
Math. Struct. in Comp. Science (1998), vol. 8, pp. 401–446. Printed in the United Kingdom

c© 1998 Cambridge University Press

A theory of mixin modules: basic and derived

operators†

D A V I D E A N C O N A and E L E N A Z U C C A

Dipartimento di Informatica e Scienze dell’Informazione,

Via Dodecaneso, 35, 16146 Genova (Italy)

Email: {davide, zucca}@disi.unige.it

Received 26 November 1996; revised 18 December 1997

Mixins are modules in which some components are deferred , that is, their definition has to

be provided by another module. Moreover, in contrast to parameterized modules (like ML

functors), mixin modules can be mutually dependent and their composition supports the

redefinition of components (overriding). In this paper, we present a formal model of mixins

and their basic composition operators. These operators can be viewed as a kernel language

with clean semantics in which one can express more complex operators of existing modular

languages, including variants of inheritance in object-oriented programming. Our formal

model is given in an ‘institution independent’ way, that is, it is parameterized by the

semantic framework modelling the underlying core language.

Introduction

In object-oriented languages, the definition of an heir class H from a parent class P

usually takes the form H = extend P by M, where M denotes a collection of definitions

of components (typically methods) which are either new, or redefined with respect to the

definition given for them in P (overriding). The definitions in M may refer to components

defined in P .

A quite natural view of the above situation is to see M as an abstract heir class,

that is, a class where some components are not defined (deferred), and which can be

effectively used for instantiation (that is, become concrete) only when applied to some

parent class, which supplies an implementation for the deferred components. An abstract

subclass is sometimes called mixin (this name was firstly used in the LISP community,

see Moon (1986) and Keene (1989)). At the semantic level, M can be seen as a function

from deferred components, that is, components that must be provided from the outside,

to components that are defined within the class. Note that, if we assume no overriding,

deferred and defined components are disjoint sets.

Most existing object-oriented languages do not support explicit mixins, in the sense

† This work has been partially supported by Murst 40% (Modelli della computazione e dei linguaggi di

programmazione) and CNR (Formalismi per la specifica e la descrizione di sistemi ad oggetti).

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 402

that it is not possible to define M separately and then to instantiate M on different

parent classes, say P1 and P2, getting different heir classes H1 = M(P1) and H2 = M(P2).

Allowing the possibility of naming mixins in the language leads to the so-called mixin-

based inheritance, proposed in Bracha and Cook (1990). Going further, we can take mixins

as basic language units, considering concrete classes as particular mixins with no deferred

components (semantically, constant functions). That allows a clean and unifying view of

different linguistic mechanisms, as explained later in this paper.

First, while mixins in the above sense (abstract heir classes) are not usually supported,

some languages allow the definition of abstract (parent) classes, that is, classes with

deferred components that can be concreted by heirs, for instance Eiffel (Meyer 1988),

C++ (Stroustrup 1991) and Java (Arnold and Gosling 1996), where deferred methods

are called pure virtual and abstract , respectively; in other languages deferred methods

are implemented by extra-linguistic features (cf. the method subclassResponsability

in Smalltalk-80 (Goldberg and Robson 1983)).

Actually, it is easy to see that the situation is completely symmetric; referring to the

schema above, if P in turn is an abstract class, the combination of P and M can no

longer be described as an application M(P), but as the result of a binary merge operation.

In the resulting class P + M, components that were deferred in P have been (possibly)

concreted by definitions in M, and vice versa. This allows recursive definitions to span

module boundaries (Duggan and Sourelis 1996), with a great benefit for modularity, as

we illustrate in detail in Section 1.

Second, going back to our original schema of inheritance H = extend P by M, with

P a concrete class, we have ignored until now the fact that M may redefine components

already defined in P . Since definitions of components can be mutually recursive, redefining

some of them actually changes the whole class behaviour. The problem of giving a clean

semantics to this mechanism has been independently solved by W. Cook (Cook 1989) and

U. S. Reddy (Reddy 1988). The idea consists, roughly speaking, of interpreting P as a

function, called by Cook a generator , mapping components into components. The current

values of components in P are then obtained as the least fixed point of this function.

This approach can be combined in a very natural way with the view of an abstract class

as a function from deferred into defined components. Putting the two things together, P

can be seen as a function from input components into output components: the output

components are the defined components; the input components are all the (either deferred

or defined) components. A function of this kind is called in Cook (1989) an inconsistent

generator (whose least fixed point cannot be evaluated).

In this paper, we introduce a further distinction, assuming that some defined components

are frozen, that is, their redefinition cannot change other components (cf. non-virtual

methods in C++). In this case, some output components are not input components.

A further remark is that, introducing mixins, overriding the definition of a component

by a new definition can be seen as the composition of two different operations: first, the

old definition is cancelled, obtaining a mixin in which the corresponding component is

deferred; then, this mixin is merged with another supplying the new definition. This view

of overriding was first introduced, to our knowledge, in Bracha (1992), where the operator

that ‘cancels’ a definition is called restrict . Note that in this way it is possible to replace

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 403

an asymmetric (non-commutative) binary operator, that is, overriding, by restrict plus the

commutative merge operator. This is the approach we adopt in this paper.

We have shown so far that introducing mixins allows a clean and unifying view of

apparently different linguistic mechanisms. We come now to a second point, which is

fundamental in this paper. In the discussion above, we have presented mixins as a gener-

alization of classes in the sense of object-oriented programming, as it is from the historical

point of view. Anyway, all the preceding considerations are, actually, completely indepen-

dent of the object and class concepts: the mixin notion can be formulated in the much

more general context of module composition. In other words, it is possible to extend the

usual notion of module (a collection of definitions of components of different nature, e.g.

types, functions, procedures, exceptions and so on) to the case where some definitions are

deferred, obtaining what we call in this paper a mixin module (or simply mixin). Hence, an

extension with mixins and corresponding composition operators is, in principle, applicable

to any modular language (Bracha 1992; Banavar 1995), allowing the definitions of highly

sophisticated module systems with a consequent enhancement of code reusability and

extensibility; notice that the notion of mixin module can also be successfully introduced

in object-oriented languages where, in many cases, the notion of class turns out to be

inadequate as the unique modularity feature offered by the language (Szyperski 1992).

This generalization should be reflected at the semantic level: hence, in this paper, we

aim to define a formal model of mixin modules, based on the ideas outlined above, and

a corresponding interpretation of composition operators, independent of the semantic

nature of a single concrete module, which should depend on the (semantics of) the

underlying core language, that is, the language for defining module components, following

the terminology introduced with Standard ML (Milner et al. 1990).

To this end, we generalize the model proposed above (mixins = functions over records of

components) to functions over arbitrary semantic structures. This is achieved in a simple

and natural way by taking the approach of institutions (Goguen and Burstall 1992), where

syntactic interfaces (types) of modules are modelled by signatures of some institution I,

and denotations of program modules are models of I; for instance, in a standard case,

many-sorted algebras (collections of related functions together with the data domains

they operate on). We do not deal explicitly in this paper, which is only concerned with

programming modules, with the logical part of the institution concept (a language of

sentences for expressing properties that models are required to satisfy); anyway, it should

be clear to the reader that the possibility of integration with a specification language is

an important motivation behind our approach.

Thus our work can be seen from the technical point of view in two symmetric ways: from

one side, we generalize the model of inheritance in Cook (1989) from objects (modelled

as records) to modules (modelled as arbitrary semantic structures). From the other side,

we extend to the case of mixins the well-established algebraic treatment of module

composition (see , for example, Bergstra et al. (1990), Diaconescu et al. (1993), Sannella

and Tarlecki (1988), Ehrig and Mahr (1993), Ehrig et al. (1991), Ehrig and Löwe (1993) and

Loeckx et al. (1996)) presenting a kernel module language with algebraic semantics. The

main difference with respect to this literature is that we consider, together with classical

operators (like export and renaming), new operators allowing module modification (like

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 404

restrict and overriding) that make no sense in the traditional model. Moreover, as already

pointed out, we do not deal with specification modules (denoting classes of models), but

with programming modules (denoting just one model).

The paper is organized as follows. In Section 1 we present informally the most relevant

operators for composing mixins giving some examples written in an SML-like language.

In Section 2 we present our formal model of mixins and a set of basic operators. In

Section 3 we define a kernel language of mixin modules, with operators like merge,

overriding, hiding and functional composition, which can all be expressed in terms of the

basic operators introduced in the preceding section. In Section 4 we give a refined version

of our model, which allows us to handle (possibly recursive) type definitions in modules.

Finally, in Section 5 we make some comparisons with related work and outline our further

research on this subject. Technical details and a more concrete model based on the notion

of signature inclusion are given in the Appendix. A preliminary presentation of the ideas

in this paper has been given in Ancona and Zucca (1996a); the work on mixins presented

in the present and other papers (Ancona 1996; Ancona and Zucca 1997; Ancona and

Zucca 1998) constitutes a major part of the first author’s Ph. D. thesis (Ancona 1998),

which we refer to for an organic and extensive presentation.

1. Mixins and mixin operators: an informal introduction

In this section, we introduce the notion of mixin module and the most relevant composition

operators by means of some examples written in Standard ML (Milner et al. 1990).

We recall that SML supports the definition of module (structure), interface (signature)

and parameterized (or generic) module (functor). We have adopted SML for its simplicity,

but it should be clear to the reader that our intention here is not to extend a particular

modular language with mixins, but to propose a basic set of operators.

1.1. From concrete modules to mixins

Assume that we want to implement in SML finite maps and finite sets of integers,

with some of the usual operations (empty map, application, updating a map by a new

association, getting the domain of a map, restricting the domain of a map, empty set,

adding an element to a set and testing for membership). A structure Map implementing

finite maps should match the following signature MAP:

signature MAP =

sig

type map;

type set;

val empty map:map;

val apply: map ∗ int→ int;

val update: map ∗ int ∗ int→ map;

val def dom: map→ set;

val restrict: map ∗ set→ map

end;

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 405

For a modular development, the implementation of the type set should be provided

separately by a structure Set over the signature SET:

signature SET =

sig

type set;

val empty set:set;

val add: int ∗ set→ set;

val is in: int ∗ set→ bool

end;

This can be achieved in SML by defining Map as a functor from structures matching

SET to structures matching MAP instead of as a structure. However, this solution is still

inadequate since there is no way to implement the function restrict in terms of the

functions in SET; intuitively, we miss the possibility of ‘iterating’ an action over all the

elements of a set. Conversely, it is not possible to define Set as a functor taking Map

as parameter, since there is no way to implement the function def dom in terms of the

functions in Map.

Of course we could handle the problem by adding new primitives, but that solution

implies extra code and could lead to inefficient implementations of restrict and def dom,

respectively. On the other side, the restrict and def dom functions could be efficiently

defined inside a unique structure, but this would lose modularity.

A solution that keeps both modularity and efficiency would be to move restrict

from Map to Set. However, in this way the two structures become mutually dependent,

while functors in SML are only able to express one-way dependencies. This problem is

overcome by the introduction of mixin modules . A mixin, like a functor, is a module that

depends on other modules; the crucial difference is that mixins allow us to express mutual

dependency. In a hypothetical extension of SML with mixins, the solution of our problem

is the following:

mixin Map =

mix

datatype map = empty map | update of map ∗ int ∗ int;

type set;

val empty set:set;

val add: int ∗ set→ set;

val restrict: map ∗ set→ map;

fun apply(update(f,x,y),z) = . . .

fun def dom(empty map) = empty set |
def dom(update(f,x,)) = add(x,def dom(f))

end;

mixin Set =

mix

datatype set = empty set | add of int ∗ set;

type map;

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 406

val empty map:map;

val apply: map ∗ int→ int;

val update: map ∗ int ∗ int→ map;

val def dom: map→ set;

fun is in(,empty set) = . . . |. . .
fun restrict(,empty set) = empty map |

restrict(f,add(x,s)) =

if is in(x,def dom(f)) then update(restrict(f,s),x,apply(f,x))

else restrict(f,s)

end;

As shown by the example, a mixin differs from a standard module, which is a collection

of definitions, since the implementation of some components may be deferred , as happens

for the type set and the functions empty set, add and restrict in Map. Correspondingly,

SML signatures could be extended to mixin signatures by labelling components in such

a way that each component is recognized as either defined or deferred†. For instance, the

mixin Set matches the following mixin signature:

mixin signature SET =

mix sig

type set;

val empty set:set;

val add: int ∗ set→ set;

type map deferred;

val empty map:map deferred;

val apply: map ∗ int→ int deferred;

val update: map ∗ int ∗ int→ map deferred;

val def dom: map→ set deferred;

val is in: int ∗ set→ bool;

val restrict: map ∗ set→ map

end;

Note that, in general, it is not possible to split the signature of a mixin in two

disjoint signatures corresponding to the defined and deferred components, respectively. For

instance, in SET above, the deferred components (map, empty map, apply, update, def dom)

do not form a signature, since the functionality of def dom contains the defined type set.

Modules in the usual sense can be viewed as particular mixin modules in which all

the components are defined. We call them concrete mixin modules. Of course a mixin

module, for example Map, that is not concrete cannot be used in isolation, just as a

parameterized module needs to be instantiated over an actual parameter. A way to

combine mixins in order to obtain a concrete module eventually is provided by the merge

operator (Bracha 1992): if M1 and M2 are two mixins, then M1 ⊕M2 is a mixin, where

some definitions of M1 are associated with corresponding declarations in M2, and vice

† After introducing overriding, we will further distinguish defined components in either frozen or virtual, as

illustrated in the following subsection.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 407

versa. This operator is commutative and is defined whenever no components are defined

on both sides.

In the example above, we can define a mixin SetAndMap = Set⊕Map matching the

signature SET AND MAP = SET⊕MAP; in SetAndMap every component has a definition,

hence we have obtained a concrete module (a normal SML structure). This is not always

the case: if some deferred component on one side has no corresponding definition on the

other side, the module resulting from merging is still not concrete.

Finally, we stress the fact that mutually dependent modules arise in a very natural way at

the design stage of software development, and, moreover, the lack of an ability to manage

them causes code duplication and loss of software extensibility. For other examples

of mutually dependent modules (including concrete cases) we refer to Ancona (1996),

Banavar and Lindstrom (1996) and Duggan and Sourelis (1996).

1.2. Overriding definitions

In object-oriented languages, inheritance allows overriding of definitions with precedence

of either the heir, as, for example, in Smalltalk (Goldberg and Robson 1983) or the

parent class, as in Beta (Lehrmann et al. 1993), as has been analyzed in Bracha and

Cook (1990).

By introducing the notion of mixin, overriding the definition of a component, say

f = expr , in a module M, by a new definition f = expr ′, can be seen as the composition

of two operations: first, the old definition is cancelled, getting a module M ′ where f is

deferred; then, M ′ is merged with f = expr ′.

This view allows a more general version of overriding. Consider, for instance, the

following mixin, which leaves deferred the implementation of lists of integers, and only

defines two derived functions:

mixin AbsList =

mix

type int list;

val head: int list→ int;

val tail: int list→ int list;

val is empty: int list→ bool;

fun length(l) = if is empty(l) then 0 else length(tail(l))+1;

fun eq(l1,l2) =

if is empty(l1) then is empty(l2) else

if is empty(l2) then false else

head(l1)=head(l2) andalso eq(tail(l1),tail(l2))

end;

and assume that we want to combine it with another mixin where an implementation for

the type int list is provided, together with a more efficient version of length based on

this implementation.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 408

mixin List =

mix

type int list = int ∗ int list;

fun length(n,) = n;

. . .

end;

The sum AbsList⊕List is not correct, since the function length is defined in both the

modules. We need a way of explicitly specifying which of the two definitions of length

must take the precedence. This can be achieved by using a restrict operator (Bracha 1992),

which allows us to cancel definitions inside a mixin.

This operator takes two arguments, a mixin M and a mixin signature specifying the

defined components of M that have to be changed to deferred. The mixins AbsList and

List can be combined as follows:

mixin AbsListAndList = (restrict length in AbsList)⊕ List.

In general the restrict operation allows us to specify, for each pair of conflicting

definitions in two mixinsM1 andM2, which of the two definitions must take the precedence.

In this way we are able to define more combinations of M1 and M2 than by simply using

an overriding operator that gives precedence to either M1 or M2 (Ancona and Zucca 1997).

This is essential, for instance, in object-oriented languages supporting multiple inheritance

where an heir class may inherit a method definition from several parent classes (Bracha

1992; Van Limbergehn and Mens 1996).

The inheritance operators of Smalltalk and Beta (without considering the pseudo-

variables super and inner) can be defined by an appropriate combination of the merge

and restrict operations:

H = (restrict ΣP in P) ⊕M (in Smalltalk),

H = P ⊕ (restrict ΣM in M) (in Beta),

whereH and P are the heir and the parent class, respectively,M is the mixin corresponding

to the new definitions, ΣP contains the components of P that are redefined in M, and

analogously for ΣM . A way to express the Smalltalk and Beta inheritance operators

handling the pseudo-variables super and inner is described in Section 3, and in much more

detail in Ancona and Zucca (1997).

From the semantic point of view, the possibility of overriding definitions leads one to

consider two different interpretations of a concrete module, which we call closed and open

semantics , respectively (as mentioned in the introduction, this idea is originally due to

W. Cook (Cook 1989) and U. S. Reddy (Reddy 1988), and is now a standard approach).

Consider, for instance, the structure:

structure S =

struct

val i1=1;

val i2=2*i1;

val i3=i1+i2

end;

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 409

The closed semantics is a model over the signature Σout , that is, it associates a semantic

value with each component of the module; in this case, Σout = {i1, i2, i3} and the closed

semantics of S is the record <i1:1, i2:2, i3:3>. Anyway, this semantics does not take into

account the possibility of later redefinitions of components. For instance, redefining i1 to

2 changes the values of i2 and i3 too. In the general case, definitions can be mutually

recursive. In order to model this, it is necessary to see S as a function from models over

Σout to models over Σout (open semantics); in this case, the function defined by

<i1:x, i2:y, i3:z> 7→ <i1:1, i2:2 ∗ x, i3:x+ y>.

Note that in this concrete case the closed semantics is the unique fixed point of the open

semantics. However, this fact is not relevant for our technical treatment in the following;

we only assume a freeze operator at the semantic level that extracts one fixed model from

a function from models into models (that is, gets closed semantics from open semantics).

As we said earlier, open semantics is needed for correctly modelling overriding. Consider,

for instance, the following structure S′, which provides a different definition for i2:

structure S′ =

struct

val i2=3

end;

The open semantics of the mixin expression (restrict i2 in S) ⊕ S′ is the function

<i1:x, i2:y, i3:z> 7→ <i1:1, i2:3, i3:x+ y>,

which can be obtained from the open semantics of S by replacing the definition of i2, and

gives as corresponding closed semantics the record <i1:1, i2:3, i3:4>. Note that there is

no way to obtain this record directly from the closed semantics of S.

As a final example, consider the following structure:

structure S′′ =

struct

val i2=2

end;

Then, again, the open semantics of the mixin expression (restrict i2 in S) ⊕ S′′

is different from that of S, even though in this case the closed semantics coincide.

The open semantics can be naturally extended to non-concrete mixins (where some

components are deferred), seeing them as functions from models over a larger signature

Σin to models over Σout (hence Σout ⊆ Σin). Of course, in this case it makes no sense

to consider the closed semantics – corresponding to the fact that the module cannot be

effectively ‘used’ as it stands.

1.3. Freeze and hiding

In the example above, a redefinition of i2 in S changes the semantics of i3, too. In order

to express this, we say this i2 is a virtual component of S. In general, we introduce a

further distinction of defined components into either virtual or frozen (cf., for instance,

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 410

virtual and non virtual member functions in C++). If a defined component is virtual, its

redefinition may change the semantics of some other component of the mixin; by contrast,

a redefinition of a frozen component cannot affect the semantics of any other component.

The freeze operation (Bracha 1992) allows us to freeze a virtual component f by

eliminating all the dependences of the other components on f. As an example, assume we

freeze i2 in S. Then the structure S1 we obtain is equivalent to the following†:

structure S1 =

struct

val i1=1;

val i2=2*i1;

local val i2=2*i1 in

val i3=i1+i2 end

end;

In other words, we get a structure whose open semantics is a function constant with

respect to the component i2:

<i1:x, i2:y, i3:z> 7→ <i1:1, i2:2 ∗ x, i3:3 ∗ x>.

Now a redefinition of i2 cannot change the semantics of i3.

In order to keep this information explicit in the module interface, we can remove the

assumption Σout ⊆ Σin and say that the open semantics of S1 is a function that no longer

takes i2 as argument. Correspondingly, we may add a new kind of label to function

symbols within mixin signatures, specifying for each defined function whether it is virtual

(default case) or frozen. For instance, S1 matches the following mixin signature:

mix sig

val i1 :int;

val i2 :int frozen;

val i3 :int

end;

The open semantics of a mixin matching this signature is a function taking i1 and i3

as arguments, and returning values for i1, i2 and i3. For instance, the open semantics

of S1 = freeze i2 in S is

<i1:x, i3:z> 7→ <i1:1, i2:2 ∗ x, i3:3 ∗ x>.

For a mixin M where all the components are frozen, the open semantics is a constant

function that returns the closed semantics of M. Note that it makes no sense to freeze a

deferred component.

Now consider the possibility of hiding a defined component of a mixin. Hiding a

defined function f intuitively corresponds to consider f as a locally declared function.

† To be precise, i2 should be a local variable visible to all definitions in S – this cannot be expressed in SML,

since the definition of i2 depends on i1. However, in this case, i2 can equivalently be local to the definition

of i3, since i1 does not depend on i2.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 411

For instance, assume we hide i2 in the structure S shown above. We expect to obtain a

structure equivalent to the following:

structure S2 =

struct

val i1=1;

local val i2=2*i1 in

val i3=i1+i2 end

end;

Since the definition of i2 is now local to S2, no operation on S2 can modify its value;

if we merge S2 with a mixin that defines a component i2, the value of i3 does not

change. As a matter of fact, hiding i2 corresponds to first freezing it and then deleting

its definition by means of the restrict operation.

2. A parameterized framework for mixins

In this section we present our formal framework for mixin modules. More precisely, we

define mixin signatures , mixin models and three basic operators over mixin models that will

be used in the following section for expressing all the operators of our kernel language of

mixin modules. The framework we introduce is parameterized by the semantic framework

modelling the core level (core framework).

2.1. Core frameworks

Roughly speaking, a core framework is a specialization of the notion of model part of an

institution, that is, a category of signatures and a model functor (Goguen and Burstall

1992). We assume an additional feature, viz. a family of operators (one for each signature

Σ) taking functions from Σ-models to Σ-models and returning Σ-models. These operators

intuitively correspond to extract closed semantics from open semantics.

Definition 2.1. A model part is a pair <Sig,Mod> where

— Sig is a category, whose objects are called signatures .

— Mod is a functor†, Mod : Sigop → Set. For any signature Σ, objects in Mod (Σ) are

called models over Σ or Σ-models . For any signature morphism σ: Σ→ Σ′, Mod (σ) is

called the reduct via σ and denoted by −|σ . We write −|Σi
for −|ji , when ji: Σi → Σ,

i = 1, 2, are the injections of a coproduct.

Notation. Let Sig be a category with all finite colimits. If Σ1 and Σ2 are two signatures in

Sig, we use Σ1 + Σ2 and 6 to denote the unique (up to isomorphism) coproduct of Σ1

and Σ2 and the initial object in Sig, respectively.

† There is no problem in allowing categories of models here, but model morphisms are not relevant for the

subject of this paper, so we leave them out here.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 412

For any (small) category C the hom-functor HomC: Cop×C→ Set is defined as follows:

— HomC(<A,B>) is the set of C-morphisms from A to B

— HomC(<h, k>) = k ◦ ◦ h.
If C is Set we also use the notation HomC(<A,B>) = BA.

Note that if h:A→ A′ in Cop , then h:A′ → A in C, whence the compositions (all in C)

are well defined.

Definition 2.2. A model part is regular if Sig has all finite colimits and Mod preserves

them.

Definition 2.3. A core framework is a triple <Sig,Mod , freeze> where

— <Sig,Mod> is a regular model part.

— freeze is a family of functions (that is, morphisms in Set)

freezeΣ: Mod (Σ)Mod (Σ) → Mod (Σ)

indexed over the signatures Σ in Sig.

We omit the subscript whenever it can be unambiguously determined from the context.

In concrete cases, each freezeΣ could correspond to some kind of ‘fixed point’ operator,

as illustrated in the example below. However, no properties on freeze are required for

defining mixin models and their basic operators.

The assumption that Mod preserves finite colimits ensures the existence of the amalga-

mated sum (see, for example, Ehrig and Mahr (1985)); indeed, Mod maps pushouts in Sig

into pullbacks in Set, and this implies that, for every pushout diagram in Sig,

Σ′

�
�
�
j1 �
�
�� I@

@
@ j2
@
@
@

Σ1 Σ2

I@
@
@ σ1

@
@
@ �

�
�
σ2 �

�
��

Σ

and for every pair of models Ai ∈ Mod (Σi), i = 1, 2, such that A1|σ1
= A2|σ2

, there

exists a unique model in Mod (Σ′), denoted by A1 + A2, such that (A1 + A2)|ji = Ai,

i = 1, 2. In particular, when we consider coproducts instead of pushouts, we have that,

for any Ai ∈ Mod (Σi), there exists a unique model A1 + A2 in Mod (Σ1 + Σ2) such that

(A1 + A2)|Σi
= Ai, i = 1, 2 (recall that in all categories with initial objects a coproduct is a

particular kind of pushout).

Example 2.4. As a standard concrete example of core framework, the reader can think

of a language with a fixed set of predefined types, say T , where modules are collections

of possibly recursive function definitions. In this case signatures are just Tsuchthatar×T -

families of sets of (function) symbols. Assuming that each type t ∈ T denotes a set of

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 413

Σin Σout

-

-

-

-

-

-

...

...

...

...

Fig. 1. A pictorial view of mixins

h

g

f

g

-

-

-

-

Fig. 2. A mixin

values† Vt, a model over a signature Σ associates with each function symbol in Σs1 ...sn,s a

partial function from Vs1× . . .×Vsn into Vs. In other words, a Σ-model is a Σ-family of

partial functions. Then, a function F: Mod (Σ)→ Mod (Σ) transforms families of partial

functions into families of partial functions, and freezeΣ is expected to be the least fixed

point of F in the usual sense whenever F is continuous.

2.2. Mixin Signatures and Models

We now give the formal definition of mixin signatures and models. In this subsection we

assume a fixed core framework <Sig,Mod , freeze>.

Definition 2.5. A mixin signature is a pair <Σin ,Σout> of signatures in Sig. A mixin model

over the mixin signature <Σin ,Σout> is a function in Mod (Σout)Mod (Σin).

Intuitively, the input signature gives all the components which definitions in the module

may depend on, while the output signature gives all the components which are defined in

the module.

A pictorial view is given in Figure 1, where a mixin model is represented as a black

box having some inputs and outputs.

For instance, a mixin model F having two input components h, g and two output

components f, g is depicted in Figure 2. This mixin model is a function from records

† We assume a fixed universe of values in order to avoid foundational problems.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 414

of the form <h: , g: > into records of the form <f: , g: >; in other words, F associates

with the output components f and g two values (definitions) that depend on the values

of the input components h, g. In order to express this fact we represent F by the more

suggestive notation

f 7→ Ff(h, g)

g 7→ Fg(h, g).

Referring to the core framework defined in Example 2.4 and the modules S and S′

defined in Section 1, we have that the (open) semantics of S is a mixin model FS over the

mixin signature <Σin
S ,Σ

out
S > where

Σin
S = Σout

S = {i1, i2, i3:→ int}

for any A ∈ Mod (Σin
S), FS (A) = B ∈ Mod (Σout

S) such that

i1B = 1, i2B = 2 ∗ i1A, i3B = i1A + i2A.

Using the above notation, FS is represented by

i1 7→ 1

i2 7→ 2 ∗ i1
i3 7→ i1 + i2.

Moreover, freeze(FS) = C ∈ Mod (Σout
S) (the closed semantics of S), where i1C = 1, i2C = 2

and i3C = 3.

Finally, the mixin expression (restrict i2 in S)⊕ S′ denotes a mixin model F ′S
again over <Σin

S ,Σ
out
S > such that, for any A ∈ Mod (Σin

S), F ′S (A) = B ∈ Mod (Σout
S) such

that i1B = 1, i2B = 3, i3B = i1A + i2A.

The corresponding closed semantics is given by freeze(F ′S) = D ∈ Mod (Σout
S), where

i1D = 1, i2D = 3 and i3D = 4.

We now show that mixin signatures and models defined above actually constitute a

model part in the sense of Definition 2.1.

Set MixSig = Sigop×Sig; we recall that a morphism in MixSig from <Σin
1 ,Σ

out
1 >

to <Σin
2 ,Σ

out
2 > is a pair of morphisms σin : Σin

2 → Σin
1 , σout : Σout

1 → Σout
2 in Sig and that

MixSigop = Sig×Sigop .

Definition 2.6. The functor MixMod : MixSigop → Set is defined by

MixMod = HomSet ◦<Mod ◦ π1,Mod ◦ π2>,

where π1: Sig×Sigop → Sig and π2: Sig×Sigop → Sigop are the projection functors. Thus

— for any object <Σin ,Σout> in Sig×Sigop ,

MixMod (<Σin ,Σout>) = Mod (Σout)Mod (Σin);

— for any <σin , σout>:<Σin
1 ,Σ

out
1 >→ <Σin

2 ,Σ
out
2 >,

MixMod (<σin , σout>) = Mod (σout) ◦ ◦Mod (σin).

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 415

Note that for any morphism <σin , σout>:<Σin
1 ,Σ

out
1 >→ <Σin

2 ,Σ
out
2 > in MixSigop ,

MixMod (<σin , σout>) denotes a function from Mod (Σout
1)Mod (Σin

1
) to Mod (Σout

2)Mod (Σin
2

) cor-

responding to the reduct via <σin : Σin
1 → Σin

2 , σ
out : Σout

2 → Σout
1 > for mixin models. Using

the lambda notation, we can express the definition of the reduct as follows:

MixMod (<σin , σout>) = λF.λA.(F(A|σin))|σout .

Henceforth we will use the notation σin |F|σout for MixMod (<σin , σout>)(F); we also omit

the input (respectively, output) morphism when it is the identity and write Σin |F|Σ′out for

j in |F|jout when j in : Σ′in → Σin and jout : Σ′out → Σout are injections of coproducts.

Fact 2.7. MixMod is a functor such that MixMod ◦ Emb ∼= Mod , where

Emb: Sigop → Sig×Sigop

is defined by

Emb(Σ) = <6,Σ>,Emb(σ) = <id6, σ>.

Note that the natural isomorphism η: Mod → MixMod ◦ Emb is such that, for any Σ in

Sig, ηΣ: Mod (Σ)→ Mod (Σ)Mod (6) is the arrow isomorphic to the projection morphism

πΣ: Mod (Σ)×Mod (6)→ Mod (Σ) in Set.

We now define the equivalent of the amalgamated sum for mixin models. Since, in

general, MixSig does not have all finite colimits, the amalgamation property does not

hold (however, we can define a less general form of amalgamated sum by fixing the input

signature Σin).

Proposition 2.8. Let the following diagram

Σ′
out

�
�
�
j1 �
�
�� I@

@
@ j2

@
@
@

Σout
1 Σout

2

I@
@
@ σ1

@
@
@ �

�
�
σ2 �
�
��

Σout

be a pushout in Sig. Then, for any Fi ∈ MixMod (<Σin ,Σout
i >), i = 1, 2, such that

F1|σ1
= F2|σ2

, there exists a unique F ∈ MixMod (<Σin ,Σ′out
>), denoted by F1 + F2, such

that F|ji = Fi, i = 1, 2.

Proof. The proof comes directly from the fact that the hom-functor

HomSet(<Mod (Σin), >): Set→ Set

and the model functor Mod : Sigop → Set preserve finite limits. Thus MixMod (<Σin , >)

maps finite colimits (of a diagram D) of signatures to limits (of the diagram Mod ◦ D) of

model sets. Hence, MixMod (<Σin ,Σ′out
>) is a pullback object in Set.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 416

One can easily verify that F1 + F2 is defined by

for any A ∈ Mod (Σin), (F1 + F2)(A) = F1(A) + F2(A).

As happens for the amalgamated sum of models, we obtain a particular case of sum

between mixin models when we consider coproducts of output signatures instead of

pushouts.

We conclude this subsection by defining an extension of the family of operators freeze.

Definition 2.9. Let:

— F be a mixin model in MixMod (<Σfr + Σin ,Σout>)

— σ: Σfr → Σout be a signature morphism.

Then freezeσ denotes the function from

MixMod (<Σfr + Σin ,Σout>)

to

MixMod (<Σin ,Σout>)

defined by

freezeσ(F)(A) = freezeΣout (F ◦ (A+) ◦Mod (σ))

for any F in MixMod (<Σfr + Σin ,Σout>) and A in Mod (Σin).

Here (+) denotes the function from Mod (Σin)×Mod (Σfr) to Mod (Σin + Σfr), mapping

each pair <A,B> to A+B. Note that, more correctly, freeze should also be indexed over

Σin , but we have omitted this here for the sake of simplicity. Using the lambda notation,

freezeσ can be expressed as follows:

freezeσ = λF.λA.freezeΣout (λX.F(A+X|σ)).

Intuitively, applying the freezeσ operator to a mixin model corresponds to (permanently)

associating with some input components (Σfr) the definitions of some output components,

in the way specified by σ, so that these components disappear from the input signature. In

fact, in the rest of the paper we will use the operator freezeσ only when σ is the injection

of a coproduct, but here we have considered any kind of morphism for generality.

2.3. Basic operators

In the previous subsection we actually defined three basic operators over mixin models that

will be used in the next section for expressing a variety of higher level mixin combinators.

The graphical representation given in Section 2.2 suggests looking at mixin models as

electronic devices and operations for mixin composition as rules for constructing from a

set of mixins (devices) M1, . . . ,Mn a mixin M ‘containing’ M1, . . . ,Mn inside, by connecting

inputs and outputs in an intuitively suitable way: more precisely, according to the four

following rules:

— each input of M1, . . . ,Mn must be connected exactly to either one input of M or one

output of some Mi, i = 1..n;

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 417

F1

F2

h

f

h

f

h

f

f

f

g

f1

f2

g

-

-
-

-

-

-

-

•

•

Fig. 3. Sum

— each output of M1, . . . ,Mn may either be connected to some outputs of M or inputs

of M1, . . . ,Mn;

— each input of M may be connected to some inputs of M1, . . . ,Mn;

— each output of M must be connected to exactly one output of some Mi, i = 1..n.

Sum Given two mixin models:

— F1 in MixMod (<Σin ,Σout
1 >)

— F2 in MixMod (<Σin ,Σout
2 >),

their sum F1 + F2 is a mixin model in MixMod (<Σin ,Σout
1 + Σout

2 >).

As an example, consider the following mixin models F1 and F2:

F1 = f 7→ (F1)f(h, f)

F2 = f 7→ (F2)f(h, f)

g 7→ (F2)g(h, f)

Then, the sum F1 + F2 is given by

f1 7→ (F1)f(h, f)

f2 7→ (F2)f(h, f)

g 7→ (F2)g(h, f).

The situation is sketched graphically in Figure 3. According to the intuitive composition

rules given above, all the inputs are shared, while the outputs are kept distinct (as happens

for the two components f). The sum operator intuitively represents the most primitive

way of combining together two mixins and is the natural extension of the amalgamated

sum over models. We will see in the next section how it is possible to define more complex

binary operators on top of sum and the other two basic operators presented below.

We now show an alternative definition of sum, which will be used in Section 4. Given

two mixin models F1 in MixMod (<Σin
1 ,Σ

out
1 >) and F2 in MixMod (<Σin

2 ,Σ
out
2 >), we define

their combination F1]F2 as the mixin model in MixMod (<Σin
1 + Σin

2 ,Σ
out
1 + Σout

2 >) defined

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 418

by

for any A ∈ Mod (Σin
1 + Σin

2), (F1] F2)(A) = F1(A|Σin
1
) + F2(A|Σin

2
).

Although the two operators + and] have the same expressive power (see Fact.2.10

below),] does not correspond to any amalgamation property, therefore, whenever possible,

we will use + instead of].

Notation. If σ1: Σ1 → Σ and σ2: Σ2 → Σ are two signature morphisms, we denote by

[σ1, σ2] the unique morphism from Σ1 + Σ2 to Σ making the following diagram commute:

Σ1

j1- Σ1 + Σ2
�
j2

Σ2

@
@
@
σ1 @

@
@R ?

[σ1 ,σ2]

	�
�
� σ2

�
�
�

Σ
Fact 2.10. For any pair of mixin models

F1 in MixMod (<Σin ,Σout
1 >),

F2 in MixMod (<Σin ,Σout
2 >),

F1 + F2 = [idΣin ,idΣin]|(F1] F2).

For any pair of mixin models

F1 in MixMod (<Σin
1 ,Σ

out
1 >),

F2 in MixMod (<Σin
2 ,Σ

out
2 >),

F1] F2 = Σin
1

+Σin
2
|F1 + Σin

1
+Σin

2
|F2.

Reduct Given a mixin model F in MixMod (<Σin ,Σout>) and two signature morphisms

σin : Σin → Σ′in and σout : Σ′out → Σout , the reduct σin |F|σout is a mixin model in

MixMod (<Σ′
in
,Σ′

out
>).

As an example, consider the following mixin model F:

f 7→ Ff(f, g, h)

g 7→ Fg(f, g, h).

Let σin : {f, g, h} → {x, z} and σout : {y} → {f, g} be the morphisms mapping f, g, h into

x and y into f, respectively. Then, σin |F|σout is given by

y 7→ Ff(x, x, x).

The situation is sketched graphically in Figure 4. The figure shows that the informal

composition rules are respected by the reduct operator. Note that through the reduct it

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 419

Fx

z

f

g

h

f

g

y
-

-

-

-

-

-
•

Fig. 4. Reduct

F

h

f

g

h

f

g

f

g

-

-

-

-

-

•
•

Fig. 5. Freeze

is possible to add dummy input components (like z) and to forget output components

(like g). The reduct is a powerful renaming operator allowing us to rename input and

output components in a separate way; again, this operator is the natural extension of the

corresponding operator at the level of models.

Freeze Given a mixin model F in MixMod (<Σfr + Σin ,Σout>) and a signature morphism

σ: Σfr → Σout , freezeσ(F) is a mixin model in MixMod (<Σin ,Σout>).

As an example, let F be the previous mixin model and let σ be the signature morphism

mapping f and g into f. Then, freezeσ(F) is given by:

f 7→ F ′f(h)

g 7→ F ′g(h),

where F ′(h) = freeze(λ<f, g>.F(f, f, h)).

The situation is sketched graphically in Figure 5. The reader may also verify in this

case that the informal composition rules are respected. Notice that the freeze operator is

the only basic operator that allows one to build ‘feed-backs’ in mixins in order to truly

eliminate dependences from some input components.

3. A kernel language of mixin modules

In this section we formally define a set of operators for combining mixin modules, which

are intended to be a kernel language with clean semantics in which to express operators

of existing modular languages. The semantics of the kernel language is given by means

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 420

of the formal framework defined in the previous section. More precisely, any module

expression M of the language has a type <Σdef ,Σvir ,Σfro>, with Σdef ,Σvir ,Σfro signatures

in Sig, and is interpreted as a mixin model over <Σdef + Σvir ,Σvir + Σfro>. Moreover,

the interpretation of the operators of the language is given in terms of the three basic

operators over mixin models defined in Section 2.

The three signatures Σdef , Σvir and Σfro have the following meaning:

— the components in Σdef are deferred components, that is, components that are not

defined in the module;

— the components in Σvir are defined components whose redefinition can change other

components (virtual components);

— the components in Σfro are defined components whose redefinition cannot change

other components (frozen components).

The input signature consists of deferred and virtual components, that is, all the compo-

nents on which definitions in the module may depend. The output signature consists of

virtual and frozen components, that is, all the components that are defined in the module.

In the particular case in which Σdef = 6 (hence Σin = Σvir) we get a concrete module,

where all the components are defined.

Note that the approach taken here is rather abstract: the fact that input components

can be decomposed into deferred and virtual components (and analogously output com-

ponents) is modelled in a descriptive way by pattern matching, that is, by defining the

input signature as a coproduct. All the typing rules in the rest of this paper follow an

analogous approach.

A possible realization of the splitting of signatures consists of considering boolean

signature categories , that is, signatures with inclusions and related operations of union,

intersection and difference. This more concrete case is outlined in Appendix A.1 and

extensively presented in Ancona (1998). In the definitions of this section we will use the

abbreviations Σin := Σdef + Σvir , Σout := Σvir + Σfro .

Merge The merge operator allows us to combine two mixin modules, say M1 and M2,

obtaining a new module where some deferred components of M1 (Σb
1) are made concrete

by binding them to some defined components in M2, and vice versa. These defined

components can be either virtual (Σbv
2) or frozen (Σbf

2), and their status is preserved in

M1⊕M2. Moreover, some deferred components of M1 and M2 can be shared in M1⊕M2

(Σs). On the other hand, defined components are kept distinct, as for sum. Hence, in

M1 ⊕M2 the defined components are the (disjoint) union of the components defined in

the two arguments; the deferred components are the components deferred in one (but

not bound to a definition in the other) or both the arguments. The merge operator is a

high-level version of sum, which allows us to combine together mixins with different input

components and takes into account the difference between virtual and frozen components.

(M-ty)

M1:<Σu
1 + Σs + Σb

1,Σ
vir
1 ,Σfro

1 >

M2:<Σu
2 + Σs + Σb

2,Σ
vir
2 ,Σfro

2 >

M1 ⊕M2:<Σu
1 + Σs + Σu

2,Σ
vir
1 + Σvir

2 ,Σfro
1 + Σfro

2 >

for i = 1, 2

Σvir
i = Σ′vir

i + Σbv
i

Σfro
i = Σ′froi + Σbf

i

Σb
i = Σbv

ī
+ Σbf

ī
.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 421

The deferred components of each argument, say M1, are distinguished in components to

be shared (Σs), to be bound to an output component of the other mixin (Σb
1) and neither

shared nor bound (Σu
1). The side conditions ensure that each deferred component to be

bound (Σb
i) has a corresponding output component, either virtual (Σbv

ī
) or frozen (Σbf

ī
), in

the other mixin (with the notation 1̄ = 2, 2̄ = 1).

(M-sem)
[[Mi]] = Fi, i = 1, 2

[[M1 ⊕M2]] = freezej(j1|F1 + j2|F2)

where j: Σbf
1 + Σbf

2 → Σout
1 + Σout

2 , ji: Σin
i → (Σin

1 +Σs
Σin

2) + Σbf
1 + Σbf

2 , i = 1, 2, are the ob-

vious injections, with the abbreviations Σin
i := Σu

i + Σs + Σb
i + Σvir

i , i = 1, 2, Σin
1 +Σs

Σin
2 :=

(Σu
1 + Σs + Σu

2) + (Σvir
1 + Σvir

2).

Whence

j1|F1 + j2|F2: Mod ((Σin
1 +Σs

Σin
2) + (Σbf

1 + Σbf
2))→ Mod (Σout

1 + Σout
2)

and

freezej(j1|F1 + j2|F2): Mod (Σin
1 +Σs

Σin
2)→ Mod (Σout

1 + Σout
2).

The semantics of the merge operator is rather simple: first the input signatures of

both M1 and M2 have to be extended via renaming to the same input signature; then,

it is possible to perform the sum; finally, the deferred components bound to frozen

components (Σbf
1 and Σbf

2) have to be frozen in order to preserve their status (see the

example below).

With the general approach taken here, when merging two mixins one has to specify

explicitly the shared input components (Σs), the input components to be bound (Σb
i ,

i = 1, 2) and the output components they are bound to (Σbv
i ,Σ

bf
i , i = 1, 2). However, in

concrete instances of the model one can assume an implicit choice. For instance, if Sig

is a boolean signature category (see Appendix A.1) and, correspondingly, the type of

a mixin is uniquely determined by the input and output signatures (Σdef = Σin \ Σout ,

Σvir = Σin ∩ Σout , Σfro = Σout \ Σin), we can set

Σs = (Σdef
1 \ Σout

2) ∩ (Σdef
2 \ Σout

1),

Σb
i = Σdef

i ∩ Σout
ī
, i = 1, 2

Σbv
ī

= Σdef
i ∩ Σvir

ī
, i = 1, 2.

with the proviso that Σout
1 ∩Σout

2 =6 (see typing rule (M-ty) in Figure 11 in the Appendix).

We make this assumption in the example below.

Consider a mixin M1 with two deferred components h and f and one frozen component

g, and a mixin M2 with two deferred components h and g and one virtual component f.

If M1,M2 denote the mixin models F1 and F2, respectively,

F1 = g 7→ (F1)g(h, f),

F2 = = f 7→ (F2)f(h, g, f),

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 422

M1

M2

h

f

h

f

h

f

g

g

f

g

f

-

-

-

-

-

-

-

•

•
•

Fig. 6. Merge

then the semantics of M1 ⊕M2 is

g 7→ Fg(h, f)

f 7→ Ff(h, f)

where F(h, f) = freeze(λ<g, f′>.<(F1)g(h, f), (F2)f(h, g, f)>).

Correspondingly, we obtain the picture in Figure 6. The example formally matches the

typing rule (M-ty) as follows:

M1:<6+ {h}+ {f},6, {g}> = <{h, f},6, {g}>
M2:<6+ {h}+ {g}, {f},6> = <{h, g}, {f},6>

M1 ⊕M2:<6+ {h}+6, {f}, {g}> = <{h}, {f}, {g}>

Note that the deferred components f of M1 and g of M2 are both bound to the

corresponding defined components in the other mixin. However, the way in which this

binding is achieved is different, since f is bound to a virtual component, whereas g is

bound to a frozen component. In the first case, the binding is obtained by sharing the

input components f of both the mixins (no need for freeze), while in the second case the

input component g of M2 is bound to the corresponding output component in M1 by

means of the freeze operator. This asymmetry is also captured by the lambda expression

denoting M1⊕M2: the function that has to be frozen depends on the first parameter (the

g component) and is constant with respect to the second (the f component).

Freeze The freeze operation allows us to make a module independent from the redefinition

of some components, say Σfr ; hence these components, which were virtual, become frozen.

In this way definitions can be encapsulated to prevent unwanted changes due to some

component redefinitions. Note that the converse operation that we have omitted here,

simply corresponds to a sort of type coercion in which one loses the type information

that some components are frozen, and, hence, that their redefinition does not change the

semantics of the other components.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 423

The high-level freeze operator is directly expressed by the low-level freeze.

(F-ty)
M:<Σdef ,Σfr + Σvir ,Σfro>

freeze Σfr in M:<Σdef ,Σvir ,Σfr + Σfro>

(F-sem)
[[M]] = F

[[freeze Σfr in M]] = freezej(F)

where j: Σfr → Σfr + Σout is the obvious injection.

Note that the only effect of the freeze operation is to switch the status of defined

components from virtual to frozen; deferred and frozen components are not modified.

Restrict The restrict operation allows us to ‘cancel’ some definitions in a module, making

the corresponding components deferred. Hence it makes sense only for virtual components.

Note that restrict is different from the hiding described later, since a component whose

definition is deferred remains in the interface of the module and can be redefined, while

a hidden component is no longer visible from the outside.

(RS-ty)
M:<Σdef ,Σrs + Σvir ,Σfro>

restrict Σrs in M:<Σdef + Σrs ,Σvir ,Σfro>

(RS-sem)
[[M]] = F

[[restrict Σrs in M]] = F|Σout

Intuitively, the definitions in Σrs are ‘forgotten’, and hence the corresponding compo-

nents are no longer in the output signature (this is formally expressed by the reduct

functor). However, they are still in the interface of the module as deferred components

(hence the input signature remains the same as before).

Hiding The hiding operation allows us to hide some defined components from the outside.

Hiding deferred components makes no sense, since definitions of other components could

depend on them and in this way it would be impossible to obtain a concrete module

eventually.

(H-ty)
M:<Σdef ,Σhd

v + Σvir ,Σhd
f + Σfro>

hide <Σhd
v ,Σ

hd
f > in M:<Σdef ,Σvir ,Σfro>

(H-sem)
[[M]] = F

[[hide <Σhd
v ,Σ

hd
f > in M]] = (freezej(F))|Σout

where j: Σhd
v → Σout + Σhd

v + Σhd
f is the obvious injection.

Hiding virtual components requires first freezing them in such a way that all the other

definitions will refer from now on to their current definitions. Frozen components can be

simply thrown away by restricting the output signature.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 424

Mk

h

f

k

h

f

g

h h

-

-

-

-

-

Fig. 7. Hiding

local frozen deferred virtual

local - no no no

frozen hiding - no no

deferred no merge - merge

virtual hiding freeze restrict -

Table 1. Status transformations

As an example, consider a mixin M with one deferred component k, two virtual

components f and h and one frozen component g. If M denotes the mixin model F:

F = f 7→ Ff(f, k, h)

g 7→ Fg(f, k, h)

h 7→ Fh(f, k, h).

then the semantics of hide {f, g} in M is

h 7→ F ′h(k, h)

where F ′(k, h) = freeze(λ<f, k′, h′>.F(f, k′, h′)).

Correspondingly, we obtain the picture in Figure 7.

Up to this point we have presented a set of operators for mixin combination. As

already stated, each mixin component has a status; if we also consider locally defined

components (components not present in the mixin signature), the possible statuses are

given by local, frozen, deferred and virtual . Each mixin operator has a different effect

upon the component status, as illustrated in Table 1. The first column and row contain

the initial and final status of a component, respectively. Note that not all status changes

are allowed.

Since a local component is not visible, there is no way to change its status. A frozen

component can only become local by means of hiding. A deferred component can be

transformed into a frozen (respectively, virtual) component by merging it with a frozen

(respectively, virtual) component. A virtual component can become local, frozen or

deferred by means of hiding, freeze or restrict, respectively.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 425

We will now consider some more sophisticated operators, corresponding to constructs

effectively used in programming languages.

Overriding The overriding operator is a non-commutative variant of the merge operator

allowing us to ignore some output component (either virtual or frozen) of one of the

two arguments. This is useful in practice when two mixins have some output components

in common (conflicting definitions) and we want the definitions of one mixin to take

precedence over the definitions of the other.

(O-ty)

M1:<Σu
1 + Σs + Σb

1,Σ
vir
1 + Σrs

v ,Σ
fro
1 + Σrs

f >

M2:<Σu
2 + Σs + Σb

2,Σ
vir
2 ,Σfro

2 >

M1←M2:<Σu
1 + Σs + Σu

2,Σ
vir
1 + Σvir

2 ,Σfro
1 + Σfro

2 >

Σvir
i = Σ′vir

i + Σbv
i , i = 1, 2

Σfro
i = Σ′froi + Σbf

i , i = 1, 2

Σb
1 + Σrs

v = Σbv
2 + Σbf

2

Σb
2 = Σbv

1 + Σbf
1

(O-sem)
[[Mi]] = Fi, i = 1, 2

[[M1←M2]] = freezej(j1|F1|Σout
1

+ j2|F2)

where

j: Σbf
1 + Σbf

2 → Σout
1 + Σout

2 ,

j1: Σin
1 + Σrs

v → (Σin
1 +Σs

Σin
2) + (Σbf

1 + Σbf
2),

j2:Σin
2 → (Σin

1 +Σs
Σin

2) + (Σbf
1 + Σbf

2),

are the obvious injections, with the abbreviations

Σin
i := Σu

i + Σs + Σb
i + Σvir

i , i = 1, 2,

Σin
1 +Σs

Σin
2 := (Σu

1 + Σs + Σu
2) + (Σvir

1 + Σvir
2).

Whence

j1|F1 + j2|F2: Mod ((Σin
1 +Σs

Σin
2) + (Σbf

1 + Σbf
2))→ Mod (Σout

1 + Σout
2)

and

freezej(j1|F1|Σout
1

+ j2|F2): Mod (Σin
1 +Σs

Σin
2)→ Mod (Σout

1 + Σout
2).

The typing rule for the overriding operator is similar to that of merge; indeed, M1←M2

is obtained by first restricting the output components of M1 (cancelling the virtual and

the frozen components in Σrs
v and Σrs

f , respectively) and, then, by merging the resulting

mixin with M2. Indeed, the following fact holds.

Fact 3.1. For any pair of mixin expressions M1 and M2 verifying the typing rule (O-ty),

[[M1←M2]] = [[M1]] |Σout
1
⊕ [[M2]] .

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 426

M1

M2

h

f

h

h

g

f

g

f

g

f

-

-

-

--

- -

•

• •

Fig. 8. Overriding

Again, in the case of boolean signature categories, we can set (see typing rule (O-ty) in

Figure 11 in Appendix)

Σs = (Σdef
1 \ Σout

2) ∩ (Σdef
2 \ Σout

1)

Σb
i = Σdef

i ∩ Σout
ī
, i = 1, 2

Σbv
1 = Σdef

2 ∩ (Σvir
1 \ Σout

2),

Σbv
2 = (Σdef

1 ∪ Σrs
v) ∩ Σvir

2

Σrs
v = Σvir

1 ∩ Σout
2 ,

Σrs
f = Σfro

1 ∩ Σout
2 .

As an example, consider a mixin M1 with one deferred component h, one virtual

component f and one frozen component g, and a mixin M2 with two deferred components

h and g, and one frozen component f. If M1,M2 denote the mixin models F1 and F2,

respectively:

F1 = f 7→ (F1)f(f, h),

g 7→ (F1)g(f, h)

F2 = f 7→ (F2)f(h, g),

then the semantics of M1←M2 is

f 7→ Ff(h)

g 7→ Fg(h)

where

F(h) = freeze(λ<f′, g, f>.<(F1)f(f, h), (F1)g(f, h), (F2)f(h, g)>).

Correspondingly, we obtain the picture in Figure 8. The example formally matches the

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 427

typing rule (O-ty) as follows:

M1:<6+ {h}+6,6+ {f}, {g}+6> = <{h}, {f}, {g}>
M2:<6+ {h}+ {g},6, {f}> = <{h, g},6, {f}>

M1←M2:<6+ {h}+6,6, {f, g}> = <{h},6, {f, g}>

Functional Composition Since mixins are modelled as functions, a natural way for com-

bining two mixins M1 and M2 is functional composition M2◦M1 (provided that types are

compatible). From the graphical point of view, this operation gives sequential composition

of mixins, in opposition to parallel composition given by the merge operation.

Whereas the merge operator allows us to combine together mixins that are mutually

dependent (that is, where some deferred components of one mixin are bound to some

output components of the other, and vice versa), in functional composition the dependence

is only one-way; in this case the mixins can be considered as generic modules (for example,

ML functors) and the functional composition operator corresponds to (a generalization

of) generic instantiation (for example, functor application in ML).

The generalization is given by the fact that the parameter can be in turn parameterized

(that is, have deferred components), as would happen if ML allowed functor composition.

(FC-ty)
Mi:<Σdef

i ,Σvir
i ,Σ

fro
i >, i = 1, 2

M2◦M1:<Σdef
1 ,Σvir

2 ,Σfro
2 >

Σdef
2 = Σout

1

(FC-sem)
[[Mi]] = Fi, i = 1, 2

[[M2◦M1]] = (freezej(j1|F1 + j2|F2))|Σout
2

where j: Σout
1 → Σout

1 + Σout
2 , ji: Σin

i → Σdef
1 + Σout

1 + Σvir
2 , i = 1, 2, are the obvious injections.

The side condition in the typing rule requires that the deferred components of M2

are exactly the output components of M1. We could relax this condition by simply

requiring that each deferred component of M2 is bound to some output component

of M1, but the definition would become more complex, without any gain of expressive

power.

The deferred components of M2◦M1 are the deferred components of M1; the defined

components are those of M2, with the same status; the defined components of M1 (deferred

components of M2) are not present in M2◦M1; in particular, the virtual components of

M1 must be frozen in order to eliminate them from the resulting input signature.

Note that M2◦M1 = hide <Σvir
1 ,Σfro

1 > in (M1 ⊕M2) where the merge M1 ⊕M2 corre-

sponds to the particular case where (cf. rule M-ty):

— Σs =6 (no sharing of deferred components);

— Σbv
1 = Σvir

1 ,Σbf
1 = Σfro

1 , therefore Σb
2 = Σvir

1 + Σfro
1 = Σdef

2 (all the deferred components

of F2 are bound);

— Σbv
2 ,Σ

bf
2 =6, therefore Σb

1 =6 (all the deferred components of F1 are unbound).

Note, finally, that, as a consequence, Σu
1 = Σdef

1 and Σu
2 =6.

As an example, consider a mixin M1 with just one virtual component g, and a mixin

M2 with one deferred component g and one virtual component f. If M1,M2 denote the

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 428

M1 M2f g g g

f

f f-

-

- -•

Fig. 9. Functional Composition

mixin models F1 and F2, respectively:

F1 = g 7→ (F1)g(g),

F2 = f 7→ (F2)f(f, g),

then their functional composition is

f 7→ Ff(f),

where F(f) = freeze(λ<g, f′>.<(F1)g(g), (F2)f(f, g)>).

Correspondingly, we obtain the picture in Figure 9.

The example formally matches the typing rule (FC-ty) as follows:

M1:<6, {g},6>
M2:<{g}, {f},6>

M1◦M2:<6, {f},6>

Referring to Overridden Components We now show how to express by means of our basic

operators over mixin modules an inheritance mechanism like that of Smalltalk or Beta.

This topic is analyzed in detail in Ancona and Zucca (1997); here we just give an outline.

In Smalltalk, subclasses can override methods of parent classes (that is, subclasses

take precedence over parent classes), and subclass methods can invoke original superclass

methods via super .

By contrast, in Beta, subclasses (called subpatterns) cannot override methods of parent

classes, called prefix patterns , (that is, parent classes take precedence over subclasses), and

superclass methods can invoke subclass methods via inner . As pointed out in Bracha

and Cook (1990), these two mechanisms are two different uses of a single underlying

construct; the only difference is the direction of class hierarchy growth.

This underlying construct can be modelled in our context by an asymmetric binary

operator, which we call weak overriding and denote by /−, such that, in M1/−M2,

definitions in M2 take precedence over definitions in M1, as with the overriding operator,

but overridden definitions in M1 remain significant, since definitions in M2 may refer

to them via other (we use this keyword to point out that the mechanism is the same

whichever inheritance relation is used between M1 and M2).

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 429

Formally, we assume that the type of a mixin module is a 4-tuple

<Σoth ,Σdef ,Σvir ,Σfro>;

the corresponding mixin signature will be

<Σoth + Σdef + Σvir ,Σvir + Σfro>.

This models the fact that a module component, say f, appears on the right-hand side of

definitions either in the usual way (written f or self f, that is, the symbols in Σdef + Σvir)

or under the form other f (that is, the symbols in Σoth , which we will call the other-

components). Whenever f is defined, the first form is a (possibly recursive) reference to

its current definition, while the second form refers to a (deferred) alternative definition of

f, which will be provided when composing the module with another by means of the /−
operator (hence, other f is always a deferred component). In the case in which f is not

defined, both the forms refer to a definition to be provided by the outside, though they

are still different with respect to their behaviour after that definition has actually been

provided. Indeed, other f is permanently associated with this definition, while f could be

redefined later.

(WO-ty)

M1:<Σoth
1 + Σoth

s ,Σu
1 + Σs + Σb

1,Σ
vir
1 + Σrs

v ,Σ
fro
1 + Σrs

f >

M2:<Σoth
2 + Σoth

s + Σoth
b ,Σu

2 + Σs + Σb
2,Σ

vir
2 ,Σfro

2 >

M1/−M2:<Σoth
1 + Σoth

s + Σoth
2 ,Σu

1 + Σs + Σu
2,Σ

vir
1 + Σvir

2 ,Σfro
1 + Σfro

2 >

where

Σvir
i = Σ′

vir
i + Σbv

i , i = 1, 2

Σfro
i = Σ′

fro
i + Σbf

i , i = 1, 2

Σb
1 + Σrs

v = Σbv
2 + Σbf

2

Σb
2 = Σbv

1 + Σbf
1

Σoth
b = Σrs

v + Σrs
f

(WO-sem)
[[Mi]] = Fi, i = 1, 2

[[M1/−M2]] = (freezej(j1|F1 + j2|F2))|Σout
1

+Σout
2

where

j : Σoth
b + Σbf

1 → +Σbf
2 Σout

1 + Σout
2 + Σrs

v + Σrs
f ,

j1 : Σoth
1 + Σoth

s + Σin
i + Σrs

v →
(Σoth

1 +Σoth
s

Σoth
2) + Σoth

b + (Σin
1 +Σs

Σin
2) + (Σbf

1 + Σbf
2),

2 : Σoth
2 + Σoth

s + Σoth
b + Σin

i →
(Σoth

1 +Σoth
s

Σoth
2) + Σoth

b + (Σin
1 +Σs

Σin
2) + (Σbf

1 + Σbf
2),

are the obvious injections, with the abbreviations

Σin
i := Σu

i + Σs + Σb
i + Σvir

i , i = 1, 2,

Σin
1 +Σs

Σin
2 := (Σu

1 + Σs + Σu
2) + (Σvir

1 + Σvir
2),

Σoth
1 +Σoth

s
Σoth

2 := Σoth
1 + Σoth

s + Σoth
2 .

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 430

Whence

j1|F1 + j2|F2:Mod ((Σoth
1 +Σoth

s
Σoth

2) + Σoth
b + (Σin

1 +Σs
Σin

2) + (Σbf
1 + Σbf

2))→

Mod (Σout
1 + Σrs

v + Σrs
f + Σout

2)

and

freezej(j1|F1|Σout
1

+ j2|F2):Mod ((Σoth
1 +Σoth

s
Σoth

2) + (Σin
1 +Σs

Σin
2))→

Mod (Σout
1 + Σrs

v + Σrs
f + Σout

2)

and

freezej(j1|F1|Σout
1

+ j2|F2)
|Σout

1
+Σout

2

:Mod ((Σoth
1 +Σoth

s
Σoth

2) + (Σin
1 +Σs

Σin
2))→

Mod (Σout
1 + Σout

2).

The same considerations made for overriding (rules (O-ty) and (O-sem)) also apply

in this case. Moreover, one has to deal with the other-components. The signature Σoth
s

represents the other-components to be shared (consider, for example, two Smalltalk classes,

parent and heir, referring via super to a component defined in a common ancestor). The

other-components in Σoth
b are those to be bound – note that, by definition, only the

other-components of M2 can be bound, and that they have to be bound to the overridden

components of M1 (represented by Σrs
v +Σrs

f). The remaining other-components are neither

shared nor bound.

As an example, consider a mixin M1 with one other-component o.f, one virtual com-

ponent g and one frozen component f, and a mixin M2 with two other-components o.f

and o.g, and one frozen component g. If M1,M2 denote the mixin models F1 and F2,

respectively:

F1 = g 7→ (F1)g(g, o.f),

f 7→ (F1)f(g, o.f)

F2 = g 7→ (F2)g(o.g, o.f),

then the semantics of M1/−M2 is

f 7→ Ff(o.f)

g 7→ Fg(o.f)

where F(o.f) = freeze(λ<g′, f, g>.<(F1)g(g, o.f), (F1)f(g, o.f), (F2)g(g
′, o.f)>).

Correspondingly, we obtain the picture in Figure 10.

The example formally matches the typing rule (WO-ty) as follows:

M1:<6+ {o.f},6+6+6,6+ {g}, {f}+6> = <{o.f},6, {g}, {f}>
M2:<6+ {o.f}+ {o.g},6+6+6,6, {g}> = <{o.f, o.g},6,6, {g}>

M1/−M2:<6+ {o.f}+6,6+6+6,6+6, {f}+ {g}> = <{o.f},6,6, {f, g}>
As mentioned above, the interested reader can find in Ancona and Zucca (1997) a

presentation devoted to the treatment of different overriding operators in the mixin

framework described in this paper.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 431

M1

M2

o.f

g

o.f

o.f

o.g

g

f

g

f

g

-

-

-

--

-

•

•

Fig. 10. Inheritance

4. Dealing with types

In this section we show that the formal framework we have presented up to this point

needs to be refined in order to handle type definitions in modules properly.

First, we consider mixin signatures. We recall that a mixin signature has been formalized

by a pair of signatures <Σin ,Σout> where Σin = Σdef + Σvir , Σout = Σvir + Σfro , with

Σdef ,Σvir ,Σfro signatures corresponding to the deferred, frozen and virtual components,

respectively. This expresses in an abstract way the fact that the only relation between the

input and the output signatures is given by the virtual components, which are shared –

in particular, if there are no virtual components, Σin and Σout can be considered as two

independent signatures.

Let us now return to the example of sets and maps of Section 1.1. Considering the mixin

signature SET, it is easy to see that, as already pointed out earlier, this signature cannot

be divided into two independent subsignatures corresponding to deferred and defined

components, respectively. This is because the functionality of deferred components may

contain defined types, and vice versa. Hence, we have to consider signatures in which there

is an explicit notion of sorts modelling type components. In this specialized framework

a mixin signature can be defined as a 4-tuple <S in ,Σin , Sout ,Σout> where S in and Sout

are two disjoint sets of symbols corresponding to deferred and defined type components,

respectively, and Σin , Σout are two signatures over S in ∪Sout , which have the same meaning

as before.

The assumption that S in and Sout are disjoint sets models the fact that type components

cannot be virtual. Indeed, referring again to the example of Section 1.1, considering, for

example, the mixin Set, we can see that it makes sense to replace the definition of either

the is in or the restrict function by a new definition, but not the definition of the

type set – indeed the well-formedness of the definitions of is in and restrict relies

on the given implementation of this type. Hence, type components in signatures must be

distinguished explicitly from other components for a second reason also – that they are

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 432

components that cannot be redefined, since it is not true that other definitions make sense

for (formally, are parameterized by) any possible definition of them†.
Correspondingly, at the semantic level, we need to refine our notion of a mixin model

as a pair <H, F> where:

— H is a function giving the semantic counterpart of type definitions in a module,

in terms of deferred types. For instance, in the mixin Set, this function gives an

interpretation of the type set for each given interpretation of the type map. In this

example H is a constant function, since the definition of the type set does not depend

on map, but in general type definitions in a mixin could depend on deferred types in a

mutually recursive way. Think, for example, of two mixin modules M1 and M2 whose

type components are as follows:

type forest deferred
M1

datatype tree = pair of int * forest

datatype forest = empty | add of tree * forest
M2

type tree deferred

We assume that the denotation of a type component is the set of its possible values,

and hence H is more precisely a function:

H: SSet(S in)→ SSet(Sout)

where SSet(S) denotes the set of S-sorted sets (see Definition 4.3 below). Moreover,

H must be continuous (in the usual sense, see A.2 in the Appendix); indeed, referring

to the above example, when we merge M1 and M2, we get a mixin M1 +M2 with no

deferred type components (S in =6) and two defined type components

datatype forest = empty | add of tree * forest
M1 +M2

datatype tree = pair of int * forest

whose interpretation is the least fixed point of the above recursive definition.

— F is a family of (total) functions indexed over possible interpretations Y of deferred

types (formally, Y ∈ SSet(S in)), such that, for any Y , FY gives the semantic counterpart

of other (non-type) definitions in a module, in terms of input components, for a fixed

interpretation of deferred (Y) and defined (H(Y)) types.

Formally, denoting by ModX(Σ) the class of the Σ-models with carrier X (that is,

where the interpretation of sorts is fixed to be as in X),

FY : ModY+H(Y)(Σ
in)→ ModY+H(Y)(Σ

out)

For instance, in the mixin Set, any Y gives an interpretation (set of values) for the

type map, and, correspondingly, FY gives an interpretation of the functions is in and

restrict for each given interpretation of the functions empty map, apply, update

and def dom; the domains and codomains of all these functions are fixed for each

index Y .

† A less drastic solution, which we leave for further work, would be to allow the simultaneous redefinition of

an abstract type together with all its primitives.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 433

The formal definitions follow.

4.1. Sorted core frameworks

We define a sorted signature category as a particular category of signatures where a

signature has a set of sorts , and, conversely, a set of sorts can be seen as a particular

(empty) signature.

Definition 4.1. A sorted signature category is a triple <Sig, Sorts ,6−>, where Sig is a

signature category and Sorts: Sig→ Set, 6 : Set→ Sig are functors such that

— Sorts is a right adjoint of 6− with the identity as unit of the adjunction; we use ϕ to

denote the isomorphism ϕ:HomSet(<S, Sorts(Σ)>) ∼= HomSig(<6S ,Σ>);

— for each pair of signatures Σ1 and Σ2 with Sorts(Σi) = Si, i = 1, 2, there exists a

pushout Σ (denoted by Σ1⊕Σ2) of Σ1

f1←−6S1∩S2

f2−→ Σ2 such that Sorts(Σ) = S1 ∪S2,

where fi = ϕ(εi), with εi the inclusion from S1 ∩ S2 into Si, i = 1, 2.

If Σ ∈ Sig with Sorts(Σ) = S , we say that Σ is over the set of sorts S; 6S is called the

empty signature over S .

Example 4.2. The category of algebraic many-sorted signatures is a sorted signature

category. The functor Sorts returns for any signature its set of sorts, and for any morphism

its component over sorts, whereas for any set of sorts S ,6S is the signature over S having

no operation symbols, and for any function f: S1 → S2, 6f is the unique signature

morphism from 6S1
to 6S2

having f as component over sorts.

Corresponding to the fact that signatures have a set of sorts, we consider model parts

where models are (sorted) sets enriched by some structure, such as operations in the case

of standard algebras. We call them concrete model parts, since the category of Σ-models,

for any signature Σ, is a concrete model category (Bidoit and Tarlecki 1996), that is, a

particular case of a concrete category (Adamek et al. 1990); the same notion has been

called a static framework in a context where the aim was to enrich such a framework by

dynamic features (Ancona and Zucca 1996; Zucca 1996).

Definition 4.3. The functor SSet: Setop → Set is defined as follows:

— for any set S , the elements of SSet(S) are the S-sorted sets;

— for any map σ: S1 → S2 and any S2-sorted set A, (A|σ)s = Aσ(s), ∀ s ∈ S1.

Note that SSet is, in fact, the algebraic model functor to the algebraic signature <S,6>,

which is known to preserve colimits. Therefore, for any X1 in SSet(S1) and X2 in SSet(S2),

there exists the amalgamated sum X1 +X2 in SSet(S1 + S2).

Definition 4.4.

A concrete model part is a 4-tuple suchthatatFrameTuple where

— <Sig, Sorts> is a sorted signature category;

— <Sig,Mod> is a model part;

— |−| is a natural transformation, |−|:Mod
•→ SSet ◦ Sortsop , such that, for any S ∈ Set,

|−|6S
is an embedding. For any Σ-algebra A, |A|Σ is called the carrier of A, and

denoted by |A|, or just A when there is no ambiguity.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 434

The assumption that |−|6S
is an embedding ensures that models over an empty signature

are essentially sorted sets.

Definition 4.5. A concrete model part is regular iff <Sig,Mod> is a regular model part.

Definition 4.6. A sorted core framework is a tuple <Sig, Sorts ,Mod , |−|, freeze> where

— <Sig, Sorts ,Mod , |−|> is a regular concrete model part;

— freeze is a family of functions

freezeX,Σ: (ModX(Σ)→ ModX(Σ))→ ModX(Σ)

indexed over pairs <X,Σ> with Σ signature over S , X ∈ SSet(S), where ModX(Σ)

denotes the class of Σ-models A such that |A| = X.

Example 4.7. Many sorted partial algebras form a sorted core framework. Indeed, partial

algebras are pairs consisting of a sorted set together with the interpretation of the

operation symbols, and hence the carrier is simply obtained by taking the first component.

Then, a function F: ModX(Σ)→ ModX(Σ) transforms tuples of partial functions into tuples

of partial functions, and freezeX,Σ is the least fixed point of F , whenever F is continuous.

Since in this case mixin models correspond with continuous functions F , we can disregard

the behaviour of freeze over non-continuous functions.

4.2. Sorted mixin signatures and models

We now give the refined formal definition of mixin signatures and models. In this

subsection, we assume a fixed sorted core framework <Sig, Sorts ,Mod , |−|, freeze>.

Definition 4.8. A sorted mixin signature is a 4-tuple <S in ,Σin , Sout ,Σout>, where S in∩Sout =

6 and Σin , Σout are two signatures over S in ∪ Sout . We call Σin and Σout the input and

the output signatures, respectively, and S in and Sout the set of input and output sorts,

respectively.

Intuitively, a sorted mixin signature models the syntactic interface of a mixin module

with type components. The input and output sorts model deferred and defined type

components, respectively. Since defined components may involve deferred types, and

conversely, Σin and Σout are signatures over the full set of sorts.

Definition 4.9. A sorted mixin model over a mixin signature <S in ,Σin , Sout ,Σout> is a pair

<H, F>, where

— H: SSet(S in)→ SSet(Sout) is a continuous function (see A.2 in the Appendix);

— F is a family of functions,

FY : ModY+H(Y)(Σ
in)→ ModY+H(Y)(Σ

out),

indexed over Y ∈ SSet(S in).

Intuitively, the first component is the semantic counterpart of the type definitions in

a module: these definitions give a semantic value to defined types (formally, a sorted set

over Sout), once a semantic value has been provided for deferred types (formally, a sorted

set over S in). The second component is the semantic counterpart of definitions of other

components (for example, functions): these definitions give a semantic value to the output

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 435

components (formally, a model over Σout), once a semantic value has been provided for

input components (formally, a model over Σin). The semantic value of type components

is the same (the amalgamated sum Y + H(Y)) both in the argument and in the result

model.

We show now that sorted mixin signatures and models constitute a model part in the

sense of Definition 2.1.

Definition 4.10. A morphism from <S in ,Σin , Sout ,Σout> to <S ′in ,Σ′in , S ′out
,Σ′out

> is a pair

<σin : Σin → Σ′
in
, σout : Σ′

out → Σout>,

where σin , σout are signature morphisms such that Sorts(σin)|S in and Sorts(σout)|S ′out turns

out to be functions from S in to S ′in and from S ′out to Sout , respectively (henceforth denoted

by fin and fout , respectively), verifying the following properties:

(idS ′ in + f out) ◦ Sorts(σin) = fin + idS out

(fin + idS out) ◦ Sorts(σout) = idS ′ in + f out

It is not hard to prove that if we define morphism composition component-wise, then we

obtain a category, which we denote by SortMixSig.

Note that the conditions

(idS ′ in + f out) ◦ Sorts(σin) = fin + idS out

(fin + idS out) ◦ Sorts(σout) = idS ′ in + f out

on sorted signature morphisms ensure that fin and fout are surjective and Sorts(σin)|Sout

and Sorts(σout)|S ′ in are injective. This is needed to make SortMixMod a functor (see

Definition 4.12 below).

Lemma 4.11. Let σin : Σin → Σ′in , σout : Σ′out → Σout be signature morphisms. Then, we can

correctly restrict the domain and codomain of the operator σin | |σout defined in Section 2.2

to

σin | |σout : ModXout (Σout)Mod
Xin (Σin) → ModY out (Σ′

out
)Mod

Y in (Σ′ in)

whenever

— Xout
|Sorts(σout) = Y out ;

— Y in
|Sorts(σin) = X in .

Proof. The result is a direct consequence of the fact that |−|:Mod
•→ SSet ◦ Sortsop is

a natural transformation.

Definition 4.12. Let SortMixMod : SortMixSigop → Set be defined as follows:

— for any sorted mixin signature <S in ,Σin , Sout ,Σout>,

SortMixMod (<S in ,Σin , Sout ,Σout>)

is the set of the sorted mixin models over <S in ,Σin , Sout ,Σout>;

— for any morphism

<σin , σout>:<S ′
in
,Σ′

in
, S ′

out
,Σ′

out
>→ <S in ,Σin , Sout ,Σout>

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 436

and for any sorted mixin model <H, F> over <S in ,Σin , Sout ,Σout>,

SortMixMod (<σin , σout>)(<H, F>) = <H ′, F ′>

where

H ′ = fin |H|fout (= λY .H(Y|fin)|fout),

F ′Y = σin |(FZ)|σout ,with Z = Y|fin , for any Y ∈ SSet(S ′
in

).

We denote <H ′, F ′> by σin |<H, F>|σout .

Fact 4.13. The functor SortMixMod is well-defined.

Proof. The function H ′ is continuous by virtue of Fact A.6 in the Appendix. The

functoriality of SortMixMod is obvious. It remains to show that σin |(FZ)|σout is well-defined.

(H(Z) + Z)|Sorts(σout) = (by the amalgamation property)

(H(Z) + Y)|(idS out +f in)◦Sorts(σout) = (by the definition of SortMixSig)

(H(Z) + Y)|fout +id
S ′ in

= (by the amalgamation property)

H(Z)|fout + Y = H ′(Y) + Y

(H ′(Y) + Y)|Sorts(σin) =

(H(Z)|fout + Y)|Sorts(σin)
= (by the amalgamation property)

(H(Z)|fout + Y)|(fout +id
S ′ in)◦Sorts(σin)

= (by the definition of SortMixSig)

(H(Z)|fout + Y)|idS out +f in = (by the amalgamation property)

H(Z) + Z

Hence we conclude by Lemma 4.11.

Definition 4.14. Let Fi: ModX(Σin)→ ModYi (Σ
out
i), i = 1, 2, be two functions, with Y1|S =

Y2|S , S = Sorts(Σout
1) ∩ Sorts(Σout

2). Then

F1 ⊕ F2: ModX(Σin)→ ModY1⊕Y2
(Σout

1 ⊕ Σout
2)

is the function defined by

(F1 ⊕ F2)(A) = F1(A)⊕ F2(A), for any A ∈ ModX(Σin).

Note that F1(A) ⊕ F2(A) is well-defined since |F1(A)||S = Y1|S = Y2|S = |F2(A)||S ,

therefore, by Definition 4.4, (F1(A))|6S
= (F2(A))|6S

. Moreover, by the naturality of |−|
and the amalgamation property, |F1(A)⊕ F2(A)||Sorts(Σout

i
) = |(F1(A)⊕ F2(A))|Σout

i
| = |Fi(A)|,

i = 1, 2, therefore, |F1(A)⊕ F2(A)| = |F1(A)| ⊕ |F2(A)| = Y1 ⊕ Y2, and F1(A) ⊕ F2(A) ∈
ModY1⊕Y2

(Σout
1 ⊕ Σout

2).

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 437

Definition 4.15. Let <Hi, Fi> be models over <S in
i ,Σ

in
i , S

out
i ,Σout

i >), i = 1, 2, with Sout
1 ∩

Sout
2 =6. Then <H, F> = <H1, F1>]<H2, F2> is the sorted mixin model over

<(S in
1 ∪ S in

2) \ (Sout
1 ∪ Sout

2),Σin
1 ⊕ Σin

2 , S
out
1 ∪ Sout

2 ,Σout
1 ⊕ Σout

2 >

defined by:

for any Y ∈ SSet((S in
1 ∪ S in

2) \ (Sout
1 ∪ Sout

2))

H(Y) = fix (λZ.H1(Y|S in
1
\Sout

2
+ Z|S in

1
∩Sout

2
) +H2(Y|S in

2
\Sout

1
+ Z|S in

2
∩Sout

1
))

FY = Σin
1
⊕Σin

2
|F1Y1

⊕ Σin
1
⊕Σin

2
|F2Y2

,with Yi = (Y +H(Y))|S in
i
, i = 1, 2.

Fact 4.16. The sum <H1, F1>]<H2, F2> is well-defined.

Proof. The continuity of H comes directly from Facts A.6 and A.7 in the Appendix

and the fact that fix is continuous.

By the amalgamation and the fixed point property, we can derive the following equalities:

(Y +H(Y))|Sorts(σin
1

) = (Y +H(Y))|Sout
1
∪S in

1

= (Y +H(Y))|Sout
1

+ (Y +H(Y))|S in
1

= H(Y)|Sout
1

+ (Y +H(Y))|S in
1

= H1(Y|S in
1
\Sout

2
+H(Y)|S in

1
∩Sout

2
) + (Y +H(Y))|S in

1

= H1((Y +H(Y))|S in
1

) + (Y +H(Y))|S in
1

= H1(Y1) + Y1.

Analogously, (Y +H(Y))|Sorts(σin
2

) = H2(Y2) + Y2, hence, by Lemma 4.11, Σin
1
⊕Σin

2
|Fi|Yi is

well-defined, for i = 1, 2.

Now set S = (S in
1 ∪ Sout

1) ∩ (S in
2 ∪ Sout

2). Then

(H1(Y1) + Y1)|S = (Y +H(Y))|S in
1
∪Sout

1
|S

= (Y +H(Y))|S

= (Y +H(Y))|S in
2
∪Sout

2
|S

= (H2(Y2) + Y2)|S ,

therefore Σin
1
⊕Σin

2
|F1|Y1

⊕ Σin
1
⊕Σin

2
|F2|Y2

is well-defined.

Moreover,

(H1(Y1) + Y1)⊕ (H2(Y2) + Y2) = (Y +H(Y))|S in
1
∪Sout

1
⊕ (Y +H(Y))|S in

2
∪Sout

2

= Y +H(Y),

hence

Σin
1
⊕Σin

2
|F1|Y1

⊕ Σin
1
⊕Σin

2
|F2|Y2

∈ ModY+H(Y)(Σ
out
1 ⊕ Σout

2).

Definition 4.17. Let <H, F> be a model over <S in ,Σin ⊕ Σfr , Sout ,Σout>, and let

σ: Σfr → Σout be a morphism such that Sorts(σ) = idS in∪S out . Then

<H, F ′> = freezeσ(<H, F>)

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 438

is the model over <S in ,Σin , Sout ,Σout> defined by

for any Y ∈ SSet(S in), F ′Y = λA.freezeY+H(Y),Σout (λB.FY (A⊕ B|σ)).

Note that |A| = Y +H(Y) = |B| = |B||Sorts(σ) = |B|σ|, therefore A|6
S in∪Sout

= B|σ|6
S in∪Sout

,

A⊕ B|σ is well-defined and |A⊕ B|σ| = Y +H(Y).

4.3. Basic operators

We can also in the case of sorted core frameworks define the analogue of the three basic

operators defined in Section 2.3.

Sum If <Hi, Fi> are sorted mixin models over <S in
i ,Σ

in
i , S

out
i ,Σout

i >), i = 1, 2, with Sout
1 ∩

Sout
2 =6, then <H, F> = <H1, F1>]<H2, F2> denotes a sorted mixin model over

<(S in
1 ∪ S in

2) \ (Sout
1 ∪ Sout

2),Σin
1 ⊕ Σin

2 , S
out
1 ∪ Sout

2 ,Σout
1 ⊕ Σout

2 >.

We have extended the basic operator] rather than + as defined in Section 2.3 since,

in the case of sorts, the requirement that the two input signatures must coincide is too

restrictive, since S in
1 = S in

2 , Σin
1 = Σin

2 and Sout
1 ∩ Sout

2 =6 would imply Sout
1 = Sout

2 =6.

However, this sum operator allows the sharing of the input sorts (S in
1 and S in

2 are not

required to be disjoint) and of the sorts in the resulting input and output signatures

(Σin
1 ⊕ Σin

2 and Σout
1 ⊕ Σout

2 , respectively). Indeed, the condition S in ∩ Sout = 6 on sorted

mixin signatures implies that mixins cannot have virtual type components and that, as a

result, types cannot be frozen. Therefore, when combining two mixins we must assume that

the common sorts in the two mixins just represent the same sorts (in other words, there is

no duplication of equal sorts). This allows us to correctly bind deferred types of one mixin

to the defined ones of the other mixin, and conversely; as a consequence, the resulting set

of input sorts is given by (S in
1 ∪S in

2)\(Sout
1 ∪Sout

2), so that the sorts in S in
1 ∩Sout

2 and S in
2 ∩Sout

1

are no longer deferred. Notice that ((S in
1 ∪S in

2)\ (Sout
1 ∪Sout

2))∩ (Sout
1 ∪Sout

2) =6 (no virtual

type components), and that ((S in
1 ∪S in

2)\ (Sout
1 ∪Sout

2))∪ (Sout
1 ∪Sout

2) = S in
1 ∪S in

2 ∪Sout
1 ∪Sout

2

(no new type is added, and no pre-existent type is deleted).

Reduct For any morphism

<σin , σout>:<S ′
in
,Σ′

in
, S ′

out
,Σ′

out
>→ <S in ,Σin , Sout ,Σout>

and for any sorted mixin model

<H, F> over <S in ,Σin , Sout ,Σout>,

σin |<H, F>|σout denotes a sorted mixin model over <S ′in ,Σ′in , S ′out
,Σ′out

>.

Freeze If <H, F> is a model over <S in ,Σin ⊕ Σfr , Sout ,Σout>) and σ: Σfr → Σout is a

morphism such that Sorts(σ) = idS in∪S out , then freezeσ(<H, F>) denotes a sorted mixin

model over <S in ,Σin , Sout ,Σout>.

Notice that the type components are not frozen, since they are not virtual; indeed the

set S in does not change and the morphism σ: Σfr → Σout is the identity over the sorts.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 439

However, the components to be frozen (Σfr) have sorts ranging over S in ∪ Sout , therefore

the two signatures Σfr and Σin are not completely disjoint, but they share the sorts.

5. Related research and further work

As mentioned in the introduction, the name mixin was first used in the LISP community

(Moon 1986; Keene 1989). However, the first clear formulation of the concept was given

in Bracha and Cook (1990), where the possibility of explicitly naming mixins is proposed

as a useful linguistic feature (mixin-based inheritance) and it is shown that the inheritance

mechanism of Smalltalk and Beta can both be seen as the same mixin combinator, as

proved in a formal context in this paper.

Later, G. Bracha (Bracha 1992; Bracha and Lindstrom 1992) proposed a set of module

operators (called Jigsaw), which provides a framework for modularity independent of

a particular computational paradigm. In other words, Jigsaw defines a language of

mixin modules parameterized by the programming language used for defining module

components (the core language). For instance, in Bracha (1992), Jigsaw is instantiated

over Modula-3 obtaining an extension of this language supporting the new operators for

module combination.

In Banavar (1995) and Banavar and Lindstrom (1996), G. Banavar extended Bracha’s

work by realizing an object-oriented application framework (called Etyma) and by in-

troducing a composition operation for hierarchical nesting. More importantly, Banavar

has shown that the notion of mixin module, intended as a collection of self-referencing

components, can be successfully applied within a wide range of systems by building four

different tools as completions of Etyma: an interpreter for a module extension to the func-

tional programming language Scheme; a programmable linker; a compiler front-end for

a compositional interface definition language; and a compositional document processing

system.

In Van Limbergehn and Mens (1996), a combination of just two operators on mixin

modules (a variant of hiding and inheritance with a super mechanism) is proposed as

a solution to multiple inheritance problems such as name collisions. The aim in Van

Limbergehn and Mens (1996) is to limit the flexibility of basic operations for mixin

composition by defining on top of them more restrictive operators encouraging orthogo-

nalization of concepts and reinforcing software reliability. For instance, in contrast to our

other mechanism, the super mechanism proposed in Van Limbergehn and Mens (1996)

allows one to refer only to the method that is overridden by the definition where super is

invoked.

Another paper involving mixin modules is Duggan and Sourelis (1996), where they

are proposed as a new construct for SML. In Duggan and Sourelis (1996) mixins can

be combined by means of a binary operator ⊗ that allows one to mix together not

only definitions of different components (like our merge), but also two definitions for

the same component (data-type or function). This is possible, since in SML data-types

and functions are defined by cases, thus it makes sense to consider the ‘union’ of two

definitions. The ⊗ operator is non-commutative, since, in M1⊗M2, M1 can refer to further

extensions of function definitions provided by M2 via an inner mechanism, while inner

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 440

calls in M2 remain open, as in our weak overriding operator. However, no possibility of

overriding is considered (no virtual components): the main aim is to introduce in SML

modules the possibility that recursive definitions span module boundaries. The proposal

turns out to be very specific and tied to the features of SML.

Finally, Bono et al. (1996) presents a lambda calculus of incomplete objects , that is,

objects (records of methods) that may be typed even though they contain references to

methods that are yet to be added; it is easy to recognize that these incomplete objects are

mixins.

The work of Bracha has been by far the most important source of inspiration of our

own work. We are indebted to Jigsaw both for the overall idea of defining a language of

mixin modules parameterized by the underlying core language and for some operators,

such as restrict . However, the idea of defining a module system as a small language of its

own constructed on top of the base language, on which as few as possible assumptions

are made, is now becoming a standard approach, see, for example, some recent work

on type-theoretic foundations of SML-like modules (Harper and Lillibridge 1994; Leroy

1994; Leroy 1996; Jones 1996; Courant 1997; Courant 1997a). A paper that can be

taken as representative of this point of view, summarized as a slogan in the title (‘A

modular module system’), is Leroy (1996), whose aim is to give a constructive proof of the

validity of the idea. To this end, it presents (the implementation by an SML functor of) a

transformation that takes a core language and its associated type-checking functions, and

returns an SML-style modular language with its type-checker. The input interface of the

functor gives sufficient conditions for an existing or future language to support SML-style

modules.

The first main contribution of our paper is to give a rigorous counterpart at the

semantic level of this two-level view of a modular language. In our opinion, the work

we have done is very much in the spirit of Leroy (1996) cited above. Indeed, we also

describe a transformation that takes as parameter a core language and gives a modular

language (in particular, a language of mixin modules): the difference is that in our case

we deal with the semantic descriptions of the two levels. In that respect our work is new

with respect to Bracha (1992), where, though supported as a methodological principle, the

parameterization by the core language is not explicitly formalized, and the independence

of the proposed framework from the object-oriented nature of the language is not always

clearly stated.

The second main contribution of our paper is to provide an analysis of the formal

basis of the relationship between different operators over mixins, identifying three basic

operators that allow us to express as derived constructs a variety of other operators closer

to concrete programming languages. In Ancona and Zucca (1998), we develop this aspect

further by providing a set of algebraic laws holding between the operators (for example,

commutativity and associativity of merge), and proving a normal form theorem in the

spirit of Bergstra et al. (1990).

Finally, an important byproduct of our research is to have recognized the need for

handling type definitions in mixins differently from other components. This aspect should

be analyzed at a deeper level as, more generally, should the relation of our approach to

the type-theoretic analysis of module languages (see below).

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 441

Some continuation of the work done in this paper is in the already cited Ancona

and Zucca (1998), and in Ancona (1996) and Ancona and Zucca (1997), which are both

concerned with the instantiation of our framework in concrete cases. In Ancona (1996),

a concrete mixin language is obtained by fixing a particular core framework. In Ancona

and Zucca (1997) we give the translation in terms of our operators of various overriding

mechanisms present in programming languages, and we are able, in this way, to formalize

the relation between these different versions (this paper largely extends the work outlined

in Section 3 here). Finally, a comprehensive survey of our work on mixins is given in

Ancona (1998).

The most interesting aspect left for future research is, as mentioned above, the relation

of our approach to the work on type aspects of module languages. We pointed out in

Section 4 that our present choice of forbidding type redefinitions could be relaxed to allow

abstract data type definitions in the sense of SML. The introduction in our framework of

the notion of manifest types (types whose definitions are visible in the module signature

(Leroy 1994)) would allow mixins to share type definitions. Finally, we plan to develop

(within a common project) an integration of our mixin language with the functional

module calculus defined in Courant (1997a), which enjoys the important property of

subject reduction and guaranteeing true separate compilation.

Another topic of particular relevance is the relation between mixins and parameterized

modules, like SML functors. In this paper, we have already given an interesting result

showing that functional application can be expressed in terms of our three basic operators.

Since overriding can be defined as a derived operator as well, we have actually shown that

both inheritance and genericity (often considered two opposite approaches to increasing

software modularity, and the subject of great debate in the object-oriented community

(Meyer 1986)) can be seen as two higher level mechanisms expressible by the same set of

primitives.

Acknowledgments.

We warmly thank the anonymous referee for the accurate revision and the helpful

comments on a preceding version of this paper.

Appendix A.

A.1. Boolean signature categories

Notation. If C is a category, then |C| denotes the class of its objects.

Definition A.1. An inclusive signature category is a pair <Sig,I> where Sig is a category

whose objects are called signatures and I is a subcategory of Sig with |I| = |Sig| a

distributive lattice – we call the morphisms in I inclusions , use the notation Σ1 ⊆ Σ2 if

there is an inclusion from Σ1 into Σ2, and denote this (unique) inclusion by iΣ1 ,Σ2
. We call

union (denoted by Σ1 ∪ Σ2) and intersection (denoted by Σ1 ∩ Σ2), respectively, the join

and the meet of Σ1 and Σ2 in I.

The pair <Sig,I> is denoted simply by Sig when there is no ambiguity.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 442

In the original definition of inclusive categories (Ancona and Zucca 1996; Diaconescu

et al. 1993), which is at the basis of the above definition, a property of unique factorization

of any morphism as an epimorphism composed with an inclusion is required, which

corresponds to the intuition that any morphism defines an ‘image’ object that is included in

the codomain. However, this property is unnecessary for the following technical treatment.

Definition A.2. A boolean signature category is an inclusive signature category where:

— there exists the bottom element 6;

— let us say that two signatures Σ1 and Σ2 are disjoint , and write Σ1 | Σ2, if Σ1∩Σ2 =6;

then, for any Σ1,Σ2 ∈ |Sig|, with Σ1 ⊆ Σ2, there exists a signature, denoted by Σ2 \Σ1,

such that (Σ2 \ Σ1) ∪ Σ1 = Σ2 and (Σ2 \ Σ1) | Σ1.

We extend the definition of Σ2 \Σ1 to arbitrary pairs of signatures, by letting Σ2 \Σ1 =

Σ2 \ (Σ2 ∩ Σ1).

Fact A.3. For any Σ1,Σ2 ∈ |Sig|, Σ2 \ Σ1 is the unique signature such that (Σ2 \ Σ1) | Σ1

and (Σ2 \ Σ1) ∪ Σ1 = Σ2 ∪ Σ1.

Proof. By definition (Σ2 \ Σ1) ∪ (Σ1 ∩ Σ2) = Σ2, hence (Σ2 \ Σ1) ∪ Σ1 = Σ2 ∪ Σ1. Since

Σ2 \ Σ1 ⊆ Σ2, we have (Σ2 \ Σ1) ∩ Σ1 = (Σ2 \ Σ1) ∩ Σ1 ∩ Σ2, and then we conclude by

definition.

For the uniqueness, assume that Σ′ and Σ′′ are such that Σ′ | Σ1, Σ′′ | Σ1 and Σ′ ∪ Σ1 =

Σ2 ∪ Σ1, Σ′′ ∪ Σ1 = Σ2 ∪ Σ1. Then

Σ′ = Σ′ ∪ (Σ′′ ∩ Σ1)

= (Σ′ ∪ Σ′′) ∩ (Σ′ ∪ Σ1)

= (Σ′ ∪ Σ′′) ∩ (Σ2 ∪ Σ1)

= (Σ′ ∪ Σ′′) ∩ Σ2

= Σ′ ∪ Σ′′

Analogously, we can show that Σ′′ = Σ′ ∪ Σ′′.

In the context of boolean signatures, it is enough to associate with each mixin expression

a type information of the form Σin → Σout ; indeed, the type information consisting of the

three components <Σdef ,Σvir ,Σfro> associated with a mixin expression in Section 3 is in

this case <Σin \ Σout ,Σin ∩ Σout ,Σout \ Σin>.

Correspondingly, the typing rules for the operators of the kernel language defined in

Section 3 can be rewritten as shown in Figure 11. We have omitted the semantic rules,

since they can be simply obtained by specializing the rules in Section 3 according to the

new typing rules.

A.2. The domain of S-sorted sets

For the definitions concerning domain theory we refer to Tennent (1991).

Definition A.4. For any set S , let vS denote the partial order over SSet(S) defined as

follows:

X vS Y iff for any s ∈ SXs ⊆ Ys

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 443

(M-ty)
Mi: Σin

i → Σout
i , i = 1, 2

M1 ⊕M2: (Σin
1 ∪ Σin

2) \ (Σfr
1 ∪ Σfr

2)→ Σout
1 ∪ Σout

2

Σout
1 ∩ Σout

2 =6
Σfr
i = Σout

i \ Σin
i , i = 1, 2

(F-ty)
M: Σin → Σout

freeze Σfr in M: Σin \ Σfr → Σout
Σfr ⊆ Σout

(R-ty)
M: Σin → Σout

restrict Σrs in M: Σin → Σout \ Σrs
Σrs ⊆ Σout

(H-ty)
M: Σin → Σout

hide Σhd in M: Σin \ Σhd → Σout \ Σhd
Σhd ⊆ Σout

(O-ty)
Mi: Σin

i → Σout
i i = 1, 2

M1 ⇐M2: (Σin
1 ∪ Σin

2) \ (Σfr
1 ∪ Σfr

2)→ Σout
1 ∪ Σout

2

Σfr
1 = (Σout

1 \ Σout
2) \ Σin

1

Σfr
2 = Σout

2 \ Σin
2

(FC-ty)
Mi: Σin

i → Σout
i i = 1, 2

M2◦M1: (Σin
1 \ Σout

1) ∪ (Σin
2 ∩ Σout

2)→ Σout
2

Σin
2 \ Σout

2 = Σout
1

(Σin
1 \ Σout

1) ∩ Σout
2 =6

Fig. 11. Typing rules for boolean signatures

Note that it is straightforward to verify that vS is a partial order.

Fact A.5. For any set S , <SSet(S),vS> is a domain with bottom element.

Proof. It is immediate to show that

— for any increasing chain (Xi)i∈ω , its limit t(Xi)i∈ω is such that for any s ∈ S

(t(Xi)i∈ω)s = ∪i∈ω(Xi)s;

— the bottom element is the S-sorted set ⊥ such that for each s ∈ S ⊥s =6.

Fact A.6. For any function f: S ′ → S , −|f: SSet(S)→ SSet(S ′) is continuous.

Proof. For any s ∈ S ′ we have

((t(Xi)i∈ω)|f)s = (t(Xi)i∈ω)f(s) = ∪i∈ω(Xi)f(s) = ∪i∈ω((Xi)|f)s = (t((Xi)|f)i∈ω)s

Fact A.7. For any pair of sets S1 and S2 such that S1 ∩ S2 =6, the function g

+ : SSet(S1)× SSet(S2)→ SSet(S1 ∪ S2)

is continuous.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 444

Proof. For any s ∈ S1 ∪ S2 we have

(t(Xi)i∈ω + t(Yi)i∈ω)s =

{
(t(Xi)i∈ω)s = ∪i∈ω(Xi)s if s ∈ S1

(t(Yi)i∈ω)s = ∪i∈ω(Yi)s if s ∈ S2

(t(Xi + Yi)i∈ω)s = ∪i∈ω(Xi + Yi)s =

{
∪i∈ω(Xi)s if s ∈ S1

∪i∈ω(Yi)s if s ∈ S2

References

Adámek, J., Herrlich, H. and Strecker, G. (1990) Abstract and Concrete Categories, Pure and

Applied Mathematics, Wiley Interscience, New York.

Ancona, D. (1996) MIX(FL): a kernel language of mixin modules. Technical Report DISI-TR-96-23,

DISI, University of Genova (submitted for journal publication).

Ancona, D. (1998) Modular Formal Frameworks for Module Systems. Ph. D. thesis, Dip. Informatica,

Univ. Pisa (to appear).

Ancona, D. and Zucca, E. (1998) An algebra of mixin modules. 12th Workshop on Algebraic

Development Techniques – Selected Papers. Springer-Verlag Lecture Notes in Computer Science

(to appear).

Ancona, D. and Zucca, E. (1996) An algebraic approach to mixins and modularity. In: Hanus, M.

and Rodrı́guez Artalejo, M. (eds.) ALP ’96 – 5th Intl. Conf. on Algebraic and Logic Programming.

Springer-Verlag Lecture Notes in Computer Science 1139 179-193.

Ancona, D. and Zucca, E. (1996) A formal framework for modules with state. In: Wirsing, M.

and Nivat, M. (eds.) AMAST ’96 (Algebraic Methodology and Software Technology 1996).

Springer-Verlag Lecture Notes in Computer Science 1101 148–162.

Ancona, D. and Zucca, E. (1997) Overriding operators in a mixin-based framework. In: Glaser, H.,

Hartel, P. and Kuchen, H. (eds.) Proc. PLILP ’97 (9th International Symposium on Programming

Languages, Implementations, Logics, and Programs). Springer-Verlag Lecture Notes in Computer

Science 1292 47–61.

Arnold, K. and Gosling, J. (1996) The JavaTM programming language, Addison-Wesley.

Banavar, G. (1995) An Application Framework for Compositional Modularity, Ph. D. thesis, Depart-

ment of Comp. Sci., Univ. of Utah.

Banavar, G. and Lindstrom, G. (1996) An application framework for module composition tools. In:

Proc. of European Conference on Object-Oriented Programming. Springer-Verlag Lecture Notes

in Computer Science 1098 91–113.

Bergstra, J. A., Heering, J. and Klint, P. (1990) Module algebra. Journal of the Association for

Computing Machinery 37 (2) 335-372.

Bidoit, M. and Tarlecki, A. (1996) Behavioural satisfaction and equivalence in concrete model

categories. In: Kirchner, H. (ed.) CAAP ’96 (20th Coll. on Trees in Algebra and Computing).

Springer-Verlag Lecture Notes in Computer Science 1059 241–256.

Bono, V., Bugliesi, M. and Liquori, L. (1996) A lambda calculus of incomplete objects. In: Penczek,

W. and Sza las, A. (eds.) Mathematical Foundations of Computer Science 1996. Springer-Verlag

Lecture Notes in Computer Science 1113 218–229.

Bracha, G. (1992) The Programming Language JIGSAW: Mixins, Modularity and Multiple Inheri-

tance, Ph. D. thesis, Department of Comp. Sci., Univ. of Utah.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

A theory of mixin modules: basic and derived operators 445

Bracha, G. and Cook, W. (1990) Mixin-based inheritance. In: Proc. of the Joint ACM Conf. on

Object-Oriented Programming, Systems, Languages and Applications and the European Conference

on Object-Oriented Programming.

Bracha, G. and Lindstrom, G. (1992) Modularity meets inheritance. In: Proc. International Confer-

ence on Computer Languages, San Francisco, IEEE Computer Society 282–290.

Cook, W. R. (1989) A Denotational Semantics of Inheritance, Ph. D. thesis, Dept. of Computer

Science, Brown University.

Courant, J. (1997) An applicative module calculus. In: Bidoit, M. and Dauchet, M. (eds.) Proc.

TAPSOFT ’97 (Theory and Practice of Software Development). Springer-Verlag Lecture Notes in

Computer Science 1217 622–636.

Courant, J. (1997) A module calculus for pure type systems. In: TLCA’97 (3rd Intl. Conf. on Typed

Lambda Calculi and Applications). Springer-Verlag Lecture Notes in Computer Science 1210.

Diaconescu, R., Goguen, J. and Stefaneas, P. (1991) Logical support for modularisation. In: Huet,

G. and Plotkin, G. (eds.) Logical Environments (Proceedings of a Workshop held in Edinburgh),

Cambridge University Press 83–130.

Duggan, D. and Sourelis, C. (1996) Mixin modules. In: Intl. Conf. on Functional Programming,

Philadelphia, ACM Press.

Ehrig, H., Baldamus, M., Cornelius, F. and Orejas, F. (1991) Theory of algebraic module specification

including behavioural semantics, constraints and aspects of generalized morphisms. In: Nivat,

M., Rattray, C., Rus, T. and Scollo, G. (eds.) Proc. 2nd Int. Conf. on Algebraic Methodology

and Software Technology, Iowa City, USA, May 91, Workshops in Computing, Springer-Verlag

145–172.

Ehrig, H. and Löwe, M. (1993) Categorical principles, techniques and results for high-level replace-

ment systems in computer science. Appl. Cat. Struct. 1 21–50.

Ehrig, H. and Mahr, B. (1985) Fundamentals of Algebraic Specification 1. Equations and Initial

Semantics. EATCS Monographs in Computer Science 6, Springer-Verlag,

Ehrig, H. and Mahr, B. (1990) Fundamentals of Algebraic Specification 2. Module Specifications

and Constraints. EATCS Monographs in Computer Science 21, Springer-Verlag.

Goguen, J. A. and Burstall, R. (1992) Institutions: abstract model theory for specification and

programming. Journ. ACM 39 (1) 95–146.

Goldberg, A. and Robson, D. (1983) Smalltalk-80: the Language and Its Implementation, Addison-

Wesley.

Harper, R. and Lillibridge, M. (1994) A type theoretic approach to higher-order modules with

sharing. In: Proc. 21st ACM Symp. on Principles of Programming Languages, ACM Press 127–137.

Jones, M. P. (1996) Using parameterized signatures to express modular structure. In: Proc. 23rd

ACM Symp. on Principles of Programming Languages, St. Petersburg Beach, Florida, ACM Press

68–78.

Keene, S. E. (1989) Object-Oriented Programming in Common Lisp, Addison Wesley.

Lehrmann, O., Moller, B., Pedersen, and Nygaard, K. (1993) Object-Oriented Programming in the

BETA Programming Language, ACM Press.

Leroy, X. (1994) Manifest types, modules and separate compilation. In: Proc. 21st ACM Symp. on

Principles of Programming Languages, ACM Press 109–122.

Leroy, X. (1996) A modular module system. Technical Report 2866, INRIA.

van Limberghen, M. and Mens, T. (1996) Encapsulation and composition as orthogonal operators

on mixins: a solution to multiple inheritance problems. Object-oriented Systems 3 1–30.

Loeckx, J., Ehrich, H. D. and Wolf, M. (1996) Specifications of Abstract Data Types, Wiley-Teubner

Computing.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

D. Ancona and E. Zucca 446

Meyer, B. (1986) Genericity versus inheritance. In: ACM Symp. on Object-Oriented Programming:

Systems, Languages and Applications. SIGPLAN Notices 21 (11), ACM Press 391–405.

Meyer, B. (1988) Object-oriented Software Construction, Computer Science series, Prentice Hall.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML, The MIT Press.

Moon, D. A. (1986) Object-oriented programming with Flavors. In: ACM Symp. on Object-Oriented

Programming: Systems, Languages and Applications. SIGPLAN Notices 21 (11), ACM Press 1–8.

Reddy, U. S. (1988) Objects as closures: Abstract semantics of object-oriented languages. In Proc.

ACM Conf. on Lisp and Functional Programming 289–297.

Sannella, D. and Tarlecki, A. (1988) Specification in an arbitrary institution. Information and

Computation 76 165–210.

Stroustrup, B. (1991) The C++ Programming Language, 2nd edition, Addison-Wesley.

Szyperski, C. (1992) Import is not inheritance. Why we need both: Modules and classes. In:

Lehrmann Madsen, O. (ed.) Proc. of ECOOP ’92 European Conference on Object-Oriented

Programming. Springer-Verlag Lecture Notes in Computer Science 615 19–32.

Tennent, R. D. (1991) Semantics of Programming Languages, Computer Science series, Prentice Hall,

Zucca, E. (1996) From static to dynamic abstract data-types. In: Penczek, W. and Sza las, A. (eds.)

Mathematical Foundations of Computer Science 1996. Springer-Verlag Lecture Notes in Computer

Science 1113 579–590.

https://doi.org/10.1017/S0960129598002576 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002576

