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A numerical investigation of normal-mode perturbations of a two-dimensional periodic
finite-amplitude gravity wave propagating on a vertically sheared current of constant
vorticity is considered. For this purpose, an extension of the method developed by
Rienecker & Fenton (J. Fluid Mech., vol. 104, 1981, pp. 119–137) is used for
the numerical computations of the finite-amplitude waves on a linear shear current.
This method enables to compute accurately waves with or without critical layers
and pressure anomalies. The numerical results of the linear stability analysis extend
the weakly nonlinear analytical results of Thomas et al. (Phys. Fluids, vol. 24,
2012, 127102) to fully nonlinear waves. In particular, the restabilization of the
Benjamin–Feir modulational instability, whatever the depth, for an opposite shear
current is confirmed. For these sideband instabilities, the numerical results show some
deviations with the weakly nonlinear theory as the wave steepness of the basic wave
and vorticity are increased. Besides the modulational instabilities, new instability
bands corresponding to quartet and quintet instabilities, which are not sideband
disturbances, are discovered. The present numerical results show that with opposite
shear currents, increasing the shear reduces the growth rate of the most unstable
sideband instabilities but enhances the growth rate of these quartet instabilities, which
eventually dominate the Benjamin–Feir modulational instabilities.

Key words: instability, shear layers, waves/free-surface flows

1. Introduction

The huge literature on free surface water waves is mainly based on the assumption
of irrotational flow. Nonetheless, there are many circumstances under which one
cannot ignore the rotational character of the flow, namely, in the presence of an
underlying vertically sheared current. For example, on deep water when a thin shear
layer is generated by wind stress, or in coastal zones where the vertical profiles of
mean velocity are typically determined by bottom friction and also surface wind stress.

† Email address for correspondence: marc.francius@mio.osupytheas.fr
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For a review on the interaction of waves with vertically sheared currents occurring
in nature, one can cite Peregrine (1976), Jonsson (1990) and Thomas & Klopman
(1997).

Periodic gravity waves propagating steadily on a rotational current were studied
by many authors, either mathematically or analytically and numerically. Since the
pioneering work of Constantin & Strauss (2004), there is a huge literature that
concerns the formulation and the mathematical properties of steady periodic surface
water waves with vorticity (existence, unicity, bifurcation). For a review on recent
rigorous results the reader can refer to Constantin & Varvaruca (2011) and Kozlov &
Kuznetsov (2014). Among the authors using asymptotic methods or purely numerical
methods, on can cite Tsao (1959), Dalrymple (1974), Brevik (1979), Simmen &
Saffman (1985), Kishida & Sobey (1988), Teles da Silva & Peregrine (1988),
Vanden-Broeck (1996), Swan & James (2001), Ko & Strauss (2008), Cheng, Cang &
Liao (2009), Pak & Chow (2009), Moreira & Chacaltana (2015), Hsu et al. (2016)
and Ribeiro Jr, Milewski & Nachbin (2017).

Although the recent important theoretical developments have confirmed that periodic
waves can exist over flows with arbitrary vorticity, it appears that their stability to
infinitesimal disturbances and their subsequent nonlinear evolution have not been
studied extensively so far. In fact, even in the rather simple case of uniform vorticity
(linear shear), few papers have been published on the effect of a vertical shear current
on the sideband instability of a uniform wave train over finite depth. It is noted here
that this instability, which is related to a four-wave resonance (between two small
sidebands and two quanta of the strong carrier wave), is often referred in the literature
as the modulational instability, or Benjamin–Feir instability (provided the modulation
frequency is small compared to the carrier frequency).

Under the weakly nonlinear assumption, Johnson (1976) studied the slow modulation
of a harmonic wave moving on an arbitrary shear flow, in two dimensions only. Using
the method of multiple scales he obtained a two-dimensional nonlinear Schrödinger
equation (NLS equation), from which a condition of linear stability of its plane
wave solution (which corresponds to the Stokes wave) was proposed. Using a similar
approach and extending the analysis to three-dimensional disturbances, Oikawa,
Chow & Benney (1987) obtained a set of envelope evolution equations to study
the effect of shear on the directional dependence of the modulational instabilities of
weakly nonlinear wave packets. They also derived an analytical expression of the
linear growth rate of three-dimensional modulational instabilities, and quantitative
results were reported only in the simple case of linear shear. Although the numerical
results of Oikawa et al. (1987) suggest that the shear can modify significantly
the three-dimensional characteristics of the modulational instabilities of the plane
wave solution, it is emphasized here that their parameterization of the undisturbed
linear shear flow in terms of one single dimensionless parameter does not enable
us to discriminate between the effects of a uniform current (equal to the value of
the current at the surface) and those of the vorticity. In both papers the resulting
third-order envelope equations possess coefficients that depend in a complicated way
on the shear, and are thus not practical to use. Even in the simple case of a linear
shear current, some integrals require numerical evaluation. More significantly, these
analytical results are obtained with the assumption that no critical layer can occur,
a crucial feature which is known to alter the kinematic nature of the wave motion,
either it is a periodic wave or a solitary wave as shown by Miroshnikov (2002).
These approaches are therefore limited to certain regions of the parameter space,
defined in the present work by the wave steepness ε, the dimensionless depth kh and
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Two-dimensional instabilities of surface waves on linear shear 633

a dimensionless parameter (to be defined later) characterizing the (constant) vorticity
of the background shear flow. Here k and h are the carrier wavenumber and depth,
respectively.

For flows with constant vorticity, Li, Hui & Donelan (1987) studied the two-
dimensional sideband instability of a Stokes wave train in deep water. They also
obtained an NLS equation for the amplitude modulations, but the coefficient of the
nonlinear term was erroneous, as noted by Baumstein (1998). In fact, the latter author
investigated the effect of piecewise-linear velocity profiles on the sideband instability
of a finite-amplitude gravity wave in deep water. Extension of these studies to the
case of finite depth was carried out by Thomas, Kharif & Manna (2012), for two
dimensions only, by using the same method of multiple scales but stemming from a
different formulation of the governing equations. The resulting coefficients of their
NLS equation are given explicitly as a function of the vorticity and depth of the
shear layer. Explicit analytical expressions are also given for several characteristics
of the two-dimensional modulational instabilities of the Stokes wave. In this paper,
it is found that vorticity modifies significantly the modulational instability properties
of weakly nonlinear plane waves, namely the growth rate and bandwidth. At third
order, the paper also shows the importance of the nonlinear coupling between the
mean flow induced by the modulation and the vorticity. Furthermore, it is shown
that the plane wave solution can be linearly stable to modulational instability for an
opposite shear current (positive vorticity in the present work) independently of the
dimensionless depth parameter kh. For kh> 1.363, in practice, this important property
means that large vorticities can suppress the modulational instability in both following
and opposite shear currents with constant vorticity.

As pointed out by one referee, Hur & Johnson (2015) have recently studied the
modulational stability and instability of periodic travelling waves on a linear shear
current in finite depth, using the so-called vorticity-modified Whitham equation that
combines the full linear dispersion relation of water waves and weak nonlinearity
stemming from an approximation of the fully nonlinear ‘breaking operator’ of
shallow water theory. For any constant vorticity they have shown that periodic
travelling gravity waves (with sufficiently small amplitudes) are spectrally unstable to
long-wavelength perturbations if kh is greater than a critical value that depends on
the vorticity, and stable otherwise, similar to the zero vorticity setting. For irrotational
gravity waves, however, the complete restabilization to the modulational instability
is found to occur when kh becomes less than 1.146, which differs from the known
threshold value 1.363. In this respect, it was shown in Thomas et al. (2012) that the
introduction of constant vorticity does not modify this critical value, which is obtained
in the limit of zero vorticity. Despite this failure, the work of Hur & Johnson (2015)
confirms that sufficiently large vorticities can suppress the modulational instability in
the case of following shear currents.

To the best of our knowledge, there do not appear to have been many attempts, with
extensive use of numerical techniques, on the study of the stability of finite-amplitude
gravity waves on currents with vertical shear. Following the general scheme, pioneered
by Longuet-Higgins (1978a,b), Okamura & Oikawa (1989) found three kinds of
instabilities: two of them related to four- and five-wave resonant interactions and
a third type, called rotational instability which is essentially three-dimensional and
due to the effects of a strong nonlinear coupling between the mean-flow response
and the fundamental wave, as discovered first by Chow & Benney (1986). These
results have been compared with those for the corresponding irrotational wave, to
show that increasing the shear yields larger growth rates for each most unstable mode
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associated with the four-wave and five-wave resonances. Although, for the first time,
the rotational instabilities have been captured numerically from the Euler equations
for finite-amplitude waves and constant vorticity, the whole stability domain could
not be examined owing to the poor convergence property of their numerical method.
As in many published works, it is noted here that the same dimensionless parameter
is used for both the surface current and the constant shear, which gives rise to some
ambiguity, as already mentioned.

Recently, in the same vein, numerical simulations of the Euler equations and of
some high-order approximation, for two-dimensional rotational flows, have been used
to analyse the nonlinear stability of finite-amplitude periodic waves, initially weakly
modulated due to the presence of sideband disturbances. Nwogu (2009) considered
an exponentially sheared current and reported few results on the long-time evolution
of modulational instabilities of periodic gravity waves in deep water. His numerical
results demonstrated that the mean-flow vorticity can significantly affect the growth
rate of extreme waves in narrowband sea states. For flows with constant vorticity, Choi
(2009) used a conformal mapping method to obtain new evolution equations, which
are solved numerically using a pseudo-spectral method to study the Benjamin–Feir
instability of a modulated wave train in both positive and negative shear currents. For
fixed wave steepness and (unstable) disturbances, Choi (2009) found that the envelope
of the modulated wave train grows faster in a positive shear current and slower in
a negative one, in comparison with the irrotational case. In contrast to the above
mentioned studies on the stability problem, it is emphasized here that both Choi
(2009) and Nwogu (2009) parameterized the background current with two different
dimensionless parameter, one for the surface current and one for the vorticity.

In this work we consider the two-dimensional linear stability analysis of finite-
amplitude gravity waves propagating steadily on the free surface of a fluid with
constant vorticity and finite depth. As we shall see, the approximation of constant
vorticity is twofold. Not only does it simplify considerably the mathematical analysis
of two dimensional steady-state waves, which are then necessarily irrotational
perturbations of the background uniform shear flow (as a consequence of Kelvin’s
theorem), but it also allows a straightforward extension of some existing numerical
methods, originally dedicated to the study of irrotational finite-amplitude waves on
finite depth.

The paper is structured as follows. In § 2 we formulate the systems of equations
both for the determination of steady periodic waves on a linear shear current, and
for the evolution of superposed small disturbances, considered in a frame moving
with the basic state. By introducing a velocity potential function for the (necessary)
disturbances and using a normal-mode analysis, we formulate the eigenvalue problem
to be solved. In § 3, we present the numerical methods used in this study and the
results of their validation against available numerical and analytical results. In § 4, the
results for subharmonic perturbations are presented, first, for the sideband instability
(long-wavelength disturbances) and then for the shorter disturbances involved in
quartet and quintet resonances with the basic wave. We summarize our conclusions
in § 5.

2. Mathematical formulation
2.1. Euler equations and periodic wave solutions

The fluid is assumed to be inviscid, the flow is incompressible, the water depth is
taken to be finite and the effect of surface tension is neglected. In the absence of
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Two-dimensional instabilities of surface waves on linear shear 635

waves, we shall assume a basic parallel shear current UB(z) of constant vorticity
(−Ω0), which varies linearly in the vertical direction and vanishes at the undisturbed
free surface or mean water level (z= 0).

For periodic two-dimensional (2-D) waves of permanent form on a linear shear
current it is convenient to consider a coordinate system (x, z) moving with the wave
speed c> 0, in which the combined wave–current flow is steady. From the condition
of incompressibility we can then introduce a streamfunction ψ(x, z), unique up to an
additive constant, such that the total relative fluid velocities are given by

u=UB(z)− c+ ũ=
∂ψ

∂z
, w= w̃=−

∂ψ

∂x
, (2.1a,b)

where the tilde quantities are perturbations due to the waves. We note that by defining
UB(z)=Ω0z, the focus is placed on the influence of vorticity on the combined wave–
current system rather than on the uniform current (Doppler effect).

As is well known for two-dimensional incompressible flows, the vorticity vector is
perpendicular to the plane of the motion and, in the absence of vortex stretching, the
vorticity of a fluid particle, ω= (∂xw− ∂zu), is constant along a streamline. Since in
the moving frame of reference the combined wave–current flow of constant vorticity
is steady, we have

∂2ψ

∂x2
+
∂2ψ

∂z2
=Ω0 (2.2)

as the governing equation to be satisfied throughout the fluid, namely −h< z< η(x)
where h is the mean depth and z= η(x) represents the unknown position of the free
surface relative to the mean surface level z= 0.

The kinematic boundary conditions, which express that both the free surface and
the rigid plane bed are streamlines, can be written as

ψ = 0 on z=−h (2.3)
ψ =−Q on z= η, (2.4)

where Q represents the total volume flow rate underneath the wave (per unit span).
Using the Bernoulli equation at the free surface and setting the surface pressure to
zero without loss of generality gives the dynamic free surface condition,

gη+ 1
2(u

2
+w2)= R on z= η, (2.5)

where g is the gravitational acceleration and R is a Bernoulli constant of the flow,
which corresponds physically to the specific energy at the free surface (in the moving
frame).

The values of the constants Q and R are unknowns and need to be determined for
solutions ψ(x, z) and η(x) that are periodic in x with finite wavelength λ = 2π/k,
where k is the wavenumber. To guarantee a unique solution, when it exists, the wave
height H is specified as

η(0)− η(λ/2)=H, (2.6)

where η(0) and η(λ/2) are the crest and trough elevation respectively, and we impose
the further condition of zero mean level condition,∫ λ

0
η dx= 0. (2.7)
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Solutions for steep waves on a linear shear current are not currently obtainable
analytically, and numerical approaches are necessary to solve the above nonlinear
boundary-value problem. In this work we use a simple extension of the Fourier
approximation method, originated with Rienecker & Fenton (1981) for irrotational
waves, where a Fourier series is assumed only for the streamfunction as

ψ(x, z)=
Ω0

2
(z2
− h2)− c(z+ h)+ α

∞∑
j=1

Bj
sinh jk(h+ z)

cosh jkh
cos jkx. (2.8)

Solutions with this form satisfy automatically the Poisson equation and the
kinematic boundary condition at the bottom, as well as the periodicity condition.
In the above expression α =

√
g/k3 has been introduced for convenience, as we

shall work with dimensionless values, so that the coefficients Bj are dimensionless.
When a solution exists for given wave height H, mean depth h and constant vorticity
−Ω0, the coefficients Bj, the wave speed c and the unknown position of the free
surface η(x) can be determined numerically, after truncation of the Fourier series and
a collocation method as described in § 3.

2.2. Linear stability analysis
By confining attention to two-dimensional flows, it should be realized that any
perturbations of a flow with constant vorticity (background linear shear current), either
small or of finite amplitude, are necessarily irrotational motions as a consequence
of Kelvin’s circulation theorem. Hence, in the frame moving with wave speed c,
it follows that we can introduce a generalized velocity potential φ(x, z, t), which
satisfies the relations

φx =ψz −Ω0(z+ h), φz =−ψx (2.9a,b)

to guarantees that φ is the harmonic conjugate of the function ψh
= ψ(x, z, t) −

(Ω0(z+ h)2)/2.
The unsteady water wave problem can then be reformulated in the moving frame

and, in terms of ψ and φ, the governing equations are given by

ψxx +ψzz =Ω0, −h< z<η (2.10a,b)

ψx = 0 on z=−h (2.11)
ηt + ηxψz +ψx = 0 on z= η(x, t) (2.12)

φt + gη−Ω0ψ +
1
2(ψ

2
z +ψ

2
x )= f (t)+ 1

2 c2
−Ω0ch on z= η(x, t), (2.13)

where f (t) is an arbitrary function of time, which can be set to zero without loss of
generality or absorbed into the definition of either φ or ψh. If the motion is steady,
as in the case of waves of permanent form, the terms with a time derivative disappear
and we recover the governing equations of the steady water wave problem, as it has
been presented in the previous section. Note that in this case the kinematic conditions
(2.11) and (2.12) both express that ψ is constant at the bottom and at the free surface,
respectively.

To consider the stability of these steady waves to infinitesimal two-dimensional
disturbances, we let

η= η̄(x)+ η̃(x, t), ψ = ψ̄(x)+ ψ̃(x, t), (2.14a,b)
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where the quantities with an overbar correspond to the periodic wave solution and the
quantities with the tilde denote small perturbations, i.e. |η̃|� |η̄| and |ψ̃ |� |ψ̄ |. After
linearization of the governing equations (2.10)–(2.13) we obtain

ψ̃xx + ψ̃zz = 0, −h< z< η̄ (2.15a,b)

ψ̃x = 0 on z=−h (2.16)
η̃t + ψ̄zη̃x + η̄xψ̃z + (ψ̄zzη̄x + ψ̄xz)η̃+ ψ̃x = 0 on z= η̄(x) (2.17)

φ̃t + (g+ ψ̄xψ̄xz + ψ̄zψ̄zz −Ω0ψ̄z)η̃−Ω0ψ̃ + ψ̄zψ̃z + ψ̄xψ̃x = 0 on z= η̄(x). (2.18)

By using the Cauchy–Riemann relations (2.9) it is easy to check that without vorticity
(Ω0 = 0) the above equations reduce to those derived by McLean (1982).

Since the linearized equations (2.15)–(2.18) have coefficients that are periodic in
x, it follows from Floquet or Bloch wave theory that its general solution can be
represented as a linear combination of normal modes in the form

η̃(x, t)= e−iγ teipx
∞∑

j=−∞

ajeijx (2.19)

ψ̃(x, z, t)= e−iγ teipx
∞∑

j=−∞

bjeijx sinh[kj(z+ h)]
cosh(kjh)

(2.20)

φ̃(x, z, t)= e−iγ teipx
∞∑

j=−∞

cjeijx cosh[kj(z+ h)]
cosh(kjh)

, (2.21)

where kj= |p+ j|, p an arbitrary real number and γ is an unknown, possibly complex,
eigenvalue to be determined by the requirement that the linearized surface equations
(2.17) and (2.18) have a non-trivial solution. Here we have taken the gravitational
acceleration g = 1 and the unperturbed wavelength λ = 2π, which is equivalent to
non-dimensionalizing the problem with the spatial and temporal scales lref = λ/(2π)
and tref =

√
gk (see § 3.1 for more details).

The real physical disturbance, which corresponds to the real part of the above
expressions, are not strictly periodic in x unless p is a rational number. When p is
an integer (or p = 0 without loss of generality), the wavelength of the disturbance
is the same as that of the undisturbed wave (λ = 2π) and the disturbance is called
superharmonic. When p is not an integer, the disturbance contains components with
wavelength greater than 2π and it is called a subharmonic perturbation. If γ is
real, then the disturbance is said to be stable, whereas if γ is complex, then the
disturbance or its complex conjugate is unstable.

With this normal-mode decomposition and the condition of irrotationality for the
disturbances, namely φ̃x= ψ̃z and φ̃z=−ψ̃x, we obtain the following relations between
the sets of coefficients bj, cj

cj = sign(p+ j)bj for |j|6∞. (2.22)

Using this relation and substituting the normal-mode decomposition of the general
solution into (2.17) and (2.18), we obtain the following system of equations

G(x)
∞∑

j=−∞

ajeijx
+

∞∑
j=−∞

Hj(x)bjeijx
= iγ

∞∑
j=−∞

Fj(x)bjeijx (2.23)

∞∑
j=−∞

Kj(x)ajeijx
+

∞∑
j=−∞

Lj(x)bjeijx
= iγ

∞∑
j=−∞

ajeijx (2.24)
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for 0 6 x 6 2π, where

G(x)= g+ ψ̄xψ̄xz + ψ̄zψ̄zz −Ω0ψ̄z (2.25)

Hj(x)=
[i(p+ j)ψ̄x −Ω0]sinh[kj(h+ η̄)] + kjψ̄zcosh[kj(h+ η̄)]

cosh(kjh)
(2.26)

Fj(x)=−
isign(p+ j)cosh[kj(h+ η̄)]

cosh(kjh)
(2.27)

Kj(x)= i(p+ j)ψ̄z + ψ̄zzη̄x + ψ̄xz (2.28)

Lj(x)=
i(p+ j)sinh[kj(h+ η̄)] + kjη̄xcosh[kj(h+ η̄)]

cosh(kjh)
. (2.29)

The system of (2.23)–(2.24) can be interpreted as a generalized eigenvalue problem
for the complex eigenvalue γ with the coefficients aj and bj as the eigenfunctions. It
is important to note that there is a degeneracy in the dependence of the eigenfunction
on p, since p can be changed to p+ n, where n is an integer, without changing the
eigenfunction provided the coefficients aj and bj are relabelled and changed to aj−n and
bj−n, accordingly. Thus, in principle, there would be no loss of generality in confining
ourselves to the range 0 6 p< 1, which does not mean that our analysis is confined
to this range.

2.3. Linear resonant conditions
In the limiting case where the undisturbed state has zero wave height, namely a linear
shear current with a flat free surface, the analytical solutions of the eigenvalue problem
are given by

γ ±j (p)= sign(p+ j)[−kjc+ω±j ] (2.30)

ω±j (p)=−
Ω0tanh(kjh)

2
±

√
gkjtanh(kjh)+

(
Ω0tanh(kjh)

2

)2

, (2.31)

where j = 0, ±1, ±2, . . . is a mode number. Since the flat surface is regarded
here as the limit of steady waves on a linear shear current with the wave height
approaching zero, the eigenvalues contain the wave speed c=ω/k. The corresponding
eigenvectors are such that only those components with suffices p+ j are non-zero. All
the eigenvalues (2.30) lie on the real axis and so the flat surface is spectrally stable.
Thus the eigensets represent infinitesimal waves on top of a flat surface and the plus
and minus signs designate copropagating and contrapropagating disturbances relative
to the undisturbed flow.

As in the irrotational case, it is expected that for small values of the wave steepness,
instability bands may occur for modes with p values near the points p where two
eigenvalues for zero amplitude are equal,

γ ±j1 (p)= γ
±

j2 (p) (2.32)

for some integers j1 and j2. Since we can add any integer to p, only the difference
between j1 and j2 matters and the above condition is usually separated into two classes,
depending upon whether j1 − j2 is even or odd.
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(i) For the class I, j1− j2= 2m is even with j1=m and j2=−m, and it is found that
for p> 0 the following possibilities exist

γ +m (p)= γ
−

−m(p) m > 1. (2.33)

(ii) For the class II, j1 − j2 = 2m+ 1 is odd with j1 =m and j2 =−m− 1, and it is
found that for p> 0 the following possibilities exist

γ +m (p)= γ
−

−m−1(p) m > 0. (2.34)

It is noteworthy that there are no collisions with m > 1 between modes propagating
in the same direction. The collisions of the eigenvalues can also be interpreted as
resonances of two infinitesimal waves with the base flow, when considered from the
‘original’ fixed frame of reference. These resonant conditions can be written for the
class I as

ω+m +ω
−

−m = 2mω (2.35)
km + k−m = 2mk (2.36)

and for the class II as

ω+m +ω
−

−m−1 = (2m+ 1)ω (2.37)
km + k−m−1 = (2m+ 1)k. (2.38)

In this study we have considered the linear stability of the so-called forward mode,
for which the wave speed always exceeds the free surface speed, hence c > 0 here.
As the vorticity parameter varies, the resonances loci (2.33) and (2.34) change as
illustrated in figure 1 for m = 1, 2 and kh = 10. For large positive values of Ω ,
the resonances loci correspond to integer values of p, which are associated with
superharmonic disturbances. Whatever the type of disturbances, there is no coupling
between the disturbances and the undisturbed flow at zero wave height. However, it
appears that the linear resonant conditions (2.33) and (2.34) correspond to collisions
of two eigenvalues with opposite signature or sign of excess total energy, when
considered from the moving frame in which the basic state is a steady flow.

To see this we first compute in the rest frame the excess total energy, which is
defined as the difference between the total energy of moving fluid with a wave
perturbation and without the perturbation. From the analytical linear solutions for
sinusoidal waves on a linear shear current, we can easily show that for a wave
disturbance with (intrinsic) frequency ω̃ = ω±j and wavenumber κ = p+ j, the excess
total energy is given, up to second order, by

E=
ρgã2

2κtanhκh
ω̃

(
ω̃+

1
2
Ω0tanhκh

)
, (2.39)

where ã denotes the perturbation amplitude. Then, using the invariance of wave action
A=E/ω through Galilean transform we can deduce that, in a frame moving uniformly
at a velocity c, the excess total energy is

E′ =
ρgã2

2tanhκh

(
ω̃+

1
2
Ω0tanhκh

)(
ω̃

κ
− c
)
. (2.40)

Equation (2.40) shows that the excess energy is proportional both to the pseudo
frequency ω̃+ (Ω0tanhκh)/2 and the apparent frequency ω̃− cκ . For a copropagating
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7
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10 2 3–1–2

FIGURE 1. Resonances loci p as a function of Ω for µ= 10 and different classes: ——,
class I (m= 1); – – –, class II (m= 1); — · —, class I (m= 2);· · · · · ·, class II (m= 2).

perturbation, the pseudo frequency is always positive and we see that the excess
energy may be negative if the relative frequency is negative, namely if the perturbation
is moving slower than the linear basic wave. In contrast for co-propagating
perturbations going faster (ω̃/k > c > 0) and for counter-propagating disturbances
(ω̃/k< 0), the excess energy is always positive.

3. Numerical methods

The numerical calculations consist of two parts, determination of the unperturbed
basic flow η̄, ψ̄ and subsequent solution of the eigenvalue problem as a function of the
mode wavenumber p. In this section, we present the numerical methods which have
been used in this study and the results of their validation against available numerical
and analytical results.

3.1. Computation of steady waves
To calculate the unperturbed wave, the kinematic and dynamic surface conditions
(2.4)–(2.5) are collocated at 2N points equally distributed over one wavelength,
though by symmetry only N + 1 points from wave crest to wave trough will
be considered. Letting ηi = η(xi) where xi = (i − 1) dx, i = 1, . . . , N + 1 and
dx = λ/2N, the above equations yield 2N + 2 equations for the 2N + 4 variables
[η1, . . . , ηN+1,B1, . . . ,BN, c,R,Q] for a given value h of the mean depth. The required
two additional equations are (2.6) and (2.7), which specify the wave parameters.

For numerical purposes, it is convenient to work with dimensionless variables.
Hence by choosing the reference scales, as in the (irrotational) deep water case,

lref =
1
k
, tref =

1
√

gk
, cref =

√
g
k

(3.1a−c)
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the dimensional variables can be scaled as

η′ = kη, ψ ′ =

√
k3

g
ψ, c′ =

√
k
g

c, R′ =
k
g

R, Q′ =

√
k3

g
Q, Ω ′ =

Ω0
√

gk
(3.2a−f )

and the dimensionless equations to be solved become, omitting the primes,

Ω

2
(η2

i −µ
2)− c(µ+ ηi)+

N∑
j=1

Bj
sinh j(µ+ ηi)

cosh jµ
cos jkxi +Q= 0 (3.3)

ηi +
1
2

(
N∑

j=1

jkBj
sinh j(µ+ ηi)

cosh jµ
sin jkxi

)2

+
1
2

(
Ωηi − c+

N∑
j=1

jkBj
cosh j(µ+ ηi)

cosh jµ
cos jkxi

)2

− R= 0 (3.4)

1
2
η1 +

1
2
ηN+1 +

∑
i>2

ηi = 0 (3.5)

η1 − ηN+1 − 2ε= 0. (3.6)

Formally, the above system of 2N + 4 nonlinear equations can be written as

Fm(Z)= 0 m= 1, . . . , 2N + 4, (3.7)

where Z= [η1, . . . , ηN+1,B1, . . . ,BN, c,R,Q] is the vector of arguments of Fm. When
an initial approximation of the solution is known for given values of wave steepness
ε=Hk/2, dimensionless mean depth µ= kh and dimensionless vorticity parameter Ω ,
the above system of equations can be solved iteratively using Newton’s method, which
iterates with quadratic convergence towards the required nonlinear solution. The initial
approximation to the solution is assumed to be a linear wave on constant vorticity.
Alternatively, for large wave steepness or strong vorticity it may be necessary to use
initially the results obtained from previous computations, provided those initial data
are not too far from the target solution.

This numerical method has been validated by comparison with both the numerical
results of Cokelet (1977) for irrotational steady waves (Ω = 0) and the few (rare)
results reported by Teles da Silva & Peregrine (1988) for finite-amplitude periodic
waves on a linear shear current of finite depth. Tables 1 and 2 show the comparison
for the squared wave velocity c2 and c, since these parameters have traditionally been
used as the first basis for comparison between wave theories. A very good agreement
is obtained between our numerical results and those reported by these authors.

In order to check the numerical results in some broader range of parameter space,
we have also compared our numerical results with the predictions from a third-order
solution, derived recently by Hsu et al. (2016), to investigate analytically the effects
of vorticity on the characteristics of Stokes gravity and capillary–gravity waves in
finite depth. Figure 2 shows the comparison for the phase velocity, considering only
the forward mode, as a function of the wave steepness and for different fixed values
of the shear parameter. The weakly nonlinear results are plotted over the largest range
of steepness that could be considered with our numerical method. It is interesting to
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Cokelet (1977) Present results

ε µ c2 N = 16 N = 32

0.0602076 0.6960522 0.615059 0.615059401990042 0.615059401990042
0.134191 0.7057777 0.666501 0.666501043068160 0.666501043084253
0.196607 0.7157711 0.727629 0.727628636155880 0.727628677787233

0.127189 2.3106884 0.997193 0.997192554095718 0.997192554095718
0.264080 2.3351905 1.05546 1.05545831121995 1.05545831121994
0.361984 2.3574470 1.12534 1.12533616336992 1.12533616411269

TABLE 1. Comparison of results for c2 of irrotational waves. Results from Cokelet are
the most accurate presented by this author.

Ω ε Teles da Silva & N = 16 N = 20 N = 32
Peregrine (1988)

1 0.06 0.5883 0.588263328985539 0.588263329189877 0.588263329193313
−1 0.25 1.3580 1.35807681735679 1.35807681736914 1.35807681736904
— 0.5 1.4421 1.44217541243789 1.44204269298035 —

TABLE 2. Comparison of c for different finite-amplitude periodic waves on a linear
shear current with µ= 1.

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

c

FIGURE 2. Wave velocity c as a function of ε for different values of Ω and µ = 2.
Solid lines represent the numerical solution and the dashed lines represent the third-order
solution.

notice that the weakly nonlinear predictions match well with the numerical results
far beyond the weakly nonlinear regime, although the analytical and numerical wave
profiles are not entirely coincident. This is illustrated in figure 3 for the surface
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 0
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 3. Surface wave profiles for ε = 0.20, Ω = 0.5 and µ = 2. The solid line
represents the numerical solution and the dashed line represents the third-order solution.

profile of a periodic wave with ε = 0.20, Ω = 0.5 and µ = 2. It should be realized
that although the relative error on c is small, as shown in figure 2, the errors on
η and φ can be much larger, as well as those on the Fourier coefficients. In figure
3, the numerical wave profiles have been obtained with N = 32 harmonics for the
streamfunction.

In general, the performance of most numerical methods for solving exact nonlinear
waves deteriorates as the wave gets steeper, and the present method cannot escape
this fact. Indeed, the present approach fails owing to divergence of the (truncated)
series for the streamfunction, when the computed solution is approaching a limiting
configuration in the phase space of the governing dimensionless parameters; even
though the interior flow is completely free of singularities and the free surface is
smooth. For a given value of µ, this occurs either with downstream propagating
waves (when Ω > 0) or with upstream propagating waves (when Ω < 0). In the
former case, the failure of convergence is reflected in the non-decrease for large N
of the coefficients of the Fourier series of the streamfunction, because the analytic
continuation of the streamfunction out of the physical domain develops singularities
approaching the wave crest from above. In the latter case, the method also fails
before the surfaces become multivalued, i.e. overhanging waves develop, which is
reflected in oscillatory behaviour of the Fourier coefficients in which case Fourier
expansions are not appropriate. For any sign of the vorticity, the present method is
also expected to break down in the limit of very long waves, when a large number
of modes has to be taken.

Despite these limitations, it should stressed that when the present method converges,
it provides highly accurate results, even with a low number of modes, which may
be readily used for computation of the interior flow variables such as, for instance,
fluid velocities and pressure which are required in practical problems. This contrasts
with many other numerical methods, such as those based on surface integro-differential
equations (Vanden-Broeck 1996; Ashton & Fokas 2011) or on the conformal mapping
technique (Choi 2009; Ribeiro et al. 2017), which require the results to be mapped
back to the physical domain.
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 0.5
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(c)

FIGURE 4. Streamline patterns for periodic waves with Ω =−2 and µ= 1: (a) ε= 0.05
for which c= 1.9207810276, (b) ε = 0.25 for which c= 1.9427455675 and (c) ε = 0.45
for which c= 1.998.

We shall conclude this section by noticing that the present method also enables
us to compute waves on a linear shear current when an interior stagnation point
and a recirculating region exist, either with or without the pressure anomalies first
mentioned in Teles da Silva & Peregrine (1988). To illustrate this, we show in
figure 4 the streamline patterns for three different periodic waves with Ω =−2 and
kh= 1. For the sake of visibility, the spacing between the streamlines is constant in
each region separated by the separatrix streamline (Ψ = 0), but the flow rate between
two consecutive streamlines differs in each region. For each wave the ratio between
the flow rates is fixed to plot eight streamlines inside the recirculating region. As
can be seen, the flow patterns, reported in figure 4 only in a half-wavelength interval,
correspond to waves with three stagnation points: two saddles at the bottom and a
centre under the crest. As the steepness increases, the centre of the separated eddy is
shifted upwards, its vertical extent increases and its horizontal extent at the bottom
is decreased. Note that here pressure anomalies exist only for the highest wave
(not shown). According to the classification proposed very recently by Ribeiro et al.
(2017), our results fall in ‘region 2’ of their paper (see their figure 5).
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3.2. Computation of eigenvalues
Once the unperturbed wave has been computed, the normal-mode decompositions
(2.19)–(2.21) are truncated at N Fourier modes to solve the eigenvalue problem.
Like McLean (1982) we use a collocation method with 2N + 1 grid points, equally
distributed between two adjacent crests of the unperturbed wave, to transform the
infinite-dimensional eigenvalue problem (2.23)–(2.24) into a discrete system of order
4N + 2, which can be written as

Av = γBv, (3.8)

where v = (a−N, . . . , aN, b−N, . . . , bN)
t. Here the matrices A and B are complex

functions of the mode p and the unperturbed wave that is specified itself by ε, kh
and Ω . For each disturbance with mode number p, the eigenvalues γn are obtained
with an eigenvalue solver based on the QZ algorithm, as well as their associated
eigenvector (anj, bnj)

t, for n= 1, . . . , 4N+ 2 and j=−N, . . . ,N. Instability corresponds
to Im(γn) > 0 for at least one mode n, given the values of p and the unperturbed
wave. In computations of the linear stability of the unperturbed wave, we choose to
set 06p60.5, owing to the symmetries of the eigenvalue problem and the degeneracy
of the normal-mode decomposition in regard to the choice of p. In practice, the effects
of modal truncation must be monitored by increasing N until the relevant eigenvalues
have converged. For all the cases considered in the present work, our numerical results
have been accepted when the convergence of the eigenvalues has been reached with
at least six significant digits for the more difficult cases.

Our numerical method for the truncated version of the eigenvalue problem (2.23)–
(2.24) has been checked against the analytical results of Thomas et al. (2012) for the
quartet resonant interactions in weakly nonlinear gravity waves in flows with constant
vorticity. In fact, preliminary checks of our numerical implementation of the present
method has been done with other strictly numerical results of McLean (1982) and
Francius & Kharif (2006) for two-dimensional quartet interactions between irrotational
waves on finite depth (Ω = 0). Since the focus in the present study is on the effect
of vorticity on two-dimensional perturbations, the details of this comparison is not
shown here. It suffices to say that the comparison with the data shows a very good
agreement, provided the steady waves computed with the present method are obtained
with sufficiently high accuracy.

Instead, we focus on the comparison with the weakly nonlinear theory that serves
in fact two purposes. First, it is a mean to check our numerical results when Ω 6=
0, since we have not found in the literature useful quantitative results for the 2-D
instabilities due to quartet resonances; secondly, the numerical results may confirm
some weakly nonlinear predictions such as, for instance, the complete restabilization
to two-dimensional long-wavelength perturbations, which occurs for sufficiently large
(constant) vorticity and kh > 1.363. This important analytical result will be discussed
in the next section.

Figure 5 shows the comparison of the dimensionless growth rates of the two-
dimensional quartet instabilities varying with p for ε = 0.05, Ω = 0,±0.2,±0.4 and
two values of the dimensionless depth µ= 10, 2. In either case an increase of positive
shear yields a wider range of unstable wavenumbers and enhanced growth rates. For
ε = 0.01, the numerical results agree very well with the analytical results and the
corresponding curves are indiscernible (not shown here). From figure 5, we see that
the increase of wave steepness increases the difference between the analytical and
the numerical results, although the variation of this difference with p depends on the
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FIGURE 5. Growth rate Im(γ ) as a function of p for waves with ε= 0.05, µ= 10 (a) and
µ= 2 (b), and different shear values: ——Ω = 0; — —, Ω =±0.2; — · —, Ω =±0.4.
Dotted lines represent the corresponding weakly nonlinear results. The curves above the
solid line are for Ω > 0.

value of the dimensionless depth (for any given steepness). Figure 5 also shows that
the linear growth rates of these quartet instabilities decrease when µ decreases. As
is well known for irrotational waves, the complete restabilization to two-dimensional
long-wavelength perturbations occurs for the critical value µ ≈ 1.363. It should also
be noticed that for p� 1, namely for very long-wavelength perturbations, we have
always found an excellent agreement between the numerical results and the analytical
results of these two-dimensional instabilities.

4. Results
The stability of the periodic waves was studied in details for two values of

the dimensionless mean depth, µ = 10 and µ = 2, for a range of values of
the vorticity parameter Ω and several values of the wave steepness ε, namely
ε = 0.01, 0.05, 0.10, 0.15, 0.20. Actually, for each value of µ and ε considered
here, our numerical computations of the unperturbed waves cover a large range
of shear values in which Ω varies from −2 to the maximal value allowed by the
other parameters. In order to facilitate the presentation of our numerical results
and to analyse the effects of vorticity on the characteristics of the two-dimensional
instabilities under investigation, we have decided to select only a few values of ε.

First, we present the numerical results for the quartet instabilities of the modulational
type, namely due to sideband wave disturbances (0< p< 1), and compare them with
the results of the approximate analysis of Thomas et al. (2012), which has shown
the disappearance of the Benjamin–Feir modulational instability due to the increase
of the shear strength. In particular, we focus on the characteristics of the most
unstable modes in order to check the validity of the analytical predictions and also
to confirm the restabilization of the modulational instability both for upstream and
downstream propagating waves. Secondly, we present preliminary numerical results
for disturbances that are not of the modulational type, namely for perturbations
of class I (m = 1) with p > 1 and class II (m = 1) with p > 1, and discuss their
importance as the vorticity is varied. Finally, the results showing the restabilization
of uniform wave train to modulational disturbances are discussed. Emphasis is placed,
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in particular for deep water waves, on the differences between the results from the
weakly nonlinear theories and those obtained by numerical calculations.

4.1. Maximum growth rates of the modulational instability
Before we show the numerical results for the most unstable disturbances associated
with the quartet resonances, we briefly recall here some analytical results of Thomas
et al. (2012) which are used in the present section. As already mentioned in the
introduction, these authors have derived recently a NLS equation when there is
a background linear shear flow. This equation is given for the complex envelope
amplitude a(ξ , τ )

iaτ + Laξξ =M|a|2a, (4.1)

where ξ = ε(x− cgt) and τ = ε2t are coordinates to describe the slow modulation in
space and time of a unidirectional wave train with a carrier wave with wavenumber
k and frequency ω, cg is the group velocity of the carrier wave. In this framework,
ε represents a small dimensionless amplitude parameter and the surface elevation z=
η(x, t) can be written, to the leading order, as

η(x, t)= 1
2εa(ξ , τ )exp[i(kx−ωt)] + c.c.+O(ε2), (4.2)

where c.c. represents the complex conjugate.
As is well known for the NLS equation (4.1), the sign of the product of the

dispersive coefficient L and the nonlinear coefficient M govern drastically the
amplitude modulations of weakly nonlinear wave packets, as well as those of initially
uniform wave trains. In the defocussing regime (LM > 0) the plane wave solution of
(4.1), which is given by

a(ξ , τ )= a0e−iMa2
0τ , (4.3)

where a0 is an arbitrary constant, is always modulationally stable to spatial periodic
perturbations whose real and imaginary parts are proportional to eiKξ , where ±K
represents perturbations of the fundamental wavenumber k. In contrast, in the focusing
regime (LM < 0) the plane wave solution (4.3) is modulationally unstable whenever
K lies in a finite band, 0<K<Kc with Kc=

√
2|M/L|a0. Over this range of unstable

wavenumbers K, the maximum growth rate of the quartet instability is

γmax =M1ωa2
0k2 (4.4)

when
Kmax =

√
|M1/L1|a0k2, (4.5)

where L1 = k2L/ω and M1 =M/(ωk2). To correct a misprint in the definition of L in
Thomas et al. (2012), the expressions for the dispersive and nonlinear coefficients are
given here,

L=
ω

k2σ(2+ X)
[µ(1− σ 2)[1−µσ + (1− ρ)X] − σρ2

] (4.6)

M =
−ωk2(U + VW)

8(1+ X)(2+ X)σ 4
(4.7)

respectively, where ρ = cg/cp denotes the ratio of the group velocity to the phase
velocity of the carrier wave, µ = kh is the dimensionless water depth, σ = tanh(µ)
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FIGURE 6. (a) Wavenumber pmax of the most unstable mode and (b) its growth rate γmax
as a function of Ω , for µ = 10 and ε = 0.01 (stars), 0.05 (asterisks), 0.10 (diamonds),
0.15 (squares), 0.20 (circles); solid lines represent the weakly nonlinear results.

and X = σΩ0/ω where Ω0 represents the dimensional shear. The lengthy expressions
for U, V and W can be found in Thomas et al. (2012).

The most unstable modes with dimensionless wavenumber pmax = Kmax/k in
our notation, as well as their growth rates, were obtained numerically by solving
the truncated version of the eigenvalue problem (2.23)–(2.24), and are shown
in figure 6 as a function of the dimensionless vorticity, Ω , for µ = 10 and
ε = 0.01, 0.05, 0.10, 0.15, 0.20. For −2 6 Ω 6 1 and the two smallest values of
ε, a good quantitative agreement between our numerical results and the analytical
predictions is observed. In fact, for ε = 0.01, we found some differences between
numerical and analytical growth rates when 2 6 Ω 6 4 (not shown here), the latter
overestimating the former. For the steepest waves considered here, ε > 0.15, the
analytical predictions are found to overestimate the characteristics of the most unstable
modes, namely pmax and γmax, although the variations of these characteristics with Ω
are consistent between the two results.

For µ= 2 the same analysis was carried out for ε= 0.01, 0.05, 0.10, 0.15, and the
results are shown in figure 7. The agreement between the two results is remarkably
very good for negative values of Ω (upstream propagating waves), for both pmax and
γmax, and this even for the steepest waves considered here. However, the two results
show a tendency to diverge with increasing (positive) values of Ω , except for the
waves with ε = 0.01. In this case, interestingly, a very good agreement between the
two results is observed in the range of vorticity −2 6Ω 6 2.

Both figures 6 and 7 confirm one prominent feature of the effect of vorticity,
namely the restabilization of the modulational instability for upstream propagating
waves (Ω < 0) at large enough negative shear. For small steepness, say ε = 0.01,
the numerical results agree very well with those of the weakly nonlinear theory. For
downstream propagating waves (Ω > 0) the analytical results of Thomas et al. (2012)
also predict restabilization of the modulational instability in finite depth, when Ω
increases above a positive threshold value that depends only on µ (in the limit p→ 0).
As shown in figure 7 our numerical results for ε = 0.01 also confirm this analytical
prediction. As already mentioned for downstream propagating waves, the differences
between the analytical and the numerical results increase with increasing nonlinearity,
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FIGURE 7. (a) Wavenumber pmax of the most unstable mode and (b) its growth rate γmax
as a function of Ω , for µ= 2 and ε= 0.01 (stars), 0.05 (diamonds), 0.10 (squares), 0.15
(circles); solid lines represent the weakly nonlinear results.

and there is poor qualitative agreement. For upstream propagating waves, however, it
should be noticed that the negative value Ωc, below which the modulational instability
restabilizes, does not seem to be affected by the increase of nonlinearity of the basic
wave.

It is emphasized here that the disappearance of the modulational instability for
upstream propagating waves has been predicted very recently by Thomas et al.
(2012), but this has not been confirmed with an (alternative) independent method.
For this reason we have pursued our analysis by carrying out computations for
long-wavelength perturbations, with the purpose of checking further the weakly
nonlinear theory. In the limits as p→ 0 and ε→ 0, this theory predicts for µ> 1.363
that the stability boundary is −1< X 6 Xc1 < 0 for upstream propagating waves and
0< Xc2 6 X for downstream propagating waves (see figure 3 of Thomas et al. 2012).
Here X = σΩ with Ω =Ω0/ω, which is related to Ω by the relation

Ω =
σ 1/2Ω√
1+ σΩ

. (4.8)

The critical values Xc1 and Xc2 depend only on µ and Ω . They can be determined
either analytically or graphically, as we have done, by plotting for a fixed µ the
variations of the (scaled) nonlinear coefficient M1 with Ω and finding the critical
values for which it vanishes. As discussed in Thomas et al. (2012), in the deep water
limit σ = 1, Xc1 =−2/3 and Xc2 increases without bound.

We considered waves with µ = 10 and ε = 0.01 and the growth rates of
long-wavelength perturbations were obtained numerically with a few very small
values of p, and the shear parameter Ω was increased from −2 to 1 in steps of
0.01. The numerical results, shown in figure 8, indicate that the restabilization of the
modulational instability occurs at the threshold value, X∗ = −0.657 (Ω = −1.12), in
close agreement with the theoretical value Xc ≈ −0.654 (Ωc = −1.11). As indicated
by the analytical results the restabilization of the modulational instability occurs when
the range of unstable wavenumbers has shrunk to zero and the stability boundaries
have merged at p= 0.
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FIGURE 8. Restabilization of modulational perturbations for waves propagating upstream.
Growth rate versus X = σΩ0/ω for different wavenumbers (p� 1) with ε = 0.01 and
µ= 10.

A similar restabilization occurs with downstream propagating waves (Ω > 0), but as
the shear parameter X is increased above the positive threshold value Xc2. Although
we have not addressed this issue in detail, namely by comparing the analytical results
found by Thomas et al. (2012) with the results of the present strictly numerical
method, we have compared the marginal stability curve obtained with the analytic
solutions of the NLS equation with vorticity from Thomas et al. (2012) with that
obtained by Hur & Johnson (2015) (see their equation (3.3) in Theorem 3.1), in order
to comply with the demand of one referee. As the issue of concern here is that of the
linear stability of the forward mode, in particular to long-wavelength perturbations,
it is found that the predictions of Hur & Johnson (2015) match perfectly the results
of Thomas et al. (2012) only for downstream propagating waves (Ω > 0) and, say
approximately, Ω > 1.5. For smaller and decreasing values of Ω , the differences
between the two results increases without bounds. More importantly, both analytical
results are in total contradiction for upstream propagating waves (Ω < 0). In this
case, the model of Hur & Johnson (2015) does not predict the restabilization of
the modulational instability whatever the value of the depth, provided the shear is
sufficiently large. Although interesting, this comparison will be reported elsewhere in
detail since in the present work we have not studied the marginal stability curve for
the modulational instability in the (Ω, µ) parameter space.

4.2. Growth rates of two-dimensional instabilities
In our investigations we have also detected other bands of instabilities, which are
associated with the quartet resonances with p > 1, i.e. not of the modulational type,
and the quintet resonances which correspond to instabilities of class II (m= 1). These
instabilities were identified by inspecting the dominant components of the eigenvectors
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FIGURE 9. Growth rate of quartet instabilities, class I (m = 1) with p < 1, for µ = 2,
ε = 0.05 and for (a) negative and (b) positive values of the shear: ——, Ω = 0; – – –,
|Ω| = 0.2; — · —, |Ω| = 0.4; · · · · · ·, |Ω| = 0.8.

associated with their complex eigenvalues. In some region of the parameter space we
have observed that the maximum growth rates of some of these instabilities are larger
than those of quartet instabilities with p> 1. For this reason, we present here some
preliminary results which were obtained for µ= 2, ε= 0.05 and several values of the
shear parameter Ω = 0,±0.2,±0.4,±0.8.

For comparison of these results with those for the quartet instabilities near p=0, we
show in figure 9 the growth rates of these modulational instabilities versus p for the
different values of Ω considered here. As we have already seen, the class I (m= 1)
instability region with p< 1 is increased (decreased) as Ω increases (decreases).

Figures 10 and 11 show, for upstream propagating waves, the effects of increasing
the shear on the instability bands associated with class I (m= 1) and class II (m= 1)
disturbances with p> 1, respectively. As the shear increases, both instability regions
moves to the right and, although initially their bandwidths and the maximum growth
rates diminish slightly, these increase for sufficiently large negative values of Ω . For
Ω = −0.8, figures 10(d) and 11(d) reveal that the maximum growth rate of these
two-dimensional instabilities is larger than both that of the most unstable mode of
the class I (m = 1) with p < 1 and that of the most unstable mode of the class II
(m= 1) with p> 1. In each figure the dashed line indicates the corresponding value
of the maximum growth rate of the quartet instabilities with p < 1, namely of the
modulational type.

Comparing figure 10(c,d) reveals that this class I (m = 1) instability region must
include p = 2 for some values −0.8 < Ω < −0.4. When this occurs, the colliding
modes have dominant wavenumbers p + m = 2 + 1 = 3 and p − m = 2 − 1 = 1,
which correspond to superharmonic instabilities of the basic wave. This result suggests
that this two-dimensional superharmonic instability, which appears due to the effect of
vorticity, can play an important role (yet to be explored) in the dynamics of weakly
modulated wave trains on a linear shear current.

It should be noticed that the results in figure 11 also indicate three occurrences of
superharmonic instabilities, as the shear is varied in the range −0.8<Ω < 0. The first
occurrence is due to collision of the modes p+m=3+1=4 and p−m−1=3−2=1,
the second one with p+m=4+1=5 and p−m−1=4−2=2 and the third with p+
m= 5+ 1= 6 and p−m− 1= 5− 2= 3. Although these superharmonic instabilities of
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FIGURE 10. Growth rate of quartet instabilities, class I (m = 1) with p > 1, for µ = 2
and ε= 0.05; (a) for Ω = 0; (b) −0.2; (c) −0.4; (d) −0.8. The dashed line indicates the
corresponding value of the maximum growth rate of the class I (m= 1) instabilities with
p< 1.

class II (m= 1) do not generally correspond to the (dominant) maximum growth rate,
they appear together with the most unstable (subharmonic) disturbances and it would
be interesting to study the effects of increasing nonlinearity on their characteristics.
This point could be explored in future studies.

Figures 12 and 13 show, for downstream propagating waves, the effects of
increasing the shear on the instability bands associated with class I (m= 1) and class
II (m= 1) disturbances with p> 1, respectively. The effects of vorticity are different
and seem to be weaker for the waves considered here. As the shear increases, both
instability regions moves to the right and, their bandwidths and the maximum growth
rates have slightly changed in the range 0 < Ω < 0.8. In contrast with the results
obtained for upstream waves, no superharmonic instabilities are detected. It is noticed,
however, that the bandwidth of the class I (m= 1) instability region tends to shrink
to zero, and also that the whole instability region approaches p = 1, as shown in
figure 12(d).

4.3. Discussion
The results reported in § 4.1 appear to confirm the analytical results of Thomas et al.
(2012). These constitute somewhat numerical evidence of this important property of
the modulational instability, namely its restabilization at sufficiently large values of the
vorticities.

For small wave steepness, it appears that the sign of the vorticity does not matter
in this restabilization of the basic wave, although its effects on the growth rates are
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FIGURE 11. Growth rate of quintet instabilities, class II (m = 1) with p > 1, for µ = 2
and ε= 0.05; (a) for Ω = 0; (b) −0.2; (c) −0.4; (d) −0.8; (dashed line) as in figure 10.

of primary importance. For ε = 0.01 and µ= 10 the restabilization is observed only
with upstream propagating waves, while for µ= 2 it occurs both with upstream and
downstream propagating waves, in agreement with the analytical results of Thomas
et al. (2012).

It can be seen, from figures 6 and 7, that for upstream propagating waves on a linear
shear current, the effects of vorticity become dominant over those of nonlinearity as
the shear is increased. For Ω< 0 and wave steepness as high as ε= 0.20, these results
show a very good comparison of the analytical results with our numerical solutions,
and therefore suggest that the NLS model could be a powerful tool for predicting
qualitative features of modulated upstream waves on a strong linear shear current.
In particular, correct predictions of the most unstable modes of class I (m = 1) are
recognized, as well as the instability ranges. For the case of downstream propagating
waves (Ω > 0) and large shear, in contrast, the analytical results become quickly
invalid as the nonlinearity is increased. A good agreement can be expected, however,
provided the steepness is not too large, as shown in figure 7(b) for µ = 2 and ε =
0.01. More importantly, the analytically predicted restabilization of the modulational
instability is confirmed both for upstream and downstream propagating waves by the
present numerical results.

Although there has been preliminary analytical evidence for waves in deep water,
from Li et al. (1987) using a linear shear current and Baumstein (1998) using a
piecewise-linear current, suggesting that weak velocity shear can enhance modulational
instability and strong velocity shear can suppress instability, it should be emphasized
here that the predictions of these previous analytical studies are not supported by the
present numerical results and, thus, by the weakly nonlinear theory of Thomas et al.
(2012) in the limit µ→∞ (σ→ 1). As explained below, the source of disagreement
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FIGURE 12. Growth rate of quartet instabilities, class I (m= 1) with p> 1, for µ= 2 and
ε= 0.05; (a) for Ω = 0; (b) 0.2; (c) 0.4; (d) 0.8; (dashed line) as in figure 10.
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FIGURE 13. Growth rate of quintet instabilities, class II (m = 1) with p > 1, for µ = 2
and ε= 0.05; (a) for Ω = 0; (b) 0.2; (c) 0.4; (d) 0.8; (dashed line) as in figure 10.
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can be immediately understood when one realizes that in deep water the wave-induced
mean flow is a key feature in the slow spatial modulations of weakly nonlinear waves.

Inspection of previous analytical studies reveals that although Li et al. (1987)
and Baumstein (1998) applied the same method of multiple scales to the governing
equations, like Thomas et al. (2012), the wave-induced mean-flow component of the
solution was set arbitrarily to zero in their derivation of the modulation equation. At
first sight this assumption sounds like a good idea for small velocity shear and wave
steepness, if we keep in mind that for irrotational weakly modulated wave trains in
deep water the feedback from this wave-induced mean flow is due to higher-order
effects and do not appear at the order of approximation of the NLS equation.

As shown in Thomas et al. (2012), however, special care should be taken in the
limit µ→∞ for the NLS equation presented in this work. In this limit they obtained

iaτ + L∞aξξ =M∞|a|2a, (4.9)

with

L∞ =−
ω

k2

(1+Ω)2

(2+Ω)3
, M∞ =

ωk2

8

[
(4+ 6Ω + 6Ω

2
+Ω

3
)−Ω

2 (2+Ω)2

(1+Ω)

]
.

(4.10a,b)
As emphasized in Thomas et al. (2012), even though the wave-induced mean velocity
approaches zero in the deep water limit, its interaction with the carrier wave yields
an O(ε3) term that has a non-zero finite limit when µ→∞. For one-dimensional
modulations this additional term with the same periodicity as the fundamental wave
is directly proportional to |a|2a. More precisely, it corresponds to the second term
in the brackets defining the nonlinear coefficient M∞, which cancels only without
background vorticity (as expected). When this term is neglected, the expression for
M∞ agrees with that of Baumstein (1998), after adoption of our notation. As noticed
by Baumstein (1998), Li et al. (1987) obtained a somewhat different formula for the
nonlinear coefficient M∞ which, in our notation, can be expressed

MLi =
ωk2

8(2+Ω)
(8+ 16Ω + 10Ω

2
−Ω

4
). (4.11)

This should be compared with (4.10), which can also be expressed as

M∞ =
ωk2

8(1+Ω)
(4+ 10Ω + 8Ω

2
+ 3Ω

3
). (4.12)

Less surprisingly, in all previous analytical studies, the same expression was obtained
for the coefficient L∞, since the wave-induced mean flow does not affect dispersion
in the leading-order approximation.

In order to compare these analytical models and also to clarify the debate on
the effects of large (positive) vorticities on the modulational instability, we have
computed for each NLS model the maximum growth rates with (4.4) as the vorticity
is varied. The results of these computations are shown in figure 14, as well as the
strictly numerical results for waves with µ= 10 and ε = 0.01 and the corresponding
analytical predictions obtained with (4.10).

Irrespective of the sign of the vorticity, the analytical models yield almost identical
results when the velocity shear is sufficiently small. For large vorticities, however,
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FIGURE 14. Maximum growth rate of the modulational instability as a function of the
dimensionless shear, X=σΩ0/ω, for deep water waves: – – –, Baumstein’s model; — · —,
Li et al.’s model; ——, Thomas et al.’s model. For waves with µ = 10 and ε = 0.01,
the symbols correspond to the present numerical results and the dotted line represent the
weakly nonlinear results from Thomas et al.’s model.

the model of Li et al. (1987) is the only one that predicts restabilization at large
vorticities for downstream propagating waves (Ω > 0). As shown in figure 14 by the
numerical results, when µ = 10 and ε = 0.01, this restabilization is not confirmed
by our numerical results, which are in turn in close agreement, over the range of Ω
values investigated here, with the analytical predictions from Thomas et al. (2012).

Baumstein (1998) has claimed that ‘. . . the shear strength increase first enhances,
but later suppresses, the instability.’. Surprisingly the analytical results, obtained with
(4.10) and neglecting the term associated with the wave–mean-flow interaction (second
term in the bracket of M∞), contradict this statement. In fact, for the background flow,
Baumstein (1998) has assumed a piecewise-linear velocity profile, and thus a layer of
uniform vorticity (Ω) and depth (∆) overlies an infinitely deep fluid (at rest). More
importantly, his conclusion has been reached from numerical computations with finite
values of the shear depth. It should be realized, however, that in the limit of infinite
shear depth there is some inconsistency with this approach, owing to his definition of
the surface current, U0 =Ω∆ where ∆ is the shear depth. Hence, the condition that
U0 remains bounded in the limit ∆→∞ implies to consider simultaneously the limit
Ω→ 0. This explains perhaps why Baumstein’s model for deep water waves yields
consistent results on a rather short range of (small) vorticities, as shown in figure 14.

In figure 14 it is seen that the other analytical models do not predict, for large
vorticities, the restabilization in the case of upstream propagating waves (Ω < 0), and
their predictions of the maximum growth rate differ remarkably from those obtained
with the model of Thomas et al. (2012), which are in very good agreement with the
reference numerical results.

This restabilization of upstream propagating waves is also observed when µ= 2, as
shown in figure 8 for ε = 0.01. For this case, it is noticed that no other instabilities
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have been detected in our computations as Ω was varied in the range −26Ω 6Ωc1.
For higher wave steepness, however, several bubbles of instabilities were detected, but
not shown here, as Ω was varied in this range. These two-dimensional instabilities are
not of the modulational type. Although we have not yet identified all of them, we may
rest on our experience to presume that these instabilities are observed as the instability
bands of either class I (m > 1) or class II (m > 1) cross integer values of p > 1. The
properties of these instabilities are currently under investigation and will be reported
in a future publication.

5. Conclusions
With the purpose of investigating the two-dimensional linear stability of finite-

amplitude steady waves on a linear shear current, we have developed firstly a Fourier
approximation method of these solutions that enables very accurate determination
of the basic wave motion. The present work concerns only the forward mode. The
results have been compared successfully with other numerical solutions, available in
the published literature. An excellent agreement have also been observed between the
present numerical results and those obtained with a third-order approximation of the
solution, provided the steepness is small and, in the case of upstream propagating
waves, the shear is sufficiently small.

The stability analysis of these two-dimensional gravity waves propagating steadily
on a vertical shear current of constant vorticity has been carried out in deep water
(µ= 10) and finite depth (µ= 2). The effects of the vorticity on the boundaries of the
instability band and the characteristics of the most unstable mode have been analysed.

For weakly nonlinear waves and moderate values of the vorticity we have
rediscovered the analytical results of Thomas et al. (2012) on long-wavelength
instabilities associated with quartet resonances, i.e. class I (m = 1) with p < 1. We
have extended their results to higher values of the wave steepness of the basic wave
and of the vorticity. In deep water, we found some differences between numerical
and analytical growth rates for ε > 0.10. In finite depth, deviations between the two
approaches occur for ε > 0.10 and Ω > 0.5. Note that disagreement occurs for smaller
values of the vorticity when the wave steepness increases. Furthermore, the numerical
results confirm the restabilization of the Benjamin–Feir modulational instability as
the shear is increased, both with upstream and downstream propagating waves, in
agreement with the analytical results of Thomas et al. (2012).

We have also identified instabilities associated with quartet resonances of class
I (m = 1) with p > 1 and higher-order quintet resonances of class II (m = 1) with
p> 1. Although these instabilities are weak, increasing the vorticity has substantially
different effects depending on the direction of propagation of the finite-amplitude
waves along the shear flow. For the case ε = 0.05, µ= 2, and the considered range
of shear values, the present numerical results reveal that the Benjamin–Feir instability
always dominates for downstream propagating waves, whereas the most unstable
disturbance of the class I (m = 1) with p > 1 has the largest the growth rate for
upstream propagating waves, provided the shear parameter Ω is less than a certain
negative critical value.
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