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Plasma turbulence occurs ubiquitously in space and astrophysical plasmas, mediating
the nonlinear transfer of energy from large-scale electromagnetic fields and plasma
flows to small scales at which the energy may be ultimately converted to plasma
heat. But plasma turbulence also generically leads to a tangling of the magnetic field
that threads through the plasma. The resulting wander of the magnetic field lines
may significantly impact a number of important physical processes, including the
propagation of cosmic rays and energetic particles, confinement in magnetic fusion
devices and the fundamental processes of turbulence, magnetic reconnection and
particle acceleration. The various potential impacts of magnetic field line wander are
reviewed in detail, and a number of important theoretical considerations are identified
that may influence the development and saturation of magnetic field line wander in
astrophysical plasma turbulence. The results of nonlinear gyrokinetic simulations of
kinetic Alfvén wave turbulence of sub-ion length scales are evaluated to understand
the development and saturation of the turbulent magnetic energy spectrum and of
the magnetic field line wander. It is found that turbulent space and astrophysical
plasmas are generally expected to contain a stochastic magnetic field due to the
tangling of the field by strong plasma turbulence. Future work will explore how the
saturated magnetic field line wander varies as a function of the amplitude of the
plasma turbulence and the ratio of the thermal to magnetic pressure, known as the
plasma beta.
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1. Introduction
Turbulence remains one of the great unsolved problems of classical physics.

Throughout the universe, from distant galaxy clusters to our own heliosphere, 99 %
of baryonic matter occurs in the plasma state, and these plasmas are nearly always
found to be magnetized and turbulent. On the frontier of plasma physics research
is the effort to understand how turbulence affects the evolution of any system in
which it arises, from terrestrial settings to distant regions of the universe. Plasma
turbulence mediates the conversion of the energy of plasma flows and magnetic fields
at large scales to plasma heat, or other forms of particle energization. Turbulence may
also be a key ingredient in the acceleration of high-energy particles at collisionless
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FIGURE 1. Three-dimensional plot of the spreading and tangling of magnetic field lines
in a driven, nonlinear gyrokinetic simulation of plasma turbulence relevant to the solar
wind. Field lines within four small regions at z = 0 are coloured red, green, blue and
black. From an initially straight magnetic field, continually driven turbulence, possibly in
combination with magnetic reconnection, leads to a stochastically tangled magnetic field.
Note the scale of the z-axis is compressed in this plot, so the domain is, in fact, highly
elongated.

shocks and magnetic irregularities caused by turbulence affect the propagation of
energetic particles, such as cosmic rays in the Galaxy and solar energetic particles in
the heliosphere. The physics of magnetic reconnection may be fundamentally altered
in a turbulent medium. Turbulence enhances the loss of angular momentum from
accretion disk plasmas, enabling the fuelling of black holes and other compact objects.
In terrestrial laboratories, turbulence limits the efficiency of proposed magnetically
confined fusion devices by enhancing the transport of heat and particles across the
confining magnetic field.

Although studies of astrophysical turbulence generally focus on how turbulence
mediates the conversion of energy from one form to another, plasma turbulence
also naturally generates a tangled magnetic field. For example, consider a quiescent,
incompressible magnetohydrodynamic (MHD) plasma embedded with a straight and
uniform magnetic field. If one drives finite-amplitude Alfvén waves in both directions
along that magnetic field, nonlinear interactions among those counterpropagating
Alfvén waves will lead to a turbulent cascade of fluctuation energy to small scales
(Kraichnan 1965; Similon & Sudan 1989; Sridhar & Goldreich 1994; Goldreich &
Sridhar 1995; Maron & Goldreich 2001; Howes et al. 2012; Drake et al. 2013; Howes
& Nielson 2013; Howes et al. 2013; Nielson, Howes & Dorland 2013). In the process,
the magnetic field becomes increasingly tangled, taking on a stochastic appearance, as
shown by the rendering of magnetic field lines from a driven, gyrokinetic simulation
of plasma turbulence in figure 1. Here, magnetic field lines passing through four
small regions at z = 0 are given distinct colours. As the field lines are followed
through the simulation domain, they spread out and become increasingly tangled
up with field lines initially from other regions of the plasma. This phenomenon of
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magnetic field line wander arises due to the nonlinear interactions that mediate the
turbulent cascade of energy to small scales, likely in combination with the process
of magnetic reconnection.

The inevitable wandering of the magnetic field in turbulent plasmas affects a number
of other physical processes, with important unanswered questions regarding its impact
on energetic particle propagation in astrophysical and fusion plasmas, the cascade
of energy in plasma turbulence, particle acceleration and magnetic reconnection.
Most of the existing studies that attempt to assess the effect of magnetic field line
wander on other physical processes, as reviewed below in § 2, have used a turbulent
magnetic field derived from a simplified model or other analytical prescription rather
than a turbulent magnetic field generated by direct numerical simulations. Here
we advocate a more fundamental approach, using direct numerical simulations to
develop a quantitative understanding of how a magnetic field becomes tangled in
plasma turbulence as a function of the parameters of the plasma and the turbulence.
Theoretical considerations of the tangling of a magnetic field in plasma turbulence are
presented in § 3, including the fundamental parameters upon which the development
of magnetic field line wander is likely to depend. Finally, we present some initial
quantitative results on the development of magnetic stochasticity and the separation of
field lines using nonlinear gyrokinetic simulations that accurately resolve the kinetic
microphysics of collisionless magnetic reconnection.

2. Impact of magnetic field line wander

Magnetic field line wander arising from plasma turbulence impacts important
plasma physics processes that govern the evolution of a wide range of important
space, astrophysical and laboratory plasma systems. We review below previous
investigations of how the wandering of the magnetic field affects the propagation
of energetic particles in astrophysical and fusion plasmas, the cascade of energy in
plasma turbulence, the acceleration of particles at collisionless shocks and the physics
of magnetic reconnection.

2.1. Propagation of cosmic rays and energetic particles
The attempt to understand and predict the propagation of cosmic rays through the
interplanetary and interstellar magnetic fields has been a major driver of research into
the effect of turbulence on the tangling of the magnetic field. In a seminal early paper,
Jokipii (Jokipii 1966) performed the first detailed quasilinear statistical calculation of
the motion of charged particles in a spatially random magnetic field, establishing a
quantitative connection to the turbulent power spectrum of magnetic field fluctuations.
Subsequent work conceptually explained the observed spreading of solar energetic
particles from an active region over 180◦ in solar longitude as a consequence of a
magnetic field line random walk due to turbulent magnetic field fluctuations (Jokipii
& Parker 1968).

The scattering and acceleration of cosmic rays by a spectrum of Alfvén waves with
strictly parallel wavenumbers was treated analytically by Schlickeiser (Schlickeiser
1989), and was later extended to include the interaction with fast mode waves in a
low beta plasma (Schlickeiser & Miller 1998). A nonlinear diffusion theory of the
stochastic wandering of magnetic field lines, developed by Matthaeus et al. (Matthaeus
et al. 1995), lead to the expectation of diffusive field line wandering in the
perpendicular direction.
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By the mid-1990s, numerical modelling of the wandering of magnetic field lines
began to be widely used, including test particle calculations of energetic particle
transport along those turbulent magnetic fields. These efforts require, as input, a model
of the spectrum of magnetic fluctuations generated by the plasma turbulence, and a
wide variety of such turbulent magnetic field models have been used. Sophisticated
numerical field line following algorithms and complementary analytical approaches
have been used to study realizations of slab turbulence models with magnetic field
fluctuations δB(z) (Schlickeiser 1989; Shalchi & Kourakis 2007a,b; Shalchi 2010b),
two-dimensional (2-D) turbulence models with δB(x, y) (Shalchi & Kourakis 2007a,b;
Guest & Shalchi 2012), composite models including slab plus 2-D components with
δB = δB(z) + δB(x, y) (Bieber, Wanner & Matthaeus 1996; Giacalone & Jokipii
1999; Shalchi & Kourakis 2007a,b; Qin & Shalchi 2013) and full 3-D models with
δB(x, y, z), including both isotropic (Zimbardo et al. 1995; Giacalone & Jokipii 1999;
Shalchi 2010a; Ragot 2011) and anisotropic distributions of magnetic fluctuations
(Chandran 2000; Zimbardo, Veltri & Pommois 2000; Zimbardo, Pommois & Veltri
2006; Shalchi & Kolly 2013; Ruffolo & Matthaeus 2013).

These various investigations, conducted by a wide range of researchers, have often
found conflicting results. The mean square displacement 〈(δr)2〉 between two magnetic
field lines, as they are followed along the magnetic field line a distance l, is often
modelled by the power-law form

〈(δr)2〉 ∝ |l|p. (2.1)

For different turbulent magnetic field models, or even a variation of the parameters
within a single model, the resulting magnetic field line wandering is sometimes found
to be sub-diffusive (p< 1) and other times found to be super-diffusive (p> 1), and
yet other studies recover a standard diffusive behaviour (p = 1). Based on a broad
reading of the literature, the results of the analytical and numerical modelling appear
to be rather sensitive to the parameters and properties of the turbulence model chosen.
For example, analytical modelling of anisotropic 3-D turbulence (with k⊥� k‖, where
k is the wavenumber and perpendicular and parallel are with respect to the direction of
the local magnetic field) suggests the field line wandering is diffusive (p= 1) (Shalchi
& Kolly 2013), in contrast to the anomalous diffusion (p 6= 1) often found using other
turbulent models. At present, the wandering of magnetic field lines, and its impact on
the propagation of energetic particles, remains an active area of research.

Improved modelling of the propagation of energetic particles in turbulent magnetic
fields can have a significant impact on our technological infrastructure, with
serious implications for national security. Our society is increasingly dependent
on space-borne assets, such as global positioning system (GPS) navigation and
communication satellites, so the prediction of severe space weather events in
near-Earth space has become critically important for the protection of these assets.
Solar energetic particle (SEP) events, in which a violent event on the surface of the
sun spews high-energy electrons and protons into the heliosphere, represent a threat to
both robotic and human assets in space. This prompts an urgent need to develop the
ability to predict whether high-energy particles from a particular SEP event will reach
the position of a potentially susceptible spacecraft. A predictive capability requires
understanding how the SEP particles propagate through the turbulent interplanetary
magnetic field. For example, on 3 NOV 2011, an SEP event erupted on the far
side of the solar surface, spewing out energetic protons and electrons that were
measured at the STEREO A, SOHO and STEREO B spacecraft, covering more than
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200◦ of solar longitude (Richardson et al. 2014). This wide longitudinal spread of
significant SEP particle fluxes is not satisfactorily predicted by existing models of
SEP propagation. An improved understanding of the magnetic field line wander in
the turbulent interplanetary magnetic field, as a function of the plasma and turbulence
parameters, is necessary to develop a reliable predictive capability.

In addition to studies of energetic particle propagation, thermal conduction in
astrophysical plasmas, such as that occurring in galaxy cluster cooling flows, has
also been found to be strongly affected by a stochastic magnetic field (Chandran &
Cowley 1998).

2.2. Magnetic confinement fusion
Coincident with the earliest studies on the propagation of energetic particles in space
and astrophysical plasmas were complementary studies of anomalous electron heat
transport in tokamaks of the magnetic confinement fusion program. In tokamak
plasmas, gradient-driven instabilities generate turbulent fluctuations in the confining
magnetic field. It has been proposed that the distortion of magnetic flux tubes as they
are mapped along the turbulent confining magnetic field leads to a destruction of
the magnetic flux surfaces (Rosenbluth et al. 1966; Filonenko, Sagdeev & Zaslavsky
1967) that prevent radial mixing of hot central plasma with cold exterior plasma. It
was recognized that collisional diffusion is unable to account for all of the electron
heat transport measured in experiments, and that magnetic field line wander could
potentially explain the additional, ‘anomalous’ transport. Further work quantitatively
estimated the diffusion in collisional and collisionless regimes, suggesting that
fluctuations of sufficient amplitude, caused by microinstabilities at the scale of the
ion gyroradius, would consistently explain both the stochastic nature of the magnetic
field and the observed electron heat transport (Rechester & Rosenbluth 1978).

Exploring the role of magnetic field line wander in enhancing electron heat transport
in a tokamak plasma has continued over the years using analytical calculations and
test particle modelling, and with the comparison of these results to experimental
measurements (Galeev & Zeleny 1981; Krommes, Oberman & Kleva 1983; Haas
& Thyagaraja 1986; Laval 1993; Spatschek 2008). Recent advancements in the
direct numerical simulation of weakly collisional plasma turbulence using nonlinear
gyrokinetic simulations (Pueschel, Kammerer & Jenko 2008; Nevins, Wang & Candy
2011; Wang, Boldyrev & Perez 2011; Hatch et al. 2012, 2013) and other direct
numerical approaches (del-Castillo-Negrete & Blazevski 2014, 2016) have enabled
breakthrough studies of the cause of magnetic field line wander and its impact on
confinement in fusion plasmas. Under fusion-relevant plasma conditions, gyrokinetic
simulations showed that the magnetic field indeed rapidly becomes stochastic through
gradient-instability-driven turbulence, but that this stochasticity does not always
produce a significant enhancement in the electron heat flux (Nevins et al. 2011). The
development of stochasticity appears to arise through nonlinear interactions among
overlapping magnetic islands (Wang et al. 2011), supporting an idea proposed in
early studies based on analytical considerations (Rechester & Rosenbluth 1978).
By focusing on the properties of the dominant turbulent modes in ion temperature
gradient and trapped electron mode instability-driven turbulence, this overlapping of
magnetic islands arises through the nonlinear transfer of energy from the unstable
ballooning modes of odd parity to stable tearing modes of even parity (Hatch et al.
2012, 2013).
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FIGURE 2. The distortion of a circular wavepacket as it propagates along the wandering
magnetic field in a nonlinear gyrokinetic simulation of plasma turbulence.

2.3. The cascade of energy in plasma turbulence
It has been suggested that one can view the cascade of energy to small scales in
magnetized plasma turbulence as due to the distortion of the perpendicular structure
of Alfvén wavepackets as they propagating along a wandering, turbulent magnetic
field (Similon & Sudan 1989), and this concept has been demonstrated numerically
(Maron & Goldreich 2001). An illustration of the distortion of a wavepacket with an
initially circular cross-section perpendicular to the equilibrium magnetic field from a
nonlinear gyrokinetic simulation of plasma turbulence is presented in figure 2. Recent
work has adopted this framework to interpret current sheet formation in coronal loops
(Rappazzo & Parker 2013), the nonlinear transfer of energy to smaller-scale Alfvén
waves in basic laboratory experiments of plasma turbulence (Howes et al. 2012; Drake
et al. 2013; Howes & Nielson 2013; Howes et al. 2013; Nielson et al. 2013) and the
evolution of magnetic flux surfaces in 3-D reduced MHD simulations (Servidio et al.
2014).

Looking at this problem in more detail, the nonlinear physics underlying the
turbulent cascade of energy from large to small scales is often described in Fourier
space, where a nonlinear three-wave coupling mechanism has been identified that
leads to a secular transfer of energy to modes with higher perpendicular wavenumber
(Shebalin, Matthaeus & Montgomery 1983; Sridhar & Goldreich 1994; Montgomery
& Matthaeus 1995; Ng & Bhattacharjee 1996; Galtier et al. 2000; Howes & Nielson
2013), resulting in an anisotropic cascade of energy in wavevector space. But the
physical manifestation of the k‖ = 0 mode that mediates this resonant three-wave
interaction is obscured by the use of the Fourier (plane wave) decomposition. An
analytical calculation modelling interactions between localized Alfvén wavepackets
demonstrated that wavepackets involving a k‖ = 0 component will lead to this
lowest-order three-wave nonlinear coupling (Ng & Bhattacharjee 1996), and this
mechanism has been demonstrated using laboratory experiments (Howes et al. 2012,
2013; Drake et al. 2013). Physically, the k‖= 0 component of a wavepacket represents
a shear in the magnetic field, as depicted in figure 3. Investigation of the propagation
of Alfvén waves in a wandering magnetic field demonstrates that the cascade of
energy to small scales is represented in physical space (as opposed to Fourier space)
as a shearing of the perpendicular structure of an Alfvén wave as it propagates
along a wandering magnetic field, as depicted in figure 3(c, f ). Thus, exploring the
complementary picture of the plasma turbulent cascade as the distortion of Alfvén
waves as they propagate along a wandering magnetic field may yield fresh insights
into the nature of plasma turbulence.

2.4. Particle acceleration
Models of diffusive shock acceleration at collisionless shocks require irregularities
in the upstream magnetic field to return reflected particles back to the shock front

https://doi.org/10.1017/S0022377817000617 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000617


Magnetic field line wander 7

FIGURE 3. Distortion of a magnetic flux tube in the perpendicular (x, y) plane due to
wandering of the magnetic field. (a) Magnetic field fluctuation δBy contains no kz = 0
component. (b) Three-dimensional tracing of magnetic field lines due to the magnetic
fluctuation in (a) at positions x=+π/2 (red) and x=−π/2 (blue). The oscillating shear
causes the magnetic field to become sheared and then subsequently to ‘unshear’. (c) The
distortion of an Alfvén wave with an initially circular perpendicular structure (black) as
it propagates along the wandering magnetic field. (d) For the case of a magnetic field
fluctuation δBy with a non-zero kz = 0 component, the (e) 3-D magnetic field has a
monotonic shear, leading to ( f ) the permanent distortion (red) of an initially circular
Alfvén wave structure (black).

repeatedly to achieve significant acceleration (Ragot 2001; Guo & Giacalone 2010,
2013, 2015). The efficiency of such a shock acceleration mechanism is likely to be
dependent on the nature of the upstream magnetic field irregularities, but existing
investigations of these particle acceleration mechanisms often use unrealistic models
of the turbulent plasma, such as slab turbulence with only a one-dimensional variation
of the turbulent field, δB(z) (Guo & Giacalone 2010). The development of a new
empirical model of magnetic field line wander based on direct numerical simulations
of plasma turbulence will enable more realistic modelling of the diffusive acceleration
mechanism at collisionless shocks.

2.5. Magnetic reconnection
It has been proposed theoretically that magnetic field line wander can alter the
physics of magnetic reconnection when the upstream plasma is turbulent (Lazarian &
Vishniac 1999), increasing the rate of reconnection and the thickness of the current
sheets in the turbulent medium (Vishniac et al. 2012). Numerical simulations have
played a key role in bearing out these ideas (Kowal et al. 2009, 2012). It has also
been claimed that exponential field line separation in turbulent plasmas will lead
to reconnection even in the absence of intense current sheets (Boozer 2014). It has
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been shown that stochasticity of the magnetic field in MHD turbulence simulations
degrades the usual notion of flux freezing in an MHD plasma, potentially explaining
fast reconnection of large-scale structures at MHD scales (Eyink et al. 2013). More
recently, numerical simulations have been used to explore how breaking field line
connectivity by stochasticity of the magnetic field can be a mechanism for fast
reconnection (Huang, Bhattacharjee & Boozer 2014). The properties of the turbulent
upstream magnetic fields very likely influence how the reconnection mechanism is
modified, so an improved model of magnetic field line wander in plasma turbulence
will contribute to progress in the understanding of magnetic reconnection under the
turbulent conditions of realistic space and astrophysical plasma environments.

3. Theoretical considerations
This study aims to use direct numerical simulations to illuminate the physical

processes influencing the development and saturation of magnetic field line wander
in astrophysical plasma turbulence. The ultimate goal is to construct an empirical
description of the magnetic field line wander in terms of the fundamental turbulence
and plasma parameters. This empirical description can be utilized to describe
accurately the properties of the turbulently tangled magnetic field for application
to studies of energetic particle transport in astrophysical and laboratory plasmas, the
cascade of energy to small scales in plasma turbulence, the acceleration of particles
to high energies by collisionless shocks, and the physics of magnetic reconnection in
a turbulent plasma.

3.1. Improving our understanding through direct numerical simulations
As detailed above, the nature of the magnetic field line wander in previous studies
appears to be quite sensitive to the characteristics and parameters of the models
describing the turbulent magnetic field. Many of the models of the turbulent
magnetic field used in the literature exploring the phenomenon of magnetic field
line wander and its implications are severely outdated, being inconsistent with the
current understanding of plasma turbulence. Specifically, models employing slab,
2-D composite (slab plus two dimensions) and isotropic distributions of magnetic
fluctuations, although more susceptible to theoretical analysis, are at odds with the
anisotropic, 3-D nature of plasma turbulence that is now well established through
decades of experimental, analytical and numerical research on magnetized plasma
turbulence (Belcher & Davis 1971; Robinson & Rusbridge 1971; Zweben, Menyuk
& Taylor 1979; Montgomery & Turner 1981; Shebalin et al. 1983; Cho & Vishniac
2000; Maron & Goldreich 2001; Cho & Lazarian 2004, 2009; TenBarge & Howes
2012). Recent direct multi-spacecraft measurements of turbulence in the solar wind
confirm this anisotropic nature of the turbulent fluctuations (Sahraoui et al. 2010;
Narita et al. 2011; Roberts, Li & Li 2013; Roberts, Li & Jeska 2015).

In addition, the models employed in the studies reviewed above almost universally
employ randomly phased magnetic field fluctuations, a characteristic inconsistent with
any self-consistent realization of a turbulent magnetic field. Kolmogorov’s four-fifths
law (Kolmogorov 1941) is an exact statistical formula relating the mean energy
dissipation rate to the third moment of the velocity fluctuations in hydrodynamic
turbulence; subsequently, this third moment approach has been extended for the case
of MHD turbulence (Chandrasekhar 1951; Politano & Pouquet 1998; Yousef, Rincon
& Schekochihin 2007). A spectrum of magnetic fluctuations with random phases
yields an average third moment of zero, because it is the phase correlations among
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FIGURE 4. Illustration of how magnetic reconnection can instantaneously change the
magnetic connectivity in a turbulent plasma, thereby influencing the development of
magnetic field line wander.

different magnetic fluctuations that are responsible for the nonlinear turbulent cascade
of energy. Random phase models therefore lack some of the inherent attributes
of a self-consistently determined turbulent magnetic field (Howes 2015, 2016). It
remains an open question whether such correlations will indeed alter the nature of
the magnetic field line wander resulting from plasma turbulence, but the apparent
sensitivity of the results of previous studies to the characteristics of the magnetic
field model suggests that a self-consistent turbulent magnetic field will yield the most
well justified and physically relevant results.

The uncertainty in describing the turbulent magnetic field can be eliminated by
using a turbulent magnetic field that is generated self-consistently by direct numerical
simulation of the equations governing the turbulent plasma dynamics. Of the studies
directly investigating magnetic field line wander reviewed above, only the recent
studies of stochastic magnetic field development in fusion plasmas (Pueschel et al.
2008; Nevins et al. 2011; Wang et al. 2011; Hatch et al. 2012, 2013) employed direct
numerical simulations, specifically using a nonlinear gyrokinetic code. A general
approach to understand the development and saturation of the tangled magnetic field
in general astrophysical plasma turbulence has not been attempted, and this provides
a strong motivation for the present work.

3.2. The role of magnetic reconnection
Another important ingredient in understanding how magnetic fields become dynami-
cally tangled by plasma turbulence is the process of magnetic reconnection. Although
the impact of pre-existing turbulent magnetic fields on the process of magnetic
reconnection has been examined previously (Lazarian & Vishniac 1999; Kowal et al.
2009, 2012; Vishniac et al. 2012; Boozer 2014; Huang et al. 2014), the investigation
of how reconnection mediates the tangling and untangling of magnetic fields in plasma
turbulence has not been addressed by any existing study. For example, consider the
two turbulent magnetic field lines depicted in figure 4. When a small reconnection
event (denoted by the black cross) occurs between the two field lines, the connectivity
of those two field lines changes instantaneously. Particles streaming along the red
field line from the left end of the plasma, which previously had been connected to
point A, will suddenly find themselves magnetically connected instead to point B.
An open question is whether the impact of magnetic reconnection on the wandering
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FIGURE 5. Schematic of the magnetic energy wavenumber spectrum in the solar wind,
showing the form of the spectrum in the energy containing, inertial and dissipation ranges.
Ranges for the typical Larmor radius scales for protons ρEP,p and electrons ρEP,e from solar
energetic particle events are depicted.

of magnetic field lines can be described in the framework of a diffusion, or whether
this possibility of sudden jumps in connectivity alter the nature of the resulting
magnetic field line wander. Direct numerical simulations of the turbulent plasma that
resolve the physics of magnetic reconnection, even in the collisionless limit relevant
to many space and astrophysical systems of interest, are critical for answering this
open question.

3.3. The turbulent solar wind as a fiducial example
The turbulent solar wind that pervades our heliosphere represents a fiducial system
supporting a broad spectrum of turbulent plasma motions over more than seven
orders of magnitude in scale (Kiyani, Osman & Chapman 2015). It is also the most
thoroughly diagnosed turbulent astrophysical plasma in the universe, thereby providing
unique opportunities for confronting any empirical description of magnetic field line
wander with direct, in situ measurements of the turbulent interplanetary magnetic field.
Thus, the solar wind provides an ideal case study for discussing the phenomenon
of magnetic field line wander in a turbulent plasma. In addition, the tangling of the
magnetic field in the solar wind has important consequences for the propagation of
solar energetic particles erupting from violent solar activity, constituting an important
space weather hazard for spaceborne human and technological assets. Improving the
modelling of the tangled magnetic field in the heliosphere therefore has important
societal implications.

Figure 5 presents a diagram of the solar wind magnetic energy wavenumber
spectrum – assuming the Taylor hypothesis (Taylor 1938) to convert the spacecraft-
frame frequency to a corresponding wavenumber of spatial fluctuations in the
super-Alfvénic solar wind (Howes, Klein & TenBarge 2014; Klein, Howes &
TenBarge 2014) – for near-Earth space at heliocentric radius R ∼ 1 AU. At the
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largest scales l > 106 km (lowest wavenumbers) is the energy containing range
(Matthaeus et al. 1994; Tu & Marsch 1995; Bruno & Carbone 2005), populated by
large-scale plasma flow and magnetic field fluctuations. Through nonlinear interactions,
these energy containing fluctuations feed their energy into the turbulent cascade at
the outer scale, l ∼ 106 km, where the steepening of the magnetic energy spectrum
marks the beginning of the turbulent inertial range (Tu & Marsch 1995; Bruno &
Carbone 2005). Within the inertial range, energy is nonlinearly transferred scale
by scale in a self-similar manner, leading to a single power-law spectrum down to
the inner scale, which corresponds to one of the characteristic ion kinetic length
scales at l ∼ 102 km. At this ion scale, the magnetic energy spectrum breaks once
again (Bourouaine et al. 2012), marking the transition to the dissipation range1

(Alexandrova et al. 2009; Kiyani et al. 2009; Sahraoui et al. 2009; Chen et al. 2010;
Sahraoui et al. 2010, 2013). Finally, at the characteristic electron length scale of
l ∼ 1 km, the magnetic energy spectrum is often observed to exhibit an exponential
roll off (Alexandrova et al. 2012; Sahraoui et al. 2013), interpreted to indicate
the ultimate termination of the turbulent cascade. Also plotted in figure 5 is a
representation of the Larmor radius scales for protons and electrons from SEP events,
ρEP,p and ρEP,e; collisionless wave–particle interactions of energetic particles with
the turbulent magnetic fluctuations lead to scattering rates that peak at these Larmor
scales. Simulations using the gyrokinetic code AstroGK reproduce quantitatively the
features of the solar wind magnetic energy spectrum from the middle of the inertial
range down to the sub-electron scales (TenBarge et al. 2012; TenBarge, Howes &
Dorland 2013).

It is the turbulent magnetic field fluctuations over this broad range of scales that
lead to the stochastic character of the magnetic field, so investigating how fluctuations
in different scale ranges of this spectrum affect the magnetic field line wandering is
an important long-term goal. To accomplish this goal, direct numerical simulations
can be used to learn how magnetic field line wander develops and saturates in plasma
turbulence.

3.4. A model for the development and saturation of magnetic field line wander
Here we propose a novel theoretical picture of the plasma physical processes involved
in the development of magnetic field line wander and its saturation. The nonlinear
interactions that underlie the turbulent cascade of energy to small scales also lead to
a tangling of the magnetic field. In an ideal plasma with no magnetic reconnection,
this tangling of the field would continue indefinitely, generating turbulent structures
on ever smaller scales, leading to an ever more intricate wandering of the magnetic
field. But, once the turbulent structures have reached sufficiently small scales that
non-ideal physics breaks the frozen-in condition, magnetic reconnection may ensue,
thereby untangling the magnetic field. We propose that the saturation of the magnetic
field line wander represents a balance between the nonlinearly driven tangling and
the magnetic-reconnection-mediated untangling, a physical picture that we aim to test
thoroughly using direct numerical simulations.

A key observation is that these two mechanisms, nonlinear interactions (turbulence)
and magnetic reconnection, depend differently on the fundamental parameters
describing the turbulence and the plasma. For example, the physics of magnetic
reconnection has a strong dependence on the plasma β, but the physics of the

1The name dissipation range is the most commonly used term, although use of this term is not intended
to imply that the steepening of the spectrum here is necessarily due to dissipation.
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turbulent nonlinear energy transfer appears to have very little dependence on this
plasma parameter (Howes & Nielson 2013; Nielson et al. 2013; Howes 2015). What
is entirely new here, compared to the body of literature on turbulent magnetic field
line wander, is that most previous works2 have completely ignored any role played
by magnetic reconnection. From the theoretical picture above – a balance between
turbulent tangling and reconnective untangling – we believe that it is inevitable
that magnetic reconnection plays an important role in the physics of magnetic field
line wander, possibly leading to an important, and as yet unrecognized, dependence
on the plasma β. A study based on direct numerical simulations that resolve the
kinetic microphysics of magnetic reconnection is likely to break new ground on this
important frontier in the study of magnetic field line wander and its implications for
many important physical processes in the universe.

Discussions of the tangling of the magnetic field by plasma turbulence often
employs the term ‘stochastic magnetic field’ as a generic label for any turbulently
tangled magnetic field. Here we reserve the use of the term stochastic to cases in
which the magnetic field indeed demonstrates a stochastic character, as demonstrated
by an appropriate analysis, such as a Poincaré recurrence plot (see § 6). We choose
to use the term magnetic field line wander to refer to the general case when the
magnetic field does exhibit a topology in which the separation between two field
lines increases (or decreases) as one moves a distance along the field, whether or
not the magnetic field exhibits a stochastic character. How the physics of energetic
particle propagation in astrophysical plasmas, heat and particle transport in fusion
plasmas, magnetic reconnection and particle acceleration differs when the magnetic
field lines merely wander, but are not fully stochastic, is interesting open question.

3.5. Key questions
To investigate and characterize the development and saturation of magnetic field
line wander in turbulent plasmas, direct numerical simulations provide a valuable
tool. Since magnetic reconnection may play an essential role in the physics of the
field line tangling, a numerical method that resolves the kinetic microphysics of
magnetic reconnection, particularly under the weakly collisional conditions relevant
to many turbulent space and astrophysical plasma systems, is essential. This can
be supplemented by fluid methods to explore how the nonlinear dynamics at large
scales governs the tangling of the magnetic field. Such an approach, maintaining
a strong connection to the nonlinear dynamics of plasma turbulence and magnetic
reconnection, will enable important new questions about the nature of magnetic field
line wander caused by plasma turbulence to be addressed:

(i) How does magnetic field line wander develop and saturate in plasma turbulence?
(ii) Do the properties of magnetic field line wander depend on the underlying

physical mechanism that enables magnetic reconnection (collisionless versus
resistive versus numerical reconnection)?

(iii) Is magnetic field line wander dominated by the large-scale or small-scale
fluctuations of the turbulence?

(iv) Can we construct an empirical description of the magnetic field line wander in
terms of the fundamental plasma and turbulence parameters?

2With the exception of studies directly focusing on magnetic reconnection.
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3.6. Quantitative dependence on fundamental turbulence and plasma parameters
Turbulence in heliospheric and other astrophysical plasmas naturally leads to the
tangling of the magnetic field, leading to the development of magnetic field line
wander, a property that we would like to characterize quantitatively. To develop
a quantitative measure of the wandering of field lines in such a plasma, consider
choosing two points on different field lines separated by a distance δr perpendicular to
the magnetic field. For these two particular points, one may compute the perpendicular
separation between the two field lines in the perpendicular plane as a function of the
distance along the magnetic field line l. Computing statistics of this quantity using
direct numerical simulations of plasma turbulence enables the development of the
quantitative characterization of the magnetic field line wander.

The statistics of this perpendicular separation δr between two magnetic field lines
can be quantitatively characterized in terms of a small number of important parameters.
First are basic parameters to describe the wandering of field lines away from each
other, including the distance travelled along the field line l and the time for which
turbulence has been dynamically tangling the field. Next are the dimensionless
parameters that describe the turbulence itself. The amplitude, or strength, of
the turbulence is characterized by the nonlinearity parameter, χ = k⊥δB⊥/(k‖B0)
(Goldreich & Sridhar 1995; Howes & Nielson 2013), describing the amplitude of the
turbulence at the driving scale (equivalent to the ‘Kubo’ number in some previous
studies (Zimbardo et al. 2000)). For example, to explore the impact on particle
diffusion by the amplitude of turbulent fluctuations, one study computed particle
trajectories numerically in a tangled magnetic field consisting of 1000 randomly
phased plane-wave modes (Hauff et al. 2010), and another study used Ramaty High
Energy Solar Spectroscopic Imager (RHESSI) observations of hard X-rays to estimate
the magnitude of magnetic field line diffusion in flaring coronal loops under several
assumptions (Bian, Kontar & MacKinnon 2011). Both studies found that, in the
large Kubo number limit (χ � 1), perpendicular diffusion becomes independent of
the turbulence spectrum, in agreement with the predictions of percolation theory
(Gruzinov, Isichenko & Kalda 1990; Isichenko 1992).

Another key dimensionless parameter is the isotropic driving wavenumber, k0ρi
(Howes et al. 2008a; Howes, TenBarge & Dorland 2011), describing the driving
scale, or energy injection scale, of the turbulence normalized to the ion Larmor
radius, where it is assumed the turbulent fluctuations are isotropic with respect to
the direction of the mean magnetic field at this scale3. Finally, the key dimensionless
parameters that describe the plasma are the ion plasma beta, βi = 8πn0Ti/B2

0, and
the ion-to-electron temperature ratio, Ti/Te. In summary, therefore, we expect that
the separation between two magnetic field lines δr as one follows the field lines
through the plasma to have a dependence on these fundamental parameters given by
δr(l, t, χ, k0ρi, βi, Ti/Te).

For the most likely case of saturated turbulence in steady state, where the tangling
of the magnetic field by the turbulence and untangling of the field by magnetic
reconnection statistically balance, we conjecture that the δr will not depend on time.
A reasonable form to seek for the average squared field line separation in a turbulent
steady state, 〈(δr)2〉, based on the previous analyses reviewed in § 2, can be written

〈(δr)2〉 = Alp. (3.1)
3The assumption of isotropic driving may be relaxed if physical arguments suggest anisotropic driving,

where an appropriate scaling theory for the anisotropic cascade of plasma turbulence can be used to devise a
suitable dimensionless parameter to replace k0ρi.
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Here A(χ, k0ρi, βi, Ti/Te) represents the amplitude of the average spreading of field
lines, and we assume the average squared field line separation can be expressed
as a power law of the distance along the field line l, given by the exponent
p(χ, k0ρi, βi, Ti/Te). The long-term goal of this project is to determine empirically
forms for A and p that can be used to characterize the magnetic field line wander in
terms of the turbulence and plasma parameters.

Although the two turbulence parameters χ and k0ρi together with the two plasma
parameters βi and Ti/Te lead to a four-dimensional parameter space, the broad range
of different turbulence models previously used to explore magnetic field line wander
requires a much longer list of possible parameters. The most likely culprit responsible
for the many conflicting results found in the literature is the tremendous variation
among the different models chosen to describe the turbulent magnetic field. The
use of direct numerical simulations of plasma turbulence enables us to eliminate the
huge parameter space necessary to describe the plethora of different magnetic field
models reviewed in § 2, at the expense of the necessarily limited dynamic range
attainable by direct numerical simulations. But we believe that a more physically
faithful characterization of the magnetic field line wander in plasma turbulence can
be patched together through a judicious use of different simulation models appropriate
to different ranges of the turbulent spectrum, as depicted in figure 5.

4. Code and description of turbulence simulations

The astrophysical gyrokinetics code, or AstroGK, described in detail in Numata
et al. (2010), evolves the perturbed gyroaveraged distribution function hs(x, y, z, λ, ε)
for each species s, the scalar potential ϕ, parallel vector potential A‖ and the
parallel magnetic field perturbation δB‖ according to the gyrokinetic equation and
the gyroaveraged Maxwell’s equations (Frieman & Chen 1982; Howes et al. 2006),
where ‖ is along the total local magnetic field B = B0ẑ + δB. The velocity space
coordinates are λ = v2

⊥/v
2 and ε = v2/2. The domain is a periodic box of size

L2
⊥ × Lz, elongated along the equilibrium magnetic field, B0 = B0ẑ. Note that, in

the gyrokinetic formalism, all quantities may be rescaled to any parallel dimension
satisfying ε ≡ L⊥/Lz � 1. Uniform Maxwellian equilibria for ions (protons) and
electrons are used, with the correct mass ratio mi/me = 1836. Spatial dimensions
(x, y) perpendicular to the equilibrium field are treated pseudospectrally; an upwind
finite-difference scheme is used in the parallel direction. Collisions are incorporated
using a fully conservative, linearized Landau collision operator that includes energy
diffusion and pitch-angle scattering due to electron–electron, ion–ion and electron–ion
collisions (Abel et al. 2008; Barnes et al. 2009), yielding an isotropic Maxwellian
stationary solution.

The simulations presented here are similar to previous nonlinear gyrokinetic
simulations used to investigate the physics of the turbulence in the weakly collisional
solar wind (Howes et al. 2008b, 2011), in particular the small-scale simulations of
the kinetic Alfvén wave cascade down to the scales of the electron Larmor radius
(TenBarge & Howes 2013; TenBarge et al. 2013). We present here results of a
simulation of a driven, strongly turbulent kinetic Alfvén wave cascade in a plasma
with parameters βi = 1 and Ti/Te = 1, where βi = v2

ti/v
2
A, vA is the Alfvén speed,

vti=√2Ti/mi is the ion thermal speed and temperature is expressed in units of energy.
The simulation domain has dimensions (nx, ny, nz, nλ, nε, ns)= (64, 64, 32, 32, 16, 2),
yielding a simulation covering the fully dealiased range of 5 6 k⊥ρi 6 105, or
0.12 6 k⊥ρe 6 2.5. It is worthwhile noting that it has been demonstrated, via
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comparisons with particle-in-cell (PIC) simulations, that nonlinear gyrokinetic
simulations using AstroGK accurately describe the physics of magnetic reconnection
in the strong guide field limit, as long as the simulation resolves the electron Larmor
radius scale (TenBarge et al. 2014).

The simulation is driven at the domain scale using an oscillating Langevin
antenna (TenBarge et al. 2014) to achieve turbulence with a nonlinearity parameter
χ ∼ 1, yielding critically balanced, strong turbulent cascade of kinetic Alfvén waves
(Goldreich & Sridhar 1995; Howes et al. 2008a, 2011; TenBarge et al. 2014). The
linear frequency of a kinetic Alfvén wave at the domain scale, determined by the
collisionless linear gyrokinetic dispersion relation (Howes et al. 2006), is given by
ω= 3.6ωA0, where ωA0= k‖0vA. The parameters of the oscillating Langevin antenna are
amplitude A0 = 0.2, driving frequency ω0 = 3.6ωA0 and decorrelation rate γ0 = 0.6ωA0.
We drive four modes, (k⊥0ρi, k⊥0ρi, k‖0ρi/ε) = (5, 0, ±1) and (0, 5, ±1), where
k⊥0 = 2π/L⊥ and k‖0 = 2π/Lz. Note that the 3-D simulation spatial domain has
size L2

⊥ × Lz, with L⊥ = 2πρi/5 and Lz = 2πρi/(5ε), where ε � 1 is the arbitrary
gyrokinetic expansion parameter. These parameters are found to yield a statistically
steady-state value of the nonlinearity parameter of χ ' 1.

Collision frequencies νi = 0.2ωA0 and νe = 0.5ωA0 are chosen to prevent a build-up
of small-scale structure in velocity space, yet to avoid altering the weakly collisional
dynamics, νs�ω. All dissipation required to achieve a statistically steady state in the
simulation occurs via physically resolved interactions, primarily collisionless damping
via the Landau resonance with electrons; no additional hypercollisionality is needed
in this simulation.

5. Development and saturation of turbulent cascade and magnetic field line
wander

In this section, we present numerical results describing the development and
saturation of the turbulent magnetic energy spectrum and of the magnetic field
line wander. In addition, we use Poincaré plots to characterize the development of
stochasticity in the magnetic field.

5.1. Development and saturation of turbulent magnetic energy spectrum
These driven turbulence simulations begin with a straight, uniform magnetic field
and zero fluctuations. The oscillating Langevin antenna drives an external parallel
current that generates perpendicular magnetic field fluctuations, each driven mode
with a plane-wave pattern specified by the wavevector. Nonlinear interactions between
the counterpropagating Alfvén waves generated by the antenna immediately begin to
transfer energy to higher wavenumbers, and the magnetic energy spectrum begins to
fill in as energy is continually injected into the driven modes. Figure 6 presents the
perpendicular magnetic energy spectrum EB⊥(k⊥) =

∫∞
−∞ dkz

∫ 2π

0 dθk⊥|δB(k⊥)|2/8π

at a number of times early in the development of the turbulent energy spectrum,
where time is normalized using the linear kinetic Alfvén wave period for modes at
the domain scale, t/τA and ωA0τA = 1.74. Note that, due to the broad range of the
logarithmic vertical axis, at the very early times t/τA < 0.1, very little energy has
been injected into the turbulent cascade.

Figure 7 shows how the spectrum saturates to a statistically steady state. Ten
perpendicular magnetic energy spectra (blue and black) are plotted at uniform linear
time intervals tj/τA = j1t/τA for j = 1, 2, 3, . . . , 10 and 1t/τA = 0.028. We also
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FIGURE 6. Development of the magnetic energy spectrum in the nonlinear gyrokinetic
simulation of driven kinetic Alfvén wave turbulence. The normalized time for each
spectrum t/τA is labelled. The saturated spectrum for strong kinetic Alfvén wave cascade
is expected to have a spectral index of −2.8, plotted for comparison.

overplot all spectra over the time range 0.28 6 t/τA 6 3.6 (red). This plot shows
that, although more energy is injected into the turbulent magnetic energy spectrum
at t/τA > 0.28, the shape of the spectrum appears to be saturated at t/τA = 0.28 –
only the total energy content changes, but the shape of the spectrum does not. We
also plot the exponentially cutoff magnetic energy spectrum (blue dashed) determined
empirically from a sample of 100 Cluster spectra, EB⊥(k⊥) ∝ (k⊥ρi)

−2.8 exp(−k⊥ρe)
(Alexandrova et al. 2012), a result reproduced previously using nonlinear gyrokinetic
simulations (TenBarge & Howes 2013; TenBarge et al. 2013). The present simulation
also agrees well with this model magnetic energy spectrum.

Note that the spectra in figure 7 have been binned in bins of width 1k⊥ρi = 5,
producing a smoother appearance than the spectra in figure 6, in which all possible
values of k⊥ρi from our perpendicular wavevector grid are represented.

The time scales associated with the development and saturation of the turbulent
cascade can be nicely illustrated by plotting the amplitude of the energy at a
perpendicular wavenumber in the middle of the dynamic range at k⊥ρi = 20.6
as a function of time, as shown in figure 8(a). At early times t/τA < 0.14, the
perpendicular magnetic energy at k⊥ρi = 20.6 increases as a steep power law with
time, EB⊥(k⊥) ∝ t12. At time t1/τA = 0.14, the increase of energy with time at this
wavenumber reduces to a less steep approximate power law with EB⊥(k⊥)∝ t6, before
reaching a statistically steady value at t2/τA = 0.28.4 Beyond this time, the shape of
the magnetic energy spectrum no longer evolves, as illustrated by the spectra plotted
in figure 7, but the total amplitude of the energy varies over a factor of four, with
the same spectral shape simply shifting up and down. This variation of the total

4Note that the power-law scaling of the amplitude reported here is dependent on the value of k⊥ρi chosen.
A detailed study of how this scaling varies with k⊥ρi is beyond the scope of the work presented here.
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FIGURE 7. Perpendicular magnetic energy spectra plotted at uniform time intervals of
δt/τA= 0.028 (blue and black), and all spectra overplotted over the range 0.286 t/τA 6 3.6
(red). For comparison, the slope for a power-law spectrum EB⊥ ∝ k−2.8

⊥ (blue solid) and an
exponentially cutoff spectrum EB⊥ ∝ k−2.8

⊥ (blue dashed) are shown for comparison.

energy in the spectrum is due to the fact that the finite-time-correlated driving of
the oscillating Langevin antenna leads to a significant variation in the rate of energy
injection (TenBarge et al. 2014).

It is worthwhile pointing out how rapidly the magnetic energy spectrum saturates,
requiring a length of time that is only a fraction of the period of the kinetic Alfvén
wave at the domain scale, 0.28τA. This is likely due to the dispersive nature of
the kinetic Alfvén wave fluctuations in the sub-ion length scale regime. k⊥ρi � 1,
where the parallel phase velocity of the waves increases linearly with k⊥ρi, with an
approximate scaling (Howes et al. 2014)

ω

k‖
= vA

k⊥ρi√
βi + 2/(1+ Te/Ti)

. (5.1)

Thus, the increasingly fast dynamics of the fluctuations with decreasing scale appears
to saturate the energy spectrum more rapidly than the wave period of the domain-
scale kinetic Alfvén waves that drive the cascade. It is also worthwhile noting that the
turbulent cascade is very efficiently generated by driving counterpropagating kinetic
Alfvén waves at the domain scale.

In figure 8(b), we plot the evolution of the spectral index η of the perpendicular
magnetic spectrum EB⊥ as a function of normalized time t/τA. To determine the value
of the spectral index, we perform a fit of the perpendicular magnetic spectrum at each
time using the form

EB⊥ ∝ (k⊥ρi)
η exp[−k⊥ρe] (5.2)

over the range of scales 106 k⊥ρi 6 105. As shown in panel (b), the rate of increase
of the spectral index decreases, particularly for t> t1, finally saturating to a constant
value for t > t2.
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FIGURE 8. (a) Evolution of the energy in modes with k⊥ρi= 20.6 versus normalized time
t/τA, showing power-law growth until t1/τA= 0.14, and a slower growth until t2/τA= 0.28.
(b) Evolution of the spectral index, η, where the spectrum is fit by (k⊥ρi)

η exp(−k⊥ρe),
showing saturation at time t2/τA = 0.28. (c) Evolution of the scalar expansion parameter
σ , showing that the separation of field lines saturates only at t2/τA = 0.28, with little
noticeable change at t1/τA= 0.14. A second identical run (with a different pseudo-random
number sequence governing the forcing) shows the evolution is statistically repeatable.

5.2. Development and saturation of magnetic field line wander
To estimate the development and saturation of magnetic field line wander, we devise
a new diagnostic, the expansion parameter σ , derived in appendix A. This diagnostic
yields a scalar quantity that parameterizes the separation of magnetic field lines in the
turbulent magnetic field throughout the simulation domain.

In figure 8(c), we plot the evolution of expansion parameter σ as a function of
normalized time t/τA. We plot the results for two independent simulations (red and
blue), with all of the same numerical and physical parameters, but different pseudo-
random number sequences governing the driving by the oscillating Langevin antenna.
The expansion parameter σ increases as a power law right up to the time t2/τA= 0.28,
at which point σ saturates to a statistically steady value. Note that unlike in panel (a),
where the rate of increase of amplitude of turbulent cascade shows a marked decrease
at time t = t1, the power-law increase of the expansion parameter σ in panel (c)
shows little change at t= t1. Note also that the two independent simulations generate
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statistically similar results for the evolution of this expansion parameter σ . Therefore,
it appears for these simulations with plasma parameters βi = 1 and Ti/Te = 1 and
turbulent amplitude χ ' 1, the magnetic field line separation appears to saturate on
the same time scale as the turbulent magnetic energy spectrum.

6. Development of magnetic stochasticity
In well-developed turbulence, the magnetic field appears to become tangled up

in a stochastic manner, raising two very important questions about the development
of magnetic stochasticity in turbulent plasmas. First, how long must the turbulence
evolve before the magnetic field becomes stochastic? Second, must the amplitude of
the turbulence exceed some threshold value for the development of stochasticity? We
reiterate here that we reserve the term ‘stochastic magnetic field’ for a field topology
that displays a stochastic nature in a Poincaré plot (see below), whereas we employ
the term ‘magnetic field line wander’ for the general case of a turbulent magnetic
field, whether or not that field demonstrates a stochastic character.

Although figure 8(c) shows the time scale of the saturation of the separation of
magnetic field lines, as diagnosed by the scalar expansion parameter σ , it does
not provide alone any information about whether the magnetic field has become
stochastic. To investigate the development of stochasticity, we use Poincaré plots to
yield a qualitative measure of the stochasticity (Dombre et al. 1986; Nevins et al.
2011; Wang et al. 2011).

To construct the Poincaré plot, we begin with the magnetic field B(x) at some
time t. On the perpendicular plane at one end of the simulation domain at z= 0, we
specify a sparse pattern of points with the colour of each point creating a bullseye
pattern. The magnetic field line passing through each point is traced through the
domain to the far end of the simulation domain at z = Lz, and a point is plotted
there, with colour matching that of the original field line position. That field line is
periodically wrapped to z = 0, and the process is continued, with a coloured point
plotted at each crossing at z = Lz. We trace through the box 20 times for each
field line, generating a sufficient number of points in the Poincaré plot to visually
determine whether or not the magnetic field has become stochastic. A fourth-order
Runge–Kutta method with adaptive step size is used to trace each field line by
integrating the ordinary differential equation dr/dl = b̂(x), where b̂(x) = B(x)/|B(x)|.
If the field line passes through the boundaries of the simulation domain in the x or y
directions, it is periodically wrapped to the opposite boundary. We have checked that
using the field line following routine to trace back down the field line returns to the
original starting point.

Figure 9 shows the Poincaré plots for the magnetic field at times t/τA = 0.083,
0.154, 0.226 and 3.052. At the early time t1/τA = 0.083, the Poincaré plot remains
well ordered, indicating that the magnetic field has not yet become stochastic. By the
time t/τA= 0.155, some regions of the Poincaré plot demonstrate a disordered mixture
of coloured points, indicating regions that have become stochastic, while other regions
maintain some semblance of order. Thus, it appears that as the magnetic field becomes
stochastic, that stochasticity manifests itself in some regions of the domain but not
others. By time t/τA = 0.226, the entire domain demonstrates a stochastic character.
Since the turbulent spectrum appears to saturate to a constant shape at t2/τA = 0.28,
we conclude that, for this critically balanced simulation with nonlinearity parameter
χ ∼ 1, the magnetic field is generically stochastic for well developed turbulence. Since
space and astrophysical plasmas are almost always found to be turbulent, this finding
has significant implications for many systems of interest.
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FIGURE 9. Poincaré plots in the z= Lz plane that diagnose the magnetic field topology
at times t/τA = 0.083, 0.154, 0.226 and 3.052, showing regions of stochasticity at t/τA =
0.154 and fully developed stochasticity for t/τA & 0.226.

Note that we can use these results to relate indirectly the expansion parameter σ
to the development of stochasticity of the magnetic field. The expansion parameter
has the advantage that it can be computed locally, depending only on the value of
the magnetic field and its derivatives at a single point, whereas the computation of
the Poincaré plot requires knowledge of the magnetic field throughout the simulation
domain. Future work will more thoroughly compare the expansion parameter σ to
Poincaré plots for cases of turbulence with different amplitudes to determine whether
the σ can be useful as a proxy to estimate the stochasticity of a given magnetic field
configuration.

7. Conclusion
Here we have presented a general context for understanding the tangling of

magnetic lines in a turbulent plasma from direct numerical simulations of weakly
collisional plasma turbulence. We have discussed the broader issue of magnetic field
line wander, including the effect on the propagation of cosmic rays and energetic
particles in the heliosphere and other astrophysical plasmas, the degradation of
particle confinement in magnetic fusion devices, the relation to the cascade of energy
in plasma turbulence and the role played by tangled magnetic fields in particle

https://doi.org/10.1017/S0022377817000617 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000617


Magnetic field line wander 21

acceleration and magnetic reconnection. We have identified some key questions about
the development and saturation of magnetic field line wander in plasma turbulence
and discussed the fundamental turbulence and plasma parameters upon which this
behaviour is likely to depend.

We present the analysis of a driven kinetic Alfvén wave simulation of strong plasma
turbulence with plasma parameters βi = 1 and Ti/Te = 1 and a nonlinearity parameter
χ ' 1. We show how the magnetic energy spectrum develops in time from uniform
conditions and saturates to a steady spectral shape, and identify two time scales that
characterize the evolution and saturation. Next, we investigate the development of
tangling in the magnetic field using a scalar expansion parameter σ to characterize
the separation of field lines in the plasma turbulence. Finally, we use Poincaré plots
to qualitatively demonstrate how the magnetic field attains a stochastic character in
our strong plasma turbulence simulation.

We find that, for the case of strong plasma turbulence analysed here, the magnetic
field indeed develops a stochastic character. We expect that, on general grounds,
the magnetic field in turbulent space and astrophysical plasmas is likely to always
be stochastic. Such a stochastic nature of the magnetic field is very important
to the prediction of the propagation of energetic particles through the turbulence
heliospheric interplanetary magnetic field, with implications for energetic particles
hazards to spaceborne robotic and human assets.

The companion work to this paper, Bourouaine & Howes (2017), explores the
magnetic field line wander over a range of turbulent amplitudes 0.1 . χ . 5 with
βi = 1 and Ti/Te = 1 to test whether one should indeed always expect turbulent
astrophysical plasmas to contain a stochastic magnetic field. We find that the magnetic
field becomes fully stochastic when the turbulence amplitude exceeds a threshold
value, χ > χthresh ' 0.1. Analysis of the spreading of the field lines finds slightly
super-diffusive behaviour for stronger turbulence with χ > 1 and slightly sub-diffusive
behaviour for weaker turbulence with χ < 1, and we provide a functional form for
the dependence on the turbulent amplitude χ for the coefficient A(χ) and exponent
p(χ) in (3.1). For the case of critically balanced turbulence with χ ∼ 1, the behaviour
appears to be quite close to diffusive, with the exponent in (3.1) given by p(χ =1)'1.
This appears to be in agreement with the Rechester–Rosenbluth model of diffusive
behaviour (Rechester & Rosenbluth 1978), although away from critical balance the
direct numerical simulations suggest this simple model may break down.
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Appendix A. Definition of the scalar expansion parameter σ

It is useful to derive a scalar quantity that can parameterize the separation of
field lines in a turbulent magnetic field. For this purpose, we derive here the scalar
expansion parameter, σ .

We begin with the magnetic field specified throughout the triply periodic simulation
domain at a single time, B(x). We define the unit vector that specifies local direction
of the magnetic field,

b̂(x)≡ B(x)
|B(x)| , (A 1)
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where x= (x, y, z) is the position. Field line tracing can be performed by following
along the local magnetic field direction at each point,

∂r
∂l
= b̂(r), (A 2)

where l is the distance along the magnetic field line. A field line is defined by the
vector r(l, r0), where the starting point at l= 0 is r0 = r(0, r0).

Since we are interested in the separation between field lines as you progress along
either of those field lines, we chose another field line r′ separated from the field line
r by the separation δr, such that r′(l, r′0)= r(l, r0)+ δr(l). Taylor expanding the field
line r′ about r, one may obtain an expression for the evolution of δr as you move a
distance l along the field line r,

∂δr
∂l
= (δr · ∇)b̂(r). (A 3)

Since we are primarily interested here in the separation of magnetic field lines due
to turbulence at scales sufficiently below the outer scale of the inertial range, we take
the local magnetic field to be B(x)= B0ẑ+ δB(x), where the perturbations are small
compared to the mean magnetic field, |δB|�B0. In this limit, the total magnetic field
magnitude

B= |B| =
√

B2
0 + 2B0δBz + |δB|2 ' B0 + δBz +O(|δB|2). (A 4)

Substituting this result into the definition of b̂ and dropping terms of order
O(|δB|2/B2

0) and higher, we obtain a first-order expression for the magnetic field
direction,

b̂(r)= ẑ+ bxx̂+ byŷ, (A 5)

where bx = δBx/B0 and by = δBy/B0. Therefore, to first order, the variation of the
direction of the magnetic field depends only on the components of the magnetic field
perpendicular to the mean magnetic field, B0=B0ẑ. In this limit, to first order in |δB|,
we may express the displacement of the magnetic field lines δr(l) in terms of the
initial displacement δr0 by

δr(l)= α(l)R[φ(l)] · δr0, (A 6)

where α(l) represents expansion (positive) or contraction (negative) of the separation
between the field lines, and R[φ(l)] is a matrix representing rotation in the
perpendicular plane of the vector by an angle φ(l),

R[φ(l)] ≡
(

cos[φ(l)] −sin[φ(l)]
sin[φ(l)] cos[φ(l)]

)
. (A 7)

Thus, the evolution of the displacement (in the perpendicular plane, to lowest order)
between two particular magnetic field lines may be characterized by the two scalar
quantities α(l) and φ(l).

Here we are primarily interested in the separation of field lines α(l), so we eliminate
φ(l) by taking a dot product of (A 6) with itself, obtaining the result,

|δr|2 = α2|δr0|2 (A 8)
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We can obtain an expression for α by using (A 3) to obtain

δr= δl(δr0 · ∇)b̂(r0)+ δr0, (A 9)

an expression for the separation valid to first order in δl. One may then obtain the
expression, valid to first order in δl,

α = |δr||δr0| = 1+ δr0 · [(δr0 · ∇)b̂(r0)]
|δr0|2 δl. (A 10)

Finally, we define the dimensionless scalar expansion parameter, σ , by

∂(δr/ρi)

∂(l/a0)
= σ(δr0/ρi) (A 11)

where the perpendicular length scale is normalized by the ion thermal Larmor radius
ρi = vti/Ωi = (2Ti/mi)

1/2mic/qiB0 and the parallel length scale is normalized by a
characteristic length a0. Note that by normalizing to two separate length scales,
this definition enables a strong connection to gyrokinetic simulations in which the
gyrokinetic expansion parameter, ε ≡ ρi/a0 ∼ |δB|/B0 � 1, enables the results of a
single simulation to be scaled to any ratio for the strength of the equilibrium field to
the perturbed magnetic field, B0/|δB| ∼ a0/ρi. This expression can be simplified to

∂δr
∂l
= σ

(
δr0

ρi

)(
ρi

ao

)
, (A 12)

where the presence of the gyrokinetic expansion parameter in the last pair of
parentheses yields a value of σ of similar magnitude for different ratios of B0/|δB|.

In the limit δl→ 0, this dictates δr= δr0 + (σδl/a0)δr0. Comparing this expression
for α in (A 10), and using (A 8), we obtain a simple result for the expansion parameter,

σ = δr̂0 · [(δr̂0 · ∇̂)b̂(r0)], (A 13)
where we define the direction of the initial separation vector δr̂0= δr0/δr0. In addition,
we have normalized the gradient operator to the ion Larmor radius scale, so that the
perpendicular components of this operator (the only ones that contribute to (A 13)) are
given by ∇̂⊥ = x̂ρi(∂/∂x)+ ŷρi(∂/∂y). If we take an initial separation vector to have
an angle γ in the x–y plane with respect to the x-axis, δr̂0= cos γ x̂+ sin γ ŷ, then this
expression simplifies to

σ = cos2 γ
∂bx

∂x
+ sin γ cos γ

(
∂by

∂x
+ ∂bx

∂y

)
+ sin2 γ

∂by

∂y
. (A 14)

In the limit |δB| � B0, one may obtain an expression for b̂ up to O(|δB|2/B2
0),

b̂= B
|B| = ẑ

(
1+ |δB|

2

B2
0

)
+ δBx

B0
x̂+ δBy

B0
ŷ− δBz

B0

δB
B0
. (A 15)

Taking the divergence of the field direction, we obtain

∇ · b̂= ∂

∂x

(
δBx

B0

)
+ ∂

∂y

(
δBy

B0

)
− ∂

∂x

(
δBxδBz

B2
0

)
− ∂

∂y

(
δByδBz

B2
0

)
− ∂

∂z

(
δB2

xδB
2
y

B2
0

)
.

(A 16)
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In the anisotropic limit ε ≡ k‖/k⊥ ∼ |δB|/B0 � 1 that is relevant to turbulent
fluctuations at small scales, then ∂/∂z∼ ε∂/∂x∼ ε∂/∂y, and the terms in the equations
above have the following order: the first two terms are O(ε), the next two terms are
O(ε2) and the final term is O(ε3). Therefore, dropping terms of order O(ε2) and
higher, we obtain the simplified expression,

∇ · b̂⊥ = 0, (A 17)

where b̂⊥= δBx/B0x̂+ δBy/B0ŷ. Therefore, we obtain the important simplifying result,
∂bx/∂x = −∂by/∂y. This important result means that, to lowest order, compressions
and expansions of the magnetic field are divergence free in the perpendicular plane.

One consequence of this property is that, for a given initial field line, r, the
expansion parameter σ yields a zero value when integrated over all possible directions
γ of displacement about that point. Specifically,∫ 2π

0
dγ σ(γ ) =

∫ 2π

0
dγ
[

cos2 γ
∂bx

∂x
+ sin γ cos γ

(
∂by

∂x
+ ∂bx

∂y

)
+ sin2 γ

∂by

∂y

]
(A 18)

= 1
2

(
∂bx

∂x
+ ∂by

∂y

)
= 0. (A 19)

Note that the values of the derivatives ∂bi/∂xj are constant in this integration.
The consequence of this finding is that the value of the expansion parameter as

a function of angle γ is bounded by some maximum value, |σ(γ )|6 σmax. Thus, at
each point r, we can simply use this maximum value as a scalar value that simply
characterizes the expansion (and the consequent equal and opposite contraction at
other angles necessary to yield

∫ 2π

0 dγ σ(γ ) = 0). In the body of the paper, the
parameter σ at a given instant of time is computed as the value of σmax averaged
over all points in the simulation domain.

A treatment of the twisting of the magnetic field about itself, characterized by the
parameter φ(l), will be presented in subsequent work.
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