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Sufficient conditions are obtained for the existence of positive periodic solutions of a class of

neutral delay differential equations of the form

{
N ′(t) = N(t)F[t, N(t), N(t − τ(t, N(t))), N ′(t − γ(t)), P (t), P (t − µ(t))]

P ′(t) = −e(t)P (t) + k(t)N(t) + h(t)N(t − σ(t))

by using the theory of topological degree. These results extend substantially the existing

relevant existence results in the literature. As a demonstration, applying the obtained analysis

results to a real complex neutral Lotka-Volterra population model, the existence criterion for

positive periodic solutions is easily obtained and an example is used to give an impression of

how restrictive these conditions are. Especially, this method is more suitable to state-dependent

delay, and which have further applications in many fields.

1 Introduction

Although about 90% of populations in nature do not exhibit sustainable oscillation [30,

27], we tend to pay more attention to those do and often try to model such behaviour. In

the literature, there are four typical approaches to modelling such behaviour: (i) introduce

more species into the model, and consider higher dimensional systems (like predator-

prey interactions); (ii) assume that the per capita growth function is time-dependent and

periodic in time; (iii) take into account the time delay effect in the population dynamics

[51]; (iv) take into account random effects in nature. Generally speaking, approach (i) is

rather artificial, while (ii), (iii) and (iv) emphasize only one aspect of reality. Although

all of them are good mechanisms for generating periodic solutions (and therefore offer

some explanations to the often observed oscillatory behaviour in population densities), it

does not give us much insight as which is the real generating or dominating force behind

the oscillatory behaviour if only one of such mechanism is considered. Naturally, more

realistic and interesting models of single species growth should take into account both

the seasonality of the changing environment and the effects of time delays.

Delay differential equations arise in the modelling of many different physical sys-

tems, for examples, control systems [22], cell biology [4], lasers [29] and population
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growth [31]. As for the species dynamics, the classical non-delayed logistic model is

given by

N ′(t) = rN(t)

[
1 − N(t)

K

]
, (1.1)

the parameter r denotes the intrinsic growth rate, and K denotes the carrying capacity of

the environment. An extensive and captivating review of the history of the logistic equation

is given in Kingsland [28]. Hutchinson [26] remarked that for (1.1) to make sense, the bio-

logical mechanisms under consideration must operate so rapidly that the time lag between

the instant where a given value N is reached and the instant when the effective reproduct-

ive rate 1 − N/K is updated, is negligible. Arguing that oscillations have been observed

in some Daphnia populations, he proposed the following more realistic logistic equation

N ′(t) = rN(t)

[
1 − N(t − τ)

K

]
, (1.2)

which was derived from (1.1) by simply assuming that the net per capita rate of change

N ′/N might depend on the state of the system τ time units in the past. Indeed, the

delayed logistic equation (i.e. Hutchinson’s equation) is one of the first examples of a

delay differential equation that has been thoroughly examined. Another derivation of

(1.1) given by Cunningham [13], he assumed that a population whose per capita rate of

change would normally be constant (i.e. N ′/N = A), is subject to additional effects that

decrease the rate of growth A. If these effects are functions of the state of the population

at the time t − τ (the previous generation, for example), then one has the equation

N ′(t) = N(t)[A − BN(t − τ)].

Note that this equation can be obtained from (1.2) by setting A = r and B = r/K . We

often refer to (1.2) as the classical logistic delay differential equation. In 1987, Seifert [42]

considered the Volterra logistic delay differential equation

N ′(t) = N(t)[a − bN(t) − N(t − τ)].

For Hutchinson’s equation, Zhang & Gopalsamy [50] assumed that the intrinsic growth

rate and the carrying capacity are periodic functions of a period ω and that the delay

is an integer multiple of the period of the environment. Namely, they considered the

periodic delay differential equation of the form

N ′(t) = r(t)N(t)

[
1 − N(t − nω)

K(t)

]
, (1.3)

where r(t+ω) = r(t), K(t+ω) = K(t) for all t � 0. They proved the result on the existence

of a unique positive periodic solution of (1.3), which is globally attractive with respect to

all other positive solutions. Following the techniques of Zhang & Gopalsamy [50], many

scholars have considered the delayed models with the assumption that the coefficients are

periodic.

Existing results on the periodic solutions in periodic differential equation population

models suggests [31, 50, 20, 34, 36, 47, 45]) that when a strong seasonal force acts,
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regardless of the length of time delay and many other factors, it is often the primary

factor causing notable population fluctuation. In addition, in such cases, the fluctuation is

often quite robust and synchronizes with the season. When the seasonal effect is weak or

absent (this is often the case if the unit of time is long), but the delay length is significant,

then delay may be the primary source of destabilization. Indeed, significant delay can

often lead to chaotic population behaviour. In such cases, the stability of any fluctuation

is often not clear. Indeed, there are often numerous periodic solution coexist.

In this paper, we consider the periodic solutions for general setting of periodic neutral

delay differential equations. A neutral delay differential equation is one in which the

derivatives of the past history or derivatives of functions of the past history are involved

as well as the present state of the system. Although a qualitative theory for general systems

has not been developed at the present time, neutral delay differential equations are used

in a wide range of applications, particularly the area of population growth modelling

[14, 15, 19, 21, 32, 33]. It is pointed out in the book of Hale & Verduyn Lunel [24] that

neutral functional differential equations are met when dealing with oscillatory systems with

some interconnections between them. As one may already be aware, many real systems

are quite sensitive to sudden changes, this fact may suggest that proper mathematical

models of the systems should consist of some neutral delay equations. Even though the

delay lengths may be short, and the neutral terms relatively small, it is still necessary, for

the sake of rigorousness, to justify that the neutral term effects are not important. Indeed,

occasionally we may find that neutral term effects can be quite significant. This is largely

due to the fact that neutral delay equations are not structurally stable in the sense that the

introduction of neutral delay terms may destabilize an asymptotically stable equilibrium.

For example, 3x′(t) = −x has a globally asymptotically stable trivial solution, while the

same solution in x′ + 2x′(t− τ) = −x becomes unstable for any τ > 0. This is because the

corresponding characteristic equation of the neutral equation may have roots bifurcating

from infinity, a phenomenon that cannot occur in retarded equations. This indicates that

it is important to deal with neutral delay equations in real mathematical models.

Now well known, one of the more challenging aspects of mathematical biology is

neutral competitive modelling. In 1987, Gopalsamy & Zhang [21] first introduced and

investigated the equation

N ′(t) = rN(t)

[
1 − N(t − τ) + cN ′(t − τ)

K

]
,

we may think of N as a species grazing upon vegetation, which takes time τ to recover

(for details, see Gopalsamy & Zhang [21]). Since then, some scholars start to consider the

neutral equation of population dynamics with delay [32, 19]).

In particular, Kuang [31] proposed the following open problem (Open Problem 9.2) in

1993: How to obtain sufficient conditions for existence of a periodic solution for equation

N ′(t) = N(t)[a(t) − β(t)N(t) − bN(t − τ(t)) − cN ′(t − τ(t))],

where a(t), β(t), b(t), τ(t), c(t) are nonnegative continuous T -periodic functions.

When a(t), β(t), b(t), τ(t) are positive and c(t) = 0, for systems such a problem was

considered by Freedman & Wu [15] and Tang & Kuang [45]. Li [33] and Fang & Li [14]

have investigated the above problem.
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Despite the fact that differential delay equations have been used in the modeling of sci-

entific phenomena for many years, often it has been assumed that the delays are either fixed

constants or are given as integrals (distributed delays). However, in recent years, the more

complicated situation in which the delays depend on the unknown functions has been pro-

posed in models [1, 2, 5, 11, 12, 17, 25, 39, 43], these equations are frequently called equa-

tions with state-dependent delay (See Arino et al. [3] for a brief review on state-dependent

delay models). In population dynamics, it is a well-known fact that many types of struc-

tured population models can be reduced to the study of functional differential equations,

state-dependent delays result frequently from stage transition thresholds dependent upon

the population. Let N(t) denote the size of a population at time t, for example, assume that

the number of births is a function of the population size only, the birth rate is thus a density

dependent but not age dependent. Assume that the lifespan τ of individuals in the popu-

lation is variable and is a function of the current population size. If we take into account

the crowding effects, then τ(·) is a decreasing function of the population size. Since the

population size N(t) is equal to the total number of living individuals, we have (Béair [5])

N(t) =

∫ t

t−τ(N(t))

b(N(s))ds. (1.4)

Differentiating with respect to the time t on both sides of (1.4) leads to a state-dependent

delay model of the form

N ′(t) =
b(N(t)) − b(N(t − τ(N(t))))

1 − τ′(N(t))b(N(t − τ(N(t))))
. (1.5)

Note that state-dependent delay equation (1.5) is not equivalent to the integral equation

(1.4). It is clear that every solution of (1.4) is a solution of (1.5) but the reverse is not true.

In fact, any constant function is a solution of (1.5) but clearly it may not necessarily be

a solution of (1.4). The asymptotic behavior of the solutions of (1.5) has been studied by

Béair [5]. Recently, great attention has been paid on the study of state-dependent delay

equations. Li & Kuang [37] studied the existence of a periodic solution for the following

general nonlinear nonautonomous differential equation with state-dependent delay

N ′(t) = N(t)F[t, N(t − τ(t, N(t)))].

Where they assume that both F and τ are periodic with the same periodicity. In 2005,

Yang & Cao [49] studied the existence of periodic solutions in neutral system of the form

N ′(t) = N(t)F[t, N(t − τ(t, N(t))), N ′(t − τ(t, N(t)))].

Furthermore, frequently, one can find that an ecosystem in the real world is continuously

distributed by some forces, which can result in changes in the biological parameters such

as survival rates. Of practical interest in ecology is the question of whether or not an

ecosystem can withstand those disturbances, which persist for a finite period of time. In

the language of control variables, we call the disturbance functions control variables. As

a result, some authors try to change the position of the existing periodic solution to keep

its stability. This is of significance in the control of ecology balance. One of the methods
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for us realization of it is to alter the system structurally by introducing feedback control

variables so as to get a population stabilizing at another periodic solution. In fact, during

the last decade, the qualitative behaviour of the population dynamics with feedback

control has been studied extensively. The interested reader is referred to Gopalsamy [18]

and Chen et al. [10], and the references cited therein.

In this paper, we shall investigate the sufficient conditions for the existence of positive

periodic solutions of a class of general neutral delay differential equations of the form

{
N ′(t) = N(t)F[t, N(t), N(t − τ(t, N(t))), N ′(t − γ(t)), P (t), P (t − µ(t))]

P ′(t) = −e(t)P (t) + k(t)N(t) + h(t)N(t − σ(t))
, (1.6)

here we assum that e(t), k(t), h(t), γ(t), µ(t), σ(t) ∈ C(R, [0,+∞)) are T -periodic function

and T is a positive constant, τ ∈ C(R2, [0,+∞)) is a T -periodic function with respect to

its first argument. And

F(t, z1, z2, z3, z4, z5) ∈ C(R6, R),

F(t + T , z1, z2, z3, z4, z5) = F(t, z1, z2, z3, z4, z5).

It is easy to see that (1.6) includes many mathematical models of delay. Some special

cases of (1.6) have been occurred widely in many references [1]–[39], [42]–[51].

The main objective of this paper is to obtain abstract theories for existence of a periodic

solution of (1.6), by using the theory of topological degree. We shall see that the conditions

are quite weak; from those conditions it is easy to obtain the sufficient conditions for

many actual population dynamic models. In addition, the method is more suitable to

state-dependent delay, and which have further applications in many fields. In order to

illustrates the effectiveness of the theoretical result, we should also study the existence of

positive periodic solutions for the following equations

⎧⎨
⎩
N ′(t) = N(t)[a(t) − β(t)N(t) − b(t)N(t − τ(t, N(t))) − c(t)N ′(t − γ(t))

− l(t)P (t) − m(t)P (t − µ(t))]

P ′(t) = −e(t)P (t) + k(t)N(t) + h(t)N(t − σ(t))

, (1.7)

where a(t), β(t), b(t), c(t), l(t), m(t), e(t), k(t), h(t) are nonnegative continuous T -periodic

functions.

Today, it has been recognized that the theory of existence occupies an important place

among exact mathematical methods being used in the design and analysis of control

systems. To my knowledge, most research on neutral delay differential equations has

been restricted to simple cases of constant delays; few papers consider variable delay

and state-dependent delay. And most existing result on the existence of periodic solutions

in periodic systems are usually obtained by the technique of bifurcation, by fixed-point

theorems, or by monotone semiflow theory, but those conditions for existence are often

unnecessary, and difficult to satisfy. Specifically, all of the above methods are ill suited to

problems with state-dependent delay equations. Therefore, it is necessary to study neutral

model with state-dependent delay and feedback control.
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2 Preliminaries

To obtain sufficient conditions for a positive periodic solution of (1.6), we first make the

following preparations.

Let X and Z be two Banach spaces, L : DomL ⊂ X −→ Z be a linear mapping (a linear

mapping is called linear Fredholm mapping with index zero if dimKerL = dim ImQ <

+∞ and ImL is closed in Z), and N : X −→ Z be a continuous mapping. It follows now

from the definition of a Fredholm mapping and from basic results of linear functional

analysis that there exist continuous projectors

P : X −→ KerL, Q : Z −→ Z/ ImL,

so that X = KerP ⊕ KerL, Z = ImQ ⊕ ImL, and dimKerL = dim ImQ.

If we define LP : domL ∩ KerP −→ ImL by LP = L|domL∩KerP , obviously, LP is one to

one, so that its (algebraic) inverse KP : ImL −→ domL ∩ KerP is defined, i.e. KP = L−1
P ;

we denote KP,Q : Z −→ domL∩KerP , the generalized inverse of LP , by KP,Q = KP (I−Q).

To solve Lx = Nx, we embed it in a one-parameter family of equations

Lx = N∗(x, λ), λ ∈ [0, 1], (2.1)

where N∗ : X × [0, 1] −→ Z is continuous and N∗(x, 1) = Nx. For the equation Lx =

N∗(x, λ), we have L(Px + (I − P )x) = QN∗(x, λ) + (I − Q)N∗(x, λ), that is

L(I − P )x = QN∗(x, λ) + (I − Q)N∗(x, λ).

We obtain that

(I − P )x = KP (I − Q)N∗(x, λ), QN∗(x, λ) = 0.

Then

x = Px + KP (I − Q)N∗(x, λ) + JQN∗(x, λ),

where J : ImQ −→ KerL = ImP is a linear mapping. Assume Ω ⊂ X is a bounded open

set and N∗ : Ω × [0, 1] −→ Z is L-compact (i.e. QN∗ and KP,QN
∗ are relatively compact

on Ω × [0, 1]). Let

A(λ) = P + KP (I − Q)N∗(λ) + JQN∗(λ).

Then (2.1) can be replaced x = A(λ)x.

Define the coincidence degree

D{(L,N∗(x, λ)), Ω} = deg{I − A(λ), Ω, 0},

where deg denotes the Leray–Schauder degree. In the sequel, we shall give the following

Lemmas.

Lemma 2.1 Let X and Z be two Banach spaces and L be a Fredholm mapping of index

zero. Assume that Ω ⊂ X is a bounded open set and N∗ : Ω × [0, 1] −→ Z is L-compact.

For each x ∈ domL ∩ ∂Ω, Lx � N∗(x, λ), λ ∈ [0, 1], and D{(L,N∗(x, λ)), Ω} � 0. Then

Lx = Nx has at least one solution in domL ∩ Ω.
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Proof For each x ∈ domL ∩ ∂Ω and λ ∈ [0, 1], if Lx�N∗(x, λ), then

x�A(λ)x, i.e.x − A(λ)x� 0.

By using the property of invariance of the degree under a homology and the condition

D{(L,N∗(x, λ)), Ω} � 0, we obtain

D{(L,N∗(x, λ)), Ω} = deg{I − A(λ), Ω, 0} = deg{I − A(1), Ω, 0} � 0.

From the definition and properties of Leray-Schauder degree, it follows that x = A(1)x

with x ∈ domL ∩ Ω. Therefore Lx = Nx has at least one solution in x ∈ domL ∩ Ω.

In particular, when N∗(x, λ) = λNx, we have

A(λ) = P + λKp(I − Q)N + JQN,

and hence

D{(L,N∗(x, λ)), Ω} = deg{I − A(λ), Ω, 0}
= deg{I − A(1), Ω, 0}
= deg{I − A(0), Ω, 0}
= deg{−JQN|KerL∩Ω,KerL ∩ Ω, 0}
= (−1)n deg{JQN|KerL∩Ω,KerL ∩ Ω, 0}, (2.2)

where n = dimKerL. �

An important consequence of Lemma 2.1 is the following:

Lemma 2.2 Let X and Z be two Banach spaces and L be a Fredholm mapping of index

zero. Assume that Ω ⊂ X is a bounded open set and N : Ω −→ Z is L-compact (i.e.

QN and Kp,QN are relatively compact on Ω). Then Lx = Nx has at least one solution in

domL ∩ Ω, if the following conditions are satisfied:

(i) For each λ ∈ (0, 1], x ∈ domL ∩ ∂Ω, Lx� λNx;

(ii) For each x ∈ KerL ∩ ∂Ω, QNx� 0 and deg{JQN|KerL∩Ω,KerL ∩ Ω, 0} � 0.

Proof From assumption (i), we deduce at once x � A(λ)x, with x ∈ domL ∩ ∂Ω and

λ ∈ (0, 1]. If x0 = A(0)x0 for some x0 ∈ domL ∩ ∂Ω, then JQNx0 = 0 i.e. QNx0 = 0, this

contradicts assumption (ii), therefore x�A(λ)x, for each x ∈ domL ∩ ∂Ω, λ ∈ [0, 1]. That

is Lx � λNx with x ∈ domL ∩ ∂Ω, λ ∈ [0, 1]. And from (2.2), it is easy to verify that

D{(L,N∗(x, λ)), Ω} � 0. Thus, the condition of Lemma 2.1 holds. �

Lemma 2.3 (N(t), P (t)) is a T -periodic solution of (1.6) if and only if it is a T -periodic

solution of the equation{
N ′(t) = N(t)F[t, N(t), N(t − τ(t, N(t))), N ′(t − γ(t)), P (t), P (t − µ(t))]

P (t) =
∫ t+T

t
G(t, s)[k(s)N(s) + h(s)N(s − σ(s))]ds := (ΦN)(t)

, (2.3)

where G(t, s) = e
∫ s

t
e(r)dr(e

∫ T

0 e(r)dr − 1)−1
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Proof The proof is similar to that of Lemma 2.2 in Chen et al. [10].

If let (N(t), P (t)) be a T -periodic solution of (1.6), by using the variation-of-constant

formulas, then each T -periodic solution of the equation

P ′(t) = −e(t)P (t) + k(t)N(t) + h(t)N(t − σ(t))

is equivalent to that of the equation

P (t) = P (0)e−
∫ t

0 e(r)dr +

∫ t

0

[k(s)N(s) + h(s)N(s − σ(s))]e
∫ s

t
e(r)drds.

And then

P (t + T )

= P (0)e−
∫ t

0 e(r)dr × e−
∫ t+T

t
e(r)dr +

∫ t

0

[k(s)N(s) + h(s)N(s − σ(s))]e
∫ s

t
e(r)dr

× e
∫ t

t+T
e(r)drds +

∫ t+T

t

[k(s)N(s) + h(s)N(s − σ(s))]e
∫ s

t
e(r)dr × e

∫ t+T

t
e(r)drds

= P (t)e−
∫ T

0 e(r)dr +

∫ t+T

t

[k(s)N(s) + h(s)N(s − σ(s))]e
∫ s

t
e(r)dr × e

∫ T

0 −e(r)drds.

From the periodicity of P (t), it follows that

P (t) =

∫ t+T

t

G(t, s)[k(s)N(s) + h(s)N(s − σ(s))]ds.

On the other hand, assume (N(t), P (t)) is a T -periodic solution of (2.3), it is easy to see

that

P ′(t)=

[∫ t+T

t

G(t, s)[k(s)N(s) + h(s)N(s − σ(s))]ds

]′

= −e(t)P (t) + k(t)N(t) + h(t)N(t − σ(t)).

�

3 Main results

Theorem 3.1 (1.6) has least one T -periodic positive solution, if the following conditions

are satisfied:

(a) There exists a number C > 0, such that

∣∣∣F [
t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)), Φ(ex)(t), Φ(ex)(t − µ(t))

]∣∣∣ < C,

if x(t) is a C1 T -periodic function;

(b) There exists a number R > 0, such that for every x1, x2, x3, x4 � R and uniformly in

t ∈ [0, T ],

F (t, ex1 , ex2 , 0, Φ(ex3 ), Φ(ex4 )) < 0 and F
(
t, e−x1 , e−x2 , 0, Φ(e−x3 ), Φ(e−x4 )

)
> 0,
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or

F (t, ex1 , ex2 , 0, Φ(ex3 ), Φ(ex4 )) > 0 and F
(
t, e−x1 , e−x2 , 0, Φ(e−x3 ), Φ(e−x4 )

)
< 0.

Proof We shall apply Lemma 2.2 to construct the set Ω by the method of a priori bounds.

From Lemma 2.2, let us consider the following equation

x′(t) = F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)), Φ(ex)(t), Φ(ex)(t − µ(t))]. (3.1)

To use Lemma 2.2 for Eq. (3.1), we take

X =
{
x(t) ∈ C1(R,R); x(t + T ) = x(t)

}
,

Z = {z(t) ∈ C(R,R); z(t + T ) = z(t)} ,

and more ||x||0 = max
t∈[0,T ]

|x(t)|, ||x||1 = max
t∈[0,T ]

{||x||0, ||x′||0}. Then X and Z are Banach spaces

when they are endowed with the more || · ||1 and || · ||0, respectively.

Let L : domL ⊂ X −→ Z and N : X −→ Z be the following maps

Lx = x′(t),

Nx = F
[
t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)), Φ(ex)(t), Φ(ex)(t − µ(t))

]
.

Mawhin [38] gave a classical example of a Fredholm mapping, it was shown that every

linear mapping L : X −→ Z is a Fredholm mapping of index 0 (i.e. dimX − dimZ = 0)

when X and Z are finite dimensional. Clearly, L is a Fredholm mapping of index 0.

Define the continuous projective operators P and Q by

Px =
1

T

∫ T

0

x(t)dt, x ∈ X; Qx =
1

T

∫ T

0

z(t)dt, z ∈ Z.

It is easy to check that

LP : z(t) = x′(t) and

∫ T

0

x(t)dt = 0,

QNx(t) =
1

T

∫ T

0

F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]dt.

Moreover, the restriction LP of L to domL∩KerP is one to one and onto ImL. In this

case,

KP (z) =

∫ t

0

z(s)ds − 1

T

∫ T

0

[∫ t

0

z(s)ds

]
dt

=

∫ t

T

z(s)ds +
1

T

∫ T

0

sz(s)ds.
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By some computation, since KP,QN = KP (I − Q)N, we can show that KP,QN : Ω −→
domL ∩ KerP takes the form

KP (I − Q)Nx(t)

=

∫ t

T

F[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]ds

−
∫ t

T

ds
1

T

∫ T

0

F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]dt

+
1

T

∫ T

0

sF[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]ds

− 1

T

∫ T

0

ds
s

T

∫ T

0

F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]dt

=

∫ t

T

F[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]ds

+
T − t

T

∫ T

0

F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]dt

+
1

T

∫ T

0

sF[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]ds

− 1

2

∫ T

0

F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]dt

=

∫ t

T

F[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]ds

+
1

T

∫ T

0

sF[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]ds

+

(
1

2
− t

T

)∫ T

0

sF[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]ds.

Under the assumption of (1.6):

F[t, N(t), N(t − τ(t, N(t))), N ′(t − γ(t)), P (t), P (t − µ(t))] ∈ C(R6, R)
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and the condition (a) of Theorem 3.1, we can see that KP (I − Q)N is a C1 T -periodic

function in the Banach space X for any bounded open set Ω ⊂ X. Hence

||QNx||0 � max
t∈[0,T ]

1

T

∫ T

0

|F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]|dt
� C

and

||KP (I − Q)Nx||0

� max
t∈[0,T ]

∫ t

T

|F[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]|ds

+ max
t∈[0,T ]

1

T

∫ T

0

|sF[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]|ds

+ max
t∈[0,T ]

(
1

2
− t

T

)∫ T

0

|F[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]|ds

� TC + TC +
TC

2
< 3TC

for every x ∈ Ω. Moreover, for any ε > 0, there is a δ = ε/(2C), such that, for every x ∈ Ω,

|KP (I − Q)Nx(t1) − KP (I − Q)Nx(t2)|

�

∫ t1

t2

|F[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]|ds

+
|t1 − t2|

T

∫ T

0

|F[s, ex(s), ex(s−τ(s,ex(s))), x′(s − γ(s))ex(s−γ(s)),

Φ(ex)(s), Φ(ex)(s − µ(s))]|ds
� 2C|t1 − t2| < ε

for |t1 − t2| < δ and t1, t2 ∈ [0, T ].

By using the Ascoli–Arzela theorem, for every bounded subset Ω ⊂ X, then QN and

KP,QN are relatively compact on Ω in C1 space X, i.e. N is L-compact on Ω.

Consider to the operator equation Lx = λNx with λ ∈ (0, 1], consequently

x′(t) = λF[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]. (3.2)
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Assume that x(t) ∈ X is a solution of Eq. (3.2), for a certain λ ∈ (0, 1], then we have

∫ T

0

F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]dt

= 0. (3.3)

From (3.2) and (a), it follows that

|x′(t)| � |F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]|,

hence ∫ T

0

|x′| dt

= λ

∫ T

0

|F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]|dt

�

∫ T

0

|F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]|dt
< TC. (3.4)

From (3.3) and (b), it is easy to check that there exists a point t1 or t∗2, t
∗
3, t

∗
4 in [0, T ], such

that

|x(t1)| < R or |x(t∗2 − γ(t∗2))| < R, |Φ(ex)(t∗3)| < R, |Φ(ex)(t∗4 − µ(t∗4))| < R.

That is

|x(ti)| < R, i = 1 or 2, 3, 4, (3.5)

where t∗i = ti + mT , ti ∈ [0, T ], i = 2, 3, 4 and m is a integer. Indeed, if |x(t)| � R for

every t ∈ [0, T ], R > 0, by (3.3) and (b), this is a contradiction.

From (3.4) and (3.5), and since x(t) = x(ti) +
∫ t

ti
x′(t)dt, it follows that

|x(t)| � |x(ti)| +

∫ t

ti

|x′(t)| dt < R + TC.

And hence

||x||0 < R + TC.

Then, taking Ω = {x(t) ∈ X; ||x||1 < H} with H
def
= {R + TC,C}, this satisfies condition

(i) in Lemma 2.2.
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When x ∈ KerL ∩ ∂Ω = R ∩ ∂Ω, x is a constant with |x| = H , we have

QNx =
1

T

∫ T

0

F[t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)),

Φ(ex)(t), Φ(ex)(t − µ(t))]dt

=
1

T

∫ T

0

F [t, ex, ex, 0, Φ(ex), Φ(ex)] dt� 0

We now consider all cases corresponding to assumption (b).

Case 1: If x = H and F [t, ex, ex, 0, Φ(ex), Φ(ex)] > 0, let h(u, x) = ux + (1 − u)QNx with

u ∈ [0, 1] and x ∈ R ∩ ∂Ω. So that xh(u, x) > 0, hence h(u, x) � 0. According to the

invariant of homology, we obtain

deg{JQN|KerL∩Ω,KerL ∩ Ω, 0} = deg{I, KerL ∩ Ω, 0} � 0

Case 2: If x = H and F [t, ex, ex, 0, Φ(ex), Φ(ex)] < 0, let h(u, x) = −ux + (1 − u)QNx, then

deg{JQN|KerL∩Ω,KerL ∩ Ω, 0} = deg{−I, KerL ∩ Ω, 0} � 0

Case 3: If x = −H and F [t, ex, ex, 0, Φ(ex), Φ(ex)] > 0 or F [t, ex, ex, 0, Φ(ex), Φ(ex)] < 0, in

the same way of proof as case 1 or case 2, we can get

deg{JQN|KerL∩Ω,KerL ∩ Ω, 0} � 0.

By now, we have verified all the requirements in Lemma 2.2; hence, (3.1) has at least one

T -periodic solution x∗(t). Set N∗(t) = ex
∗(t), then N∗(t) is a T -periodic positive solution

of (2.3), From Lemma 2.3, we complete the proof of Theorem 3.1. �

Theorem 3.2 Let us assume that conditions of Theorem 3.1 hold, and then the conclusion

of Theorem 3.1 holds for the following equation:{
N ′(t) = −N(t)F[t, N(t), N(t − τ(t, N(t))), N ′(t − γ(t)), P (t), P (t − µ(t))]

P ′(t) = −e(t)P (t) + k(t)N(t) + h(t)N(t − σ(t))
.

Proof Its proof is similar to the proof of Theorem 3.1. Here we omit it. �

Remark 1 Even if τ(t, N(t)), γ(t), µ(t), σ(t) is negative, from the proof of Theorem 3.1, it is

easy to see that the conclusion of Theorem 3.1 and Theorem 3.2 is still true. In addition,

the conditions of Theorem 3.1 are relatively weak. In many special cases, those conditions

can be easily checked.

Using Theorem 3.1, we can get many corollaries; the following are examples:

Corollary 3.1 Assume that x(t) is a C1 T -periodic function and there exist two numbers

C,R > 0, such that the following conditions hold:

https://doi.org/10.1017/S0956792506006723 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006723


748 Z. Yang

(1)
∣∣∣F [

t, ex(t), ex(t−τ(t,ex(t))), x′(t − γ(t))ex(t−γ(t)), Φ(ex)(t), Φ(ex)(t − µ(t))
]∣∣∣ < C,

if x(t) is a T -periodic function;

(2) F [t, ex1 , ex2 , 0, Φ(ex3 ), Φ(ex4 )] < 0, F
[
t, e−x1 , e−x2 , 0, Φ(e−x3 ), Φ(e−x4 )

]
> 0,

with xi � R, i = 1, 2, 3, 4, and uniformly in t ∈ [0, T ].

Then the conclusion of Theorem 3.1 and Theorem 3.2 holds.

Proof Its proof is direct outcome of Theorem 3.1, we omit it. �

Corollary 3.2 Assume that τ (t, N(t)) = γ(t), x(t) is a C1 T -periodic function and there

exist two numbers C1, C2 > 0, such that the following conditions hold:

(1) F
[
t, ex1 , ex2 , x′

2e
x2 , Φ(ex3 ), Φ(ex4 )

]
� C2 or F

[
t, ex1 , ex2 , x′

2e
x2 , Φ(ex3 ), Φ(ex4 )

]
� −C2, with√

x2
1 + x2

2 +
(
x′

2

)2
+ x2

3 + x2
4 > C1;

(2) F [t, ex1 , ex2 , 0, Φ(ex3 ), Φ(ex4 )] > 0 and F
[
t, e−x1 , e−x2 , 0, Φ(e−x3 ), Φ(e−x4 )

]
< 0,

with x1, x2, x3, x4 � C1,or x1, x2, x3, x4 � −C1 and uniformly in t ∈ [0, T ].

Then the conclusion of Theorem 3.1 and Theorem 3.2 also holds.

Proof Without loss of generality, we may assume that F
[
t, ex1 , ex2 , x′

2e
x2 , Φ(ex3 ), Φ(ex4 )

]
�

C2 when

√
x2

1 + x2
2 +

(
x′

2

)2
+ x2

3 + x2
4 > C1. Since x(t) is a continuous T -periodic function,

let

Ω1 =

{
t ∈ [0, T ]

∣∣∣∣
√
x2

1 + x2
2 +

(
x′

2

)2
+ x2

3 + x2
4 > C1

}
and

Ω2 =

{
t ∈ [0, T ]

∣∣∣∣
√
x2

1 + x2
2 +

(
x′

2

)2
+ x2

3 + x2
4 � C1

}
.

And so, in view of the fact that

Nx = F
[
t, ex(t), ex(t−γ(t)), x′(t − γ(t))ex(t−γ(t)), Φ(ex)(t), Φ(ex)(t − µ(t))

]
,

which implies that F maps a bounded continuous function to a bounded function, there

exists a number C ′
2 > 0 so that

∣∣F [
t, ex(t), ex(t−γ(t)), x′(t − γ(t))ex(t−γ(t)), Φ(ex)(t), Φ(ex)(t − µ(t))

]∣∣ < C ′
2

in Ω2. Taking C = max{C2, C
′
2}, therefore

∣∣F [
t, ex(t), ex(t−γ(t)), x′(t − γ(t))ex(t−γ(t)), Φ(ex)(t), Φ(ex)(t − µ(t))

]∣∣ < C.

From Theorem 3.1, we derive that the conclusion of Corollary 3.2 holds. �

Theorem 3.3 Assume that

(a) a(t), β(t), e(t) ∈ C(R, (0,+∞)), c(t) ∈ C1(R, [0,+∞)), γ(t) ∈ C2(R, [0,+∞)),

(b) u
def
= min

t∈[0,T ]
{u(t) ∈ C(R,R); u(t + T ) = u(t)} , γ′(t) < 1 and ||c||0eR2 < 1.
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where

d(t) =
c(t)

1 − γ′(t)
, V = − d′(t)

1 − γ′(t)
,

R2 = ln
||a||0

θ1(β + V )
+

||d||0||a||0
θ2β(1 − γ′)

+ 2T ||a||0.

Then (1.7) has at least one positive T -periodic solution.

Proof Consider the equation

x′(t) = a(t) − β(t)ex(t) − b(t)ex(t−τ(t,ex(t))) − c(t)x′(t − γ(t))ex(t−γ(t))

− l(t)Φ(ex)(t) − m(t)Φ(ex)(t − µ(t)). (3.6)

If x(t) ∈ X is a solution of (3.6), then integrating this identity on [0, T ], we have

∫ T

0

[a(t) − β(t)ex(t) − b(t)ex(t−τ(t,ex(t))) − d(t)(1 − γ′(t))x′(t − γ(t))ex(t−γ(t))

− l(t)Φ(ex)(t) − m(t)Φ(ex)(t − µ(t))]dt

=

∫ T

0

[a(t) − β(t)ex(t) − b(t)ex(t−τ(t,ex(t))) + d(t)ex(t−γ(t))

− l(t)Φ(ex)(t) − m(t)Φ(ex)(t − µ(t))]dt

= 0.

That is

∫ T

0

[β(t)ex(t) + b(t)ex(t−τ(t,ex(t))) − d′(t)ex(t−γ(t))

+ l(t)Φ(ex)(t) + m(t)Φ(ex)(t − µ(t))]dt

=

∫ T

0

a(t)dt. (3.7)

From (3.6) and (3.7), we have

x′(t) + d(t)
(
ex(t−γ(t))

)′

= a(t) − β(t)ex(t) − b(t)ex(t−τ(t,ex(t))) − l(t)Φ(ex)(t) − m(t)Φ(ex)(t − µ(t)),
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and hence ∫ T

0

∣∣∣(x(t) + d(t)ex(t−γ(t))
)′

∣∣∣ dt
=

∫ T

0

|a(t) − β(t)ex(t) − b(t)ex(t−τ(t,ex(t))) + d′(t)ex(t−γ(t))

− l(t)Φ(ex)(t) − m(t)Φ(ex)(t − µ(t))|dt

�

∫ T

0

[β(t)ex(t) + b(t)ex(t−τ(t,ex(t))) − d′(t)ex(t−γ(t))

+ l(t)Φ(ex)(t) + m(t)Φ(ex)(t − µ(t))]dt +

∫ T

0

a(t)dt

� 2

∫ T

0

a(t)dt � 2T ||a||0. (3.8)

It follows from ((3.7) that

∫ T

0

a(t)dt

= θ1

∫ T

0

[β(t)ex(t) + b(t)ex(t−τ(t,ex(t))) − d′(t)ex(t−γ(t))

+ l(t)Φ(ex)(t) + m(t)Φ(ex)(t − µ(t))]dt

+ θ2

∫ T

0

[β(t)ex(t) + b(t)ex(t−τ(t,ex(t))) − d′(t)ex(t−γ(t))

+ l(t)Φ(ex)(t) + m(t)Φ(ex)(t − µ(t))]dt, (3.9)

where θ1, θ2 > 0, and θ1 + θ2 = 1.

Let g = t − γ(t), t = ϕ(g) be the inverse function of g = t − γ(t), then

∫ T

0

d′(t)ex(t−γ(t))dt =

∫ T−γ(T )

−γ(0)

d′(ϕ(g))

1 − γ′(ϕ(g))
ex(g)dt

=

∫ T

0

d′(ϕ(g))

1 − γ′(ϕ(g))
ex(g)dt.

By the Mean Value Theorem, this implies that there exists a point for some η1 ∈ [0, T ] ,

such that ∫ T

0

d′(t)ex(t−γ(t))dt =
d′(η1)

1 − γ′(η1)

∫ T

0

ex(t)dt.

Similarly ∫ T

0

β(t)ex(t)dt = β(η2)

∫ T

0

ex(t)dt

for some η2 ∈ [0, T ].

Let V = −d′/
(
1 − γ′), it follows that

∫ T

0

a(t)dt � (β(η2) + V (η1))

∫ T

0

ex(t)dt (3.10)
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and hence

a(ξ) � (β(η2) + V (η1)) e
x(ξ)

for some ξ ∈ [0, T ], that is

x(ξ) � ln
a(ξ)

β(η2) + V (η1)
.

Thus

ln
a

||β||0 + ||V ||0
� x(ξ) � ln

||a||0
β + V

Therefore, we obtain

|x(ξ)| � max

(∣∣∣∣ln a

||β||0 + ||V ||0

∣∣∣∣ ,
∣∣∣∣ln ||a||0

β + V

∣∣∣∣
)

def
= R1. (3.11)

Similarly ∫ T

0

β(t)ex(t)dt =

∫ T−γ(T )

−γ(0)

β(t − γ(t))ex(t−γ(t))
(
1 − γ′(t)

)
dt

=

∫ T

0

β(t − γ(t))ex(t−γ(t))
(
1 − γ′(t)

)
dt

= β(δ1 − γ(δ1))
(
1 − γ′(δ1)

) ∫ T

0

ex(t−γ(t))dt

for some δ1 ∈ [0, T ], and∫ T

0

d′(t)ex(t−γ(t))dt = d′(δ2)

∫ T

0

ex(t−γ(t))dt

for some δ2 ∈ [0, T ]. Clearly∫ T

0

a(t)dt �
(
β(δ1 − γ(δ1))

(
1 − γ′(δ1)

)
− d′(δ2)

) ∫ T

0

ex(t−γ(t))dt. (3.12)

From (3.9), (3.10) and (3.12), we obtain∫ T

0

a(t)dt � θ1 (β(η2) + V (η1))

∫ T

0

ex(t)dt

+ θ2

(
β(δ1 − γ(δ1))

(
1 − γ′(δ1)

)
− d′(δ2)

) ∫ T

0

ex(t−γ(t))dt.

That is,

a(ζ) � θ1 (β(η2) + V (η1)) e
x(ζ)

+ θ2

(
β(δ1 − γ(δ1))

(
1 − γ′(δ1)

)
− d′(δ2)

)
ex(ζ−γ(ζ))

for some ζ ∈ [0, T ]. Therefore, we have

x(ζ) � ln
a(ζ)

θ1 (β(η2) + V (η1))
� ln

||a||0
θ1(β + V )

, (3.13)
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ex(ζ−γ(ζ)) �
a(ζ)

θ2 (β(δ1 − γ(δ1)) (1 − γ′(δ1)) − d′(δ2))

�
||a||0

θ2β(1 − γ′)
. (3.14)

Form (3.11), (3.13) and (3.14), It follows that

x(t) + d(t)ex(t−γ(t))

� x(ζ) + d(ζ)ex(ζ−γ(ζ)) +

∫ T

0

∣∣∣(x(t) + d(t)ex(t−γ(t))
)′

∣∣∣ dt
� ln

||a||0
θ1(β + V )

+
||d||0||a||0
θ2β(1 − γ′)

+ 2T ||a||0
def
= R2.

And from (2.3) then

Φ(ex)(t) =

∫ t+T

t

G(t, s)[k(s)ex(s) + h(s)ex(s−σ(s))]ds

� eR2
(
||k||0 + ||h||0

) 1

e

∫ t+T

t

G(t, s)e(s)ds

=eR2
(
||k||0 + ||h||0

) 1

e
.

Hence, we have

|x′(t)| = |a(t) − β(t)ex(t) − b(t)ex(t−τ(t,ex(t))) − c(t)x′(t − γ(t))ex(t−γ(t))

− l(t)Φ(ex)(t) − m(t)Φ(ex)(t − µ(t))|
� ||a||0 + ||β||0eR2 + ||b||0eR2 + ||c||0||x′(t − γ(t))||0eR2

+ ||l||0Φ(ex)(t) + ||m||0Φ(ex)(t − µ(t))

� ||a||0 + ||β||0eR2 + ||b||0eR2 + ||c||0||x′(t − γ(t))||0eR2

+
(
||k||0 + ||h||0

)
(||l||0 + ||m||0)

1

e
eR2 .

Since ||c||0eR2 < 1, hence

||x′||0 <
||a||0 +

(
||β||0 + ||b||0 +

(
||k||0 + ||h||0

)
(||l||0 + ||m||0) 1

e

)
eR2

1 − ||c||0eR2

def
= M1. (3.15)

From (3.15) then F satisfies conditions (a) of Theorem 3.3. And since

lim
x1 ,··· ,x5−→+∞

a(t) − β(t)ex1 − b(t)ex2 − c(t)x′
3e

x3 − l(t)Φ(ex4 ) − m(t)Φ(ex5 ) = −∞,

lim
x1 ,··· ,x5−→−∞

a(t) − β(t)ex1 − b(t)ex2 − c(t)x′
3e

x3 − l(t)Φ(ex4 ) − m(t)Φ(ex5 ) = a(t),
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uniformly for t ∈ [0, T ], we can see that there exist a number R > 0, such that F satisfies

conditions (b) of Theorem 3.3. Therefore, we obtain the conclusion of Theorem 3.3. The

proof is complete.

Next, we give an example of (1.7) to demonstrate the conditions of Theorem 3.3 are

not contradicting and to give an impression how restrictive these conditions are. �

Example The state-dependent delay differential equation

⎧⎪⎪⎨
⎪⎪⎩
N ′(t) = N(t)[(2 + sin t)e−5 − 10esin2 tN(t) − (1 + sin t)N(t − 1

2
N(t) cos2 t)

− (1 − 1
2
sin 2t) sin2 tN ′(t − 1

2
sin2 t)

− (1 + sin t)P (t) − (1 + cos t)P (t − sin 2t)]

P ′(t) = −esin tP (t) + sin2 tN(t) + cos2 tN(t − sin t)

(3.16)

has a positive 2π-periodic solution.

Indeed, without loss of generality, assume that θ1 = θ2 = 1
2
. Evidently,

a(t) = (2 + sin t)e−5 > 0, β(t) = 10esin2 t > 0, b(t) = (1 + sin t) � 0,

τ(t) =
1

2
N(t) cos2 t, c(t) = (1 − 1

2
sin 2t) sin2 t � 0, γ(t) =

1

2
sin2 t � 0,

1 − γ′(t) = 1 − 1

2
sin 2t > 0, d(t) =

c(t)

1 − γ′(t)
= sin2 t � 0,

V (t) = − d′(t)

1 − γ′(t)
, β(t) + V (t) = 10esin2 t − sin 2t

1 − 1
2
sin 2t

> 0.

Further

R2 = ln
||a||0

θ1(β + V )
+

||d||0||a||0
θ2β(1 − γ′)

+ 2T ||a||0

= ln
3e−5

1
2
(10 − 4)

+
3e−5

1
2
(5 − 2)

+ 12πe−5

= −5 + 4e−5 + 12πe−5 < −4,

||c||0eR2 < 1.

By applying Theorem 3.3 to this example with 2π-periodic coefficients, we shall find that

all the conditions of Theorem 3.3 are satisfied; and then (3.16) has at least one positive

2π-periodic solution.

Remark 2 Applying the method above, we can also study the following more general

periodic systems with several delays:

{
N ′(t) = N(t)F[t, N(t), N(t − τi(t, N(t))), N ′(t − γi(t)), P (t), P (t − µi(t))]

P ′(t) = −e(t)P (t) + k(t)N(t) + h(t)N(t − σi(t))
.
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Moreover, for neutral differential equation with several delays of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N ′(t) = N(t)[a(t) − β(t)N(t)−
n∑

i=1

bi(t)N(t − τi(t, N(t)))

−
n∑

i=1

ci(t)N
′(t − γi(t)) − l(t)P (t) −

n∑
i=1

mi(t)P (t − µi(t))]

P ′(t) = −e(t)P (t) + k(t)N(t) +
n∑

i=1

hi(t)N(t − σi(t))

,

where a(t), β(t), bi(t), ci(t), l(t), mi(t), e(t), k(t), hi(t) are nonnegative continuous T -periodic

functions, we can derive some similar results like to Theorems 3.1 and 3.3.

4 Conclusion

If the environment is not temporally constant (e.g., seasonal effects of weather, food

supplies, mating habits, etc.), then the parameters become time-dependent. It has been

suggested by Nicholson [40] that any periodic change of climate tends to impose its

period upon oscillations of internal origin or to cause such oscillations to have a harmonic

relation to periodic climatic changes. A very basic and important problem in the study of a

population growth model with a periodic environment is the global existence and stability

of positive periodic solution, which plays a similar role as a globally stable equilibrium

does in an autonomous model. Thus, it is reasonable to seek conditions under which the

resulting periodic nonautonomous system would have a positive periodic solution that is

globally asymptotically stable.

We can see that the continuation theorem of coincidence degree theory is an effective

tool for establishing the existence of periodic solutions in periodic equations with certain

dissipativity (such solutions are eventually uniformly bounded). The method presented

in this paper is more suitable to general periodic delays; it is conceivable that it can be

applied to certain systems of delay differential equations as well. However uniqueness and

stability are not guaranteed when the delays are not constant. In fact, it is still an open

problem to study the dynamics, such as uniqueness and stability of periodic solutions and

bifurcations, for the following simply periodic delay logistic equation

N ′(t) = r(t)N(t)

[
1 − N(t − τ(t))

K(t)

]
,

where τ(t) is a positive periodic function. As Schley & Gourley [41] showed, the periodic

delays can have either a stabilizing effect or a destabilizing one, depending on the frequency

of the periodic perturbation.
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