, s), and E = {d (wi, |�t |, bi) : t ≤ s}. Let �s+1 = � ′ and let
Ds+1 = D′.

• At stage s + 1 ≡ n + 1 mod n + 2, search for the least � ′ as in the conclusion
of Lemma 4.8 forf, � = �s ,D = Ds ,m = K(bmax, s), andE = {t : t ≤ |�s |}.
Let �s+1 = � ′ and let Ds+1 = D ∪ {〈e′, e′〉}.

Let J be the set of s ∈ N such that the construction reaches stage s . That is, J
is the set of s ∈ N for which there is a sequence (〈�j,Dj〉 : j ≤ s) where �0 = ∅,
D0 = {〈e0, e0〉}, and, for all j < s , 〈�j+1, Dj+1〉 follows from 〈�j,Dj〉 according to
the rules of the construction.Checkingwhether 〈�j+1, Dj+1〉 follows from 〈�j,Dj〉 is
Δ02(f), so J is Σ

0
2(f).

Clearly J is downward closed. To see J ⊆ I , let s ∈ J and let n0 < n + 2 be such
that s − n0 ≡ 0 mod n + 2. Then s − n0 must be in I because c(s − n0) must be
defined in order for s − n0 to be in J . Hence s ∈ I because I is a cut and n0 ∈ �.
Notice that at stage s + 1 at most s + 1 elements are added to Ds+1. Therefore,
for all s ∈ J , |Ds | ≤ 1 +

∑
j≤s j =

1
2(s
2 + s) + 1 ≤ s2 + 1 (the ‘+1’ is because

|D0| = 1, not |D0| = 0).

Claim. If s ∈ J , then �s forces ≥K(bmax, s)-branching f-divergence for Ds .

Proof of Claim. Let (〈�j,Dj〉 : j ≤ s) be a witness to s ∈ J . We prove the claim
by Π01 induction on j ≤ s . To see that �0 = ∅ forces≥2-branchingf-divergence for
D0 = {〈e0, e0〉}, consider a ≥ 2-branching tree T with trunk ∅. Let t be the height
of T , and, by bounded Σ01 comprehension, let X = {e < t : Φfe (e) ↓}. As T is
≥ 2-branching, we can find an α ∈ leaves(T ) such that (∀e ∈ X )(α(e) 
= Φfe (e)).
Then Φf⊕αe0 (e0) ↑, showing that T does not witness that ∅ admits ≥ 2-branching
f-convergence for 〈e0, e0〉, as desired.
Now suppose that j < s and that �j forces≥K(bmax, j)-branching f-divergence
for Dj .
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• If j + 1 ≡ 0 mod n + 2, then �j+1 forces ≥ K(bmax, j + 1)-branching f-
divergence for Dj+1 by definition.

• If j +1 ≡ i +1 mod n+2 for an i < n, then �j+1 forces≥K(bmax, j)2|Dj |+bi -
branching f-divergence for Dj+1 by definition (refer to the statement of
Lemma 4.7). As |Dj | + bi ≤ j2 + bmax + 1, �j+1 forces ≥ K(bmax, j + 1)-
branching f-divergence forDj+1.

• If j + 1 ≡ n + 1 mod n + 2, then �j+1 forces ≥ K(bmax, j)2|Dj |-branching
f-divergence forDj+1 by definition (refer to the statement of Lemma 4.8). As
|Dj | ≤ j2 + bmax + 1, �j+1 forces≥K(bmax, j +1)-branchingf-divergence for
Dj+1. �
Claim. J is a cut.

Proof of Claim. We have seen that J is downward closed. We need to show that
∀s(s ∈ J → s + 1 ∈ J ). So suppose s ∈ J . By the previous claim, �s forces
≥K(bmax, s)-branching f-divergence for Ds .
• If s +1 ≡ 0 mod n+2, then consider the tree �s�K(bmax, s +1)<max{c(s),Ds}.
It is ≥ K(bmax, s)2|Ds |-branching with trunk �s , so by Lemma 4.4 it has a
leaf that forces ≥K(bmax, s)-branching f-divergence for Ds , and this leaf also
forces ≥K(bmax, s + 1)-branching f-divergence for Ds . Thus �s+1 and Ds+1
are defined.

• If s+1 ≡ i+1 mod n+2 for an i < n, then Lemma 4.7 applies. The previous
claim and the inequality K(bmax, s)2|Ds |+b < k show that the hypotheses of
Lemma 4.7 are satisfied, where K(bmax, s)2|Ds |+b < k because

K(bmax, s)2|Ds |+b ≤ K(bmax, s)2s2+b+1 = K(bmax, s + 1) < K(bmax, k0) = k,
with the strict inequality holding because s + 1 ∈ I and therefore s + 1 < k0.
Thus �s+1 and Ds+1 are defined.

• If s + 1 ≡ n + 1 mod n + 2, then Lemma 4.8 applies by an argument similar
to the one in the previous item. Thus �s+1 and Ds+1 are defined. �
Claim. The function g is total.

Proof of Claim. If g is not total, then there is a t ∈ N such that (∀s ∈ J )(|�s | <
t∧Ds < t). By increasing t, wemay assume that if s ∈ J then �s < t (i.e., �s is coded
by a number < t). Thus s ∈ J if and only if there is a sequence (〈�j,Dj〉 : j ≤ s)
≤ 〈t, t〉s+1 (i.e., the sequence of s + 1 copies of 〈t, t〉), where �0 = ∅, D0 = 〈e0, e0〉,
and, for all j < s , 〈�j+1, Dj+1〉 follows from 〈�j,Dj〉 according to the rules of the
construction. This shows that J is Δ02(f), which is a contradiction because by BΣ

0
2

there are no Δ02(f) cuts. �
Claim. The function g is DNR(k,f).

Proof of Claim. The function g has range contained in k by the convention that
all trees are subtrees of k<N. Suppose for a contradiction that ∃e(g(e) = Φfe (e)).
ThenΦf⊕ge0 (e0)↓, so there is an initial segment � ⊂ g such thatΦf⊕�e0 (e0)↓. Let s be a
stagewith�s ⊇ �. ThenΦf⊕�se0 (e0)↓, but this is a contradiction because 〈e0, e0〉 ∈ Ds
and �s forces ≥K(bmax, s)-branching f-divergence for Ds . �
Claim. f ⊕ g is low relative to f.
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Proof of Claim. To determine whether or not Φf⊕ge (e) ↓, run the construction
to a stage s with s+1 ≡ n+1 mod n+2 and |�s | > e. ThenΦf⊕ge (e)↓ if and only if
Φf⊕�s+1e (e)↓. Since the sequence (〈�s ,Ds 〉 : s ∈ J ) is Δ02(f), it then follows thatf⊕g
is low relative tof. Clearly (Φf⊕�s+1e (e)↓)→ (Φf⊕ge (e)↓). To prove the implication
(Φf⊕�s+1e (e) ↑) → (Φf⊕ge (e) ↑), suppose for a contradiction that Φf⊕�s+1e (e) ↑ but
Φf⊕ge (e)↓. Let 〈e′, e′〉 be the element added toDs+1 at stage s+1. Then Φf⊕ge′ (e

′)↓
because e is in E ′ (whereE ′ is as in Lemma 4.8) and Φf⊕ge (e)↓. Let r > s be a stage
such that Φf⊕�re′ (e′)↓. Clearly �r admits≥K(bmax, r)-branching f-convergence for
〈e′, e′〉, but this contradicts that 〈e′, e′〉 ∈ Dr and �r forces ≥K(bmax, r)-branching
f-divergence for Dr . �
Claim. For each i < n, the function f ⊕ g computes noDNR(bi , hi) function.
Proof of Claim. Suppose for a contradiction that Φf⊕ge is DNR(bi , hi). Fix a
stage t such that |�t | > e. By the previous claim, BΣ02 and hence IΣ01 holds relative to
f ⊕ g. Thus Lemma 4.6 applies to f ⊕ g, so Φf⊕g

d(wi ,|�t|,bi ) is eventually DNR(bi , hi).

We show that in fact Φf⊕g
d(wi ,|�t|,bi ) is not eventually DNR(bi , hi), giving the con-

tradiction. Fix 
0. We want to find an 
 > 
0 such that Φ
f⊕g
d(wi ,|�t|,bi )(
) ≥ bi or

Φf⊕g
d(wi ,|�t|,bi )(
) = Φ

hi

 (
). Let s +1 > t be a stage with s+1 ≡ i +1 mod n+2 and

|�s | > 
0. At stage s + 1, �s+1 and Ds+1 are defined to be as in the conclusion
of Lemma 4.7 for an E with d (wi , |�t |, bi) ∈ E. The result is that
(∃
 > |�s |)(Φf⊕�s+1d(wi ,|�t|,bi )(
) ≥ bi), (∃
 > |�s |)(Φf⊕�s+1d(wi ,|�t|,bi )(
) = Φ

hi

 (
)), or

∃
(〈d (wi, |�t |, bi), 
〉 ∈ Ds+1). If either of the first two alternatives hold, then we
have our 
 > 
0 such thatΦ

f⊕g
d(wi ,|�t |,bi )(
) ≥ bi orΦ

f⊕g
d(wi ,|�t|,bi )(
) = Φ

hi

 (
). If the third

alternative holds, then Φf⊕g
d(wi ,|�t|,bi )(
) ↑, again contradicting that Φ

f⊕g
d(wi ,|�t|,bi ) is

eventually DNR(bi , hi). To see that Φ
f⊕g
d(wi ,|�t|,bi )(
) ↑, suppose instead that

Φf⊕g
d(wi ,|�t|,bi )(
) ↓ and let r > s + 1 be a stage such that Φ

f⊕�r
d(wi ,|�t|,bi )(
) ↓. Clearly

�r admits ≥ K(bmax, r)-branching f-convergence for 〈d (wi , |�t |, bi), 
〉, but this
contradicts that 〈d (wi , |�t |, bi), 
〉 ∈ Dr and �r forces ≥ K(bmax, r)-branching
f-divergence for Dr . �
This concludes the proof of Theorem 4.1. �
Theorem 4.9. RCA0 + BΣ02 + ∀f∃kDNR(k,f) � ∃k∀fDNR(k,f).
Proof. Webuild amodel ofRCA0+BΣ02+∀f∃kDNR(k,f)+¬∃k∀fDNR(k,f)
by iterating Theorem 4.1.
Let N be a countable first-order model of BΣ02 + ¬IΣ02. By Lemma 2.2, let I be a
proper Σ02 cut in N. Fix k0 ∈ N such that (∀i ∈ I )(k0 > i).
Fix an increasing, cofinal sequence (bm : m ∈ �) of numbers in N. We define a
sequence (fm : m ∈ �) of functions N → N such that, for all m ∈ �,
(i) fm ≤T fm+1;
(ii) (N,Δ01(fm)) |= RCA0 + BΣ02;
(iii) no h ≤T fm is DNR(bm0 , fm0 ) for anym0 ≤ m;
(iv) for every h ≤T fm, there are a k ∈ N and a g ≤T fm+1 that is DNR(k, h).
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Letf0 = 0. The functionf0 is Δ01, so items (ii) and (iii) hold form = 0,with item (ii)
holding because N |= BΣ02. Suppose now that (fj : j < m + 1) satisfies items (i)
and (iv) for all j < m and satisfies items (ii) and (iii) for all j < m + 1. ThenM =
(N,Δ01(fm)), I , n = m + 1, f = fm, �h = (fj : j < m + 1), �b = (bj : j < m + 1),
and k = K(bmax, k0) satisfy the hypotheses of Theorem 4.1. Thus let g be as in
the conclusion of Theorem 4.1, and let fm+1 = fm ⊕ g. Then item (i) holds for m
and items (ii) and (iii) hold for m + 1, with item (ii) holding because fm+1 is low
relative to fm. Item (iv) holds form because g ≤T fm+1 is DNR(k,fm) and hence
computes a DNR(k, h) function for every h ≤T fm.
Let S = ⋃

m∈� Δ
0
1(fm). Then (N,S) models RCA0 + BΣ02 + ∀f∃kDNR(k,f) +

¬∃k∀fDNR(k,f). BΣ02 holds relative to every h ∈ S by item (ii), so (N,S) |=
RCA0 + BΣ02. We have that (N,S) |= ∀f∃kDNR(k,f) by item (iv). To see that
(N,S) 
|= ∃k∀fDNR(k,f), let k ∈ N and let bm0 > k. Then observe that no h ∈ S
is DNR(bm0 , fm0 ) (hence no h ∈ S is DNR(k,fm0 )) by item (iii). �
Theorem 4.10. RCA0 + BΣ02 + ∃k∀fDNR(k,f) �WKL.
Proof. The proof is a simplification of the proof of Theorem 4.9. We build a
model of RCA0 + BΣ02 + ∃k∀fDNR(k,f) + ¬∀fDNR(2, f) by iterating Theo-
rem 4.1. As ∀fDNR(2, f) and WKL are equivalent over RCA0, this also a model
of RCA0 + BΣ02 + ∃k∀fDNR(k,f) + ¬WKL.
Proceed as in the proof of Theorem 4.9, but fix k = K(2, k0) and ignore the
sequence (bm : m ∈ �). Define a sequence (fm : m ∈ �) of functions N → N

that satisfy items (i) and (ii) as before and satisfy the following modified versions
of items (iii) and (iv):

(iii’) no h ≤T fm is DNR(2, 0);
(iv’) for every h ≤T fm, there is a g ≤T fm+1 that is DNR(k, h).

Now fm+1 is obtained from fm by applying Theorem 4.1 toM = (N,Δ01(fm)), I ,
n = 1, f = fm, �h = (0), �b = (2), and k. The witnessing model (N,S) is built from
(fm : m ∈ �) as before. �
Now that we know that the statements ∃k∀fDNR(k,f) and ∀f∃kDNR(k,f)
do not imply WKL even over RCA0 + BΣ02, it is natural to ask if either statement
implies WWKL.

Question 4.11. Do either ∃k∀fDNR(k,f) or ∀f∃kDNR(k,f) implyWWKL
over RCA0 (or over RCA0 + BΣ02)?

§5. Observations concerning the connection between diagonally nonrecursive func-
tions and graph colorings. Just as DNR(
, f) trivially implies DNR(k,f) when
k ≥ 
 , so the existence of an 
-coloring of a graph trivially implies the existence of
a k-coloring of that graph when k ≥ 
 . This motivates the search for a connection
between DNR functions and graph colorings. So far, our efforts in this area have
produced more questions than answers.

Definition 5.1 (RCA0). A graphG = (V,E) consists of a set of vertices V ⊆ N

and an irreflexive, symmetric relationE ⊆ V ×V which indicates when two vertices
are adjacent. Let G be a graph, and let 
 ∈ N.
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• An 
-coloring ofG is a function � : V → 
 such that (∀u, v ∈ V )((u, v) ∈ E →
�(u) 
= �(v)).

• G is (globally) 
-colorable if there is an 
-coloring of G .
• G is locally 
-colorable if for every finiteV0 ⊆ V , the induced subgraph (V0, E∩
(V0 × V0)) is 
-colorable.
Let COL(
, k,G) denote the formal statement that “if the graph G is locally

-colorable, thenG is globally k-colorable.” A classic compactness argument shows
that a graph is 
-colorable if and only if it is locally 
-colorable. In the context of
reverse mathematics, the following theorem expresses that this fact is equivalent to
WKL over RCA0.

Theorem 5.2 (see [20] Theorem 3.4).

RCA0  (∀
 ≥ 2)(WKL↔ ∀G COL(
, 
, G))).
In [3], Bean gave an example of a recursive 3-colorable graph that has no recursive
k-coloring for any k ∈ �. This result suggests that coloring a 3-colorable (or more
generally 
-colorable) graph with any finite number of colors may also be difficult
from the proof-theoretic point of view. To this end, Gasarch and Hirst proved the
following theorem.

Theorem 5.3 ([15] Theorem 3).

RCA0  (∀
 ≥ 2)(WKL↔ ∀G COL(
, 2
 − 1, G)).
Gasarch and Hirst then conjectured that the (2
 − 1) in their theorem can be
replaced by any k ≥ 
 .
Conjecture 5.4 ([15] Conjecture 4).

RCA0  (∀
 ≥ 2)(∀k ≥ 
)(WKL↔ ∀G COL(
, k,G)).
In [24], Schmerl verified a weakened version of this conjecture in which 
 and k
are both fixed and standard.

Theorem 5.5 ([24] Theorem 1). Fix k, 
 ∈ � with k ≥ 
 ≥ 2. Then
RCA0 WKL↔ ∀G COL(
, k,G).

Schmerl connected two key ingredients to prove Theorem 5.5. The first ingredient
is the on-line coloring game Γd (K , k), where K is a class of graphs and d, k ∈ N.
Γd (K , k) is a game between two players, ∀ and ∃. Player ∀ builds a graph in K ,
and Player ∃ k-colors it. The game lasts for d rounds. In each round, ∀ and ∃
alternate plays as follows. Player ∀ goes first by adding a new vertex to the graph
and connecting it to the existing vertices in such a way that the graph remains in K .
Player ∃ goes second and colors the new vertex with a color from {0, 1, . . . , k − 1}.
After d rounds, ∃ wins if she has produced a k-coloring of the graph enumerated
by ∀. We say that the class K is locally on-line k colorable if for every d ∈ N, ∃
has a winning strategy in Γd (K , k). (Assuming WKL, it then follows that ∃ has a
winning strategy in the unbounded on-line coloring game Γ(K , k), where the two
players continue for as long as ∀ keeps playing new vertices.)
The second ingredient can be found in [25] Lemma 2.3, where Schmerl isolates a
recursion-theoretic principle similar to the negation ofDNR(k,f). Fixd ≥ 1, along
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with a primitive recursive d -tupling function N
d → N with associated primitive

recursive projections p0, . . . , pd−1 : N → N. Given a function f, define

Δfi,d (x) =

{
Φf
pi (x)
(pi(x)) if Φ

f
pj (x)
(pj(x))↓ for all j ≤ i ,

↑ otherwise.

Write Dfi+1,d = dom(Δ
f
i,d ), and set D

f
0,d = N.

Definition 5.6. Consider a function f : N → N and a length d sequence �g of
functions gi : D

f
i,d → N for i < d .

• The sequence �g is depth d diagonally nonrecursive relative to f (�g is DNRd (f)
for short) if (∀x)(∃i < d )(x ∈ dom(gi ) ∧ gi (x) 
= Δfi,d (x)).

• The sequence �g is k-bounded depth d diagonally nonrecursive relative to f
(�g is DNRd (k,f) for short) if it is DNRd (f) and each gi is k-bounded.

Overloading notation as we did before, we let DNRd (f) denote the formal
statement “there is a �g that is DNRd (f),” and we let DNRd (k,f) denote the
formal statement “there is a �g that is DNRd (k,f).” Although different d -tupling
schemes lead to different classes of DNRd (f)-functions, it is always possible to
translate back and forth between any two such schemes. In particular, the principles
DNRd (f) and DNRd (k,f) are unaffected by such choices. We therefore see that
DNR(k,f) is equivalent toDNR1(k,f) and that if c > d thenDNRd (k,f) implies
DNRc(k,f). A further relation between these principles is given by the following
lemma.

Lemma 5.7 (RCA0). Let f : N → N be a function, and let c, d, k ∈ N be posi-
tive. Then DNRc(kd , f) implies DNRcd (k,f). In particular, DNR(kd , f) implies
DNRd (k,f).

Proof. Let �g be DNRc(kd , f). We define a sequence �h that is DNRcd (k,f). Let
q0, . . . , qc−1 be the projections for the c-tupling function, and let p0, . . . , pcd−1 be
the projections for the cd -tupling function. Define a recursive function s : N → N

so that for all i < c and all x, y ∈ N

Φf
qi (s(x))

(y) =
∑
j<d

kjΦf
pdi+j (x)

(pdi+j(x)).

Now define �h = (h
)
<cd so that each h
 is k-bounded and so that the equation
gi (s(x)) =

∑
j<d k

jhdi+j(x) holds for each i < c.

We show thatDfi,cd ⊆ dom(hi) for each i < cd , so that we may shrink the domain
of each hi to be exactly D

f
i,cd (if necessary). First, observe that by the definition of

�h, if i < c and s(x) ∈ dom(gi) = Dfi,c , then (∀j < d )(x ∈ dom(hdi+j)). Thus we
fix i < c, j < d , and x ∈ Dfdi+j,cd , and we show that s(x) ∈ Dfi,c . If i = 0, this
follows from the definitionDf0,c = N, so we may assume i > 0. Now, x ∈ Dfdi+j,cd =
dom(Δfdi+j−1,cd ) ⊆ dom(Δfdi−1,cd ) implies that (∀
 ≤ di − 1)(Φfp
 (x)(p
(x))↓) and
therefore that (∀m ≤ i−1)(Φf

qm(s(x))
(qm(s(x)))↓). Thus s(x) ∈ dom(Δfi−1,c) = Dfi,c

as desired.
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Now we show that �h is indeed depth cd diagonally nonrecursive relative to f.
Let x ∈ N, and let i < c be such that s(x) ∈ dom(gi) and gi(s(x)) 
= Δfi,c(s(x)).
Then (∀j < d )(x ∈ dom(hdi+j)) and gi(s(x)) =

∑
j<d k

jhdi+j(x). Thus if (∀i < d )
(hdi+j(x) = Φ

f
pdi+j (x)

(pdi+j(x)), we would have the contradiction s(x) ∈ dom(Δfi,c)
(as s(x) ∈ Dfi,c and (∀j < d )(Φfpdi+j (x)(pdi+j(x))↓)) and

gi (s(x)) =
∑
j<d

kjhdi+j(x) =
∑
j<d

kjΦf
pdi+j (x)

(pdi+j(x))

= Φf
qi (s(x))

(qi(s(x))) = Δ
f
i,c(s(x)).

Thus there must be a j < d such that x ∈ dom(hdi+j) and hdi+j(x) 
= Δfdi+j,cd (x). �
Schmerl considers colorings of graphs in classesK of a certain kind. The classK
is a universal class of graphs if there is a set K of finite (coded) graphs such that a
graphG belongs toK if and only if every finite induced subgraph ofG is isomorphic
to a graph in K . The class K is a natural class of graphs if it is moreover closed
under disjoint sums. That is, if G0 = (V0, E0), G1 = (V1, E1) are graphs in K with
mutually disjoint vertex sets, thenG0 +G1 = (V0∪V1, E0∪E1) is also inK . It then
follows that the class K is closed under countable disjoint sums. For every positive
integer 
 , the locally 
-colorable graphs form a natural class of graphs.
The link between the on-line coloring games and the generalized DNR principles
is the following result, which can be extracted from the proof of [25] Theorem 2.1.

Lemma 5.8 (RCA0). Let f : N → N be a function,K be a natural class of graphs,
and d, k ∈ N be positive. If ∀ has a winning strategy in Γd (K , k) and DNRd (k,f)
fails, then there is anf-recursive graph from the classK that is not globallyk-colorable.
We may further require that the connected components of this graph have size at most
d , and the graph construction is uniform in the parameters k, d and f.

Lemma 5.8 has two immediate consequences.

Theorem 5.9 (RCA0). Let K be a natural class of graphs.

• For every k ∈ N, if K is not locally on-line k-colorable but every graph in K is
k-colorable, then ∃d∀fDNRd (k,f).

• If K is not locally on-line k-colorable for any k ∈ N but every graph in K is
finitely colorable, then ∀f∃d∃kDNRd (k,f).
It is provable in RCA0 that the natural class of forests (i.e., graphs without cycles)
is not locally on-line k-colorable for any k. More precisely, one can recursively
construct a strategy for ∀ in the game Γ2k (K , k), where K is the class of forests.
Since forests are locally 2-colorable, it follows that for every 
 ≥ 2, the natural class
of locally 
-colorable graphs is likewise not locally on-line k-colorable for any k.

Corollary 5.10.

• RCA0  ∀k(∀G COL(2, k,G)→ ∃d∀fDNRd (k,f)).
• RCA0  ∀G∃kCOL(2, k,G)→ ∀f∃d∃kDNRd (k,f)).
When working over RCA0 + IΣ02, both ∃k∀fDNR(k,f) and ∀f∃kDNR(k,f)
are equivalent to WKL by Theorem 2.7. A similar argument shows that
∃d∃k∀fDNRd (k,f) and ∀f∃d∃kDNRd (k,f) are likewise equivalent to WKL
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over RCA0 + IΣ02. It follows from Corollary 5.10 that Conjecture 5.4 is true with
RCA0 + IΣ02 in place of RCA0.
Corollary 5.11. RCA0 + IΣ02  (∀
 ≥ 2)(∀k ≥ 
)(WKL↔ ∀G COL(
, k,G)).
The relationships among diagonally nonrecursive functions, depth d diagonally
nonrecursive sequences, and graph colorings need further clarification.
Question 5.12.
• Are ∃k∃d∀fDNRd (k,f) and ∃k∀G COL(2, k,G) equivalent over RCA0 (or
over RCA0 + BΣ02)?

• Are ∀f∃k∃dDNRd (k,f) and ∀G∃kCOL(2, k,G) equivalent over RCA0 (or
over RCA0 + BΣ02)?
Note that the answers to both parts of Question 5.12 are positive over
RCA0 + IΣ02 because the statements ∃k∃d∀fDNRd (k,f), ∃k∀G COL(2, k,G),
∀f∃k∃dDNRd (k,f), and ∀G∃kCOL(2, k,G) are each equivalent to WKL over
RCA0 + IΣ02.
While DNR(kd , f) implies DNRd (k,f) over RCA0 by Lemma 5.7, it is not
known whether the reverse implication holds.
Question 5.13.
• Are ∃k∀fDNR(k,f) and ∃d∃k∀fDNRd (k,f) equivalent overRCA0 (or over
RCA0 + BΣ02)?

• Are ∀f∃kDNR(k,f) and ∀f∃d∃kDNRd (k,f) equivalent overRCA0 (or over
RCA0 + BΣ02)?
Note that the answers to both parts of Question 5.13 are positive over RCA0+IΣ02
because the statements∃k∀fDNR(k,f), ∃d∃k∀fDNRd (k,f), ∀f∃kDNR(k,f),
and ∀f∃d∃kDNRd (k,f) are each equivalent to WKL over RCA0 + IΣ02.
Similar to thediagonally nonrecursive case, it is possible that∀
∀G∃kCOL(
, k,G)
is strictly weaker than ∀
∃k∀G COL(
, k,G) over RCA0+BΣ02. However, our tech-
niques do not readily adapt to avoiding graph colorings because the construction
of an eventually DNR(b, h) function given only an upper bound on the index of
a DNR(b, h) function in Lemma 4.6 relies heavily on the homogeneity of diago-
nally nonrecursive functions. If f0 and f1 are diagonally nonrecursive functions,
then another diagonally nonrecursive function g can be obtained by choosing
g(n) ∈ {f0(n), f1(n)} for each n. However, if f0 and f1 are graph colorings,
there is no reason to expect that a g chosen the same way is also a graph coloring.
Question 5.14. Does ∀
∀G∃kCOL(
, k,G) imply ∀
∃k∀G COL(
, k,G) over
RCA0 (or over RCA0 + BΣ02)?
Note that the answer to Question 5.14 is positive over RCA0 + IΣ02 because the
statement ∀
∀G∃kCOL(
, k,G) and the statement ∀
∃k∀G COL(
, k,G) are both
equivalent to WKL over RCA0 + IΣ02.
Motivated by Question 5.12, we conclude by exploring further relationships
between diagonally nonrecursive functions and graph colorings. First, we observe
that the existence ofk-boundeddiagonally nonrecursive functions does not suffice to
ensure that locally k-colorable graphs are (2k − 1)-colorable.
Proposition 5.15. RCA0+BΣ02 � ∀k(∀fDNR(k,f)→ ∀G COL(k, 2k−1, G)).
Proof. If RCA0+BΣ02  ∀k(∀fDNR(k,f)→ ∀G COL(k, 2k−1, G)), then also
RCA0 +BΣ02 + ∃k∀fDNR(k,f)  ∃k∀G COL(k, 2k− 1, G). It would then follow
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from Theorem 5.3 that RCA0 + BΣ02 + ∃k∀fDNR(k,f)  WKL, contradicting
Theorem 4.10. So RCA0 +BΣ02 � ∀k(∀fDNR(k,f)→ ∀G COL(k, 2k − 1, G)). �
A (2k−1)-coloring of a graphG is also a 2k-coloring ofG , so asserting that every
locally k-colorable graphG is 2k-colorable is potentially weaker than asserting that
it is (2k − 1)-colorable. This situation raises the following question.
Question 5.16. Does RCA0 (or RCA0 + BΣ02) prove ∀k(∀fDNR(k,f) → ∀G
COL(k, 2k,G))?

Note that because ∀fDNR(k,f) implies WKL over RCA0 for any fixed k ∈ �,
the answer to the question is positive when restricted to a fixed k ∈ �. More-
over, the answer to the question is also positive over RCA0 + IΣ02 by Theorem 2.7.
Althoughwe havenot answered this question in general, we can formulate an analog
of Theorem 5.2 with ∃k∀fDNR(k,f) replacing WKL by restricting the class of
graphs.

Definition 5.17.

• A complete k-partite graph is a graph G = (V,E) where V is a set of vertices
of the form V = {v(i,n) : i < k ∧ n ∈ N} and E = {(v(i,n), v(j,m)) : i, j <
k ∧ n,m ∈ N ∧ i 
= j}.

• An ornamented complete k-partite graph is a graph G = (V ∪W,E), where
(V,E ∩ (V × V )) is a complete k-partite graph and every w ∈ W is either
isolated or adjacent to exactly one v ∈ V .

Proposition 5.18.

RCA0  (∀k ≥ 2)(∀fDNR(k,f)↔ every ornamented complete
k-partite graph is k-colorable).

Proof. Fix k ∈ N.
For the forward direction, let G = (V ∪ W,E) be an ornamented complete
k-partite graph, where V = {v(i,n) : i < k ∧ n ∈ N} andW = {wn : n ∈ N}. Define
a function h : N → N so that, for all n, x ∈ N, ΦG

h(n)(x) = i if there is an m ∈ N

such that wn is adjacent to v(i,m) (and ΦGh(n)(x)↑ otherwise). Let g be DNR(k,G).
Define � : V → k by �(v(i,n)) = i and �(wn) = g(h(n)). It is easy to verify that � is
a k-coloring of G .
For the backward direction, let G0 = (V,E0) be a complete k-partite graph, and,
given f, extend G0 to the ornamented complete k-partite graph G = (V ∪W,E),
whereW = {wn : n ∈ N}, by defining (wn, v(i,s)) ∈ E if and only if Φfn,s(n) = i and
(∀t < s)(Φfn,t(n) ↑). Let � be a k-coloring of G , and permute the colors so that
�(v(i,0)) = i for each i < k. Then the function g defined by g(n) = �(wn) is
DNR(k,f). �
Say that a graph G0 = (V0, E0) embeds into a graph G1 = (V1, E1) if there is an
injection h : V0 → V1 such that (∀v,w ∈ V0)((v,w) ∈ E0 → (h(v), h(w)) ∈ E1).
Notice that a graph is k-colorable if and only if it embeds into a complete k-partite
graph. In fact, it is not hard to see that RCA0 proves this fact. We can rephrase
Question 5.16 in terms of embeddings as follows.
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Question 5.19. Does RCA0 (or RCA0 + BΣ02) prove the following statement?

∀k(∀fDNR(k,f)→ every locally k-colorable graph can be
embedded into an ornamented complete 2k-partite graph)

Again, the answer to Question 5.19 is positive over RCA0 + IΣ02 by Theorem 2.7.
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