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ABSTRACT

The life annuity business is heavily exposed to longevity risk. Risk transfer so-
lutions are not yet fully developed, and when available they are expensive. A
significant part of the risk must therefore be retained by the life insurer. So far,
most of the research work on longevity risk has been mainly concerned with
capital requirements and specific risk transfer solutions. However, the impact
of longevity risk on shareholder value also deserves attention. While it is com-
monly accepted that a market-consistent valuation should be performed in this
respect, the definition of a fair shareholder value for a life insurance business
is not trivial. In this paper, we develop a multi-period market-consistent share-
holder value model for a life annuity business. The model allows for systematic
and idiosyncratic longevity risk and includes the most significant variables af-
fecting shareholder value: the cost of capital (which in a market-consistent set-
tingmust be quantified in terms of frictional and agency costs, net of the value of
the limited liability put option), policyholder demand elasticity and the cost of
alternative longevity risk management solutions, namely indemnity-based and
index-based solutions. We show how the model can be used for assessing the
impact of different longevity risk management strategies on life insurer share-
holder value and solvency.

KEYWORDS

Economic value, market-consistent embedded value, capital management, Sol-
vency, reinsurance, securitization, limited liability put option, cost of capital.

1. INTRODUCTION

Life insurers writing products that guarantee a retirement income, including life
annuities, are increasingly recognizing the need to manage the risk of unantici-
pated improvements in longevity. This risk results from the uncertain mortality
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downward trend, impacting all lives in the portfolio to a greater or lesser ex-
tent. Traditionally, life insurers have been concerned mainly with idiosyncratic
longevity risk, which is reduced through pooling lives in an insurer’s portfolio.
Many years of mortality improvements and increased uncertainty about future
mortality developments require a change in the management of longevity risk.
The decision about the risk management strategy needs to account for the im-
pact on the value of the business.

Basically, the value of the business consists of the present value of current
and future profits taking into account cost of capital. Assessing the impact of
risk management on business value is a complex task, due to several conflicting
effects. For example, the costs of risk transfer solutions clearly reduce poten-
tial profits; on the other hand, they improve the level of solvency and reduce
frictional costs, thus reducing the cost of capital. Zanjani (2002); Krvavych and
Sherris (2006); Froot (2007); Yow and Sherris (2008) suggest that risk manage-
ment strategies for insurers result in an increase of shareholder value when re-
ducing efficiently frictional costs.

Profits mainly come from the loadings charged to policyholders in excess of
the actuarially fair premium rate. Higher premium loadings, and hence higher
prices, reduce demand depending on policyholder price sensitivity. On the other
hand, higher levels of solvency should keep the level of demand high. This trade-
off between solvency, price and demand is an important factor in determining
value maximizing risk management strategies. This aspect is not well under-
stood in the assessment of longevity risk management.

A number of previous studies have recognized the impact on insurer value
of product pricing and consumers’ preferences for an insurer’s solvency. Zan-
jani (2002); Froot (2007); Yow and Sherris (2008); Gründl et al. (2006); Zimmer
et al. (2011); Nirmalendran et al. (2013) incorporate consumer preferences for
solvency in an insurer’s value maximization model. Zimmer et al. (2009) and
Zimmer et al. (2011) are the first to provide estimates of consumers’ reactions to
insurance default risk. Zimmer et al. (2011) incorporate the demand curve into
a single-period shareholder value maximization model for a non-life insurance
company. Nirmalendran et al. (2013) incorporate consumers’ preferences for an
insurer’s solvency in annuity demand and use a shareholder value maximization
model for an annuity provider to assess optimal product pricing and capitaliza-
tion strategies under different solvency capital requirements. Risk management
and its impact on solvency and shareholder value has not been considered in
this setting.

A life insurer writing annuity business will most often use reinsurance to
manage its longevity risk, although capital market securitization is also of in-
creasing interest. Blake and Burrows (2001) proposed survivor bonds as a hedge
for longevity risk, where the coupon payment each year is proportional to the
number of survivors in a cohort. Dowd et al. (2006) proposed survivor swaps, as
an exchange of cash flows based on the outcome of a survivor index. Reinsur-
ance is indemnity-based, whereas securitization is index-based, which includes
basis risk between the index and the annuity portfolio of the insurer. Basis risk
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is higher for higher levels of idiosyncratic mortality risk since smaller portfolios
of lives produce more variability between the actual experience of an insurer’s
portfolio of lives and the survivor index used. This increases the risk of life in-
surer insolvency, especially in the older ages of the annuitants, often referred to
as tail risk.

Themarket for longevity risk securitization is growing (Tan et al., 2015). The
first longevity bond was announced by the European Investment Bank, BNP
Paribas and PartnerRe in November 2004, but failed to attract sufficient in-
vestor interest (Blake et al., 2006). Survivor, or longevity, swaps have been more
successful than securitization of longevity risk through survivor, or longevity,
bonds. The first survivor swap took place between Swiss Re and the UK life
office Friends’ Provident in 2007. Although legally an insurance contract, this
was a pure longevity risk transfer of $1.7 billion on a closed portfolio of an-
nuitants. In 2008, the first derivative transaction, based on a “q-forward”, took
place between JPMorgan and Lucidia (Coughlan et al., 2007). Also in 2008, the
first capital market survivor swap was executed. Canada Life hedged $500 mil-
lion of its UK annuity book, with JPMorgan acting as the intermediary (Blake
et al., 2010). Between 2007 and 2014, 29 survivor swaps were completed in the
UK. The largest to date was a $16 billion survivor swap arranged for the British
Telecom Pension Scheme by the Prudential Insurance Co of America in July
2014 (Tan et al., 2015).

Longevity risk management using securitization is considered in several
studies, including Cowley and Cummins (2005); Wills and Sherris (2010); Biffis
and Blake (2010); Gupta and Wang (2011), along with a small number of stud-
ies on the reinsurance of longevity risk in Olivieri (2005); Olivieri and Pitacco
(2008); Levantesi and Menzietti (2008). Risk management solutions using rein-
surance and securitization have been compared for risks other than longevity,
including mortality risks (MacMinn and Richter, 2011), insurable risks in gen-
eral (Cummins and Trainar, 2009) and catastrophe risks (Lakdawalla and Zan-
jani, 2012). Gupta and Wang (2011) assess securitization and natural hedging
strategies for the management of longevity risk in a multi-period shareholder
maximization framework. MacMinn and Richter (2011) compare index-based
and indemnity-based hedging for the mortality risk inherent in a life book in a
two-period shareholder value framework. The use of survivor swaps and bonds
has not been compared in a multi-period stochastic shareholder value model.

In this paper, we investigate the impact of longevity risk management on life
insurer shareholder value and solvency for a life annuity portfolio, using rein-
surance and securitization. Capital management is also considered based on a
recapitalization and dividend strategy that maintains regulatory capital require-
ments as defined under Solvency II. Frictional and agency costs are included, as
well as the limited liability put option and the policyholder demand. We design
a rather comprehensive stochastic valuation model, using a multi-period frame-
work that allows us to examine the impact on profit volatility as well as solvency
over the full time-horizon of the business. The framework is market-consistent,
and then all risk margins are assessed based on fair value principles. Future
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mortality rates are modeled using the multi-factor affine term structure mor-
tality model developed by Blackburn and Sherris (2013), a framework which
allows efficient simulation of future scenarios.

To keep the complexity of the investigation at a reasonable level, we disregard
risks other than the longevity risk. Thus, in particular, interest rates are assumed
to be deterministic. The impact of both systematic and idiosyncratic longevity
risk over the full term of the life annuity portfolio is included.

We assess shareholder value in terms of Economic Value (EV) and Market-
Consistent Embedded Value (MCEV). The main difference between these two
valuation frameworks relates to when profit is reported: completely at the time
of policy issue for the assessment of the EV, and gradually over time according
to the MCEV assumptions. While in a fair valuation setting, the EV seems to
be the natural way for assessing the business value, the MCEV extends, along
fair value principles, a traditional actuarial valuation structure of the insurance
business, still popular in insurance practice. The different approaches to profit
reporting have significant implications for the volatility of shareholder value, as
we show in our discussion.

This paper makes two main contributions. (i) We describe a multi-period
stochastic shareholder value model for a life annuity business that can be used
to assess the impact of different longevity risk management strategies on life
insurer shareholder value and solvency. Indeed, despite the practical impor-
tance of such an assessment, the required formal setting has not yet been ade-
quately discussed in the existing literature. (ii) We demonstrate how longevity
risk management strategies significantly reduce the volatility of shareholder
value, mainly through the reduction of the probability of insolvency. Important
new insights into the effective management of longevity risk are provided.

The structure of the paper is as follows. Section 2 presents the stochastic
shareholder valuation model, along with the longevity risk management solu-
tions, including the survivor swap and bond. Section 3 presents the multi-period
stochastic mortality model used for systematic and idiosyncratic longevity risks,
and the interest rate model used for valuation of cash flows. Section 4 presents
the results of the numerical investigation, while Section 5 concludes.

2. CASH FLOWS, LIABILITY RESERVE, CAPITAL MANAGEMENT AND
SHAREHOLDER VALUE

2.1. Shareholder value

In this paper, we assess the shareholder value for a life insurerwriting life annuity
business, and hence exposed to longevity risk. We consider alternative longevity
risk management solutions, so to identify which one is more beneficial to share-
holder value.

We adopt a market-consistent valuation approach, and assess shareholder
value alternatively using an EV and an MCEV approach. The EV structure

https://doi.org/10.1017/asb.2016.32 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.32


LONGEVITY RISK MANAGEMENT AND SHAREHOLDER VALUE 47

is usual in a fair valuation setting, while the MCEV extends (in a market-
consistent manner) a traditional actuarial valuation approach, popular in in-
surance practice. Basically, the main difference between the EV and MCEV
structures relates to when profit is reported: While the EV is based on an asset-
liability logic, so that profit is fully reported at policy issue, the MCEV is based
on a deferral-and-matching logic, according towhich profit is gradually released
in time. These different logics affect the volatility of the shareholder value and
the determination of insurer solvency.

Whatever the valuation structure, shareholder value results from the contri-
bution of several quantities: portfolio cashflows (premiums, benefits, expenses),
net of the cashflows from risk transfer arrangements (either reinsurance or se-
curitization), capital allocated and the related cost. Such quantities are specified
in detail in the following sections. Then, we will formally define the shareholder
value, alternatively in terms of EV and MCEV.

2.2. The portfolio

We refer to a life annuity portfolio consisting of a single cohort of n0 individuals
from a homogeneous population aged x = 65 at time-0. The case of multiple co-
horts is not addressed in this paper, to keep the complexity of the overall model
at a manageable level and to obtain results easier to understand. The portfolio is
examined until run-off. A single premium π (as defined in Section 2.7) is paid at
time-0 by all individuals and the annuity payments are in arrears. Each annuity
is for an annual payment of b = $1, 000 as long as the annuitant is alive. The
ultimate age at which the contract terminates is age 100.

The number of annuitants at time-t is denoted as Ĩ(t; x), and then the total
annual payment for the insurer at time-t is b · Ĩ(t; x). (Here and in the following,
we use a tilde to indicate when a variable is random.)We assume that the number
Ĩ(t; x), and then the total annual payment b · Ĩ(t; x), are affected by systematic
and idiosyncratic longevity risk. To this purpose, the numbers Ĩ(t; x) are gen-
erated according to the stochastic mortality model described in Section 3.

2.3. Survivor swaps and bonds

We consider the transfer of the insurer’s longevity risk through either a survivor
(or longevity) swap or a survivor (or longevity) bond as a static hedge.

The survivor swap takes the form of a reinsurance contract with no counter-
party default risk. Each party agrees to make periodic payments until the ma-
turity of the swap at time-T, or until the insurer defaults. Similar to an interest
rate swap, there is a fixed and a floating leg. The fixed leg are payments based
on an agreed survivor curve at time-0, S(0, t; x), while the floating leg payments
are based on the actual survivors Ĩ(t; x) in the annuity portfolio for each period.
The survivor curve S(0, t; x) is defined in Section 3; we assume that it is based
on the best-estimate assumption about the longevity of the cohort. We assume
that a swap premium is included in the annual swap payments, and we denote
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by γ R the relevant coefficient. The net swap payment at time-t cashed by the
insurer is

ÑSP(t) = b ·
(
Ĩ(t; x) − (1 + γ R) · S(0, t; x)

)
. (1)

For the survivor bond, we adopt an arrangement similar to Blake and Bur-
rows (2001), who propose a bond structured as an interest bearing bond with
an initial purchase price at time-0 and regular interest payments proportional to
the population survivor index.We design the longevity bond as an annuity bond
with floating rate payments similar to the cash flows for the survivor swap. The
main difference between these is that the survivor bond has floating payments
based on a population survivor index I(t; x) which is free from idiosyncratic
longevity risk; see Section 3 for details in this respect. To allow comparison
between the longevity swap and the longevity bond, we assume that I(t; x) is
obtained in a population of n0 individuals aged x = 65 at time-0. Further, we
assume that the same premium coefficient is adopted for the longevity swap and
the longevity bond and that the size of the bond is proportional to the annual
amount b. The net bond payment cashed by the insurer at time-t is then

ÑBP(t) = b ·
(
I(t; x) − (1 + γ R) · S(0, t; x)

)
. (2)

The longevity bond involves basis risk; this basis risk is greater for smaller
portfolio sizes.

The hedging strategy consists of underwriting a proportion ωh , 0 ≤ ωh ≤ 1,
of the survivor swap (h = S) or a proportion ωh , 0 ≤ ωh ≤ 1, of the survivor
bond (h = B) payments. Since the hedge is static, the proportion ωh is stated at
time-0 and is kept until run-off. A strategy involving a mix of survivor swap and
bond will not be considered (so that ωS = 0 if ωB > 0, and vice versa).

2.4. Annuity portfolio cash flows

The annuity portfolio cash flow at time-0,CF(0), is the premiums less the initial
expenses, E(0):

CF(0) = n0 · π − E(0). (3)

Clearly, CF(0) is a flow certain.
Conversely, the annuity portfolio cash flow C̃F(t) at time-t, t > 0, is random,

and is an outflow. It is the annuity payment plus the (random) recurrent expenses
Ẽ(t), net of the payments received under the underwritten proportion of the
survivor swaps or bonds. We have

C̃F(t) = −b · Ĩ(t; x) − Ẽ(t) + ωS · ÑSP(t) + ωB · ÑBP(t). (4)

The insurer’s expenses consist of acquisition costs, asset management costs,
overhead and other general expenses. Acquisition costs are assumed to be pro-
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portional to the annuity single premium and are paid at time-0:

E(0) = e[i ] · n0 · π, (5)

where e[i ] is the proportion of initial acquisition costs.
Recurrent expenses are asset management costs, overhead and other gen-

eral expenses, and are charged to the portfolio in each period. We express such
expenses as a proportion of the technical provision, Ṽ(t) (which is defined in
Section 2.5). Therefore, the expenses incurred at time-t, t > 0, are defined as
follows:

Ẽ(t) = e[r ] · Ṽ(t), (6)

where e[r ] denotes the proportion of recurrent expenses.

2.5. Technical provisions and required capital

Here, we describe the calculation of the technical provisions and capital that are
required to back the insurer’s obligations.

The amount of the technical provision must correspond to the value of lia-
bilities, including a margin for longevity risk. We aim at performing a market-
consistent valuation of the liabilities, and then adopt a market approach for the
assessment of the risk margin. This means, in particular, that the risk margin
accounts for systematic, while disregarding idiosyncratic, longevity risk.

There have been a number of approaches proposed to price the longevity
risk. Milevsky et al. (2005) values a pure endowment contract using an instan-
taneous Sharpe ratio. Bauer et al. (2010) use a forward mortality framework,
as presented in Bauer et al. (2008), for pricing a zero coupon longevity bond
and show how the Sharpe ratio coincides with a change of probability measure
assuming a constant market price of longevity risk. Biffis et al. (2010) use a
change of measure approach to generate risk-adjusted survivor curves based on
a generalized Lee–Carter model.

In this paper, we calibrate the market prices of risk in the mortality model
for liability valuation to be consistent with the reinsurance loading; we assume
that there is no explicit profit loading in the reinsurance contract. See Section 3
for details and Section 4.8 for a discussion of the impact on the results.

We denote with a(t; x) the market value at time-t of a life annuity with an-
nual benefit b = $1. Then,

Ṽ p(t) = b · Ĩ(t; x) · a(t; x) (7)

is the technical provision required at time-t for the portfolio for which no hedg-
ing has been underwritten.

For a fully hedged portfolio, using either the survivor swap or survivor bond,
the liability of the insurer is in respect of the agreed survivor curve S(0, t; x), set
at time-0 for defining the fixed leg payments. Then, the technical provision that
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the insurer must hold at time-t is defined as follows:

Vh(t) = b · n0 · S(0, t; x) · a(0, t; x), (8)

where n0 · S(0, t; x) represents the expected number of survivors based on the
agreed survivor curve, while a(0, t; x) represents the forward market value of
a life annuity with annual benefit b = $1, also based on the survivor curve
S(0, t; x). The quantities a(t; x) and a(0, t; x) are defined in detail in Section 3.
We note that Vh(t) is a value certain, as for a fully hedged portfolio the longevity
risk is fully transferred. However, if hedging is realized through the longevity
bond, idiosyncratic risk remains with the insurer, and this is not accounted for
in the assessment of Vh(t). This is in line with the fair valuation principles: We
should include a margin for idiosyncratic risk but, as we have already noted, the
market approach only accounts for systematic risks.

Considering that a proportion ωh , 0 ≤ ωh ≤ 1, of the portfolio is hedged,
the technical provision that the insurer must hold at time-t is

Ṽ(t) = (1 − ωh) · Ṽ p(t) + ωh · Vh(t). (9)

A technical provision must be set up also in respect of future expenses. The
expense reserve at time-t is defined as follows:

Ṽe(t) =
∑
s>t

e[r ] · Ṽ(s) · ν(t, s), (10)

where ν(t, s) is the discount factor at time-t for a payment of $1 at time-s from
the forward interest rate curve; see Section 3 for a detailed definition. Note that
all technical provisions are deterministic at time-0 (and then their value will be
denoted without the tilde on the top).

As to the capital required (or solvency capital reserve), we adopt the Sol-
vency II standard (see QIS51). According to this standard, the required capital
corresponds to the decrease that would be recorded by the Net Asset Value of
the insurer in face of a 20% longevity shock, i.e. a permanent 20% decrease in
mortality rates for each age. It is possible to show (see, for example, Olivieri and
Pitacco (2003)) that this reduces to the difference between a technical provision
based on the shocked mortality rates and the actual technical provision. For
a portfolio with no hedging, we then assess the capital required at time-t as
follows:

M̃p(t) = b · Ĩ(t; x) ·
[
a[−0.2](t; x) − a(t; x)

]
, (11)

where a[−0.2](t; x) is the market value of the life annuity based on the shocked
mortality rates.

Similarly, to the technical provision, we assume that if the portfolio is
hedged, the required capital is reduced in the same proportion of the hedging.
Further, it is possible that a capital relief is admitted when the longevity risk
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is hedged. Assuming that for a fully hedged portfolio, a reduction ωc of the
required capital is admitted, the capital required for a fully hedged portfolio is

M̃h(t) =M̃p(t) · (1 − ωc). (12)

The solvency capital reserve reflecting the proportion hedged and the extent
of capital relief is then

M̃(t) = (1 − ωh) · M̃p(t) + ωh · M̃h(t) (13)

= (1 − ωh · ωc)M̃p(t). (14)

Finally, we refer to the following quantity as the total liability reserves:

Ṽl(t) = Ṽ(t) + Ṽe(t) + M̃(t). (15)

We note that, similarly to the technical provision, also the liability reserve is
deterministic at time-0.

2.6. Dividend and recapitalization strategy

When considering a multi-period time-horizon, a dividend and recapitalization
strategy should not be disregarded. Indeed, such a strategy has an impact on
the insurer solvency and shareholder value.

We assume that the insurer strategy is to always meet the Solvency II capital
requirement. However, the insurer will not subscribe new capital if the available
assets are less than the technical provision; in this case, a situation of unfunded
liabilities emerges, and shareholders accept the default. Otherwise, the insurer
will either subscribe capital to restore Solvency II requirements or withdraw
a dividend if capital exceeds the Solvency II requirements (even if, for brevity,
we use the terms capital subscriptions and dividends, these capital flows can be
meant simply as transfers of capital between the excess capital of the insurance
company and the assets of the portfolio; thus, not necessarily they correspond
to money received from or paid to shareholders).

The insurer starts with assets at time-0 from the premiums less initial ex-
penses, i.e. with CF(0) (see (3)). The initial assets must be sufficient to meet the
total liability reserve at time-0, i.e. Vl(0) (see (15)). In our setting (one cohort,
entering at time-0), if the premium loading is higher than the required capital,
then CF(0) > Vl(0), and some profit can be released immediately. Vice versa, if
CF(0) < Vl(0), then an additional capital (in respect of the regulatory require-
ment) must be subscribed for the portfolio. Thus, at time-0, we have

A(0) = Vl(0) = CF(0) + R(0) − D(0), (16)

where A(0) is the amount of assets at time-0, R(0) is any initial shareholder cap-
ital subscribed and D(0) is any excess capital paid as dividends to shareholders.
We note that all the quantities in (16) are certain, as they are observed at time-0.
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The asset value at time-t, t > 0, is random, and is given by

Ã(t) = Ã(t − 1) · (1 + i(t)) + C̃F(t) + R̃(t) − D̃(t), (17)

where R̃(t) is any additional capital required at time-t from shareholders for the
insurer to remain solvent and meet reserving requirement, D̃(t) represents the
capital released at time-t to shareholders as dividends and i(t) is the investment
return in year (t − 1, t).

At time-t, t > 0, the dividend and recapitalization strategy is determined by
the financial position of the insurer as follows:

• Ã(t) < Ṽ(t): There are insufficient assets to cover the technical provision at
time-t, and the insurer defaults.

• Ã(t) ≥ Ṽ(t), but Ã(t) − Ṽl(t) < 0: The insurer is not in default, but does
not have enough capital to meet regulatory obligations. The shortfall, R̃(t),
is recapitalized from shareholders, R̃(t) = Ṽl(t) − Ã(t).

• Ã(t) − Ṽl(t) ≥ 0: The insurer is solvent and has enough capital to meet
regulatory requirements. The excess capital is distributed to shareholders as
a dividend, D̃(t) = Ã(t) − Ṽl(t).

We recall that the only risk that we are addressing is longevity risk; hence,
the possible financial positions mentioned above originates only because of
longevity losses or longevity profits.

2.7. Annuity demand

Before moving to the definition of the shareholder value, we describe the model
we adopt for setting the initial portfolio size.

The number of policies initially sold is the result of a demand whose main
determinants are the price, or loading, and the insolvency risk of the insurer.
These are quantities that contribute to shareholder value not only indirectly,
through the demand, but also directly. Instead of setting exogenously the initial
portfolio size, it is then appropriate to model a demand function explicitly de-
pending on them. We base our demand function on Zimmer et al. (2011) and
Nirmalendran et al. (2013).

Zimmer et al. (2011) use experimental data and find that an exponential de-
mand function provides an overall best fit with functional form:

φ(π, d1) = e(α·d1+β·π+θ), (18)

where φ(π, d1) represents the percentage of individuals, in respect of the maxi-
mum potential market size, willing to purchase at price π from an insurer with
1-year default probability d1; α is the default sensitivity parameter (α < 0), β is
the price sensitivity parameter (β < 0) and θ is a constant.

The exponential demand function developed by Zimmer et al. (2011) was
modified in Nirmalendran et al. (2013) to reflect price and default risk pref-
erences in the annuity market. In particular, based on the results of Babbel
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(a) (b)

FIGURE 1: Price and default sensitivity of the demand for annuities. (a) Price sensitivity of demand. (b)
Default sensitivity of demand.

and Merrill (2006), Nirmalendran et al. (2013) assume that annuity demand
is not very sensitive to increases in premium loadings of up to 30%, but
very sensitive to increase in the default risk of the annuity provider. Also,
annuity demand is assumed to be less than 100% even when both the pre-
mium loading and the default probability are zero to account for other fac-
tors driving individuals’ annuity demand such as bequest motives. Nirmalen-
dran et al. (2013) calibrate the parameters of the demand function to reflect the
Australian life annuity market using premium loading estimates provided by
Ganegoda and Bateman (2008).2

We use a similar annuity demand function as in Nirmalendran et al. (2013).
This is modified so that policyholders’ price sensitivity is a function of the pre-
mium loading factor, γ P, rather than the premium rate π , and the cumulative
default probability over the full run-off of a cohort, d, instead of the 1-year
probability, d1. These minor modifications are introduced to ease computations
and to reflect the long-term nature of annuity liabilities. We calibrate the price-
default annuity demand curve to reflect the Australian annuity demand using
a similar approach as Nirmalendran et al. (2013), and both specifications give
comparable results.3 We use the following demand function:

φ∗(γ P, d) = e(α·d+β·γ P+θ) (19)

= e(−3.8328·d−9.7089·γ P−0.4689), (20)

where φ∗(γ P, d) represents the percentage of individuals willing to buy the an-
nuity.

Figure 1 shows the sensitivity of demand due to changes in price and changes
in default risk in our model.

A maximum potential market size of nm = 25, 000 is assumed for the repre-
sentative life annuity provider. This reflects the number of males aged 65 and the
market share of Australia’s largest life insurer. The number n0 of annuities sold
at time 0 is determined by multiplying the level of demand with the assumed
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maximum potential market size, nm:

n0 = nm · φ∗(γ P, d). (21)

The single premium π paid at time-0 by each individual (see Section 2.2) is
based on the best-estimate survivor curve at time-0, S(0, t; x), and a premium
loading γ P is applied. Thus, the single premium π is defined as follows:

π = b ·
(
1 + γ P

)
· a(0; x), (22)

where a(0; x) is the actuarial value at time-0 of a life annuity, with annual benefit
b = $1, based on the best-estimate survivor curve S(0, t; x); see Section 3.2 for
details.

2.8. Frictional costs, agency costs and limited liability put option

In a fair value setting, frictional and agency costs, as well as the so-called limited
liability put option must be accounted for.

Frictional costs arise from a variety of sources, including taxation and
agency costs, as well as the costs of raising capital in the market to recapital-
ize the insurer. We address two types of frictional costs in the model: frictional
cost on shareholder capital arising from the principal-agent problem in the
shareholder-management relationship (Yow and Sherris, 2008) and frictional
costs in the event of a recapitalization.

The annual frictional cost on shareholder capital is defined as a proportion
ρ of the capital held over and above the technical provision. The insurer holds
no capital above Ṽl(t), since we assume that the excess is distributed to share-
holders (see Section 2.6). Thus,

F̃C(t) = ρ · [Ṽl(t) − Ṽ(t)]

= ρ · [M̃(t) + Ṽe(t)]. (23)

The present value at time t of frictional costs is

P̃VFC(t) =
∑
s>t

F̃C(s) · ν(t, s). (24)

In the event of recapitalization, additional frictional costs arise, which we
refer to as recapitalization costs. These costs are assumed to be proportional to
the additional capital R̃(t) subscribed at time-t. Thus, recapitalization frictional
costs are defined as follows:

F̃CR(t) = ψ · R̃(t). (25)
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Their present value at time t is given by

P̃VFCR(t) =
∑
s>t

F̃CR(s) · ν(t, s). (26)

In the event of insolvency at time-s, i.e. if Ã(s) < Ṽ(s), the shareholders are
not required to cover the shortfall between the assets of the company and its lia-
bility. The annuitants receive only the residual assets, namely less than the mar-
ket value of the future guaranteed annuity benefits. The pay-off of this Limited
Liability Put Option at the insolvency time-s is therefore max{0, Ṽ(s) − Ã(s)}.
We denote the value at time-t, t < s, of this pay-off with L̃LPO(t). This value
is assessed through the simulation procedure described in Section 3.2. In par-
ticular, the pay-off of the option is discounted back to time-t using the forward
interest rate curve and its value is assessed counting the number of trajectories
in which there is a default.

2.9. Shareholder value according to the economic valuation approach

According to the economic valuation approach, the shareholder value is ob-
tained comparing the value of assets to that of liabilities net of the cost of cap-
ital, in a fair value setting. In such a setting, assets are those accumulated with
premiums net of the benefits and expenses, while liabilities are represented by
the technical provision (assessed on a fair value basis) and expenses. Frictional
and agency costs, net of the limited liability put option, measure the cost of
capital.

In our setting (immediate life annuity, one cohort), the shareholder EV at
time-0 is defined as follows:

ẼV(0) = CF(0) − V(0) − Ve(0) − P̃VFC(0) − P̃VFCR(0) + L̃LPO(0). (27)

2.10. Shareholder value according to the market-consistent embedded value
approach

In the MCEV approach, shareholder value is assessed as the present value of
future profits, net of the cost of capital, plus any capital held in excess of the
regulatory requirement. This follows a deferral-and-matching logic for profit
reporting, with total profit released over time. The timing of the emergence of
profit is determined by the total liability reserve, as the annual profit is defined
as follows:

ÃP(t) = C̃F(t) −
(
Ṽ(t) − Ṽ(t − 1)

)
+ i(t)Ṽ(t − 1). (28)

The present value at time-t of future profits is then

F̃ P(t) =
∑
s>t

ÃP(s) · ν(t, s). (29)

https://doi.org/10.1017/asb.2016.32 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.32


56 C. BLACKBURN, K. HANEWALD, A. OLIVIERI AND M. SHERRIS

We note that in the traditional Embedded Value structure, the present value of
future profits is based on industrial profits only, i.e. assessed considering the
technical provisions (and not the total liability reserve, as we do in (28)). Refer-
ring to the total liability reserve is consistent with the market approach we have
adopted for the assessment of the technical provision; indeed, part of the risk
margin which in market practice must be included in the technical provision, in
our setting is included in the required capital.

In a market-consistent setting, the cost of capital is measured by the fric-
tional and agency costs, net of the value of the limited liability put option. We
define the Value of the In-Force business (VIF) at time t as

Ṽ I F(t) = F̃ P(t) − P̃VFC(t) − P̃VFCR(t) + L̃LPO(t). (30)

We note that according to definition (28) for the annual profit, the VIF accounts
also for the required capital. We then define theMCEV of the business at time-t
as

M̃CEV(t) = Ṽ I F(t) + EQ(t), (31)

where EQ(t) is the time-t total equity of the insurer held in excess of the required
capital.

In our case, at time-0, there are no carried forward profits and no current
equity in excess of the required capital, so EQ(0) = 0. At any future time-t,
t > 0, no capital is held in excess of the total liability reserving requirement
Ṽl(t); then, EQ(t) = 0 at any time-t, t ≥ 0. The shareholder value at time-t,
t ≥ 0 is then simply given by Ṽ I F(t).

Comparing ẼV(0), as defined in (27), with Ṽ I F(0), as defined in (30), the
difference between the two valuation approaches emerges clearly: While under
the EV structure, the present value of future profits (namely, CF(0) − V(0) −
Ve(0)) is fully reported at time-0, under the MCEV structure this total profit
is progressively released in time, where its timing is driven by the total liability
reserve. In a fair value setting, this different timing of the profit reporting does
not affect significantly the expected shareholder value, while having an impact
on its volatility, as we comment in Section 4.

3. THE LONGEVITY RISK MULTI-PERIOD MODEL

3.1. Stochastic mortality model, interest rate model, market value of survivor
benefits

The mortality model we adopt is in the framework of the forward rate mod-
els proposed by Heath et al. (1992) (HJM) for interest rates. This framework,
adapted to mortality rates, is well suited for the multi-period analysis of an in-
surer’s liability and regulatory capital requirements. In contrast to short rate
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mortality models, the forward rate structure allows us to determine the distri-
bution of each annuitant’s uncertain lifetime at all-time points in the future and
to value future liabilities along any simulated path of future mortality rates.
This approach to mortality modeling has been considered, among others, by
Plat (2011), Dahl (2004), Miltersen and Persson (2005), Cairns et al. (2006) and
Bauer et al. (2008).

We use, in particular, the affine mortality framework presented in Black-
burn and Sherris (2013), which avoids the need for simulations within simu-
lations at future time periods when valuing the future liabilities. We use the
estimation and forecasting results from Blackburn (2013) for the Australian
male population. The parameters of the mortality term structure are estimated
from historical mortality rates available in the Human Mortality Database.
The model specification is relatively simple and allows multiple mortality risk
factors to be either non-mean reverting or mean reverting processes under a
risk-neutral measure. The non-mean reverting process corresponds to an ex-
ponentially increasing mortality rate with age and a simple HJM volatility
function. Our risk-neutral measure is defined as the best-estimate cohort sur-
vivor curve used to value the fair value of annuity cash flows, i.e. the annu-
ity value without loadings. We also estimate a market pricing measure that is
used for market valuation that is consistent with the assumed survivor swap
premiums.

Following Milevsky and Promislow (2001) and Biffis et al. (2010), we as-
sume a continuous-time framework that defines mortality rates equivalent to
a credit risk defaultable intensity process. The approach is similar to that
of Lando (1998), Schönbucher (1998) and Duffie and Singleton (1999) for
pricing defaultable bonds. We use the two-factor mortality model calibrated
in Blackburn (2013) with a deterministic volatility function and Gaussian
dynamics.

We define a filtered probability space (�, F , F,Q), where F = (Ft)t>0 andQ
is a martingale measure and is based on the best-estimate survivor probability.
We define two sub-filtrations G and H such that F = G ∨ H. The sub-filtration
G = (Gt)t>0 contains all financial and actuarial information, while the sub-
filtration H = (Ht)t>0 captures the occurrence of death. A counting process,
N(t; x), counts the number of deaths in a given cohort, N(t; x) = ∑n0

i=1 1τi<t,
where τi is a F-stopping time and admits an intensity process μ(t; x), where
μ(t; x) is a predictable process with ∫ t

0 μ(s; x)ds < ∞.
The survivor index for the cohort of n0 individual in the portfolio at time-

0, initial age x using population mortality rates is the proportion of survivors
at time-t and is denoted by S(t; x). The survivor index at time t is given
by

S(t; x) = n0 −N(t; x)
n0

. (32)
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The stochastic forward interest and mortality rates are given by

f (t, s) = f (0, s) +
∫ s

0
ν f (u, s)du +

∫ s

0
σ f (u, s)dWr (u), (33)

μ(t, s; x) = μ(0, s; x) +
∫ s

0
νμ(u, s; x)du +

∫ s

0
σμ(u, s; x)dWμ(u), (34)

where f (t, s) and μ(t, s; x) are the F-adapted interest and mortality forward
processes at time-t, andμ(0, t; x) is the best-estimate initial forward mortality
curve. With the meaning of the other parameters in Equations (33) and (34) as
commonly used in these models.

The martingale measure is not unique, hence we define an equivalent Q-
measure with Radon–Nikodym density:

dQ

dQ

∣∣∣
Ft

= e− ∫ t
0 λ(s)dWμ(s)− 1

2

∫ t
0 |λ(s)|2ds, (35)

where λ(s) are the market prices of longevity risk. We assume no change to the
mortality hazard rate process under the measure change. This new measure is
the pricing and market valuation measure. We restrict λ(s) to a constant price
of longevity risk; Milevsky and Promislow (2001) defines λ as the instantaneous
Sharpe ratio. A constant price of longevity risk in the forward mortality model
does not affect the volatility function, but scales the initial forward mortality
curve. The stochastic forward interest andmortality rates under themarketmea-
sure are given by

f (t, s) = f (0, s) +
∫ s

0
ν f (u, s)du +

∫ s

0
σ f (u, s)dWr (u), (36)

μ(t, s; x) = μ(0, s; x) +
∫ s

0
νμ(u, s; x)du +

∫ s

0
σμ(u, s; x)dWμ(u), (37)

where μ(0, t; x) is the risk-adjusted initial forward mortality curve. There is no
change to the interest rate process under this measure change.

The time-t market value of $1 paid at time-T in case of survival is given by

P(t,T; x) = EQ
[
e− ∫ T

t r(s)ds S(T; x)
∣∣∣Ft

]
= S(t; x)EQ

[
e− ∫ T

t [r(s)+μ(s;x)]ds
∣∣∣Gt] ,

(38)

where the survivor index under the market measure is

S(t; x) = n0 − N(t; x)
n0

, (39)

with a clear meaning of the quantities N(t; x) and r(s) in Equations (39) and
(38), respectively.
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Assuming that interest rates and mortality rates are independent, and us-
ing the forward mortality and interest rate model, the market value can also be
written as

P(t,T; x) = S(t; x)e− ∫ T
t [ f (t,s)+μ(t,s;x)]ds . (40)

At time-0, we define the forward market value of $1 paid at time-T in case
of survival, for 0 ≤ t ≤ T, as

P(0, t,T; x) = P(0,T; x)
P(0, t; x)

= e− ∫ T
t [ f (0,s)+μ(0,s;x)]ds, (41)

and the forward survivor probability as

S(0, t,T; x) = e
∫ T
t μ(0,s;x)ds . (42)

The forward survivor probability is the probability of surviving from t to T,
unconditional on surviving to t, and based on the cohort information at time
0. We assume interest rates are deterministic by setting σ f (t, s) = 0. Blackburn
(2013) provides a more extensive coverage of the model.

Given the processes in Equations (36) and (37), the discounted value of $1
payable on survival for an individual aged x at time-t is a Q-martingale for all
T and given by

P∗(t,T; x) = P(t,T; x)
Bt

= S(t; x)e− ∫ T
t [ f (t,s)+μ(t,s;x)]ds

Bt
, (43)

where Bt is the money market account value, defined as dBt = Btr(t)dt.
For P∗(t,T; x) to be aQ-martingale, the interest rate andmortality rate drift

conditions must satisfy

ν f (t,T) = σ f (t,T)

∫ T

t
σ f (t, s)

′
ds, (44)

νμ(t,T; x) = σμ(t,T; x)
∫ T

t
σμ(t, s; x)′

ds, (45)

where σμ(t,T; x) is the deterministic volatility function defined in Equation
(46), and σ f (t,T) is the volatility function of the interest rate process (which
is set to 0 in this paper).

Using the forward modeling framework, we specify, under the Q-measure,
a multi-factor stochastic mortality model for each cohort. Each initial forward
mortality curve is a risk-adjusted version of the best-estimate mortality curve,
and the volatility function for the two-factor model is

σμ(t,T; x) = [
σ1e−δ1(T−t+(x−x0)), σ2e−δ2(T−t+(x−x0))] , (46)
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TABLE 1

FITTED RISK-NEUTRAL PARAMETERS; YEARS 1965–2009, AGES 50–99.

δ1 δ2 σ1 σ2

−0.1014 −0.1307 1.923e-4 5.742e-5

where x is the cohort age at time-0 and x0 is the lowest assumed age in the affine
model. The term e−δi (x−x0) scales the volatility function by the initial cohort age.

The estimated parameters of the two-factor mortality model are shown in
Table 1. The mortality model is estimated from historical Australian male pop-
ulation data obtained from the Human Mortality Database, for the years 1965
to 2009 and ages 50 to 99.

3.2. Model implementation

The mortality model is implemented as a discrete time version of the HJM
model using Monte Carlo simulation based on Glasserman (2003). The model
uses discrete time points t0 = 0 < t1 < · · · < tn, where tn = T is the time
corresponding to the oldest age when all the annuity contracts have terminated.
We generate the mortality rates to give a survivor index for each simulation
path, each simulated path includes systematic longevity risk. From these mor-
tality rates, the actual deaths in the portfolio are generated by sampling from an
exponential distribution. The number of simulations, M, is set to 10,000.

The time-0 forward interest rates for these discrete time points are denoted
by f̂ (0, 0), f̂ (0, t1), . . ., f̂ (0, tn−1). These are the discrete time values of the initial
forward curve f (0, t) given by

f̂ (0, ti ) = 1
ti+1 − ti

∫ ti+1

ti
f (0, s)ds (47)

(here and in the following, the discrete-time version of the quantities used in the
assessment of the shareholder value are denoted with a hat on the top).

Similarly, the initial forward mortality rates are denoted by μ̂(0, 0; x),
μ̂(0, t1; x), . . ., μ̂(0, tn−1; x), and these discrete forward mortality rates are given
by

μ̂(0, ti ; x) = 1
ti+1 − ti

∫ ti+1

ti
μ(0, s; x)ds. (48)

Parameters for the forward interest rate curve are based on Nirmalendran et al.
(2013), who calibrated the models to Australian market data. The same interest
rate term structure is used to price annuities, determine investment returns, value
liabilities and discount cash flows. The fitted yield curve assumes the following
interest rates: 1-yearmaturity: 3.0%, 5-years: 3.4%, 10-years: 3.8% and 30-years:
4.7%.
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The forward mortality curve evolves according to the dynamics

μ̂(ti , tj ; x) = μ̂(ti−1, tj ; x) + ν̂μ(ti−1, tj ; x)[ti − ti−1]

+ σ̂μ(ti−1, tj ; x)
√
ti − ti−1Zi , j = i, . . . ,T, (49)

where Zi are normal N(0, 1) random variables. The drift term is given by

ν̂μ(ti−1, tj ; x)[tj+1 − tj ] = 1
2

( j∑
k=i

σ̂μ(ti−1, tk; x)[tk+1 − tk]

)2

− 1
2

( j−1∑
k=i

σ̂μ(ti−1, tk; x)[tk+1 − tk]

)2

, (50)

where σ̂μ(ti , tj ; x) is the volatility function defined in Equation (46) evaluated at
discrete times ti and tj .

At time-0, the market value of $1 survivor benefit in the discrete time model
is

P̂(0, ti ; x) = exp

(
−

ti−1∑
tu=t0

[
f̂ (0, tu) + μ̂(0, tu; x)

]
·
[
tu+1 − tu

])
, (51)

and the survivor curve is

Ŝ(0, ti ; x) = exp
(

−
ti−1∑
tu=t0

μ̂(0, tu; x) · [tu+1 − tu ]
)
, (52)

with the forward market price of $1 survivor benefit, for t0 ≤ ti ≤ ts ≤ tn, given
by

P̂(0, ti , ts; x) = exp
(

−
ts−1∑
tu=ti

[ f̂ (0, tu) + μ̂(0, tu; x)] · [tu+1 − tu ]
)

(53)

and the forward survivor curve assessed as

Ŝ(0, ti , ts; x) = exp
(

−
ts−1∑
tu=ti

μ̂(0, tu; x) · [tu+1 − tu ]
)
. (54)

We generate M forward mortality curves at each discrete time point ti . We
define the expected number of survivors in the portfolio at time-ti (disregarding
idiosyncratic risk) as

Î(ti ; x) = n0 · exp
(

−
ti∑

ts=t0
μ(m)(ts, ts; x)[ts+1 − ts ]

)
, (55)

where m = 1, 2, . . . ,M, and where n0 is the initial portfolio size.
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FIGURE 2: Portfolio survivors Ĩ (m)(t; x) for portfolios of 65-year olds.

To generate idiosyncratic longevity risk, random death times for individuals
are determined by the first time the mortality hazard rate is above a random
level �. The random death time is determined as

τi = inf
{
tu :

tu∑
ts=t0

μ(m)(ts; x) ≥ �
}
, (56)

where � is an exponential random variable with parameter 1.
The number of survivors at time-ti for pathm, is Ĩ(m)(ti ; x) = n0−Ñ(m)(ti ; x),

where

Ñ(m)(ti ; x) =
n0∑
i=1

1{τi≤ti } , (57)

and Ĩ(m)(0; x) = n0. For a large portfolio, the idiosyncratic risk will be low and
Ĩ(m)(ti ; x) ≈ Î(m)(ti ; x), and from ourmodel definition, the law of large numbers
gives us

1
M

M∑
m=1

Î(m)(tj ; x) → E[ Î(tj ; x)] = Ŝ(0, tj ; x) = S(0, tj ; x). (58)

Figure 2 plots the distribution of Ĩ(m)(t; x) for two different portfolio sizes
of 65-year old policyholders. Smaller portfolio sizes generate much more uncer-
tainty even in the early years.

Using the simulated mortality paths, we can determine the market value of
an annuity that pays $b per year to surviving annuitants in a cohort. For those

https://doi.org/10.1017/asb.2016.32 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.32


LONGEVITY RISK MANAGEMENT AND SHAREHOLDER VALUE 63

aged x at time-0, this is given by

â(0; x) =
tn∑

ts=t1
b · exp

(
−

ts−1∑
tj=t0

(
f̂ (0, tj ) + μ̂(0, tj ; x) · [tj+1 − tj ]

))
. (59)

At time-0, we can also determine forward market values of the annuity given
by

â(0, ti ; x) =
tn∑

ts=ti+1

b · exp
(

−
ts−1∑
tj=t0

(
f̂ (0, tj ) + μ̂(0, tj ; x) · [tj+1 − tj ]

))
. (60)

At future times, for a given simulation path, m, the market value of the an-
nuity at time-t is

â(m)(ti ; x) =
tn∑

ts=ti+1

b · exp
(

−
ts−1∑
tj=ti

(
f̂ (m)(tj , ti ) + μ̂(m)(tj , ti ; x) · [tj+1 − tj ]

))
.

(61)

The annuity premium paid by annuitants at time 0 is based on the best-
estimate survivor curves under theQ-measure and not the pricing and market
valuation measure. The actuarial value of an annuity that pays $b per year to
each annuitant in a cohort age x at time-0 is given by

â(0; x) =
tn∑

ts=t1
b · exp

(
−

ts−1∑
tj=t0

(
f̂ (0, tj ) + μ̂(0, tj ; x)

) · [tj+1 − tj ]
)
, (62)

where μ̂(0, tj ; x) is the best-estimate cohort forward survivor curve.
Swap payments to the reinsurer are fixed at time-0 and are based on the best-

estimate forward survivor curve, given as

Ŝ(0, ti ; x) = exp
(

−
ti−1∑
tj=t0

μ̂(0, tj ; x) · [tj+1 − tj ]
)
. (63)

The value of the fixed payments for the survivor swap value at time-0 are
equated under the actuarial value with the reinsurance loading and the market
valuation measure to give

tn−1∑
ti=t0

P(0, ti ; x) =
tn−1∑
ti=t0

(1 + γ R)P(0, ti ; x). (64)
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FIGURE 3: Cohort survival distribution aged 65 in 2010.

There is no change in the interest rate process under this measure change,
and Equation (64) can be reduced to

tn−1∑
ti=t0

S(0, ti ; x) =
tn−1∑
ti=0

e− ∫ ti
0

∫ u
0 ||λ(s)σμ(s,u;x)||dsduS(0, ti ; x)

=
tn−1∑
ti=t0

e−λ
∫ ti
0

∫ u
0 ||σμ(s,u;x)||dsduS(0, ti ; x). (65)

We have assumed λ to be a constant price of longevity risk, the same value
for each factor in the mortality model. With λ = [λ1, λ2] set so that λ1 = λ2, we
solve Equation (65) for λ using amethod of least squares. This gives an instanta-
neous Sharpe ratio of λ = 0.1555.4 We assume that thematurity of the swap and
longevity bond corresponds to the maximum possible duration of the portfolio.

Figure 3 shows the market pricing and best-estimate survivor curves,
S(t0, tn−1; 65) and S(t0, tn−1; 65), respectively, with 99% confidence intervals for
a cohort aged 65 at time-0. The market valuation survivor curve is shifted up-
wards along with the confidence intervals.

The forward survivor curves, for different ages of the cohort, are shown in
Figure 4. Each curve shows the forward distribution for the survivor index. As
the future age increases, the uncertainty also increases substantially. This high-
lights the extent to which systematic longevity risk is prevalent at the older ages.

4. RESULTS

4.1. Economic value and market-consistent embedded value

Tables 2 and 3 illustrate the shareholder values assessed following the EV and
the MCEV approach, with a 15% loading on policyholder annuity premiums
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FIGURE 4: Forward survival distributions, cohort aged 65 in 2010. (a) Distribution at age 66. (b) Distribution
at age 75. (c) Distribution at age 85. (d) Distribution at age 95.

and a run-off solvency equivalent to a 1-year default probability of 0.79%, re-
sulting in a portfolio size of 1,399 policies based on the annuity demand function
specified in Section 2.7. The mortality model is calibrated as described in Sec-
tion 3. Referring to a report by Swiss Re (2005) suggesting frictional costs of
holding capital of 2%, we assume a proportion of the annual frictional cost on
shareholder capital ρ = 1%, while the proportion of the annual recapitalization
frictional cost is set to ψ = 3%. No hedging is adopted in Tables 2 and 3.

To interpret the results, note that the market value of the annuity is $12,790
and the best-estimate actuarial value of the annuity is $12,180. The premium
charged to the policyholder with a 15% loading is $14,708. Initial expenses are
3% of the premium and the value of recurrent expenses is $640 per policy, which
is 5% of the total liability reserve. The frictional costs are 0.8% of the technical
provision, and the LLPO almost zero. This reflects the high level of solvency
of the life insurer resulting from a premium loading of 15%, even without risk
transfer.

The most striking result is the volatility of the present value of future profits
under theMCEV. Because the initial premium loading, which has zero volatility
in present value terms, is re-spread and accounted for as part of the annual
insurer profit in theMCEV, this gives rise to volatility in accounting results. Risk
management will be shown to be a very effective way of reducing this volatility.

We point out that with deterministic interest rates, the two approaches pro-
duce almost the same shareholder values, assuming the insurer does not default.
This is because CF(0) − V(0) ≈ FP(0), i.e. the reserve does not affect total
profit, but just the timing of its emergence.
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TABLE 2

ECONOMIC VALUE WITHOUT HEDGING.

Economic Value
Portfolio Size 1,399
1-Year Default Probability 0.79%

Expected Value
Expected Value CoV per Policy

Total Assets $19,597,515 $14,008
Technical Provisions $17,893,499 $12,790.00
Expenses $896,093 5.7% $640.52
Frictional Costs $142,612 12.7% $101.94
Recapitalization Costs $27,164 69.1% $19.42
LLPO $4,131 961% $2.95
EV $642,277 16.42% $459.10

Total Liabilities $19,597,515 $14,008.23

TABLE 3

VIF WITHOUT HEDGING.

MCEV
Portfolio Size 1,399
1-Year Default Probability 0.79%

Expected Value
Expected Value CoV per Policy

Future Profits $807,598 116.5% $577.27
Frictional Costs $142,612 12.7% $101.94
Recapitalization Costs $27,164 69.1% $19.42
LLPO $4,131 961% $2.95

VIF $641,952 148.24% $458.87

In the following, we consider the situation where policyholder demand is
based on the insurer always meeting the Solvency II requirement of a 1-year
default probability of 0.5%. We determine the optimal premium loading. We
consider different combinations of longevity risk transfer and relief from sol-
vency capital requirements. Levels of reinsurance transfer, ωh , are set either to
50% or 100%. Levels of capital relief, ωc, are set either to 50% or 100%. The
findings are compared to the case of no hedging. This allows us to assess the
impact of both risk management and capital relief on shareholder value.

4.2. Demand function for a solvency II default probability

We use a default probability in the demand function equivalent to 0.5% per
year. The demand function in this case is given in Figure 5. Using the market
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FIGURE 5: Portfolio size vs. premium loading.

size of 25, 000 annuitants, a premium loading of 5% results in a portfolio of
5,195 annuitants based on the annuity demand function. A premium loading of
30% reduces the size of the portfolio to 459. Because of this reduction in demand
and the resulting increase in idiosyncratic longevity risk, premium loadings have
significant impacts on solvency.

Figure 6a shows the sensitivity of the insurer’s actual annualized 1-year de-
fault probability to the premium loading for the no hedging case. The default
probability is determined from the simulation results; the number of defaulting
paths divided by the total number of paths. Default can occur at any time dur-
ing the annuity contract; thus, we annualize the default probability for easier
comparison. The increasing default probability with premium loading results
only from the reduced portfolio size. When the premium loading reaches 15%,
or a portfolio size of 1,968, the default probability is above the Solvency II re-
quirement of 0.5%.

Figure 6b shows the default probabilities with age for a number of premium
loadings. Without hedging, defaults occur in the early years and also the later
years of the annuity contract, especially for the higher premium loadings. For
most years, the insurer holds sufficient capital to avoid insolvency. For the 30%
premium loading case, the default probability is above the 0.5% Solvency II re-
quirement until the age of 70. In the 17.5% loading case, the default probability
is above 0.5% in the first year only, while the 5% loading case is below the re-
quired 0.5% for all years except the final year of the contract. This is determined
by the portfolio size and the resulting idiosyncratic risk, especially at the older
ages. For an insurer charging higher premiums, a swap agreement will be more
desirable because it is indemnity-based and hedges this insolvency risk.

Figures 7a and 7b show the annualized 1-year default probability with the
survivor bond and survivor swap, respectively. For the bond, a higher premium
loading also corresponds to having higher default probabilities, reflecting the
smaller portfolio sizes. For the survivor swap, this effect does not occur since
the idiosyncratic risk is hedged. In all cases, the default probability is below the
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FIGURE 6: 1-year default probability. (a) No reinsurance. (b) Default probability by age.
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FIGURE 7: 1-year default probability. (a) Bond. (b) Swap.

Solvency II requirement for all premium loadings with hedging. Capital relief
has no effect when the insurer is fully hedged.

Capital relief can have an adverse effect on solvency with less than full hedg-
ing of longevity risk. This is because capital relief reduces the amount of capital
too much and a simple one-to-one offset for the hedged risk is not optimal.

4.3. Shareholder value and volatility

Figures 8a and 8b show the expected VIF and EV, respectively, with alternative
hedging solutions and capital relief assumptions. A premium loading of 11%
or greater is required to generate a positive expected value for shareholders on
a risk-adjusted basis. The shareholder value is increasing until a 20% premium
loading, based on the price elasticity of the demand function.5 For any fixed
premium loading, there are small gains to the expected VIF and EV values when
the insurer transfers longevity risk. This reflects the low level of frictional costs
for the life insurer. The VIF is increasing in reinsurance weight and capital relief,
with the survivor swap and survivor bond producing similar results. Although
risk management can reduce frictional costs, the value of this for a life insurer
with long-term business is not major.
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FIGURE 8: VIF and EV, expected value. (a) VIF, expected value. (b) EV, expected value.
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FIGURE 9: VIF and EV, volatility. (a) VIF, voltality — Bond. (b) VIF, voltality — Swap. (c) EV, voltality —
Bond, (d) EV, voltality — Swap.

Figure 9 shows the impact of hedging on the VIF and the EV volatility. Fig-
ures 9a and 9b show the significant benefits of transferring longevity risk in the
reduced volatility of the VIF. Once again, capital relief at 100% of the hedged
risk is not optimal when only partially hedged. There is little difference between
the two for the EV. However, volatility is very different as shown in Figures 9c
and 9d. Note the much smaller scale used for EV in the figures.

4.4. Shareholder dividend and recapitalization Strategy

Figure 10 shows the present value and volatility of dividends distributed to
shareholders over the life of the annuity contract for varying premium load-
ings, and for alternative hedging solutions. There is a point between a premium
loading of 13% and 16%, where the value no longer reduces as shown in Figure
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FIGURE 10: Dividend. (a) Dividend, expected value. (b) Dividend, volatility.
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FIGURE 11: Initial shareholder capital.

10a. Figure 11 shows that this point corresponds to where the premium loading
is sufficient to meet reserving and regulatory requirements, with no initial share-
holder capital required. For lower premium loadings, the initial shareholder
capital is returned as dividends in addition to the profits from the annuity premi-
ums. The benefits of risk management on the volatility of dividends is shown in
Figure 10b. Hedging longevity risk results in a significant reduction in dividend
volatility.

The shareholder recapitalization amounts, excluding initial shareholder cap-
ital, are shown in Figure 12. Recapitalization is reduced by hedging longevity
risk, regardless of premium loading. The volatility of recapitalization also re-
duces significantly. The extent of capital relief does not have a significant impact
on recapitalization requirements.

4.5. Frictional costs

Figure 13 shows the reduction in expected value and volatility of frictional costs.
Frictional costs are based on the difference between the total reserves, Ṽl(t),
and the market value of the annuity liability, Ṽ(t). The expected value of fric-
tional costs are reduced with hedging. Since insurer defaults occur mainly in the
older ages, this has a minimal effect on the time-0 expected value. The benefits
of hedging occur in the reduction in the volatility of frictional costs as seen in
Figure 13b.
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FIGURE 12: Recapitalization. (a) Recapitalization, expected value. (b) Recapitalization, volatility.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% Premium Loading

F
ic

ti
on

al
C

os
ts

(M
ill

io
n

$)

No Reinsurance
Swap & Bond: 50% Weight, 50% Capital Relief
Swap & Bond: 50% Weight, 100% Capital Relief
Swap & Bond: 100% Weight, 50% Capital Relief

(a)

5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

% Premium Loading

F
ic

ti
on

al
C

os
ts

-
St

d
(M

ill
io

n
$)

No Reinsurance
Swap & Bond: 50% Weight, 50% Capital Relief
Swap & Bond: 50% Weight, 100% Capital Relief
Swap & Bond: 100% Weight, 50% Capital Relief

(b)

FIGURE 13: Frictional costs. (a) Frictional costs, expected value. (b) Frictional costs, volatility.
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FIGURE 14: Recapitalization costs. (a) Recapitalization costs, expected value. (b) Recapitalization costs,
volatility.

Figure 14 shows a reduction in the expected value and volatility of recap-
italization costs with hedging. These figures do not include the time-0 initial
shareholder contributions, but only ongoing recapitalization costs.

4.6. Expenses

The insurer’s expenses are shown in Figure 15. Hedging does not reduce the
expected value of expenses, but does reduce the volatility.
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FIGURE 15: Expense. (a) Expenses, expected value. (b) Expenses, volatility.

4.7. Impact of solvency probability

Although the results assume that policyholder demand is determined by the
Solvency II default probability, risk management using any amount of hedging
will reduce the default probabilities. This increases demand. The results with the
actual default probabilities are not shown here, but give the same conclusions as
presented. In these cases, shareholder values as a percentage of the total assets
do not change significantly.

4.8. Impact of hedging costs and financial risks

Our model uses the market price of longevity risk for a consistent valuation
of insurance liabilities and of the two longevity risk transfer arrangements. We
do not allow for additional profit loadings on the prices of the survivor swap
and the survivor bond imposed by the counterparties involved in these trans-
actions. Introducing such profit loadings would reduce the annuity provider’s
annual profits, resulting in a lower shareholder value (VIF and EV) and higher
default probabilities. This would make longevity risk transfer less attractive to
the shareholders of the annuity provider than the “No Reinsurance”-strategy
where longevity risk is retained by the annuity provider. Loadings that differ
across longevity risk transfer arrangements would of course determine the com-
parison between the survivor swap and the survivor bond. While this aspect
must not be disregarded in practice, the main conclusions of our investigation,
and in particular the valuation approach, remain important also in view of a
practical assessment of longevity risk management strategies.

We disregard risks other than longevity risk to focus on this risk and to keep
the model’s complexity at a reasonable level. In practice, annuity providers need
to identify, assess and manage all relevant risks, including financial risks such as
interest rate risk, when developing their risk management strategy. In practice,
they hedge interest rate risks through investment strategies such as immuniza-
tion so that this risk is minimal leaving only the longevity risk to be hedged. But
the market for this is limited and usually this is done with reinsurance using a
longevity swap. There are papers that consider the hedging of longevity risk and
interest rate risk including Luciano et al. (2012); Ngai and Sherris (2011); Liu
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and Sherris (2015) but do not consider the impact of pricing and solvency along
with the modeling and hedging of these risks. Our aim has been to incorporate
these pricing and solvency issues into the model with an emphasis on the risks
that cannot readily be hedged with financial instruments. Hence, the focus on
longevity risk and its hedging and impact on solvency and pricing.

5. CONCLUSIONS

We investigate the impact of longevity risk management on shareholder value
for a life insurer issuing life annuities. We develop a rather comprehensive
stochastic model, in order to address the main drivers of the solvency and value
of a life annuity business. We focus on longevity risk only and we perform the
assessment based on a single cohort. This allows us to make clearer a number
of important aspects of the valuation of a business exposed to longevity risk.

We analyze how longevity risk management is successful in reducing the de-
fault probability of the insurer. We show that this results from a reduction in the
volatility of cash flows.We use an EV and anMCEV approach; while the former
is the natural approach in a fair value setting, the embedded value is a traditional
and popular actuarial model for the valuation of the life insurance business. It
is therefore important to develop it in a market-consistent manner (and in some
respects, this is already performed in actuarial practice), and make appropriate
comparisons. We show that the MCEV approach generates volatility in future
profits in a stochastic model because of the re-spreading of the initial annuity
premium to match future outgoes. This volatility can be significantly reduced
when hedging longevity risk.

For the hedging solutions, we show that both survivor swaps and bonds re-
duce volatility. Survivor swaps provide an indemnity-based hedge and are most
effective in reducing risk. The index-based survivor bond does not hedge the
idiosyncratic risk. This is an important factor, especially in the older ages of a
cohort, and has a significant impact on solvency. Capital relief for hedged risk
should be carefully assessed. Taking too much capital relief reduces capital to
the extent that it has an adverse impact on the solvency of the insurer.

We incorporate a dividend strategy that maintains the solvency capital re-
quirements under Solvency II along with market consistent risk margins. We
show that an important benefit of hedging is the reduction in the volatility of
the dividends. Since shareholders will value the stability of dividends, this is a
benefit of hedging not captured in standard shareholder valuation models. We
also demonstrate how Solvency II capital requirements are inadequate at the
older ages of a cohort because of idiosyncratic risk.

Themulti-period stochastic shareholder valuemodel developed in this paper
deals with important practical aspects such as the trade-off between solvency
and premium loading and the valuation of the limited liability put option which
so far have not been considered appropriately in the longevity risk management
literature.
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NOTES

1. The European Insurance and Occupational Pensions Authority (EIOPA) publishes doc-
uments relating to the Quantitative Impact Study (QIS) at http://archive.eiopa.europa.eu/
consultations/qis/insurance/quantitative-impact-study-5/index.html

2. The Australian market for lifetime annuities is dominated by a single provider, who re-
ports lifetime annuity sales of AUD 389.4 million in 2015 and AUD 662.1 million in 2014
(http://www.challenger.com.au/group/1H16 Analyst Pack.pdf).

3. We are not aware of an empirical study that provides estimates of the price and default risk
sensitivity of the demand for life annuities.

4. Fama and French (2002) report Sharpe ratios of 0.15–0.44 (depending on whether dividend
growth, earning growth or real returns are used to calculate the equity premium) for the S&P
500 index over the period 1951–2000 (see Table I in Fama and French, 2002). Bauer et al. (2010)
compare different methods for estimating the market price of longevity risk and calculate Sharpe
ratios of 0.0371–0.1209 based on UK pension annuity data (see Table 1 in Bauer et al., 2010).

5. A similar hump-shaped relationship between premium loading and shareholder value was
found byNirmalendran et al. (2013) in amulti-period cash flowmodel for a life insurer offering life-
time guaranteed annuities calibrated usingAustralianmarket data. The estimated optimal range of
premium loadings compares with premium loadings estimated for the Australian annuity market.
For nominal life annuities sold to 65-year-old males, assuming general population mortality rates,
the results of James and Vittas (2001) indicate a premium loading of 8.6%, while the findings of
Doyle et al. (2004) suggest a premium loading of 12.1%, andGanegoda and Bateman (2008) report
a 24% premium loading.
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BAUER, D., BÖRGER, M., RUß, J. and ZWIESLER, H.-J. (2008) The volatility of mortality. Asia-
Pacific Journal of Risk and Insurance, 3(1), 1–35.

BIFFIS, E. and BLAKE, D. (2010) Securitizing and tranching longevity exposures. Insurance: Math-
ematics and Economics, 46(1), 186–197.

BIFFIS, E., DENUIT, M. and DEVOLDER, P. (2010) Stochastic mortality under measure changes.
Scandinavian Actuarial Journal, 2010(4), 284–311.

BLACKBURN, C. (2013) Longevity Risk Management and Securitisation in an Affine Mortality
Modelling Framework. University of New South Wales, PhD Thesis.

BLACKBURN, C. and SHERRIS,M. (2013) Consistent dynamic affinemortalitymodels for longevity
risk applications. Insurance: Mathematics and Economics, 53(1), 64–73.

BLAKE, D. and BURROWS, W. (2001) Survivor bonds: Helping to hedge mortality risk. Journal of
Risk and Insurance, 68(2), 339–348.

https://doi.org/10.1017/asb.2016.32 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.32


LONGEVITY RISK MANAGEMENT AND SHAREHOLDER VALUE 75

BLAKE, D., CAIRNS, A., DOWD, K. and MACMINN, R. (2006) Longevity Bonds: Financial Engi-
neering, Valuation, and Hedging. Journal of Risk & Insurance, 73(4), 647–672.

BLAKE, D., DE WAEGENAERE, A., MACMINN, R. and NIJMAN, T. (2010) Longevity risk and
capital markets: The 2008-2009 update. Insurance: Mathematics and Economics, 46(1), 135–
138.

CAIRNS, A., BLAKE, D. and DOWD, K. (2006) Pricing death: Frameworks for the valuation and
securitization of mortality risk. ASTIN Bulletin, 36(1), 79–120.

COUGHLAN, G., EPSTEIN, D., SINHA, A. and HONIG, P. (2007) q-forwards: Derivatives for trans-
ferring longevity and mortality risk. Tech. rep., JPMorgan Pension Advisory Group.

COWLEY, A. and CUMMINS, J. (2005) Securitization of life insurance assets and liabilities. Journal
of Risk and Insurance, 72(2), 193–226.

CUMMINS, J. D. and TRAINAR, P. (2009) Securitization, Insurance, and Reinsurance. Journal of
Risk and Insurance, 76(3), 463–492.

DAHL, M. (2004) Stochastic mortality in life insurance: Market reserves and mortality-linked in-
surance contracts. Insurance: Mathematics and Economics, 35(1), 113–136.

DOWD, K., BLAKE, D., CAIRNS, A. and DAWSON, P. (2006) Survivor swaps. Journal of Risk and
Insurance, 73(1), 1–17.

DOYLE, S., MITCHELL, O. S. and PIGGOTT, J. (2004) Annuity values in defined contribution retire-
ment systems: Australia and Singapore compared. Australian Economic Review, 37(4), 402–
416.

DUFFIE, D. and SINGLETON, K. J. (1999) Modeling term structures of defaultable bonds. Review
of Financial Studies, 12(4), 687–720.

FAMA, E. F. and FRENCH, K. R. (2002) The equity premium. The Journal of Finance, 57(2), 637–
659.

FROOT, K. A. (2007) Riskmanagement, capital budgeting, and capital structure policy for insurers
and reinsurers. Journal of Risk and Insurance, 74(2), 273–299.

GANEGODA, A. and BATEMAN,H. (2008)Australia’s disappearing market for life annuities. UNSW
Centre for Pensions and Superannuation Discussion Paper 1 (08), Australian School of Busi-
ness, University of New South Wales, Sydney.

GLASSERMAN, P. (2003) Monte Carlo Methods in Financial Engineering, 1st Edition. Springer,
New York.
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