
Maxwell-Huygens, Newton-Cartan,
and Saunders-Knox Space-Times

James Owen Weatherall*y

I address a question recently raised by Simon Saunders concerning the relationship
between the space-time structure of Newton-Cartan theory and that of what I will call
“Maxwell-Huygens space-time.” This discussion will also clarify a connection between
Saunders’s work and a recent paper by Eleanor Knox.

In a recent paper, Simon Saunders ð2013Þ argues that proper reflection on
Corollary VI to Newton’s laws of motion reveals that the space-time struc-
ture presupposed by Newton’s laws is one on which there is a privileged
class of “nonrotating” states of motion but not a privileged class of non-
accelerating, or inertial, states of motion. Thus Saunders’s view differs mark-
edly from the received view, according to which Newton’s laws presuppose
Galilean space-time, a structure in which one does have a privileged class of
inertial trajectories ðStein 1967; Earman 1989; DiSalle 2008Þ. Saunders calls
his alternative structure “Newton-Huygens space-time,” though he acknowl-
edges that the same structure was introduced by Earman ð1989, sec. 2.3Þ
under the moniker “Maxwellian space-time.”1 ðAs a compromise, I will call
it “Maxwell-Huygens space-time” here.Þ
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1. Actually, Saunders uses “Newton-Huygens space-time” to refer to the space-time
structure understood as a modified affine space; Maxwellian space-time refers to its char-
acterization in terms of fields on a manifold. For present purposes, the difference is in-
consequential, and I will limit attention to the latter.
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At the end of his paper, Saunders poses the following question: “What
is the relation between a theory of gravity ðand other forcesÞ formulated in
½Maxwell-Huygens� space-time and one based on Newton-Cartan space-
time?” ð2013, 46Þ. It is this question that I hope to answer in what follows.
Doing so, I will argue, reveals a certain inadequacy in Saunders’s account
of classical space-time structure. It also shows a close, and perhaps not al-
together obvious, connection between Saunders’s work and recent work by
Knox ð2014Þ.
To begin, I will give a precise characterization of Maxwell-Huygens

space-time. This structure, which may be denoted by ðM, ta, hab, ½r�Þ, con-
sists of a smooth four-dimensional manifold M, which we take to be diffe-
omorphic to R4; a “temporal metric” ta, which is a smooth one form of sig-
nature ð1, 0, 0, 0Þ;2 a spatial metric hab, which is a smooth symmetric tensor
field of signature ð0, 1, 1, 1Þ satisfying habta 5 0; and a “standard of ro-
tation,” which I will denote by ½r�. The temporal and spatial metrics allow
one to distinguish between “timelike vectors” ðvectors ya at a point p ∈ M
for which yata ≠ 0Þ and “spacelike vectors” ðany other vectorÞ; to assign
temporal lengths to arbitrary vectors at a point; and to assign spatial lengths
to spacelike vectors at a point. This structure also permits one to foliate space-
time into constant-time hypersurfaces; in what follows, I assume that these
hypersurfaces are diffeomorphic to R3 and complete relative to the metric
induced by hab.
The temporal and spatial metrics are now standard notions. ðSee Earman

½1989, chap. 2� or Malament ½2012, sec. 4.1� for further details.Þ The stan-
dard of rotation, however, requires further comment. The idea is that we want
enough structure to say whether a smooth timelike vector field ya, represent-
ing, say, the motion through space-time of bits of some body, is “rotating.”
The class of nonrotating vector fields, then, would represent the privileged
states of nonrotation mentioned above.
To capture the idea of a standard of rotation, let me begin by describing

Galilean space-time in more detail ðEarman 1989, sec. 2.4Þ.3 Galilean space-
time consists of a structure that may be written ðM, ta, hab, rÞ, where M, ta,
and hab are all as described above. The additional piece of structure is a flat
covariant derivative operator r on M that we require to be compatible with
the spatial and temporal metrics in the sense that ratb 5 0 and rahbc 5 0.4

2. By defining the temporal metric as a one form, we have implicitly assumed that
Maxwell-Huygens space-time is “temporally oriented” ðsee Malament 2012, 251Þ.
Note, too, that here ðand throughoutÞ we are working in the abstract index notation,
which is explained in Malament’s sec. 1.4.

3. See also Malament ð2012, sec. 4.1Þ. For Malament, the structures I call Galilean
space-times are “classical space-times” with a flat derivative operator.

4. Here and throughout I restrict attention to torsion-free derivative operators.
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Such an object provides a standard of constancy for vector fields; it also
provides a notion of inertial motion, corresponding to the constant timelike
vector fields. By providing a standard of nonacceleration, a derivative oper-
ator also provides a natural standard of rotation. This can be captured as fol-
lows. Given a unit timelike vector field ya ði.e., a field such that jyataj5 1Þ in
Galilean space-time, we say that ya is nonrotating if and only if r½ayb� 5 0,
where rayb 5 hanrny

b.5

Defining nonrotation in this way certainly allows us to make the deter-
minations we require. But in fact it provides too much structure, since as we
have seen, a derivative operator also allows one to define a class of preferred
inertial states of motion. What we wanted was a standard of rotation and no
more. One way of making precise the sense in which a derivative operator
gives us strictly more structure than just a standard of rotation is to observe
that, in general, many flat derivative operators are compatible with the clas-
sical metric structure;6 moreover, many of these will agree on whether a given
vector field is nonrotating, even though they disagree on other matters, such
as whether a given vector field is constant. This suggests that we can capture
the idea of a standard of rotation by considering an equivalence class of flat,
metric-compatible derivative operators, all of which agree on whether any
given vector field is rotating:7

½r�5 fr0: R0a
bcd 5 0;r0

atb 5 0; r 0
ah

bc 5 0;

and j yata j 5 1 ⇒ ðr0½ayb� 5 0⇔r½ayb� 5 0Þg:

Indeed, this is how Earman characterizes Maxwellian space-time as well.
Let us now turn to Newton-Cartan theory, which is a theory both of space-

time structure and of gravitation.8 It will once again be helpful to begin with
Galilean space-time. In that setting, one may think of Newtonian gravitation
as a theory relating a gravitational potential, which is represented by a scalar
field J on M, to the distribution of mass density in space-time, represented
by a scalar field r. These together satisfy Poisson’s equation, which may be

5. The brackets indicate antisymmetrization over the indices. More generally, we may
define a rotation tensor qab associated with ya that captures the magnitude and direction
of its rotation; this tensor vanishes iff the nonrotation condition just stated holds. See
Malament ð2012, 264Þ for details.
6. Note that this is a strong disanalogy between the metrical structure of classical space-
time and that of ðpseudo-ÞRiemannian geometry ðsee Malament 2012, proposition
4.1.3Þ.
7. Here R0a

bcd is the Riemann curvature tensor associated with r0; requiring this tensor to
vanish makes precise the requirement that r0 is flat. For more on curvature tensors, see
Malament ð2012, sec. 1.8Þ.
8. For background on Newton-Cartan theory, see Trautman ð1965Þ and Malament ð2012,
chap. 4Þ.

84 JAMES OWEN WEATHERALL

https://doi.org/10.1086/684080 Published online by Cambridge University Press

https://doi.org/10.1086/684080


written as raraJ 5 4pr. In the presence of ðonlyÞ a gravitational potential,
massive point particles will traverse trajectories with acceleration given by
ynrny

a 52raJ, where ya is the tangent to the particle’s world-line. Models
of the theory may be written ðM, ta, hab, r, JÞ.9
Models of Newton-Cartan theory, meanwhile, which I will call “Newton-

Cartan space-times,” may be written as ðM; ta; hab; ~rÞ, where M, ta, and hab

are as above, and ~r is a derivative operator compatible with ta and hab. In
contrast to Galilean space-times, ~r is no longer required to be flat. Instead,
its associated Ricci curvature tensor is required to satisfy ~Rab 5 4prtatb,
where r is again some smooth scalar field representing the mass density.10 In
this theory, as in general relativity, gravitation is not conceived as a force;
instead, it is a manifestation of space-time curvature in the sense that, in the
absence of external forces, bodies will traverse timelike geodesics of the
curved derivative operator. It is common to assume that ~r satisfies two
further curvature conditions, which we will take for granted in what fol-
lows: ~Ra c

b d 5 ~Rc a
d b and ~Rab

cd 5 0.11 Note that although a model of Newton-
Cartan theory amounts to a space-time structure in much the same way that
Maxwell-Huygens space-time and Galilean space-time do, it also does a bit
more, since it determines the allowed trajectories of bodies even in the pres-
ence of other matter. In Galilean space-time, one needs an additional field—
the gravitational potential—to determine those allowed trajectories.
Newtonian gravitation in Galilean space-time and Newton-Cartan theory

are systematically related. The relationship is given by the following two
results, originally due to Trautman ð1965Þ.

Theorem 1 ðGeometrization LemmaÞ. Let ðM, ta, hab, rÞ be a Galilean
space-time and let J and r be smooth scalar fields on M satisfying raraJ5
4pr. Then there exists a unique derivative operator ~r such that ð1Þ ðM ;
ta; hab; ~rÞ is a model of Newton-Cartan theory with mass density r, and
ð2Þ for all timelike curves with unit tangent field ya, ynrny

a 52raJ if and
only if yn ~rny

a 5 0.

Theorem 2 ðRecovery TheoremÞ. Let ðM; ta; hab; ~rÞ be a model of
Newton-Cartan theory with mass density r. Then there exists a smooth

9. Here and throughout, I am suppressing r in specifications of models of both
Newton-Cartan theory and Newtonian gravitation, since one can uniquely recover r
from the other fields and the geometrized Poisson and Poisson equations, respectively.

10. For a given derivative operator r, the associated Ricci tensor is defined by Rab 5
Rn

abn, where R
a
bcd is the Riemann curvature tensor.

11. These two conditions are necessary for the Trautman recovery theorem below. For
more on the significance of the conditions, see Malament ð2012, sec. 4.3Þ; for the
consequences of dropping the second condition, see Malament’s sec. 4.5.
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scalar field J and a derivative operator r such that ð1Þ ðM, ta, hab, rÞ is a
Galilean space-time, ð2Þ r and J satisfy raraJ 5 4pr, and ð3Þ for all
timelike curves with unit tangent field ya, ynrny

a 5 2raJ if and only if
yn ~rny

a 5 0. Moreover, the pair ðr, JÞ is not unique. A second pair ðr0, J0Þ
will satisfy the same conditions iff ð1Þ rarbðJ0

2 JÞ 5 0 and ð2Þ r0
5

ðr; Ca
bcÞ, where Ca

bc 5 tatbraðJ0 2 JÞ.

Given a model of Newton-Cartan theory, I will call the associated mod-
els of Newtonian gravitation in Galilean space-time given by theorem 2
“Trautman recoveries.”
I am now in a position to state a first result concerning the relationship

between Newton-Cartan theory and Maxwell-Huygens space-times.

Proposition 3. Let ðM; ta; hab; ~rÞ be a model of Newton-Cartan theory
satisfying the conditions of theorem 2 and let ðM, ta, hab,r, JÞ be a Trautman
recovery of this space-time. Then given any other flat derivative operator r0

on M that is compatible with ta and hab, there exists a smooth scalar field J0

such that ðM, ta, hab, r0, J0Þ is a Trautman recovery of ðM; ta; hab; ~rÞ iff
r and r0 agree on a standard of rotation.

The proof of this proposition appears in the appendix. The proposition
provides a precise characterization of one relationship between Maxwell-
Huygens space-time and Newton-Cartan theory: namely, given a Newton-
Cartan space-time, the collection of flat derivative operators corresponding
to Trautman recoveries determines a unique standard of rotation ½r�.
Of course, as I noted above, any derivative operator generates a standard

of rotation, in the sense that relative to any derivative operator, one can de-
termine whether a given smooth timelike vector field ya is rotating. So it is
not surprising that the derivative operator associated with Newton-Cartan
theory does so. But as I also noted, a derivative operator provides more than
a standard of rotation. What is striking here, then, is not that a Newton-
Cartan space-time allows one to determine whether a given vector field ðor
bodyÞ is rotating, but rather that the only structure agreed on by the flat de-
rivative operators associated with Trautman recoveries of ðM; ta; hab; ~rÞ
is the standard of rotation ½r�.12 In other words, although a Newton-Cartan
space-time gives rise to many Galilean space-times via the recovery theo-
rem, there is a sense in which it naturally gives rise to a unique, privileged
Maxwell-Huygens space-time, insofar as Maxwell-Huygens space-time is
the shared space-time structure associated with all the Trautman recoveries
of a given Newton-Cartan space-time.

12. Of course, they also agree on parallel transport of spacelike vectors and on other
structures that all elements of ½r� agree on, such as flatness.
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It is worth noting an important way in which this result depends on the
definition of a standard of rotation above. Following Earman and Saunders
ðinsofar as he cites Earman’s definitionÞ, I defined a standard of rotation as
an equivalence class of flat derivative operators. But one might imagine
different definitions, which might not yield results as clean as proposition 3.
For instance, if one defined a standard of rotation as an equivalence class
of derivative operators with arbitrary curvature ðsatisfying the other con-
ditionsÞ, one would not recover the full equivalence class in the way de-
scribed by proposition 3, since all Trautman recoveries involve flat deriv-
ative operators.
This last observation raises several interesting questions. For instance, are

there different, essentially inequivalent, ways of characterizing a standard
of rotation?13 And, if we do not limit attention to Trautman recoveries, is
there still a sense in which the only derivative operators relative to which the
geodesics of a given Newton-Cartan space-time may be naturally expressed as
“accelerated by some force field” are those that agree with that Newton-Cartan
space-time on a standard of rotation? I will not address the first question here,
but an answer to the second is essentially given by proposition 1 of Weatherall
and Manchak ð2014Þ. There it is shown that given a Newton-Cartan space-
time ðM; ta; hab; ~rÞ and any derivative operatorr compatible with the clas-
sical metrics, there is a smooth, antisymmetric field, Fab, naturally interpreted
as a “force field,” such that for any timelike curve with unit tangent field
ya, yn ~rny

a 5 0 if and only if ynrny
a 5 hamFmny

n. In particular, r need not
agree with ~r on a standard of rotation. This helps clarify just what is shown
in proposition 3: we get a unique Maxwell-Huygens space-time only after
we limit attention to flat derivative operators and require that the force field
be expressible as in ordinary Newtonian gravitation, that is, as the gradient
of a scalar field, rather than as a more general object, such as Fab.
What about going in the other direction? Given a Maxwell-Huygens

space-time, can we always recover a unique Newton-Cartan space-time? Not
as we have set things up thus far. But the reason is clear: Newton-Cartan
theory is a gravitational theory, whereas Maxwell-Huygens space-time is
a space-time structure in which a gravitational theory may be expressed.
The question, then, is how to express Newtonian gravitation in Maxwell-

13. Malament ð2002Þ takes up a related question, of whether there is an unambiguous
criterion for when a body is rotating that answers to all our classical desiderata, in the
context of general relativity, and finds that the answer is “no.” Here the issue is some-
what different, since we already have one criterion that apparently does answer to all
our desiderata—namely, the one described above. But this criterion is described by con-
sidering an equivalence class of derivative operators, and one might wonder if ðaÞ there
is an intrinsic characterization of a standard of rotation that does not require us to appeal
to structure we then forget, and ðbÞ if so, if it ðalwaysÞ determines a unique equivalence
class of derivative operators, as described here.
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Huygens space-time. To do so, one will need to provide some prescription
for determining how a body will move, given some distribution of masses
in the universe. Certainly our ordinary ways of doing this will no longer
work, since space-time is not endowed with a fixed derivative operator. In
other words, since Maxwell-Huygens space-time does not have any privi-
leged class of inertial trajectories relative to which one can describe accel-
eration, one cannot make sense of a distinction between forced and unforced
motion. In particular, then, Newtonian gravitation may not be conceived as
a theory of gravitational force in anything like the standard sense.14

That said, proposition 3 provides a natural indirect option. That prop-
osition, in conjunction with theorem 2 and standard results concerning the
existence of solutions to differential equations, shows that given a Maxwell-
Huygens space-time ðM, ta, hab, ½r�Þ, for any r ∈ ½r�, there exists some
scalar field J such that ð1Þ raraJ 5 4pr, where r is the mass density
distribution of space-time;15 and ð2Þ the allowed trajectories of bodies are
curves g whose acceleration ðrelative to rÞ is given by ynrny

a 5 raJ. Note
that, since Poisson’s equation admits homogeneous solutions, there will not
be a unique scalar field J satisfying Poisson’s equation for a given mass
density field r; moreover, different choices may lead to different trajecto-
ries—and thus to different geometrizations, in the sense of theorem 1.16 But
in this regard, we are in precisely the same situation as in ordinary New-
tonian gravitation and the same sorts of heuristic methods for determining a
gravitational potential apply: in some cases, for instance, we might choose
to work with a representative from ½r� according to which the center of mass
of some system of interest follows a constant trajectory and then impose
boundary conditions on J so that it vanishes “at infinity.” In the present
context, however, such heuristics have merely pragmatic value, providing a
way of calculating the allowed trajectories given some distribution of mat-
ter. Similarly, we do not interpret the acceleration of a curve relative to r
14. Of course, Saunders ð2013Þ also develops a way of determining how bodies move,
by characterizing the evolution of relative positions of particles in Maxwell-Huygens
space-time, including in the presence of forces, such as gravitational force, that depend
only on the distances between particles. Importantly, this approach requires a radical recon-
ceptualization of force as proportional to relative acceleration, not absolute acceleration.
In any case, for present purposes, as long as everyone agrees on what the trajectories that
bodies follow are, how one arrives at those trajectories is inconsequential, and the strat-
egy pursued below, though less elegant than Saunders’s, is more perspicuous for the
point I aim to make.

15. Note that nothing in particular depends on r being a smooth scalar field; one might
just as well define the gravitational potential J as for point particles, using the relation
J 5 GM/r, and then work locally.

16. Note that this means that we do not have a unique recovery of a Newton-Cartan
space-time from a given Maxwell-Huygens space-time, even after stipulating a mass
density r. One needs to do a bit more.
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as representing some fact of the matter about the curve; nor do we need to
interpret the gravitational potential or corresponding gravitational field,
raJ, as representing facts about force or a fieldlike entity.
What is the invariant physical structure in this theory? For one, as we

have seen, there is the standard of rotation shared between the derivative
operators. This gives the sense in which this is a theory in Maxwell-Huygens
space-time. The other invariant structure, however, is the collection of al-
lowed trajectories for bodies. These are calculated in different ways de-
pending on which representative one chooses from ½r�, and the accelera-
tion associated with each such curve varies similarly. So we do not have the
structure to say that these curves are accelerating or not. But however they
are described, that is, whatever acceleration ðif anyÞ is attributed to them, the
curves themselves are fixed. Indeed, given some distribution of matter in
space-time, it is these curves that form the empirical content of Newtonian
gravitational theory.
Now suppose that we are given some such collection of curves, fggr,

relativized to a matter distribution r, in Maxwell-Huygens space-time. Sup-
pose, too, that however these curves are determined—whether by the cal-
culational procedure just mentioned or some other method—they agree with
the possible trajectories allowed by ordinary Newtonian gravitation. It turns
out that with this information, one can uniquely reconstruct a Newton-Cartan
space-time.

Proposition 4. Let fggr be the collection of allowed trajectories for a given
mass distribution r in Maxwell-Huygen space-time ðM, ta, hab, ½r�Þ, as de-
scribed above. Then there exists a unique derivative operator ~r such that
ð1Þ fggr consists of the timelike geodesics of ~r and ð2Þ ðM; ta; hab; ~rÞ is a
model of Newton-Cartan theory for mass density r.

Again, the proof appears in the appendix.
This last proposition provides an even stronger relationship between a

gravitational theory in Maxwell-Huygens space-time and Newton-Cartan
theory. In a sense, such a gravitational theory simply is Newton-Cartan
theory, insofar as given the invariant structure of such a theory—namely,
the allowed trajectories—one can uniquely construct a derivative operator
such that those trajectories are the geodesics of the derivative operator.17

Note, too, that this result—at least as I interpret it here—reveals a certain

17. For further argument to the effect that Newton-Cartan theory should be construed
as equivalent to Newtonian gravitation once one has accepted that different choices of
flat derivative operator—and, thus, of inertial frames—may be physically equivalent, see
Weatherall ð2015Þ. For reasons described here, it is very natural to interpret Maxwell-
Huygens space-time as the space-time structure presupposed by the theory described
there as NG2.
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inadequacy in Saunders’s account. Saunders insists that there is no privi-
leged standard of acceleration in Maxwell-Huygens space-time. And there
are a few senses in which that is right: ð1Þ before accounting for gravita-
tional influences, Maxwell-Huygens space-time does not have enough struc-
ture to make sense of acceleration; and ð2Þ even in the presence of dynamical
considerations, there is in general no privileged flat derivative operator, and
thus no privileged collection of inertial frames in the standard sense, relative
to which acceleration may be defined. Nonetheless, it turns out that once one
takes the dynamically allowed trajectories into account, one can define a
standard of acceleration, namely, the unique one relative to which the al-
lowed trajectories are geodesics.
In retrospect, this result should not be surprising. After all, as noted

above, there are empirically privileged trajectories, namely, those that ac-
tual bodies follow, given some mass density distribution. Whether one is
on such a trajectory may be determined by using a simple device, such as
an inert mass suspended by springs in the center of a cube-shaped frame.
The privileged trajectories, then, are the ones relative to which the mass
stays centered in the frame. In the context of relativity theory, we call such
devices “accelerometers”; more generally, given how we usually think of
acceleration and force in both relativity theory and Newtonian gravitation,
it is natural to think of trajectories on which the mass is stationary as un-
accelerated, since it is on these trajectories that the springs need not exert
any force on the mass. And indeed, it is precisely these trajectories that are
picked out as unaccelerated by the Newton-Cartan derivative operator.
From this point of view, there is always a rough-and-ready way to determine
a class of privileged trajectories, even if these are not inertial frames in the
traditional sense.
I will conclude by elaborating on the connection with Knox ð2014Þ men-

tioned above. Like Saunders, Knox begins by meditating on the signifi-
cance of Corollary VI for how we should think of space-time structure in
Newtonian gravitation. Her conclusion, however, seems quite different from
Saunders’s: she argues that Galilean space-time is merely a halfway point
on the journey from Newtonian space-time to Newton-Cartan theory.18 This
presents a prima facie puzzle: whence the difference? But I take the argu-
ments here to dissolve the puzzle: Knox and Saunders do not end up in dif-
ferent places after all, except insofar as Knox takes gravitational influences
into account all the way through her analysis. Once one fully considers the
effects of gravitation in Maxwell-Huygens space-time, Newton-Cartan the-
ory is precisely the result.

18. Newtonian space-time is Galilean space-time plus a privileged standard of rest,
given by a constant timelike vector field ðsee Earman 1989, sec. 2.5Þ.
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Appendix

Proofs of Propositions

Proof of Proposition 3. We begin with the “only if ” direction. Suppose that
ðM, ta, hab, r, JÞ and ðM, ta, hab, r0, J0Þ are both Trautman recoveries
of ðM ; ta; hab; ~rÞ. Then by theorem 2, r0 5 ðr; Ca

bcÞ, where Ca
bc 5

tbtcraðJ0 2 JÞ. Now suppose that ya is a timelike vector field such that
r½ayb� 5 0. It follows that

r0½ayb� 5 hn½ar0
ny

b� 5 2hn½atntmrb�ym 5 0:

So if ya is nonrotating relative to r, it is nonrotating relative to r0. An
identical argument establishes the converse, that if ya is nonrotating relative
to r0, it is nonrotating relative to r.
Now consider the “if ” direction. Suppose that ðM, ta, hab, r, JÞ is a

Trautman recovery of ðM, ta, hab, ~rÞ and suppose that r0 is a flat derivative
operator compatible with ta and hab and such that given any timelike vector
field ya, r½ayb� 5 0 iff r0½ayb� 5 0. Since r0 is compatible with ta and hab,
r0 5 ðr; Ca

bcÞ, whereCa
bc 5 2hantðbkcÞn for some smooth antisymmetric ten-

sor field kab ðMalament 2012, proposition 4.1.3Þ. Now consider some unit
timelike vector field ya such that r½ayb� 5 0. ðSuch a field always exists
because r is flat andM is connected and simply connected.Þ It follows that

05 r0½ayb� 5r½ayb� 2 2ho½bha�ntðnkmÞoy
m 5 2ho½bha�ntðnkmÞoy

m

5 ho½bha�nknoy
mtm 5 kab:

This means that kab 5 t½ajb�, for some covector jb. ðWhy? Because ta is the
only covector that annihilates hab.Þ It follows that Ca

bc 5 hatbtc for some
spacelike ha ðpossibly 0Þ.
Now recall that r and r0 are both flat by hypothesis, and thus, using the

relation

R0a
bcd 5 Ra

bcd 1 2r½cC
a
d�b 1 2Cn

b½cC
a
d�n

ðMalament 2012, eq. 1.8.2Þ, it follows that 2r½ch
atd �tb 5 0. Acting on both

sides with hcn, we find tbrnha 5 0. Since ta ≠ 0, it follows that rahb 5 0.
Finally, invoking proposition 4.1.6 of Malament ð2012Þ, which holds glob-
ally because we have limited attention to space-times to which spacelike
slices are connected and simply connected, we conclude that there exists a
smooth scalar field ~J such that ha 5ra~J. Finally, we define J0 5 ~J1 J. It
follows that rarbðJ0 2 JÞ 5 rahb 5 0 and that r0 5 ðr; Ca

bcÞ, where
Ca

bc 5 tbtc ~raðJ0 2 JÞ. Thus, by theorem 2, ðM, ta, hab, r0, J0Þ is a Trautman
recovery of ðM; ta; hab; ~rÞ. QED
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Proof of Proposition 4. If the curves fggr agree with the possible trajec-
tories allowed by ordinary Newtonian gravitation, then there must exist
some derivative operator r ∈ ½r� ðindeed, by proposition 3, any will suf-
ficeÞ and some J, such that ðM, ta, hab, r, JÞ is a model of Newtonian grav-
itation. Proposition 1 then guarantees that there is a unique derivative oper-
ator r satisfying parts 1 and 2 in the proposition. QED
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