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SUMMARY
Recently, satellite images of most urban settings has
become available on the internet. In this study, a novel
mapping and global localization approach, which uses these
images, is proposed for outdoor mobile robots operating
in urban environment. The mapping of large-scale outdoor
environments is done by employing the satellite images
acquired by remote sensing technology, and then a map-
based approach, that is, Monte Carlo localization is used for
localization. The novelty of proposed method is that it uses
standard equipment present on almost all autonomous robots
and satellite images thus it acts as an alternative to GPS data
in urban environments. Extensive field tests are presented to
demonstrate the effectiveness of proposed approach.

KEYWORDS: Mapping; Localization; Outdoor mobile
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1. Introduction
Autonomous navigation is one of the major capabilities
that a mobile robot must possess. Autonomous navigation
includes many subtasks such as path planning, obstacle
avoidance/reactive navigation and localization. Of all the
subtasks of autonomous navigation, localization is studied
in the literature as a major problem with the potential of
leading to absolute autonomy.1–12 Some researchers focused
on simultaneous localization and mapping (SLAM) problem
in order to localize the robot with respect to the best map
obtained so far.5–12 Some others studied localization problem
assuming that a priori map of the environment is available.1–4

However, the question of “How the map is acquired?” cannot
be answered easily, even for simple indoor environments. The
problem becomes more complicated in large-scale outdoor
environments. It is well known and expected that the map
of a local environment may not be available all the times
when a robot needs to operate in that environment. This
problem has been addressed from the early days of mobile
research.

A number of researchers have studied localization alone1–4

given a priori maps. In these studies, the position tracking
of mobile robot is investigated and it is assumed that the
initial pose of the robot is known. The aim is to estimate
the pose of the mobile robot with a reasonable accuracy.
Different sensors which have different characteristics are
utilized for this purpose. The most commonly used sensors
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are odometer, inertial measurement unit (IMU)/inertial
navigation system (INS), sonar, laser range finders, and
cameras. The underlying difficulty in estimating the pose of
the mobile robot stems from the fact that the sensor readings
are corrupted by noise and the sensor models and the process
model of the dynamic system, the mobile robot, is inaccurate.
Therefore, it is inevitable that the filter which tracks the robot
pose will gradually diverge as the robot operates, unless the
update stage includes absolute measurements of landmarks
at known locations, at regular intervals to reset the filter.
The absolute measurements of known landmark also requires
a priori map of these landmarks around.

SLAM may localize a robot without a map thus it may
eliminate the need for an a priori map. Although there are
practical applications of SLAM, some issues still require
attention. First, the original SLAM run time and storage
is quadratic in the number of features in the environment.
Therefore, generally solution to SLAM problem cannot
represent the environment in dense form but rather sparse
maps are common. Another big issue related to SLAM
problem is the data association:13 when the vehicle pose
uncertainty is high, data association is not an easy task.14

Since SLAM holds unimodal belief in the robot pose and
map of environment, any data association mistake will lead
to catastrophic failure of the filter. The EKF filter cannot
recover the true solution back.

In the light of previous qualitative introduction, the
followings conclusion can be drawn: The SLAM problem
is difficult to solve and data association might be even more
difficult in large-scale environments. The map representation
is sparse and is not very useful for several tasks a robot
has to carry out but for localization. Position tracking
needs absolute measurements to reset the filter otherwise
it diverges. Map based localization is considered to be
solved but generation of such a map on demand is an open
challenge.

Therefore, in this study a novel solution is proposed
to tackle the global localization of outdoor mobile robots
operating in urban settings. This approach may be classified
into map based localization. As the global urban localization
of an outdoor mobile robot is investigated, the question of
“How the map is acquired?” is answered and a way of
localizing the robot on such a map is being proposed. A well-
known attempt to solve mapping and localization problem in
parallel which is referred to as simultaneous localization and
mapping (SLAM) in robotics literature is avoided by focusing
on localization problem alone and by using freely available
satellite images as an alternative to mapping. It is believed
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that this novel method will contribute to the autonomy of
outdoor mobile robots.

In this study, very large-scale urban environments are
considered and the mobile robot is localized globally (the
word global is used in the sense that localization is performed
with respect to a fixed coordinate frame on earth). The size of
the environment considered are about 1 million square meters
which is far larger than a typical environment considered in
previous studies. It is evident that current SLAM methods
are not suitable for such environments. At this point, remote
sensing provides the right answer to finding maps of vast
outdoor areas. The potential use of these images which has
recently appeared on internet freely is exploited for outdoor
mapping. Then generated maps are used in conjunction with
localization methods to globally localize the mobile robot.
The global localization is based on the claim that in urban
areas, a rough initial fix can be obtained by using the built-in
cell phone infrastructure in this area. Hence, it is possible
to localize one’s position in a circular region of diameter
which is generally about a kilometer. @Google Earth15 cell
phone application is an example application which provides
such a crude localization by making use of cell phone
infrastructure. Therefore, it can be assumed that ability to
localize a robot in an approximate area of one million square
meters is sufficient to achieve global localization when the
cell phone infrastructure present in urban settings are utilized.
Following this approach, the SLAM problem is avoided and
localization is performed in mutually independent steps; first
the map of the region of interest is obtained by making
use of satellite images, second localization is achieved by
using the maps obtained from these images. The scenario
of the operating conditions of the mobile robot can be
summarized with the Global Urban Localization (GUL)
problem:16

“A robot with a Wi-Fi enabled device (such as a laptop,
a PDA or a cell phone) wakes up in an unfamiliar urban
setting. In the mobile robot’s foremost task is to determine its
location. Luckily, a wireless Internet connection is detected
in the area so that the IP address obtained through this
connection can be used to identify this region. With the virtue
of this wireless connection, the robot accesses a website
(such as Google Earth) where the satellite images of the
earth can be conveniently downloaded. By simultaneously
going over the satellite images and checking out the
environment using relevant on-board sensors, the robot can
find common features that might pinpoint its location or at
least prune the search space. Eventually, the robot performs
global localization limited to urban settings. This problem
will be referred to as Global Urban Localization (GUL)
problem.”

Provided that the assumptions (i.e., relevant satellite
images are downloaded via a wireless connection) are
satisfied, the effort to solve the presented problem raises
two basic questions: Which sensors are suitable for this
localization process? How should the satellite images be
processed to match with local sensory data?

This study tries to answer these questions and as a result
proposes a novel technique suitable for the solution of the
GUL problem. The map of the environment is obtained by
processing the satellite images that are freely available on

the Internet (i.e., Google Earth). For this purpose a hybrid
approach employing Fuzzy C-Means (FCM) and Adaptive
Network-Fuzzy Inference System (ANFIS) methodology
is adapted to segment various elements in such images
including buildings, forests, fields, and roads.17 Then, the
Monte Carlo Localization (MCL) technique is used along
with these maps to find the pose of a mobile robot which
senses around by a laser range finder.18

In order to successfully apply the proposed method,
satellite view of the objects in scene should correlate with the
observation of the mobile agent on ground. In other words,
it is expected that the boundaries of the objects present
in the map extracted from the satellite images match the
observation of the robot in the field. In fact, this correlation
is mostly achieved due to the nature of buildings, where
surfaces are generally orthogonal to each other. This inherent
orthogonality is the basis of correlation between robot’s
observation and object contours extracted from satellite
images. Considering the fact that, urban environment does
not change rapidly, maps extracted from satellite images
can be used for extended periods of time. One exceptional
situation, where projection from top view to the side view
majorly differs is due to the presence of single tree or
vegetation in the environment which scatters the laser beam.
By using a proper filter, the effect of these objects should be
omitted.

The rest of the paper is organized as follows. Section 2
reviews the related literature and justifies the GUL problem.
Section 3 introduces the novel mapping technique. Section
4 elaborates on the localization approach while Section 5
describes the experimental setup. Section 6 demonstrates
performance of global urban localization approach with
intensive field tests. Final section presents discussions and
concluding remarks.

2. Literature Review
In the literature, there are several studies that focus on the
localization techniques where the maps of the environment
are assumed to be already available.1–4 In fact, MCL, Markov
localization technique, and extended Kalman filter (EKF)
based solutions require a map. Unfortunately, assuming
that the map of the environment is available is not
realistic for most situations. Therefore, problem has been
extensively studied by many researchers.5–12 Dissanayek
et al.5 demonstrated the convergence of SLAM methods by
using linear process and measurement models. It is stated that
a solution to SLAM problem does exist and that a precise map
could be obtained. Despite its apparent success, the SLAM
is a very difficult problem to tackle with in real time for
large-scale environments especially outdoors.

Recently, several improvements to the original SLAM
algorithm are proposed. Some of these approaches attempt
to cut the computational cost by exploiting the structure
of SLAM problem. Guivant et al.6 studied localization and
map building by using the information form of the Kalman
filter. Guivant and Nebot7 proposed a compressed extended
Kalman filter (CEKF) for SLAM problem. Similarly, Thrun
et al.10 devised the sparse extended information filter (SEIF).
Their study exploits the structure of the SLAM problem so
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that the update time of filter, which is irrespective of the
number of features in the map, becomes constant.

Csorba et al.19 developed the relative filter. In their
work, the relative distance and relative angle between the
landmarks are stored to develop a relative map. Hence, a
simple filter (a.k.a. relative filter) is devised to update the
information locally. This approach leads to a considerable
computation time savings. However, the relative filter is
criticized for not taking into the consideration of the cross
correlations between landmarks. Consequently, the original
relative filter is considered to be suboptimal.20 On the other
hand, Martenelli et al.20 takes on a completely different
approach. The distances and angle between point and corner
landmarks, which are invariant under translation and rotation,
are used in mapping. The approach requires some attention
when the local invariants are transformed into a global map.
Although the local invariants may be quite accurate when
they are transformed into global map, the local inaccuracies
may add up and the global map may turn out to be imprecise.
In order to generate the global map, Newman21 proposed the
projection filter to transform the local invariants into global
maps which necessitates the solution to a set of nonlinear
equations. To solve the inconsistency, Martinelli et al.20

proposed the EKF-based estimation.
Wang et al.22 developed a decoupled solution to SLAM

problem where state of vehicle augmented with the states
of landmarks, is transformed into a new form. It is
proven that this transformation has the effect of sparse
extended information filter. Hence, the computational cost
is reduced dramatically. Dissanayake et al.23 devised a map
management strategy for efficient computation. In this work
the distant landmarks are safely deleted and later added if they
are detected again. This leads to considerable cost reduction.
Furthermore, Nguyen et al.24 developed the orthogonal
SLAM. In this study, only the parallel and orthogonal lines,
which are commonly found in indoor settings, are mapped.
This approach also improves computational efficiency.

Some researchers focused on data association problem.
For instance, FastSLAM proposed by refs.9,25,26 decomposes
the SLAM problem into a localization problem and K
independent landmark estimation problems conditioned
around the robot pose estimates. It employs a modified
particle filter to estimate the posterior distribution over robot
paths. Each particle posses K independent Kalman filters that
estimate the landmark locations around the particle’s path.
Thus, FastSLAM overcomes the problems associated with
the Kalman filter. Just like FastSLAM, DP-SLAM proposed
by refs.12,27,28 exploits the conditional independencies. In this
paradigm, both the robot poses and different possible map
configurations are maintained by a particle filter. Masson
et al.11 studied mobile robot navigation and mapping in large
environments and hybrid architecture of Monte Carlo filter
and EKF based solution to SLAM is proposed. In this study,
when the EKF fails, MCL is started and it continues to run
until the data association problem is solved then the system
switches to EKF based solution to SLAM again. Estrada
et al.29 studied the hierarchical SLAM. Two-level mapping
is used: in the higher level, a global map, which is indeed
a tree structure, is maintained. The nodes of this tree refer
to the local maps and the arcs represent the adjacency and

metric information about the relative distances between local
maps. In the lower level, local maps are utilized to represent
environment. The unique side of this study is that it imposes
(loop closing) constraints whenever applicable.

Due to their computational cost, the SLAM methods
cannot produce dense maps. Although sparse representation
of the environment is sufficient for localization and
mapping, it is not adequate for navigation. To overcome
these difficulties, Guivant et al.30 developed a hybrid
metric map (HYMM). In their study, the sparse maps of
features, produced by solving SLAM, are combined with
occupancy grid (OG) maps to represent the environment
more accurately. The features/landmarks in the environment
are used to divide up the environment into a set of connected
local triangular regions (LTR). These LTR are solid regions
on which several properties can be represented in the form
OG maps. Nieto et al.31 addressed the dense representation
of environment. The feature based sparse landmark maps can
be delimited to small LTRs in which a dense representation
of the environment is possible.

Consistent landmark detection is difficult in outdoor
environment. It is relatively easier to find natural landmarks
in indoor environments such as corners and walls. However,
outdoor settings do not have so many distinct and structured
features. Madhavan and Durrant-Whyte32 proposed the
utilization of maximum curvature points as natural landmarks
in unstructured outdoor environments so as to yield robust
and stable landmarks.

As mentioned earlier; despite successful applications,
the SLAM algorithms are not practical in large-scale
environments such as the ones considered in this paper. Note
that another important limitation of SLAM is that only the
maps of the previously explored regions are available to the
robot. Whereas, the maps obtained from satellite images
can enable the robot to devise mission plans on a much
larger scale. Similar efforts in literature, which make use of
satellite images, can be found in refs.33,34 Booker33 correlated
millimeter radar data with aerial images and Guivant et al.34

computed the path of a mobile robot by matching inertial
navigation system data to road networks found on satellite
images.

Remote sensing promises an alternative solution to outdoor
mapping. The remote sensing technology (RST has been
successfully applied to a broad range of applications. In
fact, RST has been used to monitor the environment and
human activities, that is, urban development and the natural
resources, for years. In refs. [35, 36] the remote sensing
technique is used to monitor the forest activities and marine
pollution. The estimation of the urban population is critical
as urban development has major impact on nature, water
resources, and climate. Such effects cannot be detected from
ground; therefore, RST is being used extensively to estimate
the extent of urban development and the degree of damage to
the nature.37,38 Agriculture is yet another field where remote
sensing finds its use such as water requirement predictions
and yield estimation.39,40 Remote sensing is also used to
monitor the structure of the earth.41,42 It is employed to study
archeological sites,43,44 that is, archeological inheritance
dispersed in vast areas, which cannot be assessed from the
ground. Natural hazards are one of the hottest topics of
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remote sensing; remote sensing can be utilized to identify
the damage level of catastrophic events.45 Similarly, it can
be also facilitated to identify the quality and quantity of water
resources.46

Among all of these studies listed for RST above, none of
them focused on creating maps that are suitable for outdoor
mobile robot navigation. For this purpose, a mixed (a.k.a.
“hybrid”) approach that makes use of the FCM and ANFIS
is proposed to identify various objects present in satellite
image describing a scene, in which the robot is to operate.
Next section will introduce the proposed novel method for
obtaining such maps that are suitable for outdoor mobile
robot localization and navigation.

3. Map Creation Using Satellite Images
In this work, the mapping is considered as a separate step
independent of the localization process. Hence, the coupled
problem of localization and mapping is reduced to a local-
ization problem over a preconstructed map. In the proposed
technique, satellite image(s) of an operational urban area
is processed into a meaningful form that can be used by a
robot for navigation purposes. During mapping, geometric
information as well as the structural information associated
with the segmented parts is included in this representation.

Analysis of satellite image is performed by a combination
of unsupervised and supervised techniques; the satellite im-
ages are first clustered in feature space by using an unsuper-
vised clustering technique, namely, Fuzzy C-Means (FCM)
then boundaries between different fuzzy cluster regions are
drawn by an Adaptive Network-Fuzzy Inference System
(ANFIS) thus both of them constructs the structural regions
in the environment useful for localization purpose.17,47–50

Fuzzy clustering, for example, Fuzzy C-Means (FCM) is
used to generate the meaningful fuzzy clusters that represents
mass number of the pixels with diverse characteristics, these
initial clustering serve as a rough guess for the membership’s
functions in a FIS. Since, FIS cannot be trained, at this stage,
in order to estimate the membership function’s parameters
of the FIS precisely, an ANFIS is constructed/trained by a
hybrid learning scheme. Note that the ANFIS considered at
the second stage of the hybrid classifier attaches the fuzzy
data clusters found by FCM in the first stage autonomously
to information classes, that is, labels of objects in the scene
(objects in scene are labeled with integer numbers; field =
1, building = 2, forest = 3, road = 4) The flowchart of this
cascaded system is shown in Fig. 1.

The benefit of unsupervised classification method can be
justified by its data compression characteristics. Hence, the
supervised system running on a compact data set reduces the
training time dramatically.

The main structure of segmentation procedure implemen-
ted here can be summarized as:

� A number of satellite images are obtained/downloaded
from the region of interest and converted to HSV color
spectrum

� The images are divided into two groups:
� Training images
� Test images

Fig. 1. The structure of hybrid classifier.17

� The pixels values of training images are classified by FCM
clustering algorithm into a fixed number of clusters. Note
that this part is an unsupervised classification

� Rough FIS is constructed from the clusters found by FCM
� The ANFIS is constructed for the FIS and is trained

to compute the parameters of the FIS. This part is a
supervised training hence the information class of training
images, for example, field, forest etc. are known and
ANFIS learns the nonlinear relation between pixel values
and information classes codes, for example, field = 1,
building = 2, etc.

� The trained system ANFIS/FIS is applied on the test
images to label the pixels, for example, pixel (x,y) =
information class (ground = 1, building = 2, . . .).

A detailed description of FIS and ANFIS structure used in
this study is presented in ref. [51].

4. Localization
Localization of a mobile robot, that is the estimation of
the pose of robot, {x, y, θ} coordinates of the robot and
its heading, respectively, is best explained as a dynamic
Bayesian network (DBN) where the robot pose/state is the
hidden variable. This hidden variable can be represented with
a first-order Markov process. A complete description of a
Markov process requires specification of three probability
measures, namely; state transition model P [xt+1|xt , a],
observation model P [yt |xt ], and a priori distribution P [x0].
Given the Markov process, the question to be answered is:
Given an observation sequence, y1:t how do we find a state
sequence, x0:t which explains the observations best?

Bayesian models can be used to estimate hidden states
from given observations. Thus, posterior distributions of
states can be obtained from Bayes’ theorem and inference
can be made about the states (i.e., maximum likelihood).
Assuming that the Markov process is available, at any time
t, the posterior distribution is given by Bayes theorem.52 The
expression for the marginal distribution P [xt |y1:t ] satisfies
the following recursion.53

Prediction:

P [xt | y1:t−1] =
∫

P [xt | xt−1, at ]P [xt−1| y1:t−1] dxt−1.

(1)
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Fig. 2. The vehicle model.6

Updating:

P [xt | y1:t ] = P [yt | xt ] P [xt | y1:t−1]∫
P [yt | xt ]P [xt | y1:t−1] dxt

. (2)

Next the discrete time process and measurement models and
probabilistic state transition model of the mobile platform
and observation model of sensors used in this study are
developed. The kinematic model of a mobile robot can be
expressed as6

⎡
⎢⎣

xt+1

yt+1

θt+1

⎤
⎥⎦ =

⎡
⎢⎣

xt

yt

θt

⎤
⎥⎦ +

⎡
⎢⎣

v cos θt

v sin θt

1
L
v tan β

⎤
⎥⎦ +

⎡
⎢⎣

N(0, σx)

N(0, σy)

N(0, σθ )

⎤
⎥⎦, (3)

where {x, y, θ} are the coordinates and heading of the mobile
robot and {v, β} are the translational velocity and steering
angle of mobile robot, respectively. N(0, σx) is a zero-mean
Gaussian PDF for noise characteristic of state-x. The robot
kinematic model is illustrated in Fig. 2. Equation (3) may be
expressed in compact form as

xt = f (xt−1, at , wt−1). (4)

In order to reduce the computational complexity, the
robot’s heading is measured by a compass which changes
within certain (absolute) bounds. Throughout this study,
the nominal value of the compass measurement is used as
heading angle data.

The measurement model of the mobile robot is expressed
as

[
Ok,1

Ok,2

]
=

⎡
⎢⎣
√

[xk,L − xr ]2 + [yk,L − yr ]2

a tan

[
yk,L − yr

xk,L − xr

]
+ θ

⎤
⎥⎦ +

[
N(0, σk,1)

N(0, σk,2)

]
,

(5)

where {xr, yr , θ} are the states of mobile robot, Ok,(1,2) and
{xk,L, yk,L} are the range and bearing measurement to the kth
landmark, and the coordinates of the considered landmark,
respectively. Equation (5) may be expressed as

yk
t = hk(xt , vt ). (6)

Next the computation of P [xt |xt−1, at ] and P [yt |xt ]
is explained. Here the probabilistic motion model,
P [xt |xt−1, at ] which is a first-order Markov Process, is
defined by the process model xt = f (xt−1, at , wt−1) and the
known statistics of process noise wt−1

52

P [xt | xt−1, at ] =
∫

δ [xt − f (xt−1, at , wt−1)]

× P [wt−1] dwt−1. (7)

Probabilistic observation model P [yk
t |xt ] are defined by

the measurement model hk(xt , vt ) and known statistics of
measurement noise, vt Both process, wt−1 and measurement,
vt , noises are zero mean, temporally uncorrelated white
Gaussians:52

P [yt | xt ] =
∫

δ
[
yk

t − hk(xt , vt )
]
P [vt ] dvt , (8)

where δ(.) is a Dirac-delta function. Both equations require
that we are able to sample from process and measurement
noise.

The necessary probabilistic models to simulate DBN
modeling the mobile robot localization problem are
explained next. Since the lost robot case is assumed, there is
no prior information about the initial pose of the robot, and
the initial distribution is assumed to be uniform.

The probabilistic motion model, P [xt+1| xt , at+1] is
assumed as a Gaussian distribution about the nominal
incremental move measured by the odometer. It can be
expressed as:

P [xt+1|xt , at+1] = det(2πRt )
−1/2 exp

{
−1

2
AT R−1

t A

}
.

(9)
A can be given as follows:

A = [xt+1 − f (xt , at+1)] , (10)

where at is the action command; xt , is the pose of the
robot prior to the execution of the action and xt+1 is pose
of the robot pose after action command is executed. at is the
nominal distance traveled by the robot as it is commanded
by the action, and Rt is the covariance matrix of the process
noise. Equation (9) is a direct consequence of Eqs. (4)
and (7).

The robot scans the environment at constant angular
sectors. The measurement model is computed by a joint
probability of these single measurements along each angular
direction. Thus, the measurement model for a single
landmark can be expressed mathematically as:

P
[
yk

t

∣∣ xt

] = det(2πQt )
−1/2 exp

{
−1

2
BT Q−1

t B

}
, (11)
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where

B = [
yk

t − hk(xt )
]

(12)

and Qt is the covariance matrix of the measurement noise.
Assuming conditional independence between successive

measurement, the measurement likelihood, P [yt |xt ], can be
computed as

P [yt | xt ] =
K∏

k=1

P
[
yk

t

∣∣ xt

]
, (13)

where K is the total number of angular sectors which sums
up to gross angular scan, Qt is the covariance matrix of
the uncertainty in the laser scanner measurement, yk

t is the
range and bearing measurement to kth landmark in gross
measurement yt observation, made by real laser scanner,
hk(xt ) is the kth range and bearing measurement in gross
measurement ytobservation, made by virtual laser scanner
located on the map whose pose is xt . Since the scale of
environment map obtained from satellite images and the real
environment scale does not match, the virtual scans made by
virtual laser scanner on the map is calibrated before, such
that unit distance measured by the real laser scanner on the
robot and the virtual laser scanner on the hypothetical robot
on the map, is the same. The joint conditional probability Eq.
(13) can be computed from Eqs. (6) and (8).

In this paper, buildings and dense vegetation are used
as landmarks. It has been observed that dense tree groups
and man-made objects such as buildings are detected by the
laser scanner in the field and they can be safely used for
localization purpose. Thus, a satellite image is segmented
accordingly into four categories: building, forest, field, and
roads. The color codes of four categories are arranged such
that the virtual laser scanner operating on the map extracted
from satellite images is sensitive to the first two categories,
building and dense tree groups and is insensitive to last two
categories in the map, that is, field and road.18

Once P [xt+1|xt , at+1] and P [yt |xt ] are obtained from the
process and measurement models, MCL can be implemented
to run the Bayes filter.

5. Experimental Setup
To test the performance of the proposed method, a mobile
platform is designed to collect data outdoors. The mobile
platform is equipped with a SICK LMS 291-S05 laser
scanner, a notebook, and a battery pack. Custom software
is specifically developed to communicate with this laser
scanner and to record the 180◦ polar scan for the scanner. In
the experiments, these polar plots are to be recorded at equal
distances of travel. Note that the direction of the laser scanner
is aligned with the motion of the mobile platform. 180◦
angular sector is scanned with increments of half degrees;
however, the data are then under-sampled with increments of
3◦ to speed up the simulation process.

During the experiments, the mobile platform is moved
along a certain path. Man-made objects (like buildings and
walls) allow precise measurements whereas certain elements
of nature (vegetation, trees, bushes etc.) are potential
sources of difficulty. For instance, the laser beam scattered

by the vegetation has considerable noise content in the
measurements so the acquired data may not be directly used
for localization. To overcome this difficulty, a custom filter,
which compares the derivative (i.e., the first-order difference)
of the range signal to a selected threshold, is designed, which
estimates the new range signal by considering the minima of
that region.

The experiments were conducted by placing a laser scanner
on the top of a vehicle (emulating a mobile robot) which
is far above the height of an average passenger car on the
road. Hence, the nonquasi-static elements in the scene are
effectively eliminated. Note that there are some events whose
period extends well beyond the capture frequency of satellite
images like construction sites. However, the experiments in
this study are conducted in a well-developed urban setting
to avoid such instances. The following section discusses the
localization performance of the proposed technique.

6. Experimental Results
A district, Dikmen, in the city of Ankara (Turkey) is selected
because the nature of this region represents a true urban
scenario. The experiment is conducted late at night when the
sensor is not disturbed by nearby moving objects. In a way,
the requirement of a quasi-static established environment is
satisfied. A utility vehicle (Fiat Doblo), whose roof is far
above the height of the any passenger cars, is employed to
eliminate nearby cars (and other objects) since these objects
are not truly modeled in satellite images, note that at the time
of experiments, most cars on the street are parked. However,
some trucks and busses are passing from time to time which in
turn disturbs the characteristics of measurements. However,
the simulations have shown that their effects on the results
are quite insignificant.

Although the experiments are conducted in an old part
of the city where urbanization has been almost completed;
there are some building-construction sites appearing to
be unoccupied in the satellite images (due to their low
sampling/update rate). For those instances, the discrepancies
are corrected manually in accordance with our observations.

The utility vehicle is driven to follow the prescribed path at
a constant speed of 10–12 km/h. The path of robot path is plot-
ted on the satellite image of the local region in Fig. 3. As illus-
trated in Fig. 4, the satellite images were segmented into four
elements: buildings (in black color), forest (light gray), and
field (dark gray), and road (white) by following the procedure
introduced by Dogruer et al.17 During the experiments, the
GPS coordinates are obtained from a GPS receiver and the
laser range finder measurements are recorded at constant time
intervals. Notice that the method suggested for the solution
global localization of a mobile robot/platform requires the
odometer- and compass (heading) data. Hence, these data
are to be computed indirectly utilizing the GPS data.

To assess the performance, the (filtered) range data
recorded in the field are fed into the simulation software (an
M-script in Matlab 7.1) as if the robot were actually moving
around the track where the data were originally collected.

The experimental results are presented in a systematic
way. First, the results of simulations are printed in discrete
simulation steps, because it is almost impossible to print
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Fig. 3. Satellite image and the robot path, coordinates of image origin is 39◦ 52′ 47.98′′ N; 32◦ 49′ 58.20′′ E.

all simulation steps on one image. The numerical check is
performed by using entropy metric

H (X) =
∑
x∈X

P [x] log P [x] (14)

and KL-divergence:

D[P (x)|Q(x)] =
∑
x∈X

P [x] log
P [x]

Q[x]
. (15)

Entropy metric is suitable for checking statistical
characteristics of localization whereas KL-divergence checks
the characteristics and distribution of particle with respect to
a model/GPS data.

The particle distribution at different simulation steps are
shown in Figs. 4–6. The successive particle distribution
shows that the true robot pose is achieved in the 20th steps.
The rest of the analysis is a position tracking. The robot closes
the path successfully. Although the final error in closed path
seems big, with respect to the area of the region this amount is

Fig. 4. Simulation step: 5,10,15,20,25,30.
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Fig. 5. Simulation step: 40,50,60,70,80,90.

reasonable. The successive locations are shown with a color
wheel.

Figures 7 and 8 show the entropy metrics and KL-
divergence computed for the same path, respectively. Graphs
of these metrics support the particle distribution. Note that
entropy metric computes how compact the distribution is and
cannot be used to assess that the true position is recovered or
not. KL-divergence metric compares two data sets, the GPS
data and the simulation result and it can tell if the simulation
recovers the true position.

Figures 9 and 10 show the Cartesian coordinates (x, y) of
the robot with one sigma confidence limit. The GPS data are

also printed to compare the simulation results with the GPS
(a.k.a. ground truth data). It is observed that the simulation
results are good in agreement with the ground truth
data.

With respect to the cost of simulation; the computational
load associated with the proposed technique can be assumed
reasonable considering that the size of the field being
searched is vast: ∼1 million m2. Notice that the presented
technique is in fact suitable for real-time operation provided
that the mobile robot is equipped with a number of fast
processors and that the satellite images are pre-processed
to create the virtual laser scans on the map.

Fig. 6. Simulation step: 100,110,120,130,140,150,163.
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Fig. 7. Entropy metric for Dikmen path.

7. Conclusion
In the last decade, the satellite images of most urban areas
have become available publicly on the Internet. Hence, this
study has focused on a novel localization method for mobile
robots that make use of such images.

In this study, it is shown that a two-dimensional laser
scanner and a simple odometer system can be used along with
maps created from satellite images to localize mobile robot in
large-scale environments. The tested environments are larger
than most of the environments used in previous studies.

Fig. 8. KL-divergence metric for Dikmen path.
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Fig. 9. x-position mean (—), the one sigma confidence limit (- - -), and the GPS data (—).

Localization results are found quite satisfactory for all
intensive purposes. It is expected that the widespread use of
this approach will reduce the setup time of outdoor mobile
robotics applications in large-scale urban environments.
It may eliminate the map crafting totally. This novel
localization and mapping method, which uses satellite

images for mapping and cell phone infrastructure to make
an initial crude localization, may serve as an alternative
to GPS technology. Although, initial crude localization in
GUL problem requires the cell phone towers, the rest of the
operation of the mobile robot do not require any external
information source. Maps of these large landscapes may

Fig. 10. y-position mean, the one sigma confidence limit and the GPS data. Legend is the same as given in Fig. 9.
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be uploaded to robot memory so robot does not need
to communicate with main server, hence can operate in
off-line mode. In cases where the robot is to operate in
large yet restricted environments, proposed method can
also be used fully off-line without requiring cell phone
towers on the expense of elongated localization times.
From the practical point, many robotic applications (such
as perimeter surveillance, reconnaissance, package delivery,
etc.) are done within areas the limits of which are known
a priori. Hence, it is possible to load regional maps
upfront and use the proposed method in completely off-line
manner.

Proposing this method as an alternative to GPS, does
by no means imply that it is a direct substitute of a GPS
device. Yet, GPS signals are not guaranteed to be present
under all circumstances in all urban environments all around
the world. GPS signal strength might significantly change
as the robot moves as well. However, the maps extracted
from satellite images contain features belonging to urban
regions that do not tend to change rapidly in time. In
addition to the fact that, laser scanners and odometers may
be considered as standard pieces of equipment used in most
mobile robots, the proposed method offers an alternative
localization method for mobile robots operating in urban
environments. GUL can be used to assist or verify existing
localization techniques, or as shown in this work, it can also
be used on its own to localize a mobile robot in an urban
environment.

Lastly, the presented approach is the first attempt of solving
a novel problem defined in this paper, namely, Global Urban
Localization.
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