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The expression gestural mapping is well imbedded in the
language of instrument designers, describing the function
from interface control parameters to synthesis control
parameters. This function is in most cases implicitly
assumed to be instantaneous, so that at any time its
output depends only on its input at that time. Here more
general functions are considered, in which the output
depends on the history of input, especially functions that
behave like physical dynamic systems, such as a damped
resonator. Acoustic instruments are rich in dynamical
behaviour. Introducing dynamics at the control stage of
an electronic instrument can help compensate for lack of
dynamics in later non-physical synthesis stages. A
broadening of the function space offers new aesthetic
possibilities for composing instruments. Examples are
presented to illustrate the new design/composition mode
as well as practical techniques. In this context, it is
suggested that the word mapping be updated with the
more descriptive expression dynamic control processing.

1. INTRODUCTION

Two technology classes have dominated electronic
musical instrument design, interface and synthesis.
Increasingly, attention has been focused on the bridge
between these. Gestural Mapping has become a
common catch-all phrase to describe a process con-
necting interface parameters to synthesis parameters.
The main focus of research has been on identifying suit-
able matches between interface control parameters and
synthesis parameters. Beyond this, cross coupling or
mixing of interface parameters has been explored as a
way to complicate and enrich the control process by sev-
eral authors (Menzies 1995a, Garnett and Goudeseune
1999, Menzies 1999, Hunt, Wanderley and Kirk 2000;
see figure 1).
It seems that the adoption of the word mapping has

perpetuated a vague and overly simplistic view of instru-
ment design. The main deficiency is that mapping
strongly suggests an instantaneous function. The output
depends on the input at that time. A process in which
the output depends on the history of the input parameters
can instead be termed a dynamical processs.1 The gen-
eralised mapping can now be referred to more precisely
as dynamic control processing.

1A process depending on future input is not meaningful in a real-time
instrument! For post-processing it could be useful, for example in
time-reversed echoes.
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Note that we shall not use the usual musical meaning
of dynamic, meaning volume or energy, although there
is a connection in that the volume of an acoustic instru-
ment is often very clearly a dynamical variable. The ori-
ginal mathematical use of the term dynamics was to
describe the motion of a physical system acting under
Newton’s Laws. To distinguish dynamics ‘similar’ to
this from dynamics in general, we shall call it physical
dynamics.
A secondary problem is that mapping excludes

random variables, which by definition are not interface
parameters. A process taking on random variables can
be called a stochastic process. So the most general
bridge-process is a stochastic dynamical process. Chad-
abe (2002) also notes his dissatisfaction with ‘mapping’
principally because it does not allow for non-
deterministic, i.e. stochastic, processing. However, even
very simple dynamical systems can exhibit complex,
even chaotic behaviour, i.e. perceived as random by the
human observer. The classic but familiar example is the
dripping tap. For an introduction, see, for example Hil-
born (2000). One of our goals is to show that determin-
istic behaviour in the bridge-process need not prevent
perceptual complexity, if dynamics are used. Chadabe’s
virtual performers constitute a stochastic dynamical
system, since the output depends on previous events and
random variables. The virtual players are loosely
coupled to the real player’s actions. In contrast, the kind
of dynamics that shall be explored here shall be close
coupled and physical, as they are in an acoustic instru-
ment. This provides an alternative approach.
This paper first attempts to justify the use of quasi-

physical dynamic control processing by examining
dynamic human interaction and control, in everyday
situations and then in the context of performing an
acoustic instrument. The concept of perceptual dynamics
in instruments is identified and then broken into com-
ponents. Practical considerations of dynamical synthesis
are made, and some dynamical elements are then col-
lected together. Finally, some examples are provided of
simple instruments designed using the dynamic control
processing approach. The overall goal is to extract some
of the inherent dynamical feel of acoustic instruments
whilst freeing up creative possibilities for composing
new instruments.
The concepts and methods in this paper were intro-

duced in Menzies (1995a, 1999) as part of a general
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Figure 1

exploration of instrument properties. The recent growth
of interest in interactive instrument design, as evidenced,
for instance, by NIME and the present focus by
Organised Sound, has created an excellent platform for
their discussion.

2. DYNAMICS IN HUMAN INTERACTION

Our lives are rich with physical dynamic experience.
When we move a limb or manipulate an object, we are
bound by physical laws. Our brains are well adapted to
achieving control objectives in spite of inertia, friction
and gravity. The most primitive variable that we control
is force. Via motor neurons and muscle-chemistry, the
brain controls the force that a muscle exerts. When we
move our hand, the muscle forces are controlled expertly
using visual and internal-pressure feedback, so that we
are hardly even aware of the process (Thompson and
Floyd 2000). At each time the position of the hand
depends on the history of force control. In moving an
external object we must adapt the control process to
include the mass of the new object, and we become more
conscious of the dynamical interaction and the dynam-
ical properties of the object.
Dealing with dynamics is not only a daily necessity,

but also a recreation. Physical sports all demand a high
degree of dynamic control. The athlete pushes the
dynamical control of his/her own body. The soccer
player is an expert in the dynamics of the football as
well as his body. A Snooker player’s performance is
determined mostly by how well he can control the
dynamics of several balls at once. The racing car driver’s
objective is simple, but to win he must understand fully
the dynamics of his car and the track. Closely related to
music is dancing, which can be viewed as the art of body
control dynamics.
A well-known feature of human perception is the

delay between receiving a stimulus of any kind and
reacting to it via a motor response. For high-level opera-
tions this can be as much as 50 ms (Lennie 1981). For
high time resolution control scenarios this means the
human has roughly only been able to use information
that is 50 ms ‘out of date’ for any actions made. Being
able to predict the course of dynamics is therefore very
important. In order to make good predictions, a good
understanding of the dynamics involved is required. So
the conclusion is that we are very well adapted to control
physical dynamics (Bhushan and Shadmehr 1998). To
what extent this ability is genetic or learned is a separate
matter, but for the purpose of instrument design it is
important to realise that we have it.

Paradoxically, dynamics can help in achieving some
specific control tasks, as well as hindering others. If the
desired system trajectory happens to be one requiring
little control input, then we just have to ensure the initial
conditions are good, and make small adjustments during
the trajectory. We are ‘riding the system’ rather than
fighting it. If the initial conditions are bad, then some
initial substantial effort may be required, but after that
it is back to small adjustments. Figure 2 illustrates this
effect in a general parameter space, {x, y} that might
represent position, for example. A simple example is
making an object accelerate downwards. We just have
to let the object fall under gravity. Another example is
walking. Our legs swing like pendulums, with adjust-
ments so that we don’t trip.
Dynamics can also help by reducing control ‘noise’.

Since it is the integration of force over time that is
important for causing changes in velocity, short inad-
vertent spikes of force have a minimal effect on the tra-
jectory (see figure 3).

3. PERCEPTUAL DYNAMICS IN ACOUSTIC
INSTRUMENTS

Acoustic instruments have their own rich dynamics,
which are again the result of Newton’s Laws acting in
complicated ways with electric and gravitational forces.
Instrument dynamics cover a broad frequency range. At
the top of the range are the audio frequencies. A pure
note is a perceptually static object despite the rapid pres-
sure oscillations, so it is important to differentiate
between the physical dynamics that may yield high fre-
quencies and the perceptual dynamics of quantities that
can be perceived to vary. Such quantities are usually
subdivided into pitch, volume and timbre. The latter is,
of course, a catch-all for anything that is not pitch or
volume. Depending on the details of the quantity per-
ceived, the frequency range available for perceived
dynamics extends up to around 50 Hz. At higher fre-
quencies we can no longer capture the contour of the

Figure 2
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Figure 3

varying quantity and a transition to a new static percep-
tion occurs. A common expression used to describe
acoustic instruments is ‘liveliness’. This is an almost
subconscious reference to perceptual dynamics. Just as
dynamics enriches the recreational activities of the pre-
vious section, so it does to acoustic instruments.

The overall dynamic behaviour of an instrument can
be broken down into two main stages: the dynamics of
the interface and the acoustic dynamics of pressure and
tension waves, shown in figure 4. The piano action pro-
vides a good example of interface dynamics. The inertia
of the hammer and the escape mechanism combine to
create the ‘feel’ of the keyboard (see figure 5). This
dynamics has several subtle consequences. It allows the
player to create a wide variety of strike velocities from
small finger movements, since the final velocity is pro-
portional to the impulse applied by the finger. This is the
area under the finger force / time graph shown in figure
6. Timing is improved by virtue of the denoising effect
discussed in the previous section. Fast repeats are pos-
sible because the hammer does not return immediately,
and can restart a hit from a short distance away from the
string. Because the dynamics of the interface is rela-
tively slow, it is perceptually relevant.
Acoustic dynamics yields frequencies well above the

perceptual range, but also within the perceptual range.

Figure 4

Figure 5

Figure 6

The following list attempts to separate out different
aspects of acoustic dynamics, but it is by no means
exhaustive, and the boundaries are often unclear.

3.1. Decay dynamics

Perhaps the simplest examples of dynamics are the
volume decays of struck instruments (see figure 7). As
the different frequency components decay at different
rates so the spectral contour and timbre change during

Figure 7
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the decay. Decay dynamics also apply in continuously
controlled instruments, immediately following a period
of control, for example when a bow leaves a string.

3.2. Beating and related dynamics

Even signals that contain only frequencies above the per-
ceptual upper limit, in the pure spectral domain, can
evoke perceived frequencies. A simple example is the
beating of two similar frequencies. In the sound of a
piano note, a host of complex timbral dynamics can be
heard, resulting from beating and sympathetic interac-
tions between strings.

3.3. Onset dynamics

Instruments with which the player interacts continuously
for the duration of the note expose richer dynamics than
event-based instruments such as percussion. In the con-
tinuous case the onset of a note is a critical period, as
the instrument progresses through a turbulent dynamical
transition to a ‘steady-state’ oscillation. During the
transition, the player must respond quickly to the avail-
able indicators of instrument state, the sound and vibra-
tion history, in order to guide the instrument to the
desired state. The brevity of the period makes the task
all the more challenging.

3.4. Locking

The instrument can enter different states that will have
a lasting effect on the subsequent note, independent of
the way the input develops. This is a general property
of nonlinear dynamical systems calledMode-locking. An
example is register shifting, whereby the output fre-
quency of an instrument flips by an interval and remains
locked into that shift. For instance, over-blowing on a
wind instrument can cause an octave rise, which holds
as the pressure is reduced. For the most part, locking
effects are more subtle than a register change, amounting
to a change of timbre.

3.5. Evolution dynamics

During the course of a note played with continuous con-
trol, the perceptual features vary smoothly, but control
is still dynamically filtered in subtle ways. For instance,
the energy within the instrument takes time to rise and
fall and establish equilibrium as the blowing or bowing
strength changes.

3.6. Micro-unpredictability

A general property of many acoustic instruments is a
small degree of apparent unpredictability in the sound
even when attempting to play a note as simply and stat-
ically as possible. This is inherent in the dynamics of

the instrument, as confirmed by the simplified physical
models that recreate these effects.

3.7. Macro-unpredictability

Many continuously controlled instruments can be driven
to a state of gross chaotic behaviour characterised by
noisy, rapidly fluctuating tones. An example is the
vocalised saxophone style in which vocal sounds interact
directly with vibrations in the saxophone. There is a fine
line here between timbre and dynamics.
This section has exposed a variety of physical dynam-

ical effects and challenges that face players of acoustic
instruments. Players learn to achieve these difficult con-
trol tasks using the same innate mechanisms required to
deal with everyday dynamics. This is why incorporating
physical dynamics into instruments is a good idea, but
one easily overlooked because dynamic control is so
much second nature.

4. EXISTING PHYSICAL DYNAMICS IN
ELECTRONIC INSTRUMENTS

Close-coupled physical dynamics has already entered
into electronic instrument design in several ways, as a
consequence of emulating acoustic instruments.

4.1. Dynamic envelopes

Perhaps the earliest example is the envelope, such as
ADSR (Attack Decay Sustain Release) and its variants,
used for amplitude and filter control in keyboard instru-
ments (see figure 8). A single event, a key depression,
sets the trajectory of a note on course. A key release
event makes the envelope jump towards the release sec-
tion (to simulate piano dynamics, the sustain section is
removed). This is a simple case because the output only
depends on discrete events rather than a continuum. The
envelope is a simple model of keyboard dynamics.

Figure 8
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4.2. Effects processing

Effects processing is a common way of adding dynam-
ical behaviour. It is added at the end of the signal chain
rather than the beginning. A note played into an echo
processor for example, produces a stream of decaying
notes. The output at any time depends on previous input
events (see figure 9). The popularity of a range of
abstract effects processors is possibly as much due to
their dynamical effect as the immediate timbral effect.
While effects offer possibilities for creative design of
dynamics, this is limited by the fact that the effects act
at the end of the instrument signal chain where there are
only a few available connections, and not within it (see
figure 10). Also effects necessarily operate at audio rate,
so the computational cost is significant.

4.3. Physical modelling

The advent of physical modelling introduced all the
dynamic qualities of acoustic instruments into the elec-
tronic arena. By default, the interface controls connect
directly to the synthesizer. The design process hasn’t
forced us to acknowledge the importance of dynamics,
they have just appeared as a natural consequence of the
modelling process. The ‘liveliness’ present in acoustic
instruments is inherited.

Physical modelling comes in various forms. Accurate
waveguide models seek to simulate the propagation of
sound waves in an object, including critical regions of
nonlinear interaction (Smith 1992). Matching a wave-
guide structure to an existing instrument is a demanding
task. A given structure is only capable of a certain range
of behaviour. Identifying a structure that will realise
some arbitrary imagined dynamics is intractable in most
cases.
Physically inspired modelling models bulk motion in

Figure 9

Figure 10

Figure 11

instruments such as shakers, by making physically reas-
onable assumptions about the overall sonically relevant
behaviour without worrying about detailed behaviour
(Cook 97). If the bulk dynamics are modelled accurately,
this allows the details of interaction sounds to be
explored, and is particularly effective when accompan-
ied by a graphical rendering of the bulk system
(Menzies, 99). Figure 11 shows a screenshot of a system
of rigid bodies. The outer ball can rotate but its centre
is fixed; the mid-sized ball is controlled via an invisible
spring by the mouse. All balls have different resonant
properties. It is also possible to model the acoustic
dynamics itself in a semi-physical way, for example
using noise for diffuse resonance (Menzies 2002).

4.4. Data-driven modelling

Recently, data-driven techniques have been developed
to extract and then reproduce the dynamical properties
of instruments without reference to a physical model.
The general idea is to sample dynamics in a way analog-
ous to sampling notes directly. Gershenfeld exploits a
beautiful theorem of well-behaved dynamical systems
which are in general characterised by a function of a
finite number of ‘lag’ points behind the current input
(Gershenfeld Schoner and Metois 1999). The lag-
function is constructed by training weighted clusters
with example pairs of input and output from a real
instrument. In performance, the output of the clusters
mixes short basis samples to generate the output. Using
this approach, Schoner has succeeded in producing reco-
gnisable, if not hi-fidelity, string synthesis (Schoner,
Cooper, Douglas and Gershenfeld 1999). This is a prom-
ising area for development, especially if the captured
dynamics can be analysed into perceptually meaningful
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‘subdynamics’, so that they can be creatively trans-
formed.

5. COMPOSING DYNAMICS

The case for dynamics in instruments has been made.
Existing dynamics in electronic instruments has been
reviewed. Now we turn to new practical design pro-
cesses for adding control processing dynamics to an
interface-synthesis system in which the synthesis com-
ponent has little or no inherent perceptual dynamical
properties. The following discussion will not assume
much technical knowledge, but hopefully it will also be
of interest to the experienced reader by being cast in
the context of instrument control dynamics. Additional
background material can be found in introductory books
on filters (for instance, Oppenheim, Schafer and Buck
1999).

5.1. Linear filters

The original definition given of a dynamical system was
a function depending on the history of signal input.
Since we are working in the digital domain, we must
discretise time into small finite steps, so the input and
output signals are streams of samples. If the definition
were implemented directly, this would imply storage of
the accumulating input history without limit. In practice,
all interesting dynamics can be implemented by using a
finite store of state variables that encode the dynamical
state of the system. This is essentially the ‘memory’ the
dynamical system has of the past. The bigger the
memory, the more complex can be the reaction to the
past. At each time step, the output and the state variables
are a function of the current input and the state variables
(see figure 12).
Linear dynamical systems are a subclass with addi-

tional properties. They are useful for modelling a variety
of real processes, including physical dynamics, and can
be analysed in depth. In the language of audio signal
processing, such systems are more commonly known as
linear filters and are frequently used as building blocks.
In the current context, however, we are interested in pro-
cessing control signals rather than audio signals, so the
characteristic timescale is larger, and the bandwidth
smaller. A general linear filter can be realised by choos-
ing the state variables to be recent input and output
samples, lagging behind the current sample by fixed
amounts. The functions in figure 12 are constrained to

Figure 12

be linear. If only inputs are chosen then the system is
described as finite impulse response, otherwise infinite
impulse response. The familiarity of linear filters will be
an aid to their deployment in control processing.
We have already observed that the acoustic dynamics

of instruments is often characterised by nonlinearities
imbedded within a linear system, so we should question
whether nonlinearities should be introduced into the con-
trol processing. In this introductory study we shall only
consider linear processing. Interesting results can be
hoped for from this because the timescale of the pro-
cessing is, by design, the same as the human player
interacting with it, so the player takes on the role of an
important nonlinear interacting element, from the global
player-instrument system viewpoint.
Linear filters can be classified by their order, or how

far backwards in time the state variables extend in their
simplified input, output form. Here we consider just
first- and second-order filters. To aid comprehension,
and avoid the technical language of z-transforms, the
filters will not necessarily be constructed in their purest
and most efficient form. This doesn’t matter because the
computational demands of signal processing at low
bandwidth are small compared to the demands of audio
rate signal processing in the synthesis section. We shall
be more concerned with the details of the time domain
behaviour than would be the case for audio signal pro-
cessing. Hence filters with similar frequency responses
may have quite different effects as control processors.

5.2. Implementation

There are many ways to implement control filters. Max-
related systems have become very popular for real-time
music applications, primarily because of the user-
friendly graphical interface. On the other hand, program-
ming languages such as C and C++ offer the greatest
flexibility and efficiency. We shall take the comparat-
ively unpopular middle route of using Csound, which
offers several advantages. Csound is free and available
on many platforms, requires modest resources and has a
common multi-channel audio interface. The script lan-
guage is flexible enough to build filter structures com-
pactly, and enables rapid development. It also means that
specific code can be quoted within this document. One
minor drawback is that the real-time capability has been
grafted on to a batch-style architecture, so workarounds
are sometimes required.
In theory, it would be convenient to use the built-in

audio filters for control processing. Unfortunately, it is
usually found that the filters don’t function correctly, if
at all, at the low frequencies of interest. Also, audio rate
processing is wasteful on control rate signals that have
low bandwidth. In any case, there is sometimes no obvi-
ous or simple way to construct a particular filter from
those available, and we must resort to coding from
scratch using variables.
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Depending on what we wish to do, it may be worth
upsampling the processed control signal to improve the
final audio output quality. For instance, if a control has
a large effect on output amplitude then up-sampling will
reduce zipper noise. Frequency stepping is less notice-
able, but may be worth improving by upsampling.

5.3. A control dynamics kit

The aim here is to present a collection of practical tech-
niques for dynamic control processing. It is in no way
designed to be exhaustive, but rather illustrative of the
methods involved. In the following code snippets, global
variables are used so that values can be passed between
instruments, and so that values are retained between per-
formance passes. gkdt is the control time step, and
should be set to 1/kr, the inverse of the control sam-
pling rate. The code should reside in a Csound instr that
is active for the duration of the performance, which
normally means switching on from within the score.
Time responses to various signals are used to illustrate
the dynamics.

5.3.1. 1st-order differentiator

This is the simplest useful linear filter for control pro-
cessing. It outputs the rate of change of the input (see
figure 13). It has the special property of being point-
local. Local means that the output only depends on a
finite stretch of input history. This is true in general for
finite impulse response filters. Point-local additionally
means that the history dependence is confined to a small
fixed number of samples.2 The Csound implementation
looks like:

gkout = (gkin – gkinold) * kr

Figure 13

2For the more mathematically inclined: The entire history of an infi-
nitely differentiable function is defined by the derivatives at a point. In
the discrete domain, however, calculating the analogue of derivatives
amounts to knowing the history, so point-local is useful for describing
filters with history dependence that shrinks with time step size.

gkinold = gkin

The differentiator is useful for calculating the velocity
of an interface object such as a bow or hammer. From
this we can infer the energy associated with interactions
of the control object. Because it is point-local, its
dynamic behaviour is simple. The acceleration can be
found by chaining two differentiators together.

5.3.2. 1st-order integrator

The integrator is the inverse to the differentiator (see
figure 14). Combining them leaves the input unchanged.
The integrator is not local, since it is an infinite impulse
response filter. The output depends on the entire history
of input. In the following implementation, our state vari-
able gkout1 is a delayed output (gkout1 could be
dropped and replaced with gkout providing it is not
modified later on in the code).

gkout = (gkin * gkdt) + gkout1
gkout1 = gkout

5.3.3. Leaky integrator

In practice, the pure integrator is limited in usefulness
because the output always grows for positive input. The
leaky integrator is an integrator with an exponential
‘drain’ added so that the output decays if no input is
present (see figure 15). This can model the energy in a
resonant object like a string. Energy can be accumulated
by repeated bowing, but ultimately it dissipates.

gkout = (gkin * gkdt) + gkoutold
gkoutold = gkout * gkdecay

where gkdecay = 2ˆ(–gkdt/gkhl) and gkhl is
the half life of the decay. Note gkdecay is not specified
as a variable, so that it can be controlled in run time.

Figure 14
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Figure 15

5.3.4. 1st-order lowpass

We now consider some common filters in their original
forms as audio filters. The lowpass filter reduces high-
frequency content while the lowest frequency content is
unchanged, and in fact is the same as a leaky integrator,
but with gain normalised for low frequencies, and a dif-
ferent control viewpoint (the pure integrator is the low-
frequency limit of lowpass, with infinite gain at 0 Hz).
Its audio implementation in Csound is tone.

gkout = gka * gkin + gkb * gkout1
gkout1 = gkout

For normalisation, gka = 1 – gkb. gkb can be con-
trolled directly or via its relation to the formal cut-off
frequency, kf:

kb = 2 – cos(kf*6.282*gkdt)
gkb = kb – sqrt(kb*kb–1.0)

This definition for gkb is of limited use because the
cut-off is not very sharp, but it does at least provide a
way to scale gkb for differing kr.

Lowpass intuitively resists change in the input signal,
so it provides a simple model for a physical damping
action (see figure 16). A more accurate model of damp-
ing must introduce the notion of acceleration and
requires a second-order filter. This is expressed in the

Figure 16

resonators below. Lowpass filters can be chained to
create sharper cut-offs, but more ideal filters can be cre-
ated using other higher-order designs.
Lowpass can also be viewed as a time averaging of

the input, so it extracts the large timescale motion of the
input. For sufficiently small gka the output converges
to the signal offset, if that exists.

5.3.5. 1st-order highpass

The highpass filter attenuates low frequencies. It trans-
mits rapid change well (see figure 17). It can be con-
structed by subtracting the lowpass output from the
input. Add:

gkout = gkin – gkout

(A more efficient construction is possible, but efficiency
is not very important at control rates.) The highpass is
useful for generating signals from sudden changes in the
input.
For very low cut-off frequency, the highpass is better

known as a DC block, which passes all frequencies unat-
tenuated except the 0 Hz or DC offset signal. This is
useful for shifting the input so that its time average value
is zero, more of a practical than a perceptual-dynamical
operation (see figure 18).

Figure 17

Figure 18
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5.3.6. Resonator

Moving up to second-order filters introduces the pos-
sibility of oscillation. We consider recursive or IIR fil-
ters whose output depends on the entire history of input,
as for the recursive first-order filters. Following the
direct form implementation of reson in Csound, we
define a control version:

gkout = gkin + ka * gkout1 – kb * gkout2
gkout1 = gkout
gkout2 = gkout1

kca and kcb are obtained from the centre frequency
kcf and bandwidth kbw as follows:

kb = exp(–kbw * 6.282 * gkdt)
ka = 4 * kb * cos(kcf * 6.282 * gkdt) / (kb + 1)

Note that numerical errors may cause problems in setting
ka and kb if kcf is too small compared to kr. Gener-
ally, kr should be kept to a maximum of 5000, and can
be much lower. As the bandwidth is reduced, the filter
becomes more resonant and oscillations decay more
slowly. Control input which oscillates near the centre
frequency will cause a build-up of output oscillations
towards a saturation level (see figure 19).

5.3.7. Resonant-follower

Resonance can also be approached from a physical view-
point, and this aids the intuitive construction of vari-
ations on the basic resonator. As an example, consider
the physical system shown in figure 20. The input con-
trol is the position of one end a spring relative to a fixed
point. The other end of the spring is attached to a mass

Figure 19

Figure 20

and one end of a damper. The other end of the damper
is fixed. The filter output is the displacement of the mass
from its resting position when the input is zero. The
force on the mass depends on the extension/compression
of the spring and the velocity of the damper extension.
Without loss of generality take the mass to be 1. In
Csound we can integrate the system to a first approxi-
mation with:

gkvel = gkvel + ((gkin–gkout1)*gkk
− gkvel*gkd) * gkdt

gkout = gkout + gkvel * gkdt
gkout1 = gkout

gkvel is the velocity, gkk is the spring constant and
gkd is the damping constant. The step response is
shown in figure 21. This is a resonator with DC pass. We
call it a resonant-follower to emphasise that the output
follows the input, with added resonance caused by
sudden change. It is typical of mechanical suspension
systems that transmit the input but impose resonance and
damping as well.

5.3.8. Modified resonator

The DC component of the resonant-follower can be
removed by subtracting the output from the input. Add:

gkout = gkin – gkout

The step response is shown in figure 22. This is similar

Figure 21

Figure 22
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to the resonator step response but with an initial discon-
tinuity. The modified resonator is equivalent to a reson-
ator and differentiator attached in series, with gain
adjustment. The frequency response does not roll off at
high frequencies, so impulses are responded to rapidly
irrespective of the resonant frequency. This feature is
exploited in the first example.
Only filters up to 2nd order have been considered.

This may seem somewhat restrictive, but in practice a
wide range of perceptual dynamics can be approximated
well using the filters described. They have the advantage
that the behaviour of each can be clearly understood.
Higher-order filters can be built from networks of sim-
pler filters, in a structured way.

6. EXAMPLE I: BIRD

The purpose of the examples is to present complete
instruments that use dynamic control processing, without
becoming submerged in synthesis details. To this end
we return to the simplest of instruments, the Theremin,
as the starting point. The synthesis section will consist
only of a sine oscillator. The design or compositional
elements contributing to the first example are:

� The amplitude and frequency should by affected by
output from dynamic control processing. This
should create possibilities for output that the player
could not achieve by direct control.

� The interface is a standard wind controller, such as
a Yamaha WX7 / WX11. Use should be made of
the reed pressure sensor.

� It would be useful if the instrument could be driven
to a ‘normalised state’ where playing keys produced
corresponding scale tones, with no superimposed
frequency changes.

� It would similarly be useful if the instrument could
be driven to an ‘anti-normalised’ state in which we
control the frequency directly and continuously, like
the Theremin.

� The overall aesthetic inspiration is from bird song,
the rapid, complex and varied modulation of simple
tones. The effect should be one of intimate rather
than loose control, as if the player were singing dir-
ectly.

The design process proceeds roughly as follows: To
generate frequency modulations, we use a resonator. But
what should drive the resonator? The breath control
should be mainly used to control amplitude, in agree-
ment with the normalisation requirement. The staccato
nature of bird song suggests that changes of breath
should excite resonant modulation. Using the derived
resonator from the last section we can additionally drive
the instrument into an anti-normalised state at low fre-
quencies, so that breath changes directly control fre-
quency. The remaining piece of the jigsaw is to use the

reed pressure to control the resonant frequency and
damping.
Figure 23 shows the overall scheme. The method for

controlling the resonant frequency and the damping is to
multiply the time step gkdt by a factor depending on
the reed pressure. A tighter reed pressure causes faster
oscillations and damping. The full code and recorded
examples can be downloaded (Menzies 1995b).
Recorded examples are also included on the accompany-
ing CD. There are broadly three regimes of playing.
With a tight reed, oscillations die away fast and scales
can be played. With a looser reed the oscillations
become slower, and the player interacts dynamically
with the oscillations. It is here that interesting and per-
ceptually unpredictable behaviour can occur. The player
has control of the overall shape of a phrase, but the
details of modulation are ever fluid. With a loose reed,
breath drives the frequency directly. By moving rapidly
through these regimes, the player can achieve a variety
of interesting bird-like performances that would be
impossible without dynamic processing.
Interesting variations on the bird song theme have

been made by combining several sine oscillators, each
controlled by slightly different dynamics. The oscillators
tend to join and spread according to the playing condi-
tions, creating chorus-like effects and adding more
dynamic interest.

7. EXAMPLE II: SPIRO

For the second example we stay with sine modulation,
but use a keyboard as the interface. Instead of using
linear filters for dynamic processing we return to the
ADSR envelope and wavetable oscillator, to demon-
strate how ‘off-the-shelf parts’ can be given a new lease
of dynamics life. The ADSR was designed for modelling
the volume and filter dynamics of event-based notes.
However, it also provides a compact dynamical unit for
building more general dynamic processing. The specific
criteria this time are:

� The inspiration is taken from the sustained animal
song common in jungles and elsewhere, for instance
by birds and frogs. Cyclic patterns of sound that
repeat approximately but never perfectly.

� Each key ‘contributes’ to the output in a different
way, and the contribution has dynamical behaviour.

� The modulation and pitch wheels can additionally
be used to modify the behaviour in some global
way.

These goals are achieved by associating two
enveloped oscillators, operating at frequencies in the
perceptual-dynamic range, with each key that has been
pressed, one for amplitude and one for frequency (see
figure 24). The output of the currently active enveloped
oscillators is summed to provide the final pitch and
amplitude modulation parameters. Various parameters
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Figure 23

Figure 24

for the enveloped oscillators, wavetable, frequency,
mode (cycle/one-shot), attack time, decay time, sensitiv-
ity to key velocity, are all selected from tables indexed
by the key number. The mod wheel is used to shift the
global oscillator frequencies, while the pitch wheel shifts
the final modulation pitch. A simple variation employs
separate amplitude oscillators for right and left channels,
so that panning movement patterns additionally occur.

Csound provides a very efficient structure for imple-
menting this design. A single instrument definition is
accessed by each key that is played, and global variables
are used to accumulate the final modulation parameters
(Menzies 1996). The envelopes are implemented with
linenr, which forces the instrument to remain active after
the key is released. This permits a smooth fade of the
effect associated with the key, under the player’s control.
A variety of tables were generated for experimenta-

tion. The most rewarding frequency range to operate the
instrument is just at the point where the patterns of
pitches cannot each be followed exactly but are nonethe-
less recognisable from one another. One then perceives
a mixture of dynamics in the sound, possibly resulting
from correlations between repeating features. The effect
is analogous to spirograph pattern generators used on
some bank notes. As the envelopes vary the oscillator

outputs, so they interact dynamically to create trans-
itional pattern changes in the output, similar to those
heard in nature. A piece, lifeforms, was written combin-
ing performances on bird and spiro (Menzies 1996), and
has been diffused by the group nerve8 on several occa-
sions.

8. CONCLUSION

The motivation for this work has been the belief in the
value of dynamical behaviour in instruments, and phys-
ically related dynamics in particular. Examples have
been provided of how dynamics is important generally,
and specifically in the performance of acoustic instru-
ments. Physical modelling has opened the doors to
dynamics, but within certain boundaries. By explicitly
designing perceptually relevant dynamics, a broader
more abstract design space is accessible, yet one still
benefiting from dynamics. From a practical viewpoint,
the computational costs of perceptual dynamics are
small compared to audio signal processing because of
the lower bandwidth.
Some examples have been given of simple control

dynamics processing that yield compelling results given
their simplicity. More generally, any dynamical process,
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whatever its form or origin, can be considered and trans-
ferred to the perceptual band, thus creating a rich field
for experimentation. Of course, the sine generators can
be replaced with arbitrarily complex synthesis units with
parameters affecting timbre in many ways. Even phys-
ical synthesis units may benefit from dynamic control
preprocessing, by enhancing and modifying aspects of
the existing dynamics that might otherwise be difficult.
Instrument design is foremost an artistic composi-

tional process, but one that is likely to benefit increas-
ingly from technical proficiency in the abstract manip-
ulation of dynamical systems.
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