
ABSTRACT
Sandwich panels are widely used in the aerospace industry instead of solid plates due to their
high flexural stiffness-to-weight and flexural strength-to-weight ratios. However due to the
mismatch of properties between the face sheets and the core, stress concentrations can occur at
the face sheet/core interfaces, often leading to delamination. One possible solution to this
problem is the introduction of a graded core — a core in which the properties vary gradually
from the face sheets to the core centre, eliminating any abrupt changes in properties. In this paper
a 3D finite element method, fully validated through comparison with results from the literature
and a 3D elasticity solution, is applied to modelling of sandwich panels with graded core. The
approach makes use of graded elements to study the effect of varying the boundary conditions
on the elastic deformation of the panel subject to uniformly distributed loading. Comparative
analysis of stress and displacement fields in sandwich panels with homogeneous and graded
cores is carried out under various combinations of simply supported, clamped and free edges.

NOMENCLATURE
a,b panel dimensions
D flexural rigidity
E Young’s modulus
Gf, Gc shear moduli of the face sheets and the core
G(k) shear modulus of layer k
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2hc, hf core thickness, face sheet thickness
h0 = 2h panel thickness
k layer number
M(k)

11, M(k)
22 bending moments per unit length of layer k

q0 uniformly distributed load
ui

(k) components of displacement vector of layer k
V1

(k), V2
(k) out-of-plane shear forces per unit length of layer k

x1, x2, x3 Cartesian co-ordinates
γ(k) inhomogeneity parameter of layer k
ν(k) Poisson’s ratio of layer k
σij

(k) components of stress tensor of layer k

1.0 INTRODUCTION
Sandwich panels, consisting of a core covered by face sheets, are widely used in the aerospace
industry instead of solid plates due to their high flexural stiffness-to-weight and flexural
strength-to weight ratios. Due to the mismatch in stiffness properties between the face sheets
and the core, sandwich panels are susceptible to delamination, caused by high interfacial
stresses, especially under localised or impact loading(1,2).

One effective method of minimising the large interfacial shear stresses is to make use of a
graded material for the panel core. Functionally graded materials are a type of heterogeneous
composite materials exhibiting gradual variation in microstructure and composition of the two
constituent materials from one surface of the material to the other, resulting in properties
which vary continuously across the material. 

A number of researchers have presented analytical solutions for sandwich panels with graded
core: Anderson(3) developed a three dimensional (3D) elasticity solution for a sandwich panel
with orthotropic face sheets and an isotropic functionally graded core subjected to transverse
loading by a rigid sphere. Kashtalyan and Menshykova(4) and Woodward and Kashtalyan(5-6)

recently developed 3D elasticity solutions for sandwich panels with functionally graded core
whose shear moduli vary exponentially through the thickness of the core. Apetre et al(7)

investigated several available sandwich beam theories for their suitability of application to
sandwich plates with functionally graded core. All of the above studies assume that the panel
is simply supported on all of the edges. However in reality there are many other combinations
of boundary conditions which may be encountered.

Bian et al(8) examined the one-dimensional (1D) problem of a functionally graded plate under
cylindrical bending through use of a modified classical plate theory. An analysis of stresses and
displacements for plates with the following boundary conditions were considered: two opposite
edges simply supported; one edge clamped and the other simply supported; two opposite edges
clamped and one edge clamped and the other edge free were considered. A two-dimensional
analysis (2D) of a functionally graded cantilever beam with exponential variation in stiffness
properties was carried out by Zhong et al(9). Using Airy stress functions, stresses and
displacements were compared under a number of different loads including a concentrated shear
force at the free edge and uniform pressure on the top surface. Xu and Zhou(10) considered a
functionally graded plate with exponential variation in stiffness properties and with variable
thickness. Using displacement functions, two plates, one with convex lower surface, the other
with concave lower surface but both simply supported, are analysed on the basis of 3D elasticity
theory.
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Once more employing displacement functions, Xu et al(11) carried out a 2D stress analysis of
a variable thickness beam with one end clamped and the other simply supported. They found
that their solution could be applied to the analysis of stress and displacement distributions of
arbitrarily and continuously varying thickness beams.

A functionally graded plate with exponential variation in Young’s modulus resting on a
Winkler Pasternak elastic foundation was studied by Huang and Chen(12). The state space
method was used to develop a 3D elasticity solution to the problem which was then used to study
the effects of stiffness of the foundation, loading cases and gradient index on the mechanical
behaviour of the plate. Sburlati and Bardella(13) considered a functionally graded circular plate
with clamped edges. Displacement functions were used to formulate a 3D solution of the stresses
and displacement through the plate thickness and it is shown that under certain combinations
of boundary conditions and loading a non-planar neutral surface exists.

In the current work, the effect of various boundary conditions on the elastic deformation of
a sandwich panel containing a functionally graded core and subjected to uniformly distributed
loading is considered. The analysis utilises a 3D finite element simulation, fully validated by
comparison with a 3D analytical elasticity solution, using ABAQUS software and user
implemented graded elements. Stresses and displacements are calculated through the thickness
of the panel under combinations of simply supported, clamped and free boundary conditions and
are then compared with those in a reference panel containing a homogenous core.

2.0 PROBLEM FORMULATION
Let us consider a sandwich panel (Fig. 1) of length a, width b and total thickness h0 = 2h is
referred to a Cartesian co-ordinate system x1, x2, x3 (0 ≤ x1 ≤ a,  0 ≤ x2 ≤ b,  –h ≤ x3 ≤ b), so that
the panel is symmetric with respect to the mid-plane x3 = 0 . Let us assume the panel consists
of four layers (k = 1, ..., 4), with layers 1 & 4 being the face sheets of thickness hf, and layers
2 & 3 being the core of thickness 2hc, which is subdivided into two layers for the sake of
convenience. The face sheets are assumed to be homogeneous with the shear modulus G(1) = G(4)
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Figure 1. Sandwich panel under uniformly distributed loading.
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= Gf = const , while the shear moduli of the core are assumed to vary exponentially through the
thickness from the Gf value at the face sheet/core interface to the Gf value at the mid-plane
according to

where γ(k) are the inhomogeneity parameters

Both face sheets and core are assumed to have constant Poisson’s ratios ν(k) = const (k = 1, ... 4).
The face sheets are assumed to be perfectly bonded to the core, so that the continuity of stresses

and displacements exists at the face sheet/core interfaces, i.e.

where σij
(k) and ui

(k) (k = 1, ...,4) are the components of the stress tensor and displacement vector,
respectively. The panel is subjected to uniformly distributed loading of magnitude q0 on the top
surface, while the so lower surface remains load free (Fig. 1).

The behaviour of the panel under a number of different boundary conditions will be
investigated. A four-letter notation is used to describe the each set of boundary: the first letter
describes the boundary conditions on the edge x1 = 0, the second on the edge x1 = a, third on
the edge x2 = 0,  and the fourth on the edge x2 = b. The letter S stands for a simply supported
edge, where both edge displacement and edge bending moment are equal to zero; the letter C
stands for a clamped edge, where the edge displacement and edge slope are zero;  the letter F
stands for a free edge, where both edge bending moment and edge shear force are zero.

The following cases are considered in this study:

(i) Panel with all edges simply supported (SSSS)

First, we consider a panel (Fig. 2) with all edges simply supported, so that
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Figure 2. Geometry and co-ordinates of 
panel with all edges simply supported.

Figure 3. Geometry and co-ordinates of panel with
two edges clamped and two simply supported.

. . . (1)

. . . (2)

. . . (3a)

. . . (3b)

. . . (4a)

3866:New Resized Aero Journal 2012  04/12/2012  14:20  Page 1292

https://doi.org/10.1017/S0001924000007648 Published online by Cambridge University Press

https://doi.org/10.1017/S0001924000007648


(ii) Panel with two opposite edges clamped and two simply supported (CCSS)

The second panel under consideration (Fig. 3) has the edges at x1 = 0,a clamped and those at
x2 = 0,b simply supported. The boundary conditions are thus:

(iii) Panel with one edge clamped and all other edges simply supported (CSSS)

Consider the panel (Fig. 4) which has the edge at x1 = 0 clamped and those at x1 = a and x2 =
0,b simply supported. The boundary conditions are thus:

(iv) Panel with one edge clamped, opposite edge free and other edges simply supported

(CFSS)

Consider the panel (Fig. 5) which has the edge at x1 = 0 clamped, the edge at x1 = a free and the
edges at x2 = 0,b simply supported. The boundary conditions are thus:
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Figure 4. Geometry and co-ordinates of panel with
one edge clamped and three edges simply supported.

Figure 5. Geometry and co-ordinates of panel with
one edge clamped opposite edge free and other

edges simply supported.

. . . (4b)

. . . (5a)

. . . (5b)

. . . (6a)

. . . (6b)

. . . (6c)

. . . (7a)

. . . (7b)

. . . (7c)
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(v) Panel with three simply supported edges and one free edge (SFSS)

Consider the panel (Fig. 6) which has the edges at x1 = 0 and x2 = 0b simply supported and the
edge at x1 = a free. The boundary conditions are thus:

(vi) Panel with two opposite edges free and two simply supported (FFSS)

Consider the panel (Fig. 7) which has the edges at x1 = 0 free and those at x2 = 0b simply
supported. The boundary conditions are thus:

(vii) Panel with one edge clamped and all other edges free (CFFF)

Consider the panel (Fig. 8) which has the edge at x1 = 0 clamped and those at x1 = a and x2 =
0b free. The boundary conditions are thus:

(viii) Panel with one edge clamped, two free edges and one edge simply supported (CFSF)

Consider the panel (Fig. 9) which has the edge at x1 = 0 clamped, the edge at x2 = 0 simply
supported and those at x1 = a and x2 = b free. The boundary conditions are thus:
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Figure 6. Geometry and co-ordinates of panel with
one edge free and other edges simply supported. 

Figure 7. Geometry and co-ordinates of panel with
two opposite edges free and two simply supported.

. . . (8a)

. . . (8b)

. . . (8c)

. . . (9a)

. . . (9b)

. . . (10a)

. . . (10b)

. . . (10c)
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(ix) Panel with all edges clamped (CCCC)

Consider the panel (Fig. 10) which has all edges clamped. The boundary conditions are thus:

3.0 FINITE ELEMENT MODELLING 
In order to accurately model the functionally graded core material, the 3D finite element
method used in the present study employs elements with stiffness gradient in the thickness
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Figure 8. Geometry and co-ordinates of panel with

one edge clamped and all other edges free. 
Figure 9. Geometry and co-ordinates of panel with
one edge clamped, two free edges and one edge

simply supported.

Figure 10. Geometry and co-ordinates of panel with
all edges clamped.
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direction. The method of element formulation is discussed in detail in a number of papers(14-17)

and an overview is given here. Beginning with an assumed set of shape functions it can be written
that the displacements within an element are interpolated as

where Ni(x) is a matrix of shape functions corresponding to each of the n nodes of the element
and Ui are nodal displacements corresponding to each of the n nodes.

To obtain the element strains differentiation of the displacements is carried out, hence

where Bi(x) is a matrix of derivatives of the shape functions. For linear elastic behaviour standard
stress strain relations can now be used

σ(x) = C(x)ε(x) . . . (14)

where C(x) is the material property matrix. Traditionally this matrix contains constant material
properties but for a functionally graded material can be set to spatially variable functions, for
example exponential variation in Young’s modulus.

The element stiffness matrix ke, mapping the nodal displacements Ui, to the nodal forces fi,
can be written in the same way as for a standard finite element, that is:

fi = keUi    . . . (15)

Now applying the theorem of virtual work which states that the work done by nodal forces must
be equal to the work of deformation within the element, allows the following to be written:

where Ve is the volume of the element. Analytical integration of this expression is very difficult
or indeed impossible, so instead a numerical integration scheme is applied. Through application
of Gauss quadrature (see Ref. 8), Equation (16) can be calculated in the following manner

where Wi, Wj, Wk are Gauss weights (specified in Ref. 19), i, j and k are the Gaussian integration
points and Jijk is the determinant of the Jacobian matrix. In carrying out this integration, the
constitutive matrix is evaluated at each Gaussian integration point and since the applied loading
is known then displacements can be found through application of:

Ui = ke–1f . . . (18)

Commercial finite element software such as ABAQUS does not support graded elements
directly, therefore they have to be defined separately in a user subroutine. In ABAQUS this is
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carried out through a UMAT subroutine (see Ref. 20). This subroutine is called at all material
calculation points of elements for which the material definition includes a user-defined material
and is used to define the mechanical constitutive behaviour of the material and provide the 

material Jacobian matrix,          . Most importantly the stresses and solution-dependent state 

variables are calculated and updated to their values at the end of the increment for which the
subroutine is called. In order to accurately model the problem, the mesh shown in Fig. 11 is used,
utilising 20 node quadrilateral elements. The face sheets comprise 36 × 36 × 5 homogeneous
elements, whilst each half of the core is modelled by 36 × 36 × 25 elements whose stiffness is
graded in the x3 direction when modelling the panel with FGM core and by 36 × 36 × 25
homogenous elements when modelling the panel with HC core. The mesh is refined such that
there are more elements around the face sheet/core interface to ensure that the abrupt property
change for the panel with HC core is captured in detail.

4.0 VALIDATION
The developed finite element model for graded materials is validated through comparison with
the available 3D solutions for isotropic functionally graded plates(21). Table 1 shows normalised 

mid-plane displacements                    at the centre of a square (a = b) isotropic graded plate with 

exponential variation of the shear modulus through the thickness based on the present finite
element solution and the 3D elasticity solution(22). The plate is simply supported on its edges
and loaded by transverse loading Q(x1, x2) = –q0 Sin(πx1/a)Sin(πx2/b) at the top surface. The
results are given for a range of inhomogeneity parameters γ. The finite element solution is found
to be in excellent agreement with the 3D elasticity solution, the difference in transverse
displacements being at its largest 0.009%.

As the finite element analysis is going to be used exclusively in the present analysis of the
sandwich panels under different boundary conditions, it is important that the modelling of these
different conditions is validated too. A finite element model (containing 20 × 20 × 10 elements for
square plates and 20 × 30 × 10 elements for rectangular plates) is created and is used to analyse a
homogenous isotropic plate under uniformly distributed loading for which results already exist 
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Figure 11. Undeformed sandwich panel with mesh.
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in the literature(23). Tables 2-6 show non-dimensional displacements  

where                     is the flexural rigidity of the plate, calculated using the current finite
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Table 1

Displacement                at the centre (a/2, b/2, h/2) of a thick square simply 

supported plate calculated using 3D elasticity solution and FE analysis

γ 3D elasticity Present FE Difference (%)
solution(22) model

0.1 –1⋅28002 –1⋅2799 0⋅009014
0⋅01 –1⋅33617 –1⋅33606 0⋅008545
0⋅001 –1⋅34192 –1⋅3418 0⋅008596
0⋅0001 –1⋅34249 –1⋅34238 0⋅008249
0⋅00001 –1⋅34255 –1⋅34244 0⋅008066
0⋅000001 –1⋅34255 –1⋅34244 0⋅008495
–0⋅000001 –1⋅34256 –1⋅34244 0⋅00859
–0⋅00001 –1⋅34256 –1⋅34245 0⋅008274
–0⋅0001 –1⋅34262 –1⋅34251 0⋅008092
–0⋅001 –1⋅34319 –1⋅34308 0⋅00851
–0⋅01 –1⋅34896 –1⋅34885 0⋅008434
–0⋅1 –1⋅40795 –1⋅40784 0⋅007871

Table 2

Normalised displacement                                        for isotropic rectangular plate 

with two edges clamped and two simply supported  

CCSS b/a = 1/3 b/a = 1/2 b/a = 1 b/a = 3/2 b/a = 2 b/a = 3

Reddy(23) 1⋅1681 0⋅8445 0⋅1917 0⋅2476 0⋅2612 0⋅2619
Present FE model 1⋅166967 0⋅842381 0⋅1908 0⋅245473 0⋅259271 0⋅2596
Difference (%) –0⋅09712 –0⋅25155 –0⋅4717 –0⋅8664 –0⋅74384 –0 ⋅88598

Table 3

Normalised displacement                                       for isotropic rectangular plate 

with one edge clamped and three edges simply supported

CSSS b/a = 1/2 b/a = 1 b/a = 3/2 b/a = 2 b/a = 3

Reddy(23) 0⋅927 0⋅2786 0⋅425 0⋅488 0⋅5193
Present FE model 0⋅92595 0⋅2779 0⋅423079 0⋅486081 0⋅5167
Difference (%) –0⋅1134 –0⋅25189 –0⋅45408 –0⋅3948 –0⋅50319
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element method for various aspect ratios of thin plates under different boundary conditions.
Results are found to be in good agreement with those of Reddy(21).

5.0 RESULTS AND DISCUSSION
In this section, comparative study of uniformly loaded sandwich panels is presented for nine
different combinations of boundary conditions: SSSS, CCSS, CSSS, CFSS, SFSS, FFSS,
CFFF, CFSF and CCCC. The stress and displacements fields in a panel with functionally graded
core (FGMC panel) and homogeneous core (HC panel) are compared. Both panels are thick,
with a/h0 = b/h0 = 3, and the thickness of the face sheets is hf = 0.05h0. The shear moduli ratio
for both panels is Gf /Gc = 10, and the Poisson’s ratios are taken as ν(k) = 0.3, k = 1, ..., 4. The
inhomogeneity parameters for the graded core of the FGMC panel are determined from
Equation (2).

Figures 12-29 show the variation of normalised stresses σij = σij/q0 and normalised 
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Table 4

Normalised displacement                             for isotropic rectangular plate with 

one edge clamped opposite edge free and other edges simply supported 

CFSS b/a = 1 b/a = 3/2 b/a = 2 b/a = 3

Reddy(23) 0⋅0112 0⋅0335 0⋅0582 0⋅094
Present FE model 0⋅0112 0⋅033499 0⋅058207 0⋅0938
Difference (%) 0 –0⋅004 0⋅012271 –0⋅21322

Table 5

Normalised displacement                              for isotropic rectangular plate 

with one edge free and other edges simply supported

SFSS b/a = 1/3 b/a = 1/2 b/a = 1 b/a = 3/2 b/a = 2 b/a = 3

Reddy(23) 0⋅01521 0⋅01507 0⋅01285 0⋅00968 0⋅00709 0⋅00399
Present FE model 0⋅015212 0⋅015075 0⋅0129 9⋅68E–03 0⋅007105 0⋅003995
Difference (%) 0⋅010017 0⋅031431 0⋅387597 –0⋅00413 0⋅20443 0⋅115676

Table 6

Normalised displacement                                , for isotropic rectangular plate 

with two edges free and other edges simply supported

FFSS b/a = 1

Reddy(23) 0⋅01309
Present FE model 0⋅0131

Difference (%) 0⋅076336
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Figure 12. Through-thickness variation of the normalised out-of-plane normal stress 
σ33(0.5a, 0.5b, x3) for all studied boundary conditions, HC panel and FGMC panel.

(a) (b)
Figure 13. Through-thickness variation of the normalised in-plane normal stress σ11(0.5a, 0.5b, x3) for a
range of boundary conditions (CFSS, SFSS, FFSS, CFFF & CFSF) in (a) HC panel, (b) FGMC panel.

(a) (b)
Figure 14. Through-thickness variation of the normalised in-plane normal stress σ11(0.5a, 0.5b, x3) for a

range of boundary conditions (SSSS, CCSS, CSSS & CCCC) in (a) HC panel, (b) FGMC panel. 
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displacements                 through the sandwich panel under the different boundary conditions. 

The results are shown as either two- dimensional plots displaying stresses or displacement along
a single line projected through the panel or as 3D images displaying the stress or displacement
distribution across the panel as a whole.

Beginning with the through thickness variation of normalised out-of-plane normal stress σ33

(Fig. 12), it can be seen that under all boundary conditions and for both the FGMC and HC panels
the plots are identical, showing that the type of core has very little effect on this stress
component. It is believed that this is due to the effect of the mechanical properties of the face
sheets which have a significant contribution on the through thickness behaviour of the sandwich
panel.

The core has a very strong influence on the through-thickness variation of the in-plane normal
stress σ11, shown in Figs 13 and 14 at the centre of the panel (x1 = 0.5a, x2 = 0.5b). The use of
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Figure 15. Distribution of in-plane shear stress σ12 for HC panel with (a) SSSS (b) CCSS (c) CSSS (d)
CCCC boundary conditions.
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functionally graded core not only eliminates the stress discontinuity across the face sheet/core
interface, but also reduces the magnitude of stresses in the face sheets. This effect is observed
under all of the studied boundary conditions, with the highest face sheet stresses occurring under
CFFF and SSSS and the lowest under CFSF and FFSS conditions.

The distribution of in-plane shear stress σ12, is shown across the panel in Figs 15-20.
Considering the individual boundary conditions in more detail, when comparing panels with all
edges supported (i.e. SSSS, CCSS, CSSS and CCCC), it can be seen that the extremes of this
stress component lie at the face sheet corners (Fig. 15 for HC panel, Fig. 16 for FGMC panel),
reducing towards the centre. These stresses are higher in edges which are simply supported as
since the rotation degree of freedom is not fixed (as it is in the clamped case), significantly more
distortion of the original perpendicular element edges can occur. This stress is therefore at a
maximum in panels where two simply supported edges meet since distortion can occur in both
the x1 and x2 directions.
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Figure 16. Distribution of in-plane shear stress σ12, for FGMC panel with (a) SSSS (b) CCSS (c) CSSS
(d) CCCC boundary conditions.
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When considering panels with a free edge (Figs 17 and 19 for HC panel, Figs 18 and 20 for
FGMC panel), since the boundary conditions state that the shear force is equal to zero on free
edges, this stress component is zero along all free edges. The CFFF panels (Figs 19, 20(a)) show
concentrations of shear stress where the free edge meets the clamped edge. This effect is mirrored
in the CFSF panels (Figs 19, 20(b)) which also show high shear stresses along the simply
supported edge (where maximum distortion is occurring). 

There is once more a clear discontinuity across the face sheet-core interface for all of the panels
with homogenous core, and the use of a FGM core once more eliminates this problem. It can
also be seen that the introduction of the graded core decreases the magnitude of the transverse
shear stresses by almost half under all boundary conditions considered.

Plots of through thickness variation of transverse shear stress σ13 at the centre of the panel
(x1 = 0.5a, x2 = 0.5b) are shown in Figs 21 and 22. The highest transverse shear stresses are
observed in a panel with three free edges (CFFF panel, Fig. 21), whereas in those cases when
each pair of opposite edges has the same type of support (FFSS, SSSS, CCSS, CCCC) transverse
shear stress σ13 vanishes (Figs 21, 22). The use of functionally graded core significantly
reduces the magnitude of stresses in the face sheets and slightly increases it in the core.

The distribution of von Mises stresses across the panels is shown in Figs 23, 24 and 25 (for
FGMC panel). Consideration of von Mises stress is of particular interest as it highlights which
stress has the greatest effect in each of the cases considered. For panels with a clamped edge
(Figs 23(b), (c), (d), 24(a) and 25(a), (b)) the normal stresses (due to bending) provide the greatest
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Figure 17. Distribution of in-plane shear stress σ12, 
for HC panel with (a) CFSS (b) SFSS (c) FFSS boundary conditions.
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Figure 18. Distribution of in-plane shear stress σ12, for FGMC panel 
with (a) CFSS (b) SFSS (c) FFSS boundary conditions. 
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Figure 19. Distribution of in-plane shear stress σ12, 
for HC panel with (a) CFFF (b) CFSF boundary conditions.
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contribution to the overall stress distribution and this is highlighted by the stress concentration
along these clamped edges. Conversely, along simply supported edges, the boundary conditions
stipulate that the bending moment is equal to zero (and therefore normal stress are equal to zero)
and as such the shear stress components provide far more of the overall von Mises stress.
Therefore when considering the panels with no free edges (SSSS, CCSS, CSSS, CCCC) the
maximum occurs where a clamped edge meets a simply supported edge and both normal and
shear stresses make a significant contribution.
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Figure 20. Distribution of in-plane shear stress σ12, for 
FGMC panel with (a) CFFF (b) CFSF boundary conditions.

Figure 21. Through-thickness variation of the normalised transverse shear stress σ13 (0.5a, 0.5b, x3) for a
range of boundary conditions (CFSS, SFSS, FFSS, CFFF & CFSF) in (a) HC panel, (b) FGMC panel.

(a) (b)
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Figure 22. Through-thickness variation of the normalised transverse shear stress σ13 (0.5a, 0.5b, x3) for a
range of boundary conditions (SSSS, CCSS, CSSS & CCCC) in (b) HC panel, (b) FGMC panel.
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Figure 23. Distribution of son Mises stress σv, for FGMC panel 
with (A) SSSS (B) CCSS (C) CSSS (D) CCCC boundary conditions.
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In the cases involving a free edge, curvature of the panel at the upper and lower panel surfaces
either in compression or tension once more becomes a factor and the bending stresses make a
significant contribution. This can be seen particularly in the FFSS supported panel (Fig. 24(c)),
which has low von Mises stresses near to the supports but higher stresses towards the centre due
to the presence of the bending stresses σ11 and σ2. Plots for a panel containing HC core are not
shown as the distributions in stress are similar to those for the FGM core. The differences are
due to the discontinuities in in-plane normal and shear stresses which have already been
highlighted in Figs 13, 14 and 15-20, respectively.

Considering the normalised transverse displacements u–3 (Figs 26-29), the deformed shapes
of the panel fall into two distinct categories. For panels with all edges supported (Fig. 26), the
maximum deflection is in the centre of the panel (0.5a, 0.5b); while for panels with one or more
free edges, the maximum deflection lies under the free edge. For the CFSS and SFSS panels
(Figs. 27(a), (b)), respectively) which have one free edge at x1 = a, the maximum deflection lies
at the mid point of this edge. Similarly, the FFSS panel (Fig. 27(c)), with free edges at x1 = 0,a,
the deflection is maximum along the centre of the panel (i.e. along the line x2 = b/2). For the
panel with CFFF boundary conditions (Fig. 28), the maximum deflection lies along the free edge
at x1 = a and finally for the CFSF panel (Fig. 29), maximum deflection is at the point where the
two free edges meet x1 = a, x2 = b. It can also be seen from this series of images, that as the panel
is loaded, clamped edges remain perfectly straight whilst simply supported edges become curved.
When comparing panels with homogenous and graded core, it was found that the increased
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Figure 24. Distribution of von Mises stress σv, for FGMC Panel with (a) CFSS (b) SFSS (c) FFSS. 

3866:New Resized Aero Journal 2012  04/12/2012  14:20  Page 1307

https://doi.org/10.1017/S0001924000007648 Published online by Cambridge University Press

https://doi.org/10.1017/S0001924000007648


1308 THE AERONAUTICAL JOURNAL DECEMBER 2012

A      B 

 

 

 

 

 

 

 

66.69max_v     47.51max_v  

215.2min_ ev     376.9min_ ev  

 

 

 

 

 
 
 
 
 

 
A       B  
 

 

 

 

 

 

 

0max_3u      0max_3u  

72.10min_3u     982.8min_3u  

C      D  
 

 

 

 

 

 

 

0max_3u      0max_3u  

836.9min_3u     563.7min_3u  

 

 

 

 

 

 

 

 

 

Figure 25. Distribution of von Mises stress σv, for 
FGMC panel with (a) CFFF (b) CFSF boundary conditions.

Figure 26. Distribution of transverse displacement u–3, for FGMC panel with (a) SSSS (b) CCSS (c) CSSS
(d) CCCC boundary conditions.
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stiffness of the graded core reduces displacement throughout the panel (the panel with graded
core would however come with a weight penalty over the panel with homogeneous core). This
trend is seen under all boundary conditions. Looking at the individual boundary conditions in
greater detail, reveals that panels with two or more free edges have the largest transverse
displacements, followed by panels with one free edge, panels with multiple simply supported
edges and finally the smallest displacements are seen for the panel multiple clamped edges, with
the cantilever panel CFFF having maximum displacement over 20 times larger than the CCCC
panel. (i.e. in order from largest to smallest to displacements — CFFF, CFSF, FFSS, SFSS,
CFSS, SSSS, CSSS, CCSS, CCCC).

Finally, through-thickness variations of the in-plane displacements u–1 (Fig. 30) shows that the
panel behaves in a similar manner for all boundary conditions. The increased stiffness of the
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Figure 27. Distribution of transverse displacement u–3, for FGMC panel 
with (a) CFSS (b) SFSS (c) FFSS boundary conditions.
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Figure 28. Distribution of transverse displacement u–3, for FGMC panel with CFFF boundary conditions.
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graded core reduces displacement throughout the panel. The same pattern is observed as was
seen for transverse displacements, with the panels with free edges showing the greatest
displacements, followed by simply supported edges and then clamped edges minimising the
displacement.

6.0 CONCLUSIONS
In the current paper, a sandwich panel containing a functionally graded core subjected to
uniformly distributed under combinations of simply supported, clamped and free edges has been
analysed using a 3D finite element method with user-implemented graded elements. Results were
then compared with an equivalent panel containing homogenous core. It is seen that introduction
of the functionally graded core removes the discontinuity in stresses at the interfaces and
decreases both in- and out-of plane displacements for all of the boundary conditions considered.
The panels with free edges were seen to have the greatest displacements, followed by panels
with simply supported edges and those with clamped edges minimising the displacements.
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Figure 29. Distribution of transverse displacement u–3, for FGMC panel with CFSF boundary conditions.

Figure 30. Through-thickness variation of the normalised in-plane displacement u–1(a, 0.5b, x3) for a range
of boundary conditions (CFSS, SFSS, FFSS, CFFF & CFSF) in (a) HC panel, (b) FGMC panel.
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APPENDIX
Using the displacement function method, 3D representation of displacement and stress fields
in a simply-supported sandwich panel with functionally graded core has been obtained(6) as:

For any pair of m and n, A(k)
j,mn are sets of 24 arbitrary constants to be determined from the

boundary conditions on the top and bottom surfaces of the panel as well continuity conditions,
Equation (3); U(k)

1,jmn, U(k)
2,jmn , U(k)

3,jmn , P(k)
33,jmn , P(k)

13,jmn , P(k)
23,jmn , P(k)

11,jmn , P(k)
22,jmn and P(k)

12,jmn are
Functions U(k)

i,jmn and P(k)
rt,jmn involved in Equations (1a-c) and Equations (2a-f)
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In the expressions above, x–3 = x3 /h , and functions fj
(k) (x–3) (j = 1, ...,6)  are
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, j = 1,...,4

, j = 5,6
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where

, 

and  
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