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SUMMARY

The paper is concerned with the relationship between
the equation of elastic line motion, the “Euler-Bernoulli
approach” (EBA), and equation of motion at the point of
elastic line tip, the “Lumped-mass approach” (LMA). The
Euler–Bernoulli equations (which have for a long time
been used in the literature) should be expanded according
to the requirements of the motion complexity of elastic
robotic systems. The Euler–Bernoulli equation (based on
the known laws of dynamics) should be supplemented with
all the forces that are participating in the formation of the
bending moment of the considered mode. This yields the
difference in the structure of Euler–Bernoulli equations for
each mode. The stiffness matrix is a full matrix. Mathematical
model of the actuators also comprises coupling between
elasticity forces. Particular integral of Daniel Bernoulli
should be supplemented with the stationary character of
elastic deformation of any point of the considered mode,
caused by the present forces. General form of the elastic
line is a direct outcome of the system motion dynamics, and
can not be described by one scalar equation but by three
equations for position and three equations for orientation of
every point on that elastic line. Simulation results are shown
for a selected robotic example involving the simultaneous
presence of elasticity of the joint and of the link (two modes),
as well the environment force dynamics.

KEYWORDS: Robot; Modeling; Elastic deformation; Gear;
Link; Coupling; Dynamics; Kinematics; Trajectory planning.

1. Introduction

All elements in a robotics system are not as rigid as we
would like. Stiffness of elements significantly simplifies our
work. Including the elasticity of gears and (or) links makes a
robotic system more complex and opens perspectives for
other problems, for example has been new control laws.
“Harmonic-Drive” (HD) reducers have a specific degree of
transmission with significant elastic effects. These gears are
in wide usage because of their wonderful characteristics
(great transmission ratio with almost null clearance). Besides
HD reducers, an elastic effect can originate from tug
transmission of motor power on robot links as well as from
the consequences of torsion axle for transmission of motor
power on robot links.
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Elasticity of withy, long-spread links, constructed of light
materials, also requires elasticity analysis. We cannot ignore
the fact that flexibility is a natural characteristic of a material,
but it is “unpleasant” for modeling. Research from this
area can also be applied in making and modeling muscles.
They are constructed by combining springs in humanoid
robotics, which is a subject of today’s top-level research.
This could represent a further trend in the development of
world-eminent laboratories for robotics. Many constructions
(e.g., industrial robots, humanoid robots, etc.) are from time-
to-time or continuously exposed to effects of environment
force. Because of this reason, this topic presents a challenge
for researchers and there are many reasons for its “return”
into the focus of their interest.

In ref. [1], the control of robots with elastic joints in contact
with dynamic environment is considered. In ref. [2], the
feedback control was formed for the robot with flexible links
(two-beam, two-joint systems) with distributed flexibility,
robots with flexible links being also dealt with in. ref. [3].
In ref. [4] a nonlinear control strategy for tip position
trajectory tracking of a class of structurally flexible multi-
link manipulators is developed.

Authors of refs. [5, 6] derived dynamic equations of the
joint angle, the vibration of the flexible arm, and the contact
force.

Reference [7] presents an approach to end-point control of
elastic manipulators based on the nonlinear predictive control
theory. References [8, 9] present method for the generation of
efficient kinematics and dynamic models of flexible robots.
In ref. [10] author discusses the force control problem for
flexible joint manipulators.

In ref. [11] the authors extend the integral manifold
approach for the control of flexible joint robot manipulators
from the known parameter case to the adaptive case. The
author of ref. [12] designed a control law for local regulation
of contact force and position vectors to desired constant
vectors. In paper, ref. [13] different from conventional
approaches, authors focus on the design of the rigid part
motion control and the selection of bandwidth of which is
rigid subsystem. Work reference [14] presents the derivation
of the equations of motion for application mechanical
manipulators with flexible links. In ref. [15] the equations are
derived using Hamilton’s principle and are nonlinear integro-
differential equations. The method of separation of variables
and the Gelarkin’s approach are suggested in ref. [16] for
the boundary-value problem with time-dependent boundary
condition. First detailed presentation of the procedure for
creating reference trajectory was given in ref. [17] and later
in ref. [18].
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740 Modeling of elasticity

Mathematical model of a mechanism with one degree of
freedom (DOF), with one elastic gear was defined by Spong
ref. [19] in 1987. Based on the same principle, elasticity of
gears is introduced into the mathematical model in this paper,
as also in refs. [20–22]. However, when the introduction of
link flexibility into the mathematical model is concerned,
it is necessary to point out some essential problems in this
domain.

In this paper we do not use “assumed modes technique”,
proposed by Meirovitch in ref. [23] (and used by all authors
until today, e.g. in ref. [5, 8, 9, 18, 24–29] etc.), as we disagree
with him.

Our opinion is that elastic deformation and frequency of
present modes are consequences of the overall dynamics
motion of the robotic system.

Type of each joint which can appear in any robotic
configuration is defined in refs. [21, 22].

In this paper following the idea of Euler and Bernoulli,
their equation is expanded with several aspects. Any elastic
deformations can be described by superposing of stationary
solution, forced character + particular solutions, oscillatory
characteristic of Daniel Bernoulli. Stationary forces are
characterized by permanent character of action namely
gravity, inertial, centrifugal, Coriolis, coupled forces, and
environment force. Disturbance forces are characterized by
instantaneous character of action, and environment force can
also have such a character. Euler–Bernoulli equations are
not equal for each mode, as shown due to the presence of
coupling. General form of robot elastic line is defined with
six equations, three of which define the position of each point
on the elastic line and the other three define the orientation
of each point on the elastic line. Damping characteristic is
included. Stiffness matrix (and also damping matrix) is a
full matrix, as a consequence of coupling between flexible
forces. The EBA and LMA (used in refs. [30–32]) are two
comparable approaches addressing the same problem but
from different aspects, also mentioned in ref. [20, 21]. (see
Fig. 1). A new formulation of mathematical model of the
motor is defined. Most of these phenomena are mentioned in
refs. [20, 21], while they are explained in detail in this paper
through the form of mathematical model of flexible robotic
system in a classical form.

The reference trajectory is defined in such a manner that
the flexible characteristics are partially known in the system.
It is assumed that all elasticity characteristics in the system

Fig. 1. LMA and EBA as two approaches of comparable worth.

(both of stiffness and damping) are “known”, at least partly
and at this level can be included into the process of defining
the reference motion and control law, as explained in ref. [21].

Section 2 analyzes the source equations of elastic line. In
Section 3 is given a supplement to the source equations of
flexible line and a general form of the equation of flexible
line of a complex robotic system of arbitrary configuration,
using EBA. The flexible line equation extends by a damping
component. Also, we demonstrate that the particular integral
of D. Bernoulli is just a component of flexural deformation
of any point of the mode considered, to which is necessary to
add the component of flexural deformation of the stationary
regime. Section 4 demonstrates the relationship between the
equation of elastic line motion and equation of motion at
any point of the elastic line. Section 5 analyzes movement
dynamics of a multiple DOF elastic robotic pair with elastic
gear and flexible link in the presence of the second mode and
environment force. Section 6 gives some concluding remarks.

2. Analysis of the Source Equations of Elastic Line

Equation of the elastic line of beam bending is of the
following form:

M̂1,1 + β1,1 · ∂2ŷ1,1

∂x̂2
1,1

= 0, (1)

i.e.,

M̂1,1 + ε̂1,1 = 0, (2)

ε̂1,1 = β1,1 · ∂2ŷ1,1

∂x̂2
1,1

, (3)

where M̂1,1[Nm] is the load moment. In these source
equations encompassing only inertia, ε̂1,1 bending moment,
β1,1[Nm2] is the flexural rigidity.

General solution of motion (see Fig. 2), i.e., the form of
transversal oscillations of flexible beams, can be found by
the method of particular integrals of D. Bernoulli, i.e.,

ŷto1,1(x̂1,1, t) = X̂1,1(x̂1,1) · T̂to1,1(t), (4)

X̂1,1(x̂1,1) = C1,(1,1) cos k1,1x̂1,1 + C2,(1,1) sin k1,1x̂1,1

+C3,(1,1)Ch k1,1x̂1,1 + C4,(1,1)Sh k1,1x̂1,1 (5)

T̂to1,1(t) = A1,1 cos p1,1t + B1,1 sin p1,1t. (6)

By superimposing the particular solutions (4), any
transversal oscillation can be presented in the following form

ŷto1(x̂1,j , t) =
∞∑

j=1

X̂1,j (x̂1,j ) · T̂to1,j (t). (7)

x1,1, y1,1, z1,1 is a local coordinate frame, which is set in the
base of considered mode. In this case (See Fig. 2), it is the
first mode of the first link, while in a general case this is
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Fig. 2. Idealized motion of elastic body according to D. Bernoulli.

xi,j , yi,j , zi,j , where j is the serial number of the mode of
considered link j = 1, 2, 3 . . . ni , and i is the serial number
of the link of the considered robotic system i = 1, 2, 3 . . . m.
x1, y1, z1 is a local coordinate frame, which is set in the base
of the considered link. In a general case it is xi, yi, zi . x, y, z

is the basic coordinate frame, which is set in the root of the
considered robotic system. ϑ1,1 is the bending angle of the
first mode of the first link. ω1,1 is the rotation angle of the top
of the same mode (see ref. [33]).

Remark 1. Equations (1–7) need a short explanation, which
should be assumed, but is missing from the original literature
ref. [34]. Euler and Bernoulli wrote Eq. (7) based on ‘vision’.
They did not define the mathematical model of a link with
an infinite number of modes, which has a general form of
Eq. (8), but they did define the motion solution (shape of
elastic line) of such a link, which is presented in Eq. (7).
They left the task of link modeling with infinite number of
modes to their successors. Transversal oscillations defined
by Eq. (7) describe the motion of elastic beam to which we
assigned an infinite number of DOFs (modes), and which
can be described by a mathematical model composed of an
infinite number of equations, in the form:

M̂1,j + ε̂1,j = 0
j = 1, 2, . . . , j, . . .∞. (8)

Dynamics of each mode is described by one equation.
The equations in the model (8) are not of equal structure
as our contemporaries, authors of numerous works presently
interpret it. We think that the coupling between the modes
involved leads to structural diversity among the equations in
the model (8). This explanation is of key importance and is
necessary for understanding our further discussion.

Remark 2. The symbol “∧” denotes generally the quantities
that are related to an arbitrary point of the elastic line of
the mode, e.g., ŷ1,1, x̂1,1, ε̂1,1. The same quantities that are
not designated by “∧” are defined for the mode tip, e.g.,
y1,1, x1,1, ε1,1.

Remark 3. Under a mode we understand the presence of
coupling between all the modes present in the system. We
analyze the system in which the action of coupling forces
(inertial, Coriolis’, and elasticity forces) exists between the
present modes. To differentiate it from “mode shape” or
“assumed mode”, we call it a coupled mode or, shorter, in

the text to follow, a mode. This yields the difference in the
structure of Euler–Bernoulli equations for each mode.

3. Equation of the Elastic Line of a Complex Robotic

System

The Bernoulli solution (4–6) describes only partially the
nature of motion of real elastic beams. More precisely, it
is only one component of motion. Euler–Bernoulli equations
(1–7) should be expanded from several aspects in order to
be applicable in a broader analysis of elasticity of robot
mechanisms. By supplementing these equations with the
expressions that come out directly from the motion dynamics
of elastic bodies, they become more complex.

As already mentioned, Eqs. (1–7) were defined under the
assumption that the elasticity force is opposed only by the
inertial force proper. Besides, it is supposed by definition that
the motion in Eq. (1) is caused by an external force, suddenly
added and then removed. The solution (4–6) of D. Bernoulli
satisfies these assumptions.

The motion of the considered robotic system mode is far
more complex than the motion of the body presented in
Fig. 2. This means that the equations that describe the robotic
system (and its elements) must also be more complex than the
Eqs. (1–7), formulated by Euler and Bernoulli. This fact is
overlooked and the original equations are widely used in the
literature to describe the robotic system motion. This is far
inadequate because valuable pieces of information about the
complexity of the elastic robotic system motion are thus lost.
Hence, the necessity of expanding the source equations for
the purpose of modeling robotic systems should be especially
emphasized, and this should be done in the following way:

� Based on the known laws of dynamics, Eq. (3) is to be
supplemented by all the forces that participate in the
formation of the bending moment of the considered mode.
It is assumed that the forces of coupling (inertial, Coriolis,
and elastic) between the present modes are also involved,
which yields structural difference between equations (3) in
the model (8).

� Equation (4) is to be supplemented by the stationary
character of the elastic deformation caused by the forces
involved.

Let us consider the motion of the first mode of the given
link. The link has in all n1 modes. First mode is the bracket
(support) of uniformly distributed mass along the mode,
loaded by the moment M̂1,1. The load moment M̂1,1 is
composed of all the forces acting on the first mode of the link,
and these are inertial forces (own and coupled inertia forces
of the other modes), centrifugal, gravitational, Coriolis forces
(own and coupled), forces due to relative motion of one mode
with respect to the other, coupled elasticity forces of the other
modes, as well as the force of the environment dynamics,
which is via Jacobian matrix transferred to the motion of
the first mode. This means that all these forces participate
in generating of bending moment that is in forming elastic
deformation as well as of the elasticity line of the first mode.
In that case the model of elastic line of the first mode of the
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742 Modeling of elasticity

elastic link is of the form:

Ĥ1,j

d2ŷ1,j

dt2
+ ĥ1,1 + jT

1,1Fuk + z1,j · ε1

+ β1,1 · ∂2(ŷ1,1 + η1,1 · ˙̂y1,1)

∂x̂2
1,1

= 0. (9)

j is the ordinal number of the considered mode, j = 1, 2,

3 . . . n1.
Vectors in Eq. (9) are of the following form: Ĥ1,j =

[Ĥ1,(1,1)Ĥ1,(1,2) Ĥ1,(1,3) · · · Ĥ1,(1,n1)], the vector characte-
rizing the inertia of the first mode.

∂2ŷ1,j

∂t2
=

[
∂2ŷ1,1

∂t2

∂2ŷ1,2

∂t2

∂2ŷ1,3

∂t2
· · · ∂2ŷ1,n1

∂t2

]T

.

ĥ1,1 is the centrifugal, gravitational and Coriolis forces of the
first mode.

jT
e1,1 = [Je1,(1,1) Je1,(1,2) Je1,(1,3) · · · Je1,(1,6) ], first row of

the Jacobian matrix serving to map the impact of the dynamic
force of contact Fuk on the behavior of the first mode.

z1,j =
[

0 − 1

21
+ 1

22
− 1

23
· · · (−1)(n1−1) 1

2(n1−1)

]
.

The vector z1,j characterizer the effect of elasticity
forces of the other modes on the first mode. z1,j is
obtained by modeling different link structures (with one,
two, three. . . modes). Moment of bending defined for the tip
of any mode of the considered link is:

ε1,j = F1,j · l1,j = Cs1,j · r1,j · l1,j + Bs1,j · ṙ1,j · l1,j . (10)

The rigidity and damping characteristic for the tip of
any mode is designated as Cs1,j [N/m] and Bs1,j [N · s/m]
respectively, maximal deflection is r1,j , the mode length is
l1,j . The vector of bending moments is ε1.

ε1 = [ε1,1 ε1,2 ε1,3 ε1,4 ε1,5 . . . . ε1,n1 ]T .

Bending moment defined for an arbitrary point of the first
mode is:

ε̂1,1 = β1,1 · ∂2(ŷ1,1 + η1,1 · ˙̂y1,1)

∂ x̂2
1,1

.

The force acting on the formation of elastic line of an
arbitrary mode of the considered link is F̂1,j . Load moment
M̂1,1 from Eq. (9) is defined as:

Ĥ1,j

d2ŷ1,j

dt2
+ ĥ1,1 + jT

1,1Fuk + z1,j · ε1

+ β1,1 · ∂2(ŷ1,1 + η1,1 · ˙̂y1,1)

∂x̂2
1,1

= 0. (11)

Thus Eq. (9) can be now written in a simpler form

M̂1,1 + ε̂1,1 = 0. (12)

Equation (12) was defined under the assumption that
the elasticity moment ε̂1,1 is opposed by the load moment
M̂1,1, which, among the other forces, encompasses also
the coupled elasticity of the other modes. In a stationary
regime of robotic task realization, the mentioned moments
that oppose the elasticity moment ε̂1,1 continuously change
during the robotic task realization. On this system can also act
disturbance forces, which may be of an instant or permanent
character.

Therefore, elastic deformations of a given body can be
generated by

• disturbance forces, causing oscillatory motion.
• stationary forces, causing stationary motion.

By superimposing the particular solutions of oscillatory
character and stationary solution of forced character, any
elastic deformation can be presented in the following general
form:

ŷ1,1 = X̂1,1(x̂1,1) · (T̂st1,1(t) + T̂to1,1(t))

= â1,1(x̂1,1, T̂st1,1, T̂to1,1, t), (13)

Where, T̂st1,1(t) is the stationary part of elastic deformation
caused by stationary forces that may continuously change in
time.

In case the robot is in state of inaction, then stationary
forces are gravity forces. In case the robot is in state of mo-
tion, then stationary forces are gravity, inertial, centrifugal,
Coriolis, and of course coupled forces of all forces and envir-
onment force (if it is continuous). This means that stationary
forces are all forces which change continuously in time.

T̂to1,j (t) is the oscillatory part of elastic deformation as
in (6). This component of elastic deformation is caused
by disturbance force (which acts instantaneously) and can
appear in state of robot inaction and also in state of robot
motion.

Environment force can be of

• Disturbing character (e.g., when the robot is moving
without limitation and only in one moment enters into
the contact with environment), or

• Stationary character (e.g., when the robot is continuously
under the influence of environment force).

Total motion of the considered mode, defined by the sum
of stationary and oscillatory motion, is given by Eq. (13).

Orientation of any point of the first mode is defined by

ψ̂1,1 = d̂1,1(x̂1,1, T̂st1,1, T̂to1,1, t). (14)

Just as we defined the elastic line model of the first mode
by Eq. (9), similarly we can also define the model of elastic
line of the second, third . . . n1th mode of the elastic link. The
elastic line model of the first link that has n1 modes is given
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in a matrix form by the following equation:

Ĥ1 · d2ŷ1,j

dt2
+ ĥ1 + jT

e1 · Fuk + z1 · ε1 + ε̂1 = 0. (15)

Matrixes and vectors in Eq. (15) are of the following form:

Ĥ1 =

⎡
⎢⎢⎢⎣

Ĥ1,(1,1) Ĥ1,(1,2) ... Ĥ1,(1,n1)

Ĥ1,(2,1) Ĥ1,(2,2) ... Ĥ1,(2,n1)

... ... ... ...

Ĥ1,(n1,1) Ĥ1,(n1,2) ... Ĥ1,(n1,n1)

⎤
⎥⎥⎥⎦ ,

the matrix characterizing the inertia of the each mode,
ĥ1 = [ ĥ1,1 ĥ1,2 · · · ĥ1,n1 ]T , the vector characterizing effect
of centrifugal, gravitational and Coriolis forces of the each
mode,

jT
e1 =

⎡
⎢⎢⎣

Je1,(1,1) Je1,(1,2) ... Je1,(1,6)

Je1,(2,1) Je1,(2,2) ... Je1,(2,6)

... ... ... ...

Je1,(n1,1) Je1,(n1,2) ... Je1,(n1,6)

⎤
⎥⎥⎦ ,

the Jacobian matrix serving to map the impact of the dynamic
force of contact Fuk on the behavior of the each mode.

z1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1

21

1

22
− 1

23
· · · (−1)(n1−1) 1

2(n1−1)

0 0 − 1

21

1

22
· · · (−1)(n1−2) 1

2(n1−2)

0 0 0 − 1

21
· · · (−1)(n1−3) 1

2(n1−3)

· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Matrix z1 characterizer the mutual effect of elasticity forces
of the presented modes on each mode,

ε̂1 =
[
β1,1 · ∂2(ŷ1,1 + η1,1 · ˙̂y1,1)

∂ x̂2
1,1

. . . β1,n1l
· ∂2(ŷ1,n1l

+ η1,n1l
· ˙̂y1,n1l

)

∂ x̂2
1,n1l

]T

.

The load moment M̂1 is defined by

M̂1 = Ĥ1 · d2ŷ1,j

dt2
+ ĥ1 + jT

e1 · Fuk + z1 · ε1. (16)

Equation (15) can be written in a simpler form as

M̂1 + ε̂1 = 0. (17)

Equation (17) represents the equation of motion of elastic
line of the first link.

To describe the behavior of the one-link robotic system
having n1 modes, the vector Eq. (17) should be supplemented
by the mathematical model of the motor. The motor’s
mathematical model can be defined by writing the equation
of motion of all the moments that act on the motor shaft.

In the case of a rigid robotic system the motor moment is
opposed by the mechanism moment. With elastic robotic
systems we have a somewhat different situation: the motor
moment is opposed by the bending moment of the first elastic
mode that comes after the motor and, partly, opposed by
the bending moments of the other elastic modes that are
connected in series after the motor. All the modes that come
after the motor, due to their position, exert certain influence
on the motor dynamics. The effect of the first mode bending
moment is defined by the factor + 1

20 , of the second by − 1
21 , of

the third by + 1
22 , of the fourth by − 1

23 , of the fifth by + 1
24 etc.

We add all these elasticity moments to the motor model
because they are just to oppose the rotation moment of the
motor shaft. The mathematical model of motor is of the
following form:

u1 = R1 · i1 + CE1 · ˙̄θ1

CM1 · i1 = I1 · ¨̄θ1 + Bu1 · ˙̄θ1 − S1 · εm 1

∣∣∣∣∣
∑

M = 0
about the rotation axis
of the first motor

.

(18)

Where, R1[
] is the rotor circuit resistance; i1[A] is the
rotor current, CE1[V/(rad/s)] and CM1[Nm/A] are the
proportionality constants of the electromotive force and
moment, respectively, Bu1[Nm/(rad/s)] is the coefficient
of viscous friction; I1[kgm2] is the inertia moments of the
rotor and reducer; S1 is the expression defining the reducer
geometry, and εm 1 is the equivalent elasticity moment that
opposes the rotation moment of the motor shaft.

εm 1 = zm 1,j · ε1,

zm 1,j =
[
+ 1

20
− 1

21
+ 1

22
− 1

23
..... (−1)(n1−1) 1

2(n1−1)

]
.

The vector zm 1,j characterizes the influence of the
elasticity moment of each mode on the motor dynamics.

It has not be explained how we have obtained expression
CM1 · i1, I1 · ¨̄θ1, Bu1 · ˙̄θ1 in Eq. (18), because this is already
known from the literature but the procedure of obtaining
equivalent elasticity moment εm 1 has been explained. The
potential energy in top of j th mode of the first link is
Epels 1,j = 1

2Cs 1,j · ϑ2
1,j · l2

1,j , while dissipative energy is:

�els 1,j = 1
2Bs 1,j · ϑ̇2

1,j · l2
1,j .

All quantities should be expressed in dependence of gene-
ralized coordinates. One of them is also angle θ̄1.

By applying Lagrange’s equations on the expressions
Epels 1,1, Epels 1,2, . . . , Epels 1,j , . . . , Epels 1,n1 , and �els 1,1,
�els 1,2, . . . , �els 1,j , . . . , �els 1,n 1 with respect to the gener-
alized coordinate θ̄1, we obtain the equivalent elasticity
moment εm 1, that opposes to the rotation moment of the
first motor shaft.

(In case of presence of elastic gear behind the motor, we
have its potential energy Epelξ = 1

2 ·Cξ · ξ 2, and dissipative:
�elξ = 1

2 ·Bξ · ξ̇ 2 energy. These quantities should also be
expressed in dependence of generalized coordinates and
Lagrange’s equation should be applied.)
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Fig. 3. Possible positions of the tip of elastic line with n1modes.

All this is explained in detail at modeling of considered
example in ref. [21], (title 4.A)]. The overall order of the
system (17–18) is n1 + 1.

Like we defined the motion of any point on the first mode
elastic line by Eqs. (13–14), we can also define the motion
of any point on the elastic line of the second, third . . . n1th
mode of the elastic link.

By superimposing the solution (13–14) for all the present
modes of the first link and adding to it the dynamics of motor
motion that drives it, we obtain total solution of the system
(17–18) in the form

ŷ1 = R1(θ̄1, t) +
n1∑

j=1

X̂1,j (x̂1,j )(T̂st1,j (t) + T̂to1,j (t))

= â1(x̂1,j , T̂st1,j , T̂to1,j , θ̄1, t). (19)

On considering Fig. 3 we can see that the position x̂1

should also be defined, which is not only
∑n1

j=1 x̂1,j (because
the directions of the axes x̂1,1, x̂1,2 . . . x̂1,n1 most often do not
coincide with the direction of the axis x̂1), but also includes
to a significant extent the geometry and characteristics of the
mechanism bending, i.e., the mechanism’s dynamics,

x̂1 = N1(θ̄1, t) +
n1∑

j=1

K̂1,j (x̂1,j )(T̂st1,j (t) + T̂to1,j (t))

= b̂1(x̂1,j , T̂st1,j , T̂to1,j , θ̄1, t). (20)

Any form of elastic line and the pertinent transversal
oscillations, as well as the motor motion, can be presented
by Eqs. (19–20). To this equation one should also add the
equation defining the orientation of each point on the elastic
line of the link

ψ̂1 = d̂1(x̂1,j , T̂st1,j , T̂to1,j , θ̄1, t). (21)

Fig. 4. The elastic line of the complex robotic system with m links.

In Fig. 3 is sketched the possible forms of elastic line of the
ith link having ni modes that appear in the plane xi − yi .
The plane xi − yi is rotated by the angle α, characterizing in
the figure the position of the link base with respect to the main
coordinate frame x − y − z. In the same figure is presented,
only some of the possible forms of elastic line. The link tip
can assume very different positions in the plane xi − yi .

Let us consider a robotic system with m links, where by the
first link contains n1 modes, second link contains n2 modes,
and . . . mth link contains nm modes (See Fig. 4). Model of
the elastic line of this complex elastic robotic system is given
in the matrix form by the following equation:

Ĥ · d2ŷ

dt2
+ ĥ + jT

e · Fuk + z ·� · ε + ε̂ = 0. (22)

If we define k = ∑m
i=1 ni then we have Ĥ ∈ Rkxk , matrix

characterizing the inertia; ĥ ∈ Rkx 1, vector of the centrifugal,
gravitational, and Coriolis forces; jT

e ∈ Rkx 6, Jacobian
matrix mapping the effect of the dynamic contact force Fuk;
� ∈ Rkxk, matrix characterizing the robot configuration.

z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1

21

1

22
− 1

23
... (−1)(k−1) 1

2(k−1)

0 0 − 1

21

1

22
... (−1)(k−2) 1

2(k−2)

0 0 0 − 1

21
... (−1)(k−3) 1

2(k−3)

... ... ... ... ... ...

0 0 0 0 ... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

z ∈ Rkxk is the matrix characterizing the mutual influence of
the forces of elastic modes of all the links,

ε = [ε1,1 ε1,2 ... ε1,n1ε2,1 ε2,2 ... ε2,n2 ..... εm,nm
]T .

ε̂ =
[
β1,1 · ∂2(ŷ1,1 + η1,1 · ˙̂y1,1)

∂ x̂2
1,1

... βnm,nml
· ∂2(ŷnm,nml

+ ηnm,nml
· ˙̂ynm,nml

)

∂ x̂2
nm,nml

]T

.

If we define from (22) the load moment M̂ as

M̂ = H · d2ŷ

dt2
+ ĥ + jT

e · Fuk + z · � · ε, (23)
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then Eq. (22) can be written in the form

M̂ + ε̂ = 0. (24)

Equation (24) represents the equation of motion of the elastic
line of the overall robotic system. In order to describe the
behavior of a robotic system having m links (each of them
containing ni modes), we have to add to the vector Eq. (24)
the mathematical model of all the motors written in a vector
form. Let us define it by setting for each motor the equation
of motion of all the moments acting about the rotation axis of
the given motor. It has the form of the mathematical model
of the motor of a rigid robotic system, but the difference
being in that the moment of the ith motor is not opposed
by the mechanism moment (as with rigid robotic systems).
The motor moment is opposed by the bending moment of
the first elastic mode that comes after the motor, and also in
part, by the bending moments of the other elastic modes that
are connected in series after the given motor. All the modes
after the motor, due to their position, influence the dynamics
of motor motion. Mathematical model of all m motors can
be written in a vector form as:

u = R · i + CE · ˙̄θ

CM · i = I · ¨̄θ + Bu · ˙̄θ − S · εm

∣∣∣∣∣∣
∑

M = 0
about the rotation axis
of the each motor

.

(25)
In Eq. (25) we have m equations of motors.

εm = zm · � · ε. (26)

zm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

20
− 1

21
... (−1)(n1−1) 1

2(n1−1)
... (−1)(k−nm−1) 1

2(k−nm−1)
(−1)(k−nm) 1

2(k−nm)
... (−1)(k−1) 1

2(k−1)

0 0 ... 0 ... (−1)(k−nm−n1−1) 1

2(k−nm−n1−1)
(−1)(k−nm−n1) 1

2(k−nm−n1)
... (−1)(k−n1−1) 1

2(k−n1−1)

... ... ... ... ... ... ... ... ...

0 0 ... 0 ...
1

20
− 1

21
... (−1)(nm−1) 1

2(nm−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

zm ∈ Rmxk is the matrix characterizing the effect of elasticity
moment of each mode on the motor motion dynamic.

The potential energy in top of j th mode of the ith link
is Epels i,j = 1

2Cs i,j · ϑ2
i,j · l2

i,j , while dissipative energy is
�els i,j = 1

2Bs i,j · ϑ̇2
i,j · l2

i,j .
All quantities should be expressed in dependence of

generalized coordinates. One of them is also angle θ̄i .
By applying Lagrange’s equations on the expressions

Epels 1,1, Epels 1,2, . . . , Epels i,j , . . . , Epels m,n 1, and �els 1,1,
�els 1,2, . . . , �els i,j , . . . , �els m,n 1 with respect to the
generalized coordinate θ̄i , we obtain the equivalent elasticity
moment εm i that opposes to the rotation moment of the ith
motor shaft. εm = [εm 1 εm 2 . . . εm i . . . εm m]T .

The overall order of the system (24–25) is k + m. Full
model is planned on classical principles of the mechanics as
in ref. [34].

It is known that the robot configuration can substantially
influence the mutual position of elastic lines of particular

links (see Fig. 4). Solution of the system (24–25), i.e., the
form of its elastic line, can be obtained by superimposing the
solutions (19–21) for all the links involved in the presence of
the dynamics (angle) of rotation of each motor, as well as by
taking into account the robotic configuration, i.e., the angle
between the axes zi−1 and zi .

ŷ =
m∑

i=1

Di(αi) · Ri(θi, t)

+
m∑

i=1

(Di(αi)
n1∑

j=1

X̂i,j (x̂i,j )(T̂st i,j (t) + T̂to i,j (t))).

= â(x̂i,j , T̂sti,j, T̂toi,j, θ̄ , α, t) (27)

x̂ =
m∑

i=1

Ai(αi) ·Ni(θi, t)

+
m∑

i=1

(Ai(αi)
n1∑

j=1

K̂i,j (x̂i,j )(T̂st i,j (t) + T̂to i,j (t))).

= b̂(x̂i,j , T̂sti,j, T̂toi,j, θ̄ , α, t) (28)

ẑ =
m∑

i=1

Li(αi) · Mi(θi, t)

+
m∑

i=1

(Li(αi)
n1∑

j=1

P̂i,j (x̂i,j )(T̂st i,j (t) + T̂to i,j (t))).

= ĉ(x̂i,j , Tsti,j, Tsti,j, θ̄ , α, t). (29)

Di, Ai , and Li is the function that maps the rotation angle
between the axes zi−1 and zi . Ri , Ni , Mi is the function
mapping the rotation angle of the motor shaft θi with respect
to the y, x, and z axis, respectively.

Of course, it is also necessary to define orientation at each
point of the elastic line. The orientation of any point of the
elastic line of the given robot is defined by

ψ̂ = d̂(x̂i,j , T̂sti,j, T̂toi,j, θ̄ , α, t). (30)

ξ̂ = ê(x̂i,j , T̂sti,j, T̂toi,j, θ̄ , α, t). (31)

ϕ̂ = f̂ (x̂i,j , T̂sti,j, T̂toi,j, θ̄ , α, t). (32)

Thus we define the position and orientation of each point
of the elastic line in the space of Cartesian coordinates. It
should be pointed out that the form of elastic line comes
directly out from the dynamics of the system motion.
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4. Relationship between the Equation of Elastic Line

Motion and Equation of Motion at any Point of the

Elastic Line

Robotic man is especially interested in the motion of the
first mode tip of each link, of the link tip and finally, of
the robot tip motion. At the point mode tip inertial forces
(own and the coupled ones of the other modes), centrifugal,
gravitational, Coriolis forces (own and coupled), forces due
to the relative motion of one mode with respect to the other,
coupled elasticity forces of the other modes, as well as the
environment force; the effect of the latter on the motion of
the considered mode being transferred through the Jacobian
matrix. The sum of all these forces denoted by the force F1,1

and called it elasticity force.
All the forces forming the force F1,1 acting at the distance

l1,1 from the base of the first mode form the elasticity moment
ε1,1 cause the deflection of the first mode r1,1 (see Eq. (10)).

The equation of motion of the forces involved at any point
of the elastic line of first mode, including the point of the
first mode tip, can be defined from the equation of motion
of elastic line (9). The equation of motion of all forces at
the first mode tip for the given boundary conditions can be
defined by the following equation:

H1,j

d2y1,j

dt2
+ h1,1 + jT

e1,1Fuk + z1,j ε1,j + ε1,1

= 0

∣∣∣∣∣∣
∑

F = 0
at the point of
first mode tip

. (33)

Obviously, the term z1,j ε1,j + ε1,1 in Eq. (33) could be
written in a more compact form, but here we purposely
wrote it in a split form, to indicate the presence of elasticity
forces of the other modes characterized by z1,j ε1,j , and which
influence the deformation of the considered (first) mode.
Equation (33) is interesting because it allows one to calculate
the position of the first mode tip. If we know position of each
mode tip we can always calculate the position of the link tip
too and eventually the position of the robot tip.

The motion of the mode tip, its position, and orientation are
defined by the sum of the stationary and oscillatory motion
(cf. Eqs. (13–14)).

y1,1 = a1,1(x1,1, Tst1,1, Tto1,1, t)

∣∣∣∣∣∣
tip position of the
first mode in the
direction of the axis y1,1

.

(34)

ψ1,1 = d1,1(x1,1, Tst1,1, Tto1,1, t)

∣∣∣∣∣∣
orientation of the
first mode tip
about the axis z1,1

.

(35)

The equation of motion of all the forces at the tip of each
mode of the first link can be defined from Eq. (15) for the
preset boundary conditions

H1
d2y1,j

dt2
+ h1 + jT

e1Fuk + z1ε1,j + ε1,j = 0

∣∣∣∣∣∣∣
∑

F = 0
at the point of
each mode tip
of the first link

.

(36)

This equation should be supplemented with the mathe-
matical model of motor, defined by Eq. (18). The motion of
the first link tip is defined by the sum of the stationary and
oscillatory motion of the tip of each mode plus the dynamics
of motor motion θ̄1 (cf. Eqs. (19–21)):

y1 = a1(x1,j , Tst1,j , Tto1,j , θ̄ , t)

∣∣∣∣∣∣
first link
tip position in the
direction of the axis y1

.

(37)

x1 = b1(x1,j , Tst1,j , Tto1,j , θ̄ , t)

∣∣∣∣∣∣
first link
tip position in the
direction of the axis x1

.

(38)

ψ1 = d1(x1,j , Tst1,j , Tto1,j , θ̄ , t)

∣∣∣∣∣∣
first link
tip orientation
about the axis z1

.

(39)

The equation of motion of all the forces at the point of
each mode tip of any link can be defined from Eq. (22) by
setting the boundary conditions. Vector Equation of all the
forces involved for each mode tip of any link is

H
d2y

dt2
+h + jT

e · Fuk + z · � · ε + ε = 0

∣∣∣∣∣∣∣
∑

F = 0
at the tip of
any mode of the
link considered

.

(40)

This equation should be supplemented by the vector
Eq. (25) of the mathematical model of motor. The robot tip
motion is defined by the sum of the stationary and oscillatory
motion of each mode tip plus the dynamics of motion of
the motor powering each link, as well by the included robot
configuration (cf. Eqs. (27–32)).

y =a(xi,j , Tsti,j, Ttoi,j, θ̄ , α, t)

∣∣∣∣∣∣
tip position of
the robotic system
in the direction of the axis y

.

(41)

x =b(xi,j , Tsti,j, Ttoi,j, θ̄ , α, t)

∣∣∣∣∣∣
tip position of
the robotic system
in the direction of the axis x

.

(42)

z= c(xi,j , Tsti,j, Ttoi,j, θ̄ , α, t)

∣∣∣∣∣∣
tip position of
the robotic system
in the direction of the axis z

.

(43)

ψ = d(xi,j , Tsti,j, Ttoi,j, θ̄ , α, t)

∣∣∣∣∣∣
tip orientation of
the robotic system
about the axis z

. (44)
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ξ = e(xi,j , Tsti,j, Ttoi,j, θ̄ , α, t)

∣∣∣∣∣∣
tip orientation of
the robotic system.
about the axis y

(45)

ϕ = f (xi,j , Tsti,j, Ttoi,j, θ̄ , α, t)

∣∣∣∣∣∣
tip orientation of
the robotic system.
about the axis x

(46)

From Eqs. (41–46) we can calculate the position of each
mode tip, of each link, and finally of the robot tip motion.

Generally, we can derive the following conclusion:
To define the form of elastic line of the considered robotic

system it is necessary to expand the previously known
solutions, namely:
• Supplement it by adding stationary solution to the particular
solution of D. Bernoulli, which is of oscillatory character.
This means that the given solution depends directly on the
overall system dynamics.
• As the link elastic line does not usually conform to the
direction of the preset axes but extends in the space, we
cannot define it by only one equation. General form of the
elastic line is a direct outcome of the dynamics of system
motion and cannot be represented by one scalar equation
as three equations are needed to define position and three
equations to define orientation of each point on the elastic
line.
• The equation of elastic line of the robotic system should
also encompass the angles of motor shaft rotation θ̄ as in
ref. [18], and also the robot configuration, i.e., the angles
between the axes zi−1 and zi .

5. Simulation Example

Robot starts from point “A” (Fig. 5) and moves toward
point “B” in the predicted time T = 2[s]. Dynamics
of the environment force as in ref. [35] is included
into the dynamics of system’s motion. The adopted
velocity profile is trapezoidal (q̇o

max = 0.9817[rad/.s]),
with the acceleration/deceleration period of 0.2 · T (q̈o

max =
±2.4544[rad/.s2]).

The same example is analyzed in ref. [21] with only
somewhat different parameter flexibility.

Elastic deformation is a quantity which is at least partly
encompassed by the reference trajectory as explained in
ref. [21] (2.1 under 2).

Fig. 5. The robotic mechanism.

Fig. 6. Tip coordinates and deviation of position from the reference
level (Example 1).

Fig. 7. Dynamic force of the environment (Example 1).

Example 1: The rigidity characteristic for the tip of
first mode is Cs1,1 = 6.1569 ∗ 105 [N/m] and Bs1,1 = 0
[N · s/m], and for the tip of the second mode is Cs1,2 =
1.873 ∗ 104 [N/m] and Bs1,2 = 60 [N · s/m].

All other characteristics of the system and environment are
the same as in paper ref. [21].

The characteristics of stiffness and damping of the gear in
the real and reference regimes are not the same and neither
are the stiffness and damping characteristics of the link.

Cξ = 0.99 ·Co
ξ , Bξ = 0.99 · Bo

ξ , Cs1,1 = 0.99 ·Co
s1,1,

Bs1,1 = 0.99 ·Bo
s1,1, Cs1,2 = 0.99 ·Co

s1,2, Bs1,2 = 0.99 ·Bo
s1,2.

As can be seen from Fig. 6 in its motion from point “A” to
point “B” the robot tip tracks well the reference trajectory in
the space of Cartesian coordinates.

As position control law for controlling local feedback was
applied, the tracking of the reference force was directly
dependent on the deviation of position from the reference
level (see Fig. 7).

In Fig. 8 are given the elastic deformations that are taking
place in the vertical plane angle of bending of the lower part
of the link (first mode) ϑm and the angle of bending of the
upper part of the link (second mode) ϑe, as well as the elastic
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Fig. 8. The elastic deformations (Example 1).

deformations taking place in the horizontal plane, the angle
of bending of the lower part of the link (first mode) ϑq , the
angle of bending of the upper part of the link (second mode)
ϑδ, and the deflection angle of gear ξ .

The rigidity of the second mode is about ten times lower
compared with that of the first mode, it is then logical that the
bending angle for the second mode is about ten times larger
compared to that of the first mode.

Figure 8(a) exhibits the wealth of different amplitudes and
circular frequencies of the present modes of elastic elements.

Example 2: In contrast to Example 1, the characteristics
of stiffness and damping of the second mode of the link in
the real regime differ significantly from that in the reference
regime.

Cξ = 0.99 · Co
ξ , Bξ = 0.99 ·Bo

ξ , Cs1,1 = 0.99 · Co
s1,1,

Bs1,1 = 0.99 · Bo
s1,1, Cs1,2 = 0.2 · Co

s1,2, Bs1,2 = 0.2 · Bo
s1,2.

Fig. 9. Tip coordinates and deviation of position from the reference
level (Example 2).

Fig. 10. Dynamic force of the environment (Example 2).

All other characteristics of the system are the same as in
Example 1.

As can be seen from Fig. 9, the real robotic tip motion in
the x, y, z-directions does not track so well the reference
trajectory in the space of Cartesian coordinates as in
Example 1. The partial lack of the knowledge of flexibility
characteristics only of the second mode in the robotic system
may significantly influence the real robotic tip motion, which
has now a much larger deviation from the reference trajectory
in the space of Cartesian coordinates (cf. Figs. 6 and 9).

In this example, the real force has a more pronounced
oscillatory character compared to the reference force
(cf. Figs. 7 and 10).

The elastic deformations that take place in the vertical
plane, the angle of bending ϑm and the angle ϑe, as well as
elastic deformations taking place in the horizontal plane, the
gear deflection angle ξ , the angle ϑq and the angle ϑδ are
shown in Fig. 11.

Flexibility characteristic of the link second mode is an
insufficiently known quantity at the reference level, which,
because of the significant coupling involved, is also reflected
on all other dynamic quantities in the system.

https://doi.org/10.1017/S0263574708004347 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004347


Modeling of elasticity 749

Fig. 11. The elastic deformations (Example 2).

A more significant lack of knowledge of flexibility
characteristics of the second mode of the link causes
larger deviations of this quantity from the reference in
the course of robotic task realization. However, the other
elastic deformations in this robotic mechanism have also
larger deviations with respect to the reference level of elastic
deformations (cf. Figs. 8 and 11).

Let us show the special significance of results from
Figs. 8(a) and 11(a). These Figures exhibit the wealth of
different amplitudes and circular frequencies of the present
modes of elastic elements. We have oscillations within
oscillations. This confirms that we have modeled all elastic
elements as well as high harmonics (in this case two
harmonics of considered link). Comparative analysis of the
presented approach and the well-known previous approaches

is presented in the following table:

Presented Previous

Relationship
between EBA
and LMA

Defined Unknown

Procedure
obtaining of
elastic
deformation
and frequency
of presented
modes

Follows from whole
robot movement
dynamics

Defined in
advance and,
when defined
in this way,
imported in
robot model

According to
forces, which
cause it,
elastic
deformation is

Summary of
stationary forced
character solution
and particular
oscillatory
character solution
of Daniel Bernoulli

Particular solu-
tions of osci-
llatory chara-
cter of Daniel
Bernoulli

Stiffness matrix,
damping
matrix

Full Diagonal

Mathematical
model of
motor

The motor torque is
opposed by the
elasticity force of
the first elastic
element that is
coming directly
after the motor and
also, in part, by the
bending moments
of the other flexible
modes that are
connected
sequentially after
the first mode.

Solution is not
unique

Coupling
between
present modes

Exists. For this
reason Euler
Bernoulli
equations are not
equal mutually

Does not exist

Damping Modeled Not modeled

6. Conclusions

Based on the EBA is defined the equation of elastic line of
each mode of any link of a complex robotic system. Also
demonstrated is the equation of motion of all the forces
involved at any point that follows directly from the equation
of elastic line. If we define boundary conditions for the mode
tip as the most interesting point on the elastic line, we obtain
the equation of motion at that point, i.e., we obtain classical
form of the mathematical model of the elastic robotic system
considered, which essentially LMA is. Thus the connection
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of the LMA and EBA is demonstrated. LMA is just a special
case of EBA. In addition to the comparative analysis of
the EBA and LMA, the paper also analyzes a number of
other phenomena that make constitutive parts of the motion
dynamics of these systems.

(a) Euler–Bernoulli equations have been expanded from
several aspects:
(1) Euler–Bernoulli equation (based on the known laws of

dynamic) should be supplemented with all the forces
that are participating in the formation of the bending
moment of the considered mode causing the difference
in the structure of these equations for each mode.

(2) Structure of the stiffness matrix must also have the
elements outside the diagonal due to the existence of
strong coupling between the elasticity forces involved.

(3) Damping is an omnipresent elasticity characteristic of
real systems, so it is naturally included in the Euler–
Bernoulli equation.

(4) General form of the transversal elastic deformation
is defined by superimposing particular solutions of
oscillatory character (solution of Daniel Bernoulli) and
stationary solution of the forced character (which is a
consequence of the forces involved).

(5) General form of the elastic line is a direct outcome of the
dynamics of system motion and cannot be represented
by one scalar equation as three equations are needed to
define position and three equations to define orientation
of each point on the elastic line.

(b) Structure of the mathematical models of actuators:
With elastic robotic systems, the actuator torque is opposed
by the bending moment of the first elastic mode, which
comes after the motor, and partly by the bending moments
of other modes, which are connected in series after the
motor considered. All modes coming after the motor,
because of their position, exert influence on the dynamics
of motor motion. The mathematical model in our work is
connected to the rest of the mechanism via the equivalent
elasticity moment. New structures of the stiffness matrix and
mathematical model of actuators appear as a consequence
of the coupling between the modes of particular links.

In a word, elastic deformation is a consequence of the
overall dynamics of the robotic system.

All this has been presented for a relatively simple
robotic system that offered the possibility of analyzing the
phenomena involved. Through the analysis and modeling
of an elastic mechanism we made an attempt to give a
contribution to the development of this area.
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