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Marangoni waves in two-layer films under the
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The nonlinear dynamics of waves generated by the deformational oscillatory
Marangoni instability in a two-layer film under the action of a spatial temperature
modulation on the solid substrate is considered. A system of long-wave equations
governing the deformations of the upper surface and the interface between the
liquids is derived. The nonlinear simulations reveal the existence of numerous
dynamical regimes, including two-dimensional stationary flows and standing waves,
three-dimensional standing waves with different spatial periods, and three-dimensional
travelling waves. The general diagram of the flow regimes is constructed.
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1. Introduction
During recent decades, a great deal of attention has been paid to the investigation of

nonlinear patterns created by instabilities (Cross & Hohenberg 1993). The nonlinear
dynamics of systems subjected to oscillatory instabilities is especially rich (Aranson
& Kramer 2002). For nonlinear patterns, a multistability is characteristic; specifically,
in spatially extended systems different pattern planforms are possible.

An important problem is to control the development of instability, i.e. the
suppression of undesired kinds of patterns or generation of desired kinds of patterns
(Mikhailov & Showalter 2006; Schöll & Schuster 2008).

A possible way of controlling the pattern selection is a spatial modulation of
the control parameter. It is necessary to distinguish between patterns created by
short-wave instabilities, characterized by a non-zero critical wavenumber kc 6= 0,
and patterns generated by long-wave instabilities, where the critical wavenumber
kc = 0, so that the wavenumber interval of instability is 0 < k < km. The influence
of the spatial modulation of the control parameter on short-wave patterns with
moduli of wavevectors close to kc is rather well understood. The action of a
resonant spatially periodic forcing on the onset of stationary patterns created by
a short-wave instability has been explored extensively (Vozovoi and Nepomnyashchy
1974; Vozovoi & Nepomnyashchy 1979; Coullet, Elphick & Repaux 1987; Pismen
1987; Manor, Hagberg & Meron 2008; Freund, Pesch & Zimmermann 2011; Mau
et al. 2013; Haim, Mau & Meron 2014; Weiss, Seiden & Bodenschatz 2014). The
influence of resonant and non-resonant spatial modulations on short-wave oscillatory
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instabilities was studied on the background of a complex Ginzburg–Landau equation
by Nepomnyashchy (1988), Malomed (1993), Utzny, Zimmermann & Bär (2002),
Hammele & Zimmermann (2006), Abarzhi et al. (2007) and Nepomnyashchy &
Abarzhi (2010).

In the case of a long-wave instability, where disturbances with significantly different
wavenumbers are relevant, the prediction of the pattern dynamics is much more
difficult. In the absence of a control, the pattern evolution is governed by the
nonlinear interaction of disturbances with different wavevectors, which can lead to
complex spatio-temporal dynamics. It is tempting to impose a spatial modulation of
the control parameter with a prescribed wavelength, which can simplify the dynamics
and make it more predictable. However, the effect of the spatial modulation on
long-wave patterns has still hardly been explored.

This paper is devoted to the investigation of an important class of long-wave
oscillatory instabilities which cannot be described by the Ginzburg–Landau equation
(Nepomnyashchy & Shklyaev 2016). This kind of instability is typical for liquid
systems with deformable interfaces. To the best of our knowledge, the influence
of spatial modulations on long-wave oscillatory instabilities has never been studied
before.

We consider the nonlinear dynamics of waves generated by the deformational
Marangoni instability in a two-layer film under the action of a spatial temperature
modulation on the solid substrate. In the absence of a temperature modulation, a
two-layer film is subject to a long-wave oscillatory instability by heating from above
(Nepomnyashchy & Simanovskii 2007). In contradistinction to a one-layer film, where
the deformational instability is monotonic and leads to film rupture, an oscillatory
instability in a two-layer film creates various wavy patterns (Nepomnyashchy &
Simanovskii 2007, 2012). The formulation of the problem is given in § 2. In § 3,
we derive a system of long-wave equations that govern the evolution of the surface
deformations. The results of nonlinear simulations are presented in § 4. Section 5
contains concluding remarks.

2. Formulation of the problem

Consider a system of two superposed layers of immiscible liquids with different
physical properties (see figure 1). The bottom layer rests on a solid substrate and
the top layer is in contact with the adjacent gas phase. The temperature of the solid
substrate is Ts(x, y) (we assume that Ts is a slow function of x and y), and the
temperature of the gas is Tg. All of the variables referring to the bottom layer are
marked by a subscript 1 and all of the variables referring to the top layer are marked
by a subscript 2. The coordinates of the interfaces in a quiescent state are z = H0

m,
m = 1, 2. The deformable interfaces are described by the equations z = H1(x, y, t)
(liquid–liquid interface) and z = H2(x, y, t) (liquid–gas interface). The mth fluid has
density ρm, kinematic viscosity νm, dynamic viscosity ηm = ρmνm, thermal diffusivity
χm and heat conductivity κm. The surface tension coefficients on the lower and upper
interfaces, σ1 and σ2, are linear functions of temperature T: σ1 = σ 0

1 − α1T , σ2 =
σ 0

2 −α2T . We do not consider the effect of gravity, which is negligible for sufficiently
thin layers.

The complete system of nonlinear equations governing Marangoni convection is
written in the following form (Simanovskii & Nepomnyashchy 1993):
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FIGURE 1. Geometric configuration of the region and coordinate axes.

∂vm

∂t
+ (vm · ∇)vm =− 1

ρm
∇pm + νm1vm, (2.1)

∂Tm

∂t
+ vm · ∇Tm = χm1Tm, (2.2)

∇ · vm = 0, m= 1, 2. (2.3)

Here, vm and pm are the velocity and the difference between the overall pressure and
the atmospheric pressure in the mth liquid respectively. The boundary conditions on
the rigid boundary are

v1 = 0, T1 = Ts(x, y); at z= 0. (2.4a,b)

On the deformable interface z = H1, the following boundary conditions hold: the
balance of normal stresses,

p2 − p1 + 2σ1K1 =
[
−η1

(
∂v1i

∂xk
+ ∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)]
n1in1k; i, k= 1, 2, 3;

(2.5)

the balance of tangential stresses,[
−η1

(
∂v1i

∂xk
+ ∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)]
τ
(l)
1i n1k

−α1τ
(l)
1i
∂T1

∂xi
= 0; l= 1, 2; i, k= 1, 2, 3; (2.6)

the continuity of the velocity field,

v1 = v2; (2.7)

the kinematic equation for the interface motion,

∂H1

∂t
+ v1x

∂H1

∂x
+ v1y

∂H1

∂y
= v1z; (2.8)
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the continuity of the temperature field,

T1 = T2; (2.9)

and the balance of normal heat fluxes,(
κ1
∂T1

∂xi
− κ2

∂T2

∂xi

)
n1i = 0. (2.10)

Similar boundary conditions are imposed on the deformable interface z=H2:

−p2 + 2σ2K2 =−η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)
n2in2k, (2.11)

−η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)
τ
(l)
2i n2k − α2τ

(l)
2i
∂T3

∂xi
= 0, l= 1, 2, i, k= 1, 2, 3, (2.12)

∂H2

∂t
+ v2x

∂H2

∂x
+ v2y

∂H2

∂y
= v2z. (2.13)

In the formulae presented above, K1 and K2 are the mean curvatures, n1 and n2 are
the normal vectors and τ

(l)
1 and τ

(l)
2 are the tangential vectors of the lower and upper

interfaces. In the quantities with two subscripts, the first subscript corresponds to the
number of the liquid (m = 1, 2) and the second subscript determines the number of
the Cartesian coordinate (i, k = 1, 2, 3; x1 = x, x2 = y, x3 = z). The usual summation
convention is applied. For a heat flux on the liquid–gas interface we use an empirical
condition,

κ2
∂T2

∂xi
n2i =−q(T2 − Tg), (2.14)

where q is the heat exchange coefficient, which is assumed to be constant.

3. Derivation of the long-wave amplitude equations
The system of equations and boundary conditions (2.1)–(2.14) is rather complicated.

However, in this paper we will consider the case where the characteristic spatial scale
of the temperature modulation of the substrate is much larger than the thickness of
the layer, i.e. the temperature modulation depends on the scaled coordinates X̃ = εx
and Ỹ = εy, ε � 1, rather than on x and y. Later on, we assume that the solution
of the equations and boundary conditions (2.1)–(2.14) itself depends only on the
slow variables, X̃ = (X̃, Ỹ) (the reason for this assumption will be discussed below).
Moreover, it is assumed that the solution depends on the scaled time variable τ̃ = ε2t.
In this case, the nonlinear model governing three-dimensional flows with a deformable
interface can be drastically simplified by means of a long-wavelength expansion. The
details of the long-wave approach applied to thermocapillary flows can be found in
the review papers of Davis (1987) and Oron, Davis & Bankoff (1997).

Actually, the long-wave approach applied above is justified only in the case of a
strong surface tension. A strong surface tension suppresses short-wave deformations of
the surfaces; therefore the instability takes place only in the region of the long waves.
Later on, we assume that σm = σ 0

mε
−2, σ 0

m = O(1), m = 1, 2. Moreover, we assume
that the dependence of the interfacial tensions on the temperature is relatively weak
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and can be neglected in the boundary conditions for normal stresses (but not in the
boundary conditions for tangential stresses where it is the source of a thermocapillary
motion).

The appropriate scaling of variables for a long-scale flow governed by the system
(2.1)–(2.14) is as follows:

(vmx, vmy)= εVm + o(ε), vmz = ε2Wm + o(ε2), pm = Pm + o(ε2); m= 1, 2.
(3.1a−c)

At the leading order, the evolution of the system is governed by the following
equations and boundary conditions:

P1zz = 0; −∇̃⊥P1 + η1V 1zz = 0; ∇̃⊥ · V 1 +W1z = 0;
T1zz = 0; 0< z<H1(X̃, τ̃ );

}
(3.2)

P2zz = 0; −∇̃⊥P2 + η2V 2zz = 0; ∇̃⊥ · V 2 +W2z = 0;
T2zz = 0; H1(X̃, τ̃ ) < z<H2(X̃, τ̃ );

}
(3.3)

z= 0 : V 1 = 0; W1 = 0; T1 = Ts; (3.4)
z=H1 : V 1 = V 2; W1 =W2; (3.5)

P2 − P1 − σ 0
1 ∇̃

2
⊥H1 = 0; (3.6)

η2V 2z − η1V 1z − α1(∇̃⊥T1 + T1z∇̃⊥H1)= 0; (3.7)

H1τ̃ + V 1 · ∇̃⊥H1 =W1; (3.8)
T1 = T2; κ1T1z = κ2T2z +Q∗; (3.9)

z=H2 : −η2V 2z − α2(∇̃⊥T2 + T2z∇̃⊥H2)= 0; (3.10)

−P2 − σ 0
2 ∇̃

2
⊥H2 = 0; (3.11)

H2τ̃ + V 2 · ∇̃⊥H2 =W2; (3.12)
κ2T2z =−q(T2 − Tg). (3.13)

Here, ∇̃⊥ = (∂/∂X̃, ∂/∂Ỹ), and the subscripts z and τ̃ denote partial derivatives with
respect to the corresponding variables.

Relations (3.6) and (3.11) determine expressions for the Laplace pressures,

P1 =−σ1∇̃
2
⊥H1 − σ2∇̃

2
⊥H2, (3.14)

P2 =−σ2∇̃
2
⊥H2. (3.15)

Solving the problem for the temperature fields, we find

T1(X̃, τ̃ )= Ts(X̃)− (Ts(X̃)− Tg)D(X̃, τ̃ )qκ2z, (3.16)

T2(X̃, τ̃ )= Ts(X̃)− (Ts(X̃)− Tg)D(X̃, τ̃ )q[(κ2 − κ1)H1(X̃, τ̃ )+ κ1z], (3.17)

where

D(X̃, τ̃ )= [κ1κ2 + q(κ2 − κ1)H1(X̃, τ̃ )+ qκ1H2(X̃, τ̃ )]−1. (3.18)

The horizontal components of the flow velocities Vm (m = 1, 2), which are
generated by the thermocapillary stresses and the gradients of the Laplace pressures,
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are determined by linear equations and boundary conditions. Therefore, we can
present Vm as a sum of two terms VT

m and Vσ
m, which are related by those two

factors respectively. Similarly, the vertical component of the flow velocity Wm can be
presented as Wm =WT

m +Wσ
m . Let us consider (VT

m,WT
m) and (Vσ

m,Wσ
m) separately.

Disregarding Laplace pressures, we obtain the following expressions for the
horizontal components of the thermocapillary flows:

VT
1 =−

(
α1

η1
∇̃⊥A+ α2

η1
∇̃⊥B

)
z, (3.19)

VT
2 =−

α1

η1
H1∇̃⊥A− α2

(
z−H1

η2
+ H1

η1

)
∇̃⊥B, (3.20)

where

A(X̃, τ̃ )= Ts(X̃)− (Ts(X̃)− Tg)D(X̃, τ̃ )qκ2H1(X̃, τ̃ ), (3.21)

B(X̃, τ̃ )= Ts(X̃)− (Ts(X̃)− Tg)D(X̃)q[(κ2 − κ1)H1(X̃)+ κ1H2(X̃)]. (3.22)

Solving the continuity equations with respect to W1 and W2 with corresponding
boundary conditions, we find that

WT
1 (X̃, τ̃ )=−

∫ H1

0
∇̃⊥ · V 1 dz, (3.23)

WT
2 (X̃, τ̃ )=−

∫ H1

0
∇̃⊥ · V 1 dz−

∫ H2

H1

∇̃⊥ · V 2 dz. (3.24)

Substituting the expressions for the flow velocities obtained above into equations (3.8)
and (3.12), we arrive at a closed system of equations that governs the evolution of a
heated two-layer film under the action of the thermocapillary effect:

H1τ̃ + ∇̃⊥ · QT
1 = 0, H2τ̃ + ∇̃⊥ · QT

2 = 0. (3.25a,b)

The expressions for the fluxes produced by the thermocapillary effect are as follows:

QT
1 = −

α1H2
1

2η1
∇̃⊥A− α2H2

1

2η1
κ1κ2∇̃⊥C, (3.26)

QT
2 = −

α1H1(2H2 −H1)

2η1
∇̃⊥A

− α2κ1κ2

2η1η2
[H2

2η1 + (2H2 −H1)H1(η2 − η1)]∇̃⊥C, (3.27)

where

C= (Ts − Tg)D. (3.28)

Equations (3.25) were formerly derived by Nepomnyashchy & Simanovskii (2007) in
the case Ts = const.

Similarly, disregarding the thermocapillary stresses, one can calculate the velocities
(Vσ

m, Wσ
m), m = 1, 2, and the fluxes Qσ

1 , Qσ
2 . Because these fluxes were computed
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formerly by Pototsky et al. (2004), Bandyopadhyay, Gulabani & Sharma (2005) and
Fisher & Golovin (2005), we present here only the final result:

Qσ
1 = F11∇̃⊥P1 + F12∇̃⊥P2, Qσ

2 = F21∇̃⊥P1 + F22∇̃⊥P2, (3.29)

where the pressures P1 and P2 are determined by the expressions (3.14) and (3.15),
and the mobility functions are

F11 =− 1
3η1

H3
1; F12 =− 1

2η1
H2

1(H2 −H1); F21 = 1
6η1

H3
1 −

1
2η1

H2
1H2;

F22 = (H2 −H1)

[
H2

1

(
1

2η1
− 1

3η2

)
+H1H2

(
− 1
η1
+ 2

3η2

)
− 1

3η2
H2

2

]
.

 (3.30)

Finally, we obtain the following evolution equations:

H1τ̃ + ∇̃⊥ · (QT
1 + Qσ

1 )= 0, H2τ̃ + ∇̃⊥ · (QT
2 + Qσ

2 )= 0. (3.31a,b)

Let us transform equations (3.31) to a non-dimensional form. The natural vertical
length scale is the equilibrium thickness of the lower layer, H0

1 . The choice of the
horizontal length scale, L∗, is arbitrary (see Nepomnyashchy & Simanovskii 2012). We
choose

τ ∗ = η1(L∗)4

σ 0
1 (H

0
1)

3
(3.32)

as a time scale and

p∗ = σ
0
1 H0

1

(L∗)2
(3.33)

as a pressure scale.
The non-dimensional parameters of the problem are the Biot number,

Bi= qH0
1

κ2
, (3.34)

η=η1/η2, κ= κ1/κ2, σ =σ 0
2 /σ

0
1 and α=α2/α1. We define non-dimensional variables

X = X̃/L∗, τ = τ̃ /τ ∗, hj =Hj/H0
1, πj = Pj/p∗, j= 1, 2. (3.35a−d)

We introduce also the local modified Marangoni number,

M(X)= α1(Ts(X)− Tg)

σ 0
1

(
L∗

H0
1

)2

(3.36)

and

d(X, τ )= [κ + Bi(1− κ)h1(X, τ )+ Biκh2(X, τ )]−1. (3.37)

Equations (3.31) written in the non-dimensional form look as follows:

h1τ +∇⊥ · q1 = 0, h2τ +∇⊥ · q2 = 0, (3.38a,b)

q1 = f11∇⊥p1 + f12∇⊥p2 + qT
1 , q2 = f21∇⊥p1 + f22∇⊥p2 + qT

2 , (3.39a,b)
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where

f11 =− 1
3 h3

1, f12 =− 1
2 h2

1(h2 − h1), (3.40a,b)

f21 = 1
6

h3
1 −

1
2

h2
1h2, f22 = (h2 − h1)

[
h2

1

(
1
2
− η

3

)
+ h1h2

(
−1+ 2η

3

)
− η

3
h2

2

]
.

(3.41a,b)

The capillary pressures are

π1 =−∇2
⊥h1 − σ∇2

⊥h2, (3.42)
π2 =−σ∇2

⊥h2. (3.43)

The non-dimensional expressions for the fluxes generated by the thermocapillary effect
are

qT
1 = −

h2
1

2
∇⊥{M[1+ d(ακ − Bih1)]}, (3.44)

qT
2 = −

ηακ

2
h2

2∇⊥(Md)

+ (2h2 − h1)h1

2
∇⊥{M[−1+ Bih1d− ακ(1− η)d]}. (3.45)

4. Nonlinear simulations
4.1. Methodology

We have performed nonlinear simulations of equations (3.38) with a spatially periodic
modulation of the Marangoni number,

M(X + L, Y)=M(X, Y + L)=M(X, Y). (4.1)

Let us emphasize that L is a non-dimensional parameter; the dimensional modulation
period is L̃=LL∗. Equations (3.38)–(3.45) have been discretized by central differences
for spatial derivatives and solved using an explicit scheme. Initial conditions for hj,
j= 1, 2, have been chosen in such a way that the mean value of h1(X, Y, 0) is equal
to 1 and the mean value of h2(X, Y, 0) is equal to h, where h> 1. It should be noted
that the solutions of the problem depend on the additional geometric parameter, h=
H0

2/H
0
1 . Small random deviations of hj(X, Y, 0) from their mean values were imposed

using a code creating pseudo-random numbers. The computations were performed in
the region L× L= 240× 240 with periodic boundary conditions using a grid of 80×
80. In this paper, we consider the system of fluorinert FC70 (liquid 1) and silicone
oil 10 (liquid 2) formerly used in microgravity experiments (see, e.g., Géoris et al.
1999). It is characterized by the following set of parameters: η = 3.04, κ = 0.522,
α = 2, ρ = 0.482, σ = 2.6. The computations are carried out for h= 2.5 and Bi= 10.

The primary analysis of the obtained nonlinear regimes has been performed using
snapshots of the fields of hj(X, Y, τ ), j= 1, 2. This analysis has been supplemented
by the investigation of the Fourier components
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8

6

4

2

0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0

|M|

FIGURE 2. General diagram of regimes on the plane (∆X,M): black triangle, mechanical
equilibrium; white circle, time-periodic three-dimensional standing wave; white triangle,
quasiperiodic three-dimensional standing wave; black square, two-dimensional standing
wave; white square, two-dimensional stationary pattern; black circle, three-dimensional
travelling wave; white diamond, time-periodic standing wave with spatial period L/2; big
star, travelling wave with spatial period L/2; black diamond, quasiperiodic wave with
spatial period L/2; asterisk, standing wave with spatial period L/3.

cmn(τ )= 2
L2

∫ L

0

∫ L

0
h1(X, Y, τ ) cos

[
2π

L
(mX + nY)

]
dX dY, (4.2)

smn(τ )= 2
L2

∫ L

0

∫ L

0
h1(X, Y, τ ) sin

[
2π

L
(mX + nY)

]
dX dY, (4.3)

where m, n are integer numbers.
We have used also variables

rmn(τ )=
√

c2
mn(τ )+ s2

mn(τ ), (4.4)

characterizing the amplitudes of the corresponding complex Fourier harmonics, and
quantities

hmax,j(τ )=max
X,Y

hj(X, Y, τ ), j= 1, 2, (4.5)

which describe the deformations of the surfaces.

4.2. One-dimensional spatial modulation with period L
In this subsection, we discuss the nonlinear regimes observed in the case of a one-
dimensional modulation of the local Marangoni number,

M(X)=M
(

1+ δX sin
X
L

)
=M −∆X sin

X
L
, (4.6)

where M < 0, δX > 0 and ∆X = |M|δX . The diagram of regimes is shown in figure 2.

4.2.1. Nonlinear regime in the absence of modulation
The stability of the mechanical equilibrium, and the nonlinear flow regimes in

the absence of the substrate temperature modulation (∆X = 0) have been studied
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FIGURE 3. Oscillations of s10(τ ) (solid line) and s01 (dashed line) for M =−2, ∆X = 0.

by Nepomnyashchy & Simanovskii (2012). For Bi = 10, the mechanical equilibrium
state is unstable with respect to oscillatory disturbances by heating from above. For
the region L × L = 240 × 240 with periodic boundary conditions, the linear stability
theory predicts the instability threshold M∗ ≈ 1.02. Below the threshold, the system
tends to the mechanical equilibrium state. Just above the threshold, the nonlinear
development of the instability creates a two-dimensional time-periodic standing wave
with the wavevectors directed either along the X axis or along the Y axis (see the
black square in figure 2). With the growth of |M|, we observe a transition to the wavy
pattern known as alternating rolls. This motion is a superposition of two periodic
standing waves with the wavevectors directed along the axes X, Y . The oscillations
of waves with orthogonal wavevectors have a mutual phase shift corresponding to a
quarter of the period, T/4 (see figure 3). The mean values of the Fourier components
s10(τ ), c10(τ ), s01(τ ), c01(τ ) are equal to zero; the amplitudes of both standing waves
are equal,

max
τ

r10(τ )=max
τ

r01(τ ). (4.7)

The quantities hmax,j(τ ), j= 1, 2, oscillate with the period T/4 (see figure 4).

4.2.2. Two-dimensional stationary flow
As mentioned above, in the absence of modulation no flow is observed in

the subcritical region |M| < M∗. The inhomogeneity of the substrate temperature
generates a two-dimensional stationary flow (3.19), (3.20), and that flow creates a
two-dimensional stationary deformation of the surfaces hj = hj(x), j = 1, 2. For this
solution, c10= 0 and s10= const; all cmn, smn with n 6= 0 are equal to zero. In figure 2,
this regime occupies the region indicated by white squares. For moderate values of
∆X , the stationary flow generated by temperature modulation is more stable than the
mechanical equilibrium in the absence of modulation: it is observed up to |M| ≈ 3.
Isolines of h2(X, Y)− h for this flow are shown in figure 5.
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FIGURE 4. Oscillations of hmax,1(τ ) (dashed line) and hmax,2(τ ) (solid line) for M =−2,
∆X = 0.
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FIGURE 5. (Colour online) Isolines of h2(X, Y)− h; M =−2, ∆X = 0.5.

4.2.3. Two-dimensional standing waves
The instability of a two-dimensional stationary flow can lead to the development

of two-dimensional standing waves. In this regime, s10(τ ) oscillates with a non-zero
mean value, while cmn, smn with n 6= 0 are equal to zero (see figure 6).

The quantities hmax,j, j= 1, 2, oscillate with the period T , and they have two maxima
during the period (see figure 7).

It should be noted that the selection of the phase of the standing wave (c10(τ )→ 0)
is an extremely slow process. This process is shown in figure 8 for ∆X = 0.2. For
smaller values of ∆X , it is even slower.

The region of two-dimensional standing waves is indicated in figure 2 by black
squares.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.567


Marangoni waves in two-layer films with spatial temperature modulation 333

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2
1.00 1.04 1.08 1.12 1.16 1.20

FIGURE 6. The temporal dependence of s10(τ ) (solid line) and s01(τ ) (dashed line) for
M =−2, ∆X = 0.2.
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FIGURE 7. Oscillations of hmax,2(τ ) for M =−2, ∆X = 0.2.

4.2.4. Three-dimensional standing waves
The most typical nonlinear regime at moderate values of ∆X is the regime of three-

dimensional standing waves, which are developed due to the influence of modulation
on the alternating rolls.

The non-uniformity of heating determined by (4.1) breaks (i) the translational
symmetry along the X axis and (ii) the symmetry between standing waves with
wavevectors directed along the X and Y axes. While for ∆X = 0 the phase of the
standing wave (s10(τ ), c10(τ )), φ = tan−1(c10/s10), is arbitrary, in the case ∆X 6= 0 a
definite value of φ is selected. Typically, c10(τ )→ 0, i.e. φ = 0 is selected, but the
transition to the equilibrium value of the phase is a very slow process. The imposed
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FIGURE 8. Decay of c10(τ ) for M =−2, ∆X = 0.2.
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FIGURE 9. Oscillations of s10(τ ) (solid line) and s01(τ ) (dashed line) for M = −3,
∆X = 0.15.

temperature non-uniformity generates a thermocapillary flow, which creates a certain
mean deformation of surfaces. Therefore, the mean value of s10(τ ) is non-zero (see
figure 9), and it increases with the growth of ∆X . The phase of the standing wave
(s01(τ ), c01(τ )) is arbitrary, the mean values of s01(τ ) and c01(τ ) are equal to zero
(figure 9) and the amplitude of this standing wave decreases with the growth of ∆X .

The phase trajectory in the plane (r10, r01) is shown in figure 10. One can see that
each of the functions r10(τ ), r01(τ ) has two different local maxima during the period.
The quantities hmax,j, j = 1, 2, oscillate now with the period T , but they have four
non-equal maxima during the period (see figure 11).

The regime of time-periodic three-dimensional standing waves described above is
observed in a large region in the plane (∆X,M) (see figure 2, white circles).
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FIGURE 10. Phase trajectory in the plane (r10, r01) for M =−3, ∆X = 0.15.
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FIGURE 11. Oscillations of hmax,2(τ ) for M =−3, ∆X = 0.15.

With the growth of ∆X , the frequencies of standing waves with the wavevectors
directed along the X and Y axes become different from each other (see figure 12).
The region of these quasiperiodic oscillations is shown in figure 2 by white triangles.

4.2.5. Three-dimensional travelling waves
When ∆X increases, the stationary flow described in § 4.2.2 becomes unstable

with respect to three-dimensional oscillatory disturbances with the period L in the
Y-direction. The instability creates travelling waves propagating in the Y-direction:

hj(X, Y, τ )= h±j (X, Y ± cτ), (4.8)

where c is the phase velocity of the wave (see figure 13).
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FIGURE 12. Oscillations of s10(τ ) (solid line) and s01 (dashed line) for M=−4, ∆X= 0.7.

50 100 150 2000

50

100

150

200

50 100 150 2000

50

100

150

200

(a)

(b)

FIGURE 13. (Colour online) Snapshots of the isolines of (a) h2(X, Y, τ ) − h and
(b) h1(X, Y, τ )− 1; M =−2, ∆X = 0.7.
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FIGURE 14. The phase trajectory in the plane s01, c01; M =−2, ∆X = 0.75.
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FIGURE 15. Oscillations of s10(τ ) (solid line) and s01(τ ) (dashed line) for M=−2, ∆X=1.
The indicated values of time correspond to τ − 2× 106.

For the travelling wave solutions, c10 = 0, s10 = const, r2
01 = c2

01(τ )+ s2
01(τ )= const

(see figure 14).

4.2.6. Re-entrant three-dimensional standing waves
At higher values of ∆X , we have observed the transition to the regime of standing

waves with almost proportional c01(τ ) and s01(τ ). Through the nonlinear terms in the
equations, the T-periodic oscillations of c01(τ ) and s01(τ ) induce oscillations of s10
with the period T/2 (see figure 15).

The snapshots of the isolines of h2(X, Y, τ )− h are shown in figure 16.
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FIGURE 16. (Colour online) Snapshots of the isolines of h2(X,Y, τ )−h: (a) τ =2 300 640,
(b) τ = 2 302 400, (c) τ = 2 308 000, (d) τ = 2 308 800, (e) τ = 2 310 200, ( f ) τ = 2 312 400;
M =−2, ∆X = 1.

4.2.7. Short-scale three-dimensional structures
For larger values of ∆X , the stationary two-dimensional flow becomes unstable with

respect to three-dimensional oscillatory disturbances with the spatial period L/2 in
the Y-direction. Its nonlinear development creates a time-periodic regime of standing
waves with c02 proportional to s02 (see figure 17). Due to the cubic nonlinearity in
the equation, oscillations of c02 and s02 generate oscillations of s10 with a doubled
frequency, i.e. with a temporal period that is two times smaller than that of (c02, s02)

(see figure 18). The snapshots of the isolines for this regime are shown in figures 19
and 20. It should be noted that the fields of hj(X, Y) are symmetric with respect to
some horizontal axes. The shapes of the upper surface and the interface between the
liquids are presented in figure 21.
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FIGURE 17. The phase trajectory in the plane s02, c02; M =−4, ∆X = 1.
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FIGURE 18. The phase trajectory in the plane s10, s02; M =−4, ∆X = 1.

At larger values of δX = ∆X/M, we observe travelling waves similar to those
described in § 4.2.5 (see formula (4.8)), but with the spatial period L/2 in the
Y-direction. The symmetry of hj(X, Y) with respect to horizontal axes is broken. The
snapshots of the waves moving in the direction opposite to the direction of the Y
axis are shown in figure 22.
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FIGURE 19. (Colour online) Snapshots of the isolines of h2(X,Y, τ )−h: (a) τ =2 199 805,
(b) τ = 2 200 100, (c) τ = 2 200 250, (d) τ = 2 201 050; M =−4, ∆X = 1.

In a certain region of parameters, we observe a wave that can be considered as an
intermediate structure between a standing wave and a travelling wave. Similarly to the
case of a standing wave, r02 =

√
c2

02 + s2
02 and r10 = |s10| (note that c10 = 0) oscillate

periodically with the same temporal period T (see figure 23), but now r02 is never
equal to 0. The fields hj(X, Y, τ ), which have a spatial period L/2 in the Y-direction
(see figures 24 and 25), satisfy the relation

hj(X, Y, τ + T)= hj(X, Y + l, τ ), (4.9)

where l and L are generally non-commensurate. Therefore, hmax,j(τ ) are periodic
functions (see figure 26), while c02(τ ) and s02(τ ) are quasiperiodic functions of τ
(see figure 26).

For M = −6, ∆X = 3 we have observed a structure with a spatial period L/3 in
the Y-direction (see figures 28–30). The dynamics of the regime is fully similar to
that found for M =−4, ∆X = 1: c03 and s03 are proportional, and s10 oscillates with
a doubled frequency with respect to that of (c03, s03).

The existence regions of the regimes described above are shown in figure 2.
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FIGURE 20. (Colour online) Snapshots of the isolines of h1(X,Y, τ )−1: (a) τ =2 199 805,
(b) τ = 2 200 100, (c) τ = 2 200 250, (d) τ = 2 201 050; M =−4, ∆X = 1.

4.3. Two-dimensional spatial modulation with period L
Let us discuss now the modification of the basic dynamical regimes described above
in the presence of a two-dimensional spatial temperature modulation,

M(X)=M
(

1+ δX sin
X
L
+ δY sin

Y
L

)
=M −∆X sin

X
L
−∆Y sin

Y
L
, (4.10)

where M < 0, δX > 0, δY > 0; ∆X = |M|δX , ∆Y = |M|δY . Because of the symmetry of
the region, it is sufficient to consider the case ∆Y >∆X .

4.3.1. Stationary flow
First, consider the stationary flow generated by the non-uniform distribution of

the Marangoni number (4.1). The two-dimensional stationary deformation of surfaces
hj = hj(X, Y), j = 1, 2, reflects the spatial symmetry of the perturbation (4.1). In the
case ∆X =∆Y , a square pattern is imposed (see figure 30). It should be recalled that
in the case ∆X 6= 0, ∆Y = 0, the pattern is one-dimensional (see figure 5).
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FIGURE 21. (Colour online) Shapes of (a) the upper surface z= h2(X, Y, τ ) and (b) the
interface z= h1(X, Y, τ ); M =−4, ∆X = 1.

4.3.2. Standing waves
With the growth of ∆Y , the stationary regime becomes unstable with respect to

a periodic standing wave characterized by vanishing c10(τ ) = c01(τ ) = 0. The basic
harmonics s10(τ ) and s01(τ ) oscillate with the same period (see figure 31). The
snapshots of the oscillations are shown in figure 32.

4.4. One-dimensional spatial modulation with period L/2
An interesting resonant phenomenon has been observed in the case where the
wavelength of the temperature modulation is half of the length of the region, i.e.

M(X)=M −∆X sin
2X
L
. (4.11)
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FIGURE 22. (Colour online) Snapshots of the isolines of (a) h2(X, Y, τ ) − h and
(b) h1(X, Y, τ )− 1; M =−2, ∆X = 0.7.
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FIGURE 23. The phase trajectory in the plane r10, r02; M =−8, ∆X = 2.
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FIGURE 24. (Colour online) Snapshots of the isolines of h2(X,Y, τ )− h; M=−8, ∆X = 2.
(a) τ = 2 050 000; (b) τ = 2 050 420; (c) τ = 2 050 620; (d) τ = 2 051 340; (e) τ = 2 051 600;
( f ) τ = 2 051 980.

The imposed temperature modulation creates a thermocapillary flow that generates
the deformations of surfaces described by the Fourier component s20. For instance, at
M = −1, ∆X = 0.75 we observe stationary deformations with period L/2. However,
because of the nonlinearity of the governing equations, that stationary flow can
become unstable with respect to the excitation of the modes characterized by the
Fourier components c10(τ ) and s10(τ ) (‘spatial parametric resonance’), which oscillate
on the background of the s20 mode. Due to the nonlinear interaction, the oscillations
of c10(τ ) and s10(τ ) are completely synchronized (see figure 34).

The flow is two-dimensional, i.e. all of the Fourier components cmn and smn

vanish for n 6= 0. The snapshots of the two-dimensional standing wave are shown
in figure 35. Typically, the wave has one maximum and one minimum, due to the
Fourier components s10(τ ) = c10(τ ) (see figure 35a,b,d). At the time instants when
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FIGURE 25. (Colour online) Snapshots of the isolines of h1(X,Y, τ )− 1; M=−8, ∆X = 2.
(a) τ = 2 050 000; (b) τ = 2 050 420; (c) τ = 2 050 620; (d) τ = 2 051 340; (e) τ = 2 051 600;
( f ) τ = 2 051 980.

s10(τ ), c10(τ ) are small, a wave with two maxima and two minima is observed, due
to the Fourier component s20 (see figure 35c).

The two-dimensional standing waves described above exist in a wide region of the
parameters M and ∆X .

5. Conclusions
The influence of a substrate temperature modulation on nonlinear Marangoni waves

has been investigated. In the framework of a long-wave approach, the problem is
reduced to a system of two coupled nonlinear equations for the surface deformations.
Simulations have been carried out for several types of spatial temperature modulations.
A number of physical phenomena have been revealed.
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FIGURE 26. Oscillations of hmax,2(τ ) for M =−8, ∆X = 2.
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FIGURE 27. The phase trajectory in the plane s02, c02; M =−8, ∆X = 2.

On one hand, the non-uniformity of heating breaks the translational and rotational
symmetries of the original problem. It tends to create a stationary flow with a
symmetry corresponding to that of the modulation. This tendency competes with the
intrinsic oscillatory instability of the system which generates wave motions. As a
result of this competition, a number of nonlinear regimes are produced.

In the case of a small modulation amplitude, three-dimensional standing waves,
similar to the alternating rolls of the original non-modulated problem, are developed.
In the case of a one-dimensional modulation with a period equal to the length of
the region, with the growth of the modulation parameter, this regime is replaced by
two-dimensional standing waves, and then by a two-dimensional stationary flow. Wave
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FIGURE 28. (Colour online) Snapshots of the isolines of h2(X,Y, τ )−h: (a) τ =2 050 260,
(b) τ = 2 050 400, (c) τ = 2 050 520, (d) τ = 2 050 560, (e) τ = 2 050 620, ( f ) τ = 2 050 660;
M =−6, ∆X = 3.
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FIGURE 29. (Colour online) Snapshots of the isolines of h1(X,Y, τ )−1: (a) τ =2 050 260,
(b) τ = 2 050 400, (c) τ = 2 050 520, (d) τ = 2 050 560, (e) τ = 2 050 620, ( f ) τ = 2 050 660;
M =−6, ∆X = 3.
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FIGURE 30. (Colour online) Shapes of (a) the upper surface z= h2(X, Y, τ ) and (b) the
interface z= h1(X, Y, τ ); M =−6, ∆X = 3.
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FIGURE 31. (Colour online) Snapshot of the isolines of h2(X, Y, τ )− h; M =−2, ∆X =
∆Y = 0.5.
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FIGURE 32. Oscillations of s10(τ ) (solid line) and s01 (dashed line) for M=−2, ∆X = 0.2,
∆Y = 1.

motions, travelling and standing, reappear with a further growth of the modulation
amplitude. For sufficiently strong modulation and large values of the Marangoni
number, structures with a shorter wavelength in the direction perpendicular to the
substrate temperature gradient are observed. The general diagram of regimes has been
constructed.

In the case of a two-dimensional modulation, the stationary flow is replaced by
three-dimensional standing waves.

On the other hand, the imposed periodic perturbation creates an interaction between
waves with different wavevectors. This can lead to the generation of a standing wave
with a period that is two times larger than the period of the substrate temperature
modulation (‘spatial parametric resonance’).
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FIGURE 33. (Colour online) Snapshots of the isolines of h2(X,Y, τ )−h: (a) τ =2 004 000,
(b) τ = 2 004 057, (c) τ = 2 004 100, (d) τ = 2 004 126, (e) τ = 2 004 190, ( f ) τ = 2 004 299;
M =−2, ∆X = 0.2, ∆Y = 1.
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FIGURE 34. The temporal dependence of s10(τ )= c10(τ ) for M =−2, ∆X = 0.75.
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FIGURE 35. (Colour online) Snapshots of the isolines of h1(X, Y, τ )− 1: (a) τ = 492 000,
(b) τ = 512 330, (c) τ = 522 000, (d) τ = 552 000; M =−2, ∆X = 0.75.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.567


Marangoni waves in two-layer films with spatial temperature modulation 353

REFERENCES

ABARZHI, S. I., DESJARDINS, O., NEPOMNYASHCHY, A. & PITSCH, H. 2007 Influence of parametric
forcing on the nonequilibrium dynamics of wave patterns. Phys. Rev. E 75, 046208.

ARANSON, I. S. & KRAMER, L. 2002 The world of the complex Ginzburg–Landau equation. Rev.
Mod. Phys. 74, 99.

BANDYOPADHYAY, D., GULABANI, R. & SHARMA, A. 2005 Instability and dynamics of thin liquid
bilayers. Ind. Engng Chem. Res. 44, 1259.

COULLET, P., ELPHICK, C. & REPAUX, D. 1987 Nature of spatial chaos. Phys. Rev. Lett. 58, 431.
CROSS, M. C. & HOHENBERG, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys.

65, 851.
DAVIS, S. H. 1987 Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19, 403.
FISHER, L. S. & GOLOVIN, A. A. 2005 Nonlinear stability analysis of a two-layer thin liquid film:

dewetting and autophobic behavior. J. Colloid Interface Sci. 291, 515.
FREUND, G., PESCH, W. & ZIMMERMANN, W. 2011 Rayleigh–Bénard convection in the presence of

spatial temperature modulations. J. Fluid Mech. 673, 318.
GÉORIS, PH., HENNENBERG, M., LEBON, G. & LEGROS, J. C. 1999 Investigation of thermocapillary

convection in a three-liquid-layer system. J. Fluid Mech. 389, 209.
HAIM, L., MAU, Y. & MERON, E. 2014 Spatial forcing of pattern-forming systems that lack inversion

symmetry. Phys. Rev. E 90, 022904.
HAMMELE, M. & ZIMMERMANN, W. 2006 Harmonic versus subharmonic patterns in a spatially

forced oscillating chemical reaction. Phys. Rev. E 73, 066211.
MALOMED, B. A. 1993 Ramp-induced wave-number selection for traveling waves. Phys. Rev. E 47,

R2257.
MANOR, R., HAGBERG, A. & MERON, E. 2008 Wave-number locking in spatially force pattern-

forming systems. Europhys. Lett. 83, 10005.
MAU, Y., HAIM, L., HAGBERG, A. & MERON, E. 2013 Competing resonances in spatial forced

pattern-forming systems. Phys. Rev. E 88, 032917.
MIKHAILOV, A. S. & SHOWALTER, K. 2006 Control of waves, patterns and turbulence in chemical

systems. Phys. Rep. 425, 79.
NEPOMNYASHCHY, A. A. 1988 Spatially modulated convective motions in a vertical layer with

curved boundaries. Z. Angew. Math. Mech. 52, 677.
NEPOMNYASHCHY, A. A. & ABARZHI, S. I. 2010 Monochromatic waves induced by large-scale

parametric forcing. Phys. Rev. E 81, 037202.
NEPOMNYASHCHY, A. A. & SHKLYAEV, S. 2016 Longwave oscillatory patterns in liquids: outside

the world of the complex Ginzburg–Landau equation. J. Phys. A: Math. Gen. 49, 053001.
NEPOMNYASHCHY, A. A. & SIMANOVSKII, I. B. 2006 Decomposition of a two-layer thin liquid

film flowing under the action of Marangoni stresses. Phys. Fluids 18, 112101.
NEPOMNYASHCHY, A. A. & SIMANOVSKII, I. B. 2007 Marangoni instability in ultrathin two-layer

films. Phys. Fluids 19, 122103.
NEPOMNYASHCHY, A. A. & SIMANOVSKII, I. B. 2012 Nonlinear Marangoni waves in a two-layer

film in the presence of gravity. Phys. Fluids 24, 032101.
ORON, A., DAVIS, S. H. & BANKOFF, S. G. 1997 Long-scale evolution of thin liquid films. Rev.

Mod. Phys. 69, 931.
PISMEN, L. M. 1987 Bifurcation of quasiperiodic and nonstationary patterns under external forcing.

Phys. Rev. Lett. 59, 2740.
POTOTSKY, A., BESTEHORN, M., MERKT, D. & THIELE, U. 2004 Alternative pathways of dewetting

for a thin liquid two-layer film. Phys. Rev. E 70, 025201.
POTOTSKY, A., BESTEHORN, M., MERKT, D. & THIELE, U. 2005 Morphology changes in the

evolution of liquid two-layer films. J. Chem. Phys. 122, 224711.
SCHÖLL, E. & SCHUSTER, H. G. (Eds) 2008 Handbook of Chaos Control, 2nd edn. Wiley-VCH,

Weinheim.
SIMANOVSKII, I. B. & NEPOMNYASHCHY, A. A. 1993 Convective Instabilities in Systems with

Interface. Gordon and Breach.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.567


354 A. A. Nepomnyashchy and I. B. Simanovskii

UTZNY, C., ZIMMERMANN, W. & BÄR, M. 2002 Resonant spatio-temporal forcing of oscillatory
media. Europhys. Lett. 57, 113.

VOZOVOI, L. P. & NEPOMNYASHCHY, A. A. 1974 Convection in the horizontal layer with the
spatial modulation of the temperature on the boundaries. In Hydrodynamics, pt.7 (ed. E. M.
Zhukhovitskii), p. 107. Perm State Pedagogical Institute, (in Russian).

VOZOVOI, L. P. & NEPOMNYASHCHY, A. A. 1979 On the stability of spatially periodic convective
flows in the vertical layer with curved boundaries. Z. Angew. Math. Mech. 43, 1080.

WEISS, S., SEIDEN, G. & BODENSCHATZ, E. 2014 Resonance patterns in spatially forced Rayleigh–
Bénard convection. J. Fluid Mech. 756, 293.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.567

	Marangoni waves in two-layer films under the action of spatial temperature modulation
	Introduction
	Formulation of the problem
	Derivation of the long-wave amplitude equations
	Nonlinear simulations
	Methodology
	One-dimensional spatial modulation with period L
	Nonlinear regime in the absence of modulation
	Two-dimensional stationary flow
	Two-dimensional standing waves
	Three-dimensional standing waves
	Three-dimensional travelling waves
	Re-entrant three-dimensional standing waves
	Short-scale three-dimensional structures

	Two-dimensional spatial modulation with period L
	Stationary flow
	Standing waves

	One-dimensional spatial modulation with period L/2

	Conclusions
	References




