
Macroeconomic Dynamics, 4, 2000, 373–414. Printed in the United States of America.

MD SURVEY

EVOLUTIONARY ALGORITHMS IN
MACROECONOMIC MODELS
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Simon Fraser University
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This paper provides a survey of the applications of evolutionary algorithms in
macroeconomic models. Discussion is organized around the issues related to stability of
equilibria, equilibrium selection, transitional dynamics, and the long-run evolutionary
dynamics different from rational-expectations equilibrium outcomes. The survey also
discusses criteria that can be used to evaluate the performance and usefulness of
evolutionary algorithms in the macroeconomic context.
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1. INTRODUCTION

The objective of this survey is to address the issues related to the macroeconomic
models in which agents’ adaptation is modeled using the evolutionary algorithms:
genetic algorithms, classifier systems, and genetic programming. The common
feature of these algorithms is the process of adaptation that is based on propagation
of decision rules that performed well in the past and on occasional experimentation
with new decision rules.1

In macroeconomic environments, agents’ heterogenous beliefs and decisions
affect the levels of endogenously determined prices, which in turn affect agents’
payoffs and performance of different decision rules over time. This self-referential
character of these economies is the main distinction between these environments
and other economic applications of these algorithms.

There are several advantages to modeling adaptation in this way. These algo-
rithms impose low requirement on the computational ability of economic agents.
They allow for modeling the heterogeneity of agents’ beliefs. Survival of decision
rules depends on their performance, measured by the payoff that agents receive by
employing them. Also, these algorithms perform better than models with rational
agents or alternative models of adaptive behavior in terms of their ability to explain
the features observed in experimental economies, as well as some of the features
of the actual macroeconomic time series.
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The research questions addressed by the studies of these algorithms in macro-
economic models can be classified into four categories: (1) the issues related to
the convergence and stability of equilibria in the models with unique rational-
expectations equilibria, (2) the use of the algorithms as equilibrium selection de-
vices in the models with multiple equlibiria, (3) the examination of transitional
dynamics that accompanies the equilibrium selection process, (4) examination
of learning dynamics that are intrinsically different from the dynamics of the
rational-expectations versions of the models. The exposition in this survey follows
this categorization.

The survey also focuses on the methodology for evaluting the usefulness of
these algorithms in modeling adaptive behavior. One of the evaluation criteria
is the comparison of the predictions of the evolutionary models with those of
the rational-expectations models and other learning algorithms. Further, where
possible, the evaluation will include the comparison of the features of the time
series generated by these algorithms with actual time series. Finally, in case that
evidence from the experiments with human subjects exists, the use of experimental
data in evaluating evolutionary models also is discussed.

The second section describes applications of the genetic algorithm to the cob-
web model, which has a unique rational-expectations equilibrium. The third section
gives an overview of applications in models with multiple equilibria, two-period
overlapping generations models,n-period overlapping generations model, over-
lapping generations models with periodic equilibria, a model of growth with in-
creasing returns to scale, and a search model of money. The fourth section gives an
overview of the applications that result in the long-run learning dynamics differ-
ent from the rational-expectations outcomes in an asset-pricing model, a cobweb
model, an exchange-rate model, and a model of currency crisis. The fifth section
discusses issues related to the interpretation of the results and topics for further
research.

2. LEARNABILITY OF EQUILIBRIA

2.1. Cobweb Model

Arifovic (1994) uses thegenetic algorithm[Holland (1975)] to model adaptation
of firms’ production decisions in the cobweb model. The model has a unique
rational-expectations equilibrium [Muth (1961)]. The learnability and stability of
this equilibrium have been investigated using a number of different adaptive algo-
rithms as well as simulating it in the experiments with human subjects. Thus, the
results of the genetic algorithm (GA) adaptation can be compared to the behavior
of other learning algorithms and evaluated against the experimental evidence.

The GA is a directed stochastic search algorithm based on the mechanics of
natural selection. It works with a population of binary strings (chromosomes) that
represent possible solutions to the search problem. Each binary string has a fitness
value that represents a measure of the performance in a given environment. A
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population of binary strings is updated using reproduction, crossover, and mutation.
Reproduction makes copies of binary strings and does it in such a way that, over
time, binary strings with higher fitness values receive a larger number of copies.
Crossover represents randomized exchange of parts of binary strings, whereas
mutation randomly changes the values of bit positions.2

An important feature of the GA that contributes to its efficiency isimplicit par-
allelism, a parallel processing of a large number of schemata. Aschema[Holland
(1975)] is a similarity template describing a subset of strings with similarities at
certain string positions. They are described over a ternary alphabet,{0, 1, ∗}, where
0 and 1 are considered as specific bits and∗ is a “don’t care” symbol. Holland’s
schema theorem asserts that the number of schemata with above-average fitness
increases exponentially over time. In addition, Holland (1975) demonstrated that
the operation of reproduction and crossover on successive generations causes the
candidate solutions to grow in the population approximately at a mathematically
optimal rate. Optimality is defined by viewing the search strategy as a set of multi-
armed bandit problems, for which the optimal strategy is known. In a multiarmed
bandit problem, the agent has to choose each period between one of then alterna-
tives with constant expected payoffs, which are unknown a priori.

In the cobweb model, there aren firms in a competitive market that are price
takers and that produce the same, perishable good. Because of a production lag, the
quantity produced depends on the expected price level. The cost of a production
of a firm i is given by

Ci,t = xqi,t + 1

2
ny(qi,t )

2, (1)

whereCi,t is firm i ’s cost of production for sale at timet , qi,t is a quantity it
produces for sale at timet , andx andy are parameters greater than zero. The profit
of an individual firm,5i,t , is given by

5i,t = Ptqi,t − Ci,t , (2)

wherePt is the price of the good at timet . The optimal quantity produced by firm
i at timet is given by

qi,t = 1

yn

(
Pe

i,t − x
)
, (3)

wherePe
i,t is firm i ’s expectation of pricePt . The resulting market-clearing price

is given using the demand equation

Pt = A− B
n∑

i=1

qi,t . (4)

In the unique rational-expectations equilibrium (REE), wherePe
i,t = Pe

t = Pt ,
quantityqi,t =q∗ and pricePt = P∗ are constant. If firms havenaiveexpectations,
where the expected price is equal to the last period’s price, the model converges
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to the REE for thecobweb-stablecase, that is, whenB/y< 1, and diverges away
for thecobweb-unstablecase, that is, whenB/y> 1.

In the genetic algorithm application, firms’ one-period decision rules are repre-
sented by binary strings. A firmi , i = 1 . . .n, makes a decision about its production
for time t using a binary string of finite length̀, written over{0, 1} alphabet. A
binary string is first decoded into an integer value and then normalized to give
the quantityqi,t ∈ [0,qmax], whereqmax is the maximum quantity that a firm can
produce. The quantityqi,t represents firmi ’s production decision at time periodt .

Once the quantities are determined, the market-clearing pricePt is computed
using(4). This price is in turn used to compute firms’ profits at timet . A profit
that firm i earns determines thefitness, µi,t of firm i ’s decision rule.

The population of decision rules is then updated to create a population of rules
that will be used at timet + 1. We discuss two versions of the GA that are im-
plemented to update firms’ decision rules. The first one, the basic GA, includes
application of reproduction, crossover, and mutation. The second one, the enhanced
GA, besides these three, includes the election operator.

Reproductionmakes copies of individual binary strings. The criterion used in
copying is the value of the fitness function. Binary strings with higher fitness value
are assigned higher probability of contributing an offspring that undergoes further
genetic operation. There are several different ways to perform this operator. The
one used for the cobweb applications is calledproportionate selection, where a
probability that a binary stringi receives a copyCi,t is given by

P(Ci,t ) = µi,t∑n
i=1µi,t

i = 1 . . .n. (5)

The algorithmic form of the proportionate selection is like a biased roulette wheel,
where each string is allocated a slot sized in proportion to its fitness. The number
of spins of the wheel is equal to the number of strings in a population. Each spin
yields a reproduction candidate. Once a string is selected, its exact copy is made.
Whenn copies of strings are made (the number of strings in a population is kept
constant), the reproduction is completed. These copies constitute amating pool,
which then undergoes application of other genetic operators.

Another commonly used reproduction operator istournament selection. A copy
of a string is selected in the following way: Two strings are selected randomly.
The fitness values of the two selected strings are compared and the copy of the one
with the higher fitness value is made. Strings that participated in the tournament
are placed back into the original population and thus each one can be selected for
the tournament again. These steps are repeatedn times to create a population ofn
copies.

Crossoverexchanges parts of pairs of randomly selected strings. It operates in
two stages. In the first, two strings are selected from the mating pool at random.
Then, in the second stage, a numberk is selected, again, randomly from(1 . . . `− 1)
and two new strings are formed by swapping the set of binary values to the right
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of the positionk. The total ofn/2 (n is an even integer) pairs is selected and
the crossover takes place on each pair with probabilitypcross. An example of the
crossover between two chromosomes for`= 12 andk= 5 is given below:{

1 1 0 0 1| 0 1 1 0 0 1 1

0 0 0 1 0| 1 0 0 1 1 1 0
.

The resulting two strings are{
1 1 0 0 1 1 0 0 1 1 1 0

0 0 0 1 0 0 1 1 0 0 1 1
.

Two strings that undergo crossover are recorded as two parents and the resulting
strings as two offspring.

Mutation is the process of random change of the value of a position within a
string. Each position has a small probability,pmut, of being altered by mutation,
independent of other positions. The role of this operator is to maintain population
diversity.

Theelectionoperator tests newly generated offspring before they are permitted
to become members of a new population. Apotentialfitness based on last period’s
price is computed for each offspring. Then, two parents and two corresponding
offspring are ranked according to their fitness value, from the highest to the lowest,
and the top two are taken as members of the new population of decision rules. In
case of a tie between a parent and an offspring, an offspring becomes a member
of the new population.

The application of the genetic operators on the members of populationt results
in a population of rules that are used at time periodt + 1. The above-described
steps are applied forT iterations. Initial population at time period 0 is randomly
generated.

The whole process may be given the following economic interpretation: Repro-
duction works like the imitation of successful rivals. Binary strings of these firms
have high fitness values and are copied by others. Strings with lower fitness values,
which means worse production decisions and lower profits, get fewer copies (or
none) in the next generation. Crossover and mutation are used to generate new
ideas on how much to produce and offer for sale, recombining existing beliefs and
generating new ones. If an election operator is included, the above interpretation
may be modified in the following way: In each period, firms generate new pro-
duction decisions using genetic operators. They compare the fitness of these new
potential proposals to the old set, under the market conditions observed in the past.
Only new ideas that appear promising on such grounds are actually implemented.

Note that in this application of the genetic algorithm adaptation, individual firms
do not use first-order conditions for decision making, as they do in the other learn-
ing algorithms previously studied in the context of the cobweb model. Simulations
using different cobweb and genetic algorithm parameter values converged for both
cobweb-stable-and-unstable cases. The enhanced genetic algorithm converged to
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the REE values, whereas the basic GA approached the equilibrium and then con-
tinued fluctuating around it because of the continuing effects of mutation.3

Arifovic also implements themultiple-populationGA, where each firm is en-
dowed with an entire population of strings. We can think of these strings in such
a population as an agent’s mutually competing ideas about the right behavior in
a given environment. In each time period, only one string is selected as a string
that determines agent’s behavior. The probability of choosing a particular string
is proportional to its performance under predefined conditions. Although an agent
chooses only one string from among the whole collection, she evaluates ex post
all of the alternative ideas. Thus, in the context of the cobweb model, in each time
periodt , a firm chooses one binary string from a whole collection and uses that
as its actual production decision. Once the market-clearing price is computed, the
firm uses that price to compute profits that each string in the collection would
have earned at that price level. These profits determine the binary strings’ fitness
values. Once fitness values are computed, the application of GA operators takes
place within each population of strings, that is, at the level of each individual
firm.

This is the framework that is richer than the single-population framework in that
the firms have a number of different ideas about possible production quantities.
Even though this is a more complex framework, the computational requirements are
identical to those of the single-population case. Application of the election operator
is required for the convergence of the multiple-population GA to the REE. When
the convergence occurs, all of the binary strings, in all of the populations, decode
to the REE quantity. Without the election operator, simulations are characterized
by wide and erratic fluctuations that do not die out over time. So, it appears that in
a model of individual learning, agents have to be more sophisticated, that is, use
the election operator, in order for the evolutionary model to converge to REE.

In the single-population framework, adaptation and learning take place at the
level of the entire population. This type of learning can be referred to associal
learning. On the other hand, in the multiple-population framework, learning takes
place at the individual level and thus this type of learning can be referred to as
individual learning. Note that we could add elements of social learning to the
multiple-population framework by allowing individual agents to observe occa-
sionally some of the strategies that other agents are contemplating or using.

The GA behavior and the patterns observed in the experiments with human
subjects are also contrasted with the patterns generated by three other commonly
used learning algorithms: cobweb expectations, sample average of past prices,
and least squares. This represents an example of how we can develop the criteria
for testing the performance of different learning algorithms and address the issue
related to the arbitrariness of choice of a particular algorithm. The objective is
to examine whether a model based on a particular set of behavioral assumptions
consistently outperforms models based on different behavioral assumptions in
capturing and explaining the behavior observed in the experiments with human
subjects.
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Three aspects of the Wellford’s (1989) experimental data, namely the absence
of divergent patterns in the cobweb-unstable case, fluctuations around cobweb
model equilibrium values and the greater price variance of the unstable case are
used for the evaluation of the performance of the above three learning algorithms
and the GA. Arifovic shows that the GA exhibits the same behavior, that is, is
able to capture all three features of the experimental data and does better than any
of the other three algorithms. For example, the convergence of moving-average
schemes is smooth without fluctuations, least-squares and cobweb expectations
diverge away for the cobweb-unstable case. At the same time, GA (both single-
and multiple-population designs) converge for both stable and unstable cases,
exhibiting fluctuations around the equilibrium values along the transition path.
Finally, GA price patterns also show that the price variance is greater in simulations
of the unstable case than in the simulations of the stable case. The difference is
statistically significant.

2.2. A Model with Fixed Costs and Entry/Exit Decisions

Dawid and Kopel (1998) use a version of the cobweb model with fixed costs to
illustrate how the outcomes of genetic algorithm simulations can depend on the
details of a particular coding scheme. In their version of the cobweb model, the
costs are given byCi,t = z+ yq2

i,t if qi,t > 0 and equal to 0 ifqi,t = 0. For a low
enough fixed costz, the homogenous REE exists where all firms produce identical
quantities. As the size ofz increases, there exists a heterogeneous equilibrium
with a fraction of firms producing positive quantities, while the remaining firms
stay out of the market. Both those that produce and those that do not earn zero
profits in this equilibrium. Finally, whenz reaches a high enough value, there is no
equilibrium in which firms (or fraction of them) produce positive quantities. The
implementation of the genetic algorithm is the same as the one described in the
single-population design; that is, each firm’s production decision is represented by
a binary string and reproduction, crossover, and mutation are used for the updating
of the decision rules.

For the set of the parameter values for which the unique, homogenous REE
exists, the genetic algorithm population converges to the REE quantity. For the set
of the parameter values for which only the heterogeneous equilibrium exists, the
genetic algorithm population converges to the positive quantities that are optimal,
given the observed price. However, fixed costs are so high that firms make negative
profits. Thus, this is not a REE because each individual firm would be better off
by exiting the market and making zero profits instead. Note that a homogeneous
state in which all firms set their production decisions to zero is not a REE either. In
that case, the market price would be so high that an individual firm would benefit
by making a unilateral decision to start producing again. Dawid and Kopel use the
above simulation result to demonstrate how the coding scheme can have an impact
on the results of GA adaptation using the condition for local asymptotic stability
for the GA dynamics.
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A uniform stateek (represented by a binary string) is locally asymptotically
stable withpmut= 0, and one-point crossover with probabilitypcross∈ (0, 1] if

d( j, k)

`− 1
>

1

pcross

[
1− µk(ek)

µ j (ek)

]
(6)

for all j ∈Ä, whereÄ is a set of all possible states that can be encoded with a
string of length`, j 6= k, ek is a state under consideration,ej is the state with a
higher fitness value,d( j, k) is the distance between the two outermost bits where
j andk differ in value. If there is onej 6= k such that the inequality holds the other
way round,ek is unstable.4

This condition shows that a state consisting almost only of stringsk will converge
to the uniform stateek if the strings j , which are receiving a higher fitness in the
current state, differ fromk in bits positioned far apart. The number of stringsj will
grow in proportion to their fitness. However, as long as the ratio betweenµ j (ek)

andµk(ek) is not too large, there is relatively high probability that a stringj will be
paired with a stringk and thus destroyed during crossover because any crossover
point between the two outermost differing bits will destroyj .

Dawid and Kopel show that the stateek in which all firms produce positive
quantities and make negative profits is locally stable with respect to the stringj that
prescribes zero production. This string earns zero profits and thus has higher fitness
value than stringk with negative profits. The stringk that encodes positive quantity
(0.7143) is given by 1011011011, and the string that encodes zero production is
a string of all zeros. Stringsj and k differ in the first and last bits, and thus
d( j, k)= 9. Dawid and Kopel show that, because the value ofd( j, k) divided by
`− 1 outweighs the effects of the difference in the fitness values, inequality (6)
holds, implying the local asymptotic stability of stateek.

A modified coding scheme in which an extra bit is added to the binary string
that is interpreted as an entry/exit decision (if it is equal to 0, stay out of the market
and setqi,t = 0) changes the stability results. The state that decodes to a positive
production quantity loses its stability because the decision to switch betweenq∗

and 0 requires a change of only a single bit, the entry/exit one.
Separation of the decision to enter or exit the market and a quantity determination

leads to the behavior of the algorithm in which a fraction of the firms produce
positive quantities while the remaining firms stay out of the market. The fraction
corresponds to the one required for the existence of the heterogeneous REE.

2.3. Coevolution of Different Forecasting Rules

Another interesting extension of the GA cobweb model is a paper by Franke (1998).
The paper studies the coevolution of four different types of rules used to determine
the quantities produced. The first is the “fixed-production” rule (QF strategy) in
which a binary string encodes a quantity that will be produced. The second one is
the “adaptive expectations” rule (AE strategy) where a binary string encodes the
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value of the parameterα that controls the speed of adjustment. The third is the
“regressions of order 1” rule (R1 strategy). With this rule, a binary string encodes
the length of the sample period that is used to compute the least-squares estimate
of the coefficientβ. This coefficient is then used to form price expectations. The
fourth is the “regressions of order 2” rule (R2 strategy). According to this rule,
least-squares estimate takes only prices of every second period. A binary string
encodes again the length of the sample period. Whereas the QF strategy yields a
quantity to be produced, the other three rules generate forecasts that are then used
in the first-order conditions to determine optimal quantities.

A GA population consists of binary strings that represent these four different
types of rules. It is initialized randomly with equal fractions of all four types of
rules. Reproduction is implemented on the entire population. However, crossover
is implemented separately on a subpopulation of each type of rule. These different
rules compete with each other during the genetic algorithm evolutionary process.
The system’s “collective memory” consists of the pools of four types of strategies
from which once-extinct types of strategies can be reactivated.

Franke uses the set of Arifovic’s (1994) parameter values for the cobweb-
unstable case. What are the stability properties of these different rules in the case
that each is adopted by all firms? The QF strategy results in convergence to a REE
[Arifovic (1994)]. The AE strategy is stable for a sufficiently low value ofα. Both
R1- andR2-strategy rules are locally unstable, irrespective of the sample size, for
the cobweb-unstable case.

Franke examines the behavior of the system in an environment with a determin-
istic demand curve and in a stochastic environment where there is a disturbance to
the demand curve that follows an AR(1) process. In a deterministic environment,
the GA converges to the REE in which all firms produce the same quantities, but
use different rules to make these decisions. On average, 75% use the AE strategy
whereas the QF strategy almost disappears from the population with only 0.01%
of firms, on average, using it.

The stochastic environment is characterized by the coevolution of strategies.
During coevolution, different rules get wiped out from the population and brought
back in from the collective memory. All four types of strategies survive in the
population. The largest percentage are still the AE-strategy binary strings, but
the second highest percentage is represented by QF strategies. At the same time,
R1 and R2 strategies take much smaller proportions of the adapted populations.
During the coevolutionary process, the total quantity produced by the GA strategies
remains close to the equilibrium quantity.

Competition of different rules and their coevolution results in stability of the
cobweb model that cannot be achieved when either one of the three forecasting
rules is adopted by all firms. The coevolution is characterized by continual change
in rules’ fitness values and thus by continual extinction of those rules whose fitness
falls below the average and their reappearance (when called from the collective
memory). Overall, the competition among different forecasting rules has a stabi-
lizing effect on the economic environment.
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3. EQUILIBRIUM SELECTION

In this section, we look at the use of the evolutionary algorithms as equilibrium
selection devices in three types of environments with multiplicity of equilibria:
overlapping generations economies with fiat money, growth model, and search
model of money.

3.1. Overlapping Generations Economies with Fiat Money

Overlapping generations (OG) economies with fiat money usually possess multiple
equilibrium paths and multiple stationary equilibria. These stationary equilibria
have different stability properties under the rational expectations and under the
adaptive dynamics [see, e.g., Lucas (1986), Marcet and Sargent (1989)]. The sec-
tion begins with a description of the Arifovic (1995) application of the GA to the
OG economy with two-period-lived agents and two types of monetary policy, con-
stant money supply and constant deficit finance through seignorage. The economy
consists of overlapping generations of two-period-lived agents. Each generation
consists of an equal number,N, of agents. Every agent of generationt lives over
two consecutive periods,t andt + 1, and consumesct (t) in the first period (youth)
andct+1(t) in the second period (old age). Agents have identical preferences and
endowment patterns. When young, each agent is endowed withw1 units of a per-
ishable consumption good, and withw2 units when old (w1>w2). The amount of
fiat money that government supplies at timet is given byH(t).

Each young individual faces the following maximization problem:

maxct (t)ct (t + 1)

s.t. ct
t ≤ w1− m(t)

p(t)

ct+1(t) ≤ w2+ m(t)

p(t + 1)
,

wherem(t) represents the nominal money balances that an agent acquires in the
first period and spends in the second period of his life andp(t) is the nominal price
level at time periodt . The perfect-foresight dynamics forp(t) are given by

p(t) = S(t)

S(t − 1)
p(t − 1), (7)

whereS(t) are aggregate savings of agents of generationt . If the government pur-
sues a policy of constant money supply,H(t)= H for all t , the difference equa-
tion (7) has the unique stationary, Pareto-optimal, equilibrium with valued fiat
money and constant price level; that is,p(t)= p∗ for all t , where p∗ = 2H/
2(w1−w2)N. This equilibrium is unstable under the perfect-foresight dynamics,
and is attainable only if the initial price is equal top∗. There is also a continuum
of monetary equilibria indexed by the initial price levelp0 in the interval(p∗,∞).
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All of the equilibria with an initial price greater thanp∗ converge to the stationary
equilibrium in which money has no value.

In case of the second policy, the government finances a constant deficit,G,
through seignorage; that is,G= [H(t)− H(t − 1)]/p(t). With this policy, the
model has two stationary equilibria with valued fiat money, a low-inflation sta-
tionary equilibrium,π∗1 , and a high-inflation stationary equilibrium,π∗2 . The low-
inflation stationary equilibrium is Pareto superior. The high-inflation stationary
equilibrium is the stable solution, being the attractor for a continuum of rational-
expectations equilibrium paths, starting fromπ0∈ (π∗1 , w1/w2). [If the initial in-
flation rateπ(0) is equal toπ∗1 , the system attains a low-inflation stationary equi-
librium.] The stability conditions also imply that an increase in the deficit results
in a decrease in the inflation rate of a stable stationary equilibrium.

In the GA OG economy, there are two populations of binary strings at each
t . One represents the rules of the young, members of generationt , and the other
the rules of the old, members of generationt − 1. Each population is updated in
alternating time periods, after its members have gone through a two-period life
cycle. Genetic algorithm strings encode the values of first-period consumption.

A memberi , i ∈ {1, . . . N}, of generationt makes a decision about the first-
period consumption at timet using abinary string. Savings of agenti of generation
t, si,t , are given assi,t =w1− c1

i,t .
The sequence of events that takes place at timet is the following: First-period

consumption values are obtained from decoded and normalized binary strings and
individual savings are computed. Next, the value of aggregate savings is obtained.
Aggregate savings, together with money holdings of agents who were born at
t − 1, determine the price level of the good that prevails att . The price of the
consumption good at timet is given by

p(t) = H∑n
i=1 si (t)

(8)

in the economy with constant money supply, and by

p(t) =
∑N

i si (t − 1)p(t − 1)∑N
i si (t)− G

(9)

for
∑N

i si (t − 1) > G, in the economy with constant deficit.
Then, the second-period consumption by memberi, i ∈ {1, . . . , N}, of genera-

tion t − 1 is determined:

ci,t (t − 1) = si (t − 1)p(t − 1)

p(t)
+ w2. (10)

Finally, fitness values for the members of generationt − 1 are computed. The
fitness of a stringi of generationt − 1 is given by the value of agenti ’s utility at
t + 1 (the second period of life):

µi,t−1 = Ui (ci,t−1(t − 1), ci,t−1(t)) = ci,t−1(t − 1)ci,t−1(t). (11)
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The population for generationt + 1 is generated from the population of gener-
ation t − 1, using the genetic operators of reproduction, crossover, mutation, and
election. Once the population of new generationt + 1 is created, the whole cycle is
repeated. The population of rules of generationt + 1 represents the young agents,
whereas the members of populationt become the old agents. The populations of
generations 0 and 1 are randomly generated. The system starts off withNh units
of money distributed to the initially old.

Simulations of the environment with constant money supply converge to the
stationary equilibrium in which fiat money is valued. This equilibrium is also the
point of convergence of the adaptive algorithm that uses the sample average of past
price levels for the price forecasting [Lucas (1986)]. Likewise, the experimental
OG economies simulated by Lim et al. (1994) exhibited price paths close to the
stationary monetary equilibrium.

In the economy with the positive value of deficit, the GA converged to the low-
inflation stationary equilibrium. The least-squares learning algorithm studied by
Marcet and Sargent (1989) also converges to the low-inflation stationary equilib-
rium. Results of simulations show that the GA also converges for deficit values
and initial conditions for which least-squares exhibited divergent behavior.5 Infla-
tionary paths observed in experiments with human subjects [Marimon and Sunder
(1993), Arifovic (1995)] converged to the neighborhood of the low-inflation sta-
tionary equilibrium. Moreover, the experimental economies did not exhibit diver-
gent inflationary paths in cases of deficit values and initial conditions for which
least-squares did not converge. Thus, the GA performs better in capturing the
features of the experimental data.

Modeling the evolution of expectations of the inflation rate.A different ap-
proach to modeling agents’ decision rules by the GA OG environment is given in
Bullard and Duffy (1999). In their model, a binary string is used to encode ex-
pectations of the inflation factor in an environment with constant deficit financed
via seignorage. At timet , an agenti of generationt is endowed with a string that
encodesbi (t) that will be used as agenti ’s expectation of the inflation factor. Then,
agenti ’s expectation of the nominal price levelp(t + 1) is given by

Fi [ p(t + 1)] = bi (t)p(t). (12)

These forecasts are then used in the first-order conditions of agent’s maximiza-
tion problem to solve for the optimal value of savings given the expectationsbi (t).
The model resulted in the convergence to the low-inflation stationary equilibrium
with π l . Larger values ofG required more iterations for convergence. Thus, this
method of applying the genetic algorithm to the overlapping generations model
results in the selection of the same equilibrium.

Notice that in this environment, unlike that of Arifovic’s (1995) model, the
assumption of utility maximization is maintained. Bullard and Duffy argue that
in “learning how to optimize” GA implementation where consumption decisions
evolve, one assumes (implicitly or explicitly) that all agents have the same view of
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the future, and that, given the set of commonly held expectations, the GA is used
to assign a value of choice variable to the agents. On the other hand, with their
method, agents are “learning how to forecast.” They have heterogeneous forecasts
and are not sure about the beliefs held by other agents. Because of the lack of
information and multiplicity of equilibria, there is a problem of coordinating on a
particular equilibrium path.

However, recent evidence from OG experiments in which human subjects were
asked to make both a savings decision and a forecast of the next period’s infla-
tion rate shows that actual savings decisions differ significantly from the optimal
savings decisions that would be implied by individual forecasts [Bernasconi and
Kirchkamp (1999)]. The question of what seems to be a better way of simulating
decision making process in models with boundedly rational agents, as well as in
the experiments with human subjects, remains open.

3.2. An n-Period Model

Another application of GAs to the OG environment is the Bullard and Duffy
(1998a) model in which agents live forn≥ 2 periods. It is again a pure endowment
economy with fiat money being the only asset that agents can use to save between
periods. Each generation of agents receives the same endowment pattern such that
w1>w2> · · ·>wn> 0. This implies that agents of all generations will be able to
achieve their optimal consumption and savings decisions by holding fiat currency.
The government finances a constant deficit via seignorage. This generaln-period
model also has low stationary perfect-foresight equilibria in which fiat currency has
positive value, low-inflation stationary equilibrium, and high-inflation stationary
equilibrium.

The GA is implemented in the following way: At each time periodt , there
aren populations of binary strings that represent decision rules ofn generations
of agents alive att . Each generation consists of an equal number,N, of agents.
The total population of agents at timet is thus equal ton× N. A binary string
is used for the construction of an autoregressive forecasting rule. It is interpreted
in the following way: One bit determines whether lagged values of prices or first
differences of prices are used in autoregression. The remaining bits specify which
lagged values are used. Using a specified autoregression, the forecast of the next
period’s inflation factor is computed. The forecast is then used to compute the
optimal savings decision. Unlike the two-period setup, agents repeatedly use their
forecasting rules to make savings decisions inn− 1 periods of their lives.

In this n-period setup, a binary string’s fitness is not set equal to the agent’s
utility as in the models that have been described so far. Instead, the fitness is
determined by the rule’s out-of-sample mean squared error (MSE). The first half
of the available data from past GA iterations is used to estimate the autoregression
coefficient. The second half is used to calculate the MSE of a forecasting rule.
The fitness value of a rule is simply the inverse of the MSE. The fitness value is
recalculated in every period in which the binary string is used.
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Binary strings of members of all generations that make savings decisions are
updated at eacht . A set of rules of agents born at timet is generated using
reproduction (tournament selection), crossover, mutation, and election. During
the reproduction step, Bullard and Duffy implementmixing. With mixing, the
entire population ofn× N rules is used to select copies of binary strings. This
way, the updating uses the entire stock of genetic information available att .

Once the rules of agents born att are determined, members of middle generations
experiment with new ideas prior to making savings decisions att . This process
is calledemulation. At each timet , a member of each middle generation meets
another member from the entiren× N population. Two rules undergo crossover
and mutation in order to create two alternative rules. At this point, a version
of the election operator is implemented. The fitness values of newly generated
rules are calculated, and four rules (two old ones and two new ones) are ranked
according to their fitness values. The agent adopts a rule with the highest fitness
value.

Once the forecasting rules for all agents who make savings decisions att are
determined, optimal savings are computed for each individual agent. Finally, ag-
gregate savings and prices are computed. If the aggregate savings falls short of
the amount required to finance the government deficit, a situation interpreted as a
currency collapse, the government imposes a taxation scheme to satisfy the deficit
financing constraint. (The tax that every individual has to pay is such that the deficit
financing constraint is more than satisfied.)

Two kinds of outcomes were observed in the GA economies that were simulated
for n= 3 andn= 7, and for three different values ofG. The first outcome was
convergence to the low-inflation stationary equilibrium. When the convergence
occurred, forecasting rules could correctly predict the gross inflation factor even
though the population consisted of heterogeneous rules. Thus, in this economy,
the convergence to a stationary equilibrium need not imply identical forecasting
rules across the individuals.

The second outcome was a convergence to autarchy—a state of persistent cur-
rency collapse. This outcome was observed more frequently for larger values of
n. One way to interpret this result is that the frequency of the persistent currency
collapse increases with the increases in the number of times that agents are allowed
to change their forecasts. For a givenn, currency collapse was more frequent for
larger values ofG. As the value ofG gets closer toGmax(maximum value of deficit
that can be financed given agents’ lifetime endowment profiles) a larger number
of the economies experience the currency collapse.

3.3. Cycles and Equilibrium Selection

The issue of equilibrium selection also arises in the OG economies that are, in
addition to steady states, characterized by periodic equilibria. Arifovic (1998) and
Bullard and Duffy (1998b) look at the stability of periodic equilibria under the GA
dynamics.
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Two-period cycle. We begin with a description of the GA dynamics [Arifovic
(1998)] in the OG economy where, in addition to two steady states, autarky, and
monetary steady state, a two-period cycle exists. Agents receive one unit of labor
endowment when young. They work when young and consume when old. The
production function is linear, and one unit of labor,nt , yields one unit of output,
yt . Fiat money is the only means for saving. The stock of nominal money is constant
over time; that is,H(t)= H for all t . Agents’ preferences are given by

maxact (t + 1)− 1

2
bct (t + 1)2− n(t),

wherea> 0, b> 0, andn(t) is labor supply when young.
Market clearing requiresy(t)= n(t) andn(t)= H/p(t). From the condition

p(t)n(t)= H , it follows that a gross rate of return on money holdings,R(t)= p(t)/
p(t + 1) is equal ton(t + 1)/n(t). Using first-order condition and market-clearing
conditions, the equilibrium law of motion for the labor supply is given by

nt = a(nt+1/nt )− 1

b(nt+1/nt )2
. (13)

For the values of the parameters chosen for the GA application, the model has a
unique monetary steady-state equilibrium and a two-period cycle. In the monetary
steady state,nt = n∗, and pt = pt+1= p∗ for all t . The rate of return on money
R(t), is also constant; that is,R(t − 1)= R(t)= R∗. In the two-period cycle, the
endogenous variables cycle between two sets of values. The first onen∗,1, p1,∗,
and R1,∗ is associated with high labor supply, low nominal price level, and high
rate of return on money. The other,n∗,2, p2,∗, andR2,∗ is associated with low labor
supply, high nominal price level, and low rate of return on money.

The application of the GA is identical to the one described for the pure-
endowment OG economy, except that now instead of first-period consumption,
a binary string encodes a labor-supply decision. The equations that determine the
values of savings and prices correspond to those given in Section 3.1 for the pure-
endowment economy. Fitness values of binary strings are given as values of agents’
utilities.

GA simulations always converged to the two-period cycle, even when initialized
in the neighborhood of the monetary steady state. Analysis of the evolutionary
dynamics shows, first, that if the GA converges, it converges to the stationary
equilibrium values, and, second, that the GA dynamics select the two-period cycle
over the monetary steady state. The two-period cycle is globally stable under the
evolutionary dynamics.6

The dynamics are defined by the impact of wealth and intertemporal substitution
effects on the evolution of decision rules. Suppose that the two GA populations are
initialized in the neighborhood of the monetary steady state so that the average labor
supply of the first population,̄np1(t), is smaller thann∗, whereas the average labor
supply of the second population,n̄p2(t), is greater thann∗. This means that the first
population will enjoy the rate of return on money holdingsRp1(t)> R∗. The second
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population will experienceRp2(t)< R∗. What is the impact of these rates of return
on further updating of the decision rules? Because the wealth effect dominates the
substitution effect in the neighborhood of the steady state, the relatively highRp1(t)
will have negative effect on̄np1(t), and the relatively lowRp2(t)will have negative
effect on further evolution of̄np2(t). Thus,n̄p1(t) decreases, and̄np2(t) increases,
reinforcing the initial effects, that is, further increase inRp1(t) and further decrease
in Rp2(t). As this process continues, the labor supply values of the two populations
will be driven away from the steady state and toward the two-period cycle.

If n̄p1(t) andn̄p2(t) overshoot the values of the two-period cycle, they will get
into the region where the substitution effect dominates. The substitution effect will,
however, halt further divergence of̄np1(t) and n̄p2(t) and will bring them back
toward the two-period cycle. This is because further increases inRp1(t) will now
have a positive effect on̄np1(t), and further decreases ofRp2(t) will now have a
negative effect on̄np2(t).

The above analysis of evolutionary stability illustrates how the interaction be-
tween the GA dynamics that are based on the survival of well-performing rules
and the underlying economic environment can be exploited to determine global
stability properties of equilibria in the environments characterized by both steady
states and periodic equilibria.

Higher-order cycles. Bullard and Duffy (1998b) examine GA learning in the
Grandmont (1985) environment where, in addition to two steady states, and de-
pending on the coefficients of relative risk aversion of the young and old agents,
there are also periodic and chaotic equilibrium trajectories. It is again a two-period
overlapping generations pure-endowment economy with preferences given by

U = ct (t)1−ρ1

1− ρ1
+ ct (t + 1)1−ρ2

1− ρ2
,

whereρ1, ρ2 ∈ (0,∞) denote the coefficient of relative risk aversion of the young
and old agents, respectively. The economy has two steady states: the Pareto-inferior
autarchic steady state, and the Pareto-optimal monetary steady state. In addition, for
the values ofρ2 high enough and those ofρ1 low enough, there are also periodic
and chaotic stationary perfect-foresight equilibria. However, in these cases, the
forward perfect-foresight dynamics are not well defined, but Grandmont (1985)
showed that periodic equilibria of any order and chaos could exist as long-run
outcomes in the backward perfect-foresight dynamics.

In the GA framework, each binary string decodes into an integer number,ki ∈
{1, k̄}, i ∈ {1, N}. The integerki prescribes the use of the price level that was
realizedk+ 1 periods in the past as the forecast of next period’s price level. For
example, consider a young agenti who has chosenki . Then, agenti ’s forecast
of the price level at timet + 1, Fi

t [ P(t + 1)], is equal toP(t − ki − 1). Based on
this, the agent makes a forecast of the gross inflation factor and uses it to calculate
the optimal savings decisions. This specification allows agents to adopt behavior
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consistent with steady-state or periodic trajectories for prices up to the limitk̄+ 1.
The length of a string was set to eight bits, implying that the agents could take
actions consistent with a periodic equilibrium of an order as high as 256.

The results of simulations showed that GA agents could achieve coordination in
this complicated environment, but they always coordinated onsimpleequilibria,
steady state, or low-order cycle. For low values ofρ2 (for which complicated
stationary equilibrium trajectories do not exist), the GA agents always coordinated
on the monetary steady state. For higher values ofρ2, which imply multiplicity of
stationary equilibria, the GA agents failed to coordinate on the periodic equilibria
that are selected by the limiting backward perfect-foresight dynamics. The results
of simulations showed that the GA agents could learn to coordinate on a monetary
steady state and on periodic equilibria of order 2 and 3. The amount of time
required for coordination increased with the value ofρ2 and sometimes displayed
qualitatively complicated dynamics for long periods of time prior to convergence
to one of the low-order stationary equilibria.

This study demonstrated that (1) the introduction of GA learning does not imply
a selection of a unique stationary equilibrium and (2) simple equilibria are more
likely to be achieved. The first result is consistent with the results of studies of
statistical learning algorithms.7 These studies, which analyzed one-step forward-
looking systems, showed that any stationary equilibrium can be locally stable.
The results depend on the specified learning rule. For ak-period cycle, agents
have to usek-order adaptive learning rules. Thus, the second GA result is new
in that it reduces the set of “learnable” equilibria and suggests that low-order
equilibria are more likely to be reached. Unlike in the previous studies, the GA
environment allows for competition of forecasting rules of different order. In this
competition, low-order rules dominate the simulations and lead to convergence to
low-order periodic equilibria. It is worth pointing out that the result that simpler
equilibria are more likely outcomes of learning is supported by the evidence from
the experiments with human subjects.8

Because the behavior of the GA is governed by the performance of forecasting
rules as measured by agents’ utility, an interesting question is: What is it in the
dynamics of the GA economy that drives these populations to low-order equilibria?
This would involve the investigation of how forecasting rules that prescribe higher-
order forecasts perform compared to the low-order rules. The dynamics of GAs
are the result of interaction of the economic environment and the performance
of different kinds of rules. This might provide some intuition for the results of
simulations and better understanding of why simple equilibria seem to be more
robust in the evolutionary sense than more complicated, high-order equilibria.

3.4. Growth and Development

Arifovic et al. (1997) study the adaptation of GA agents in a model of growth in
which human capital accumulation is subject to increasing returns. The underlying
economic model is a version of Azariadis and Drazen (1990) environment in which
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there are two steady states: low-income steady state (a poverty trap) and high-
income steady state. Under the perfect-foresight dynamics, economies that start
in the neighborhood of the low-income steady state always remain in the poverty
trap. Arifovic and colleagues (1997) describe the mechanism through which the
take-off can take place.

The model is an overlapping generations economy with a constant number of
agents,N, born at each periodt . Agents live for two periods and are endowed with
one unit of time at every datet . All agents in this economy have the same prefer-
ences,U = `nc {i, t}(t)+ `nc {i, t}(t + 1). There is a single, perishable good
that is both consumed and used as an input into production. Output per unit
of effective labor is produced according to a neoclassical production function,
f (k(t))= k(t)α whereα ∈ (0, 1) andk(t) is the ratio of capital to effective labor.
The rental rate on physical capital and the wage are given byr (t)=αk(t)α−1 and
w(t)= (1−α)k(t)α, respectively.

A young agenti of generationt makes a decision whether to spend a fraction
of time,τi,t ∈ [0, 1), in training. Each young agent inherits the level of efficiency
units,x(t), available in the economy at timet . The levelx(t) is the average of the
efficiency units (accumulated human capital) of agents of generationt − 1:

x(t) = 1

N

N∑
j=1

xj,t−1(t), (14)

wherexj,t−1(t) is the number of effective units of agentj of generationt−1 at time
t . Young agents can combine this endowmentx(t) with a training decisionτi,t (t)
in order to receivexi

t (t + 1) effective units of labor when they are old, through
a common training technology denoted byh(τi,t (t), x(t)). The key feature of the
model is that the individual agent’s return to training depends positively onx(t).
Thus,xi,t (t + 1) is given by

xi,t (t + 1) = h(τi,t (t), x(t))x(t) = 1+ γ (x(t))τi,t (t), (15)

and the private yield on human capitalγ (·) is given by the sigmoid function

γ (x(t)) = λ

1+ e−x(t)
− λ

2
, (16)

which is strictly increasing inx(t) and implies the bounds given byγ (0)= 0 and

lim
x(t)→∞

γ (x(t)) = λ

2
≡ γ̂ .

Parameterλ>0 controls the returns to investing in human capital. The accumula-
tion equation forx(t) is then given by

x(t + 1) = x(t)[1+ γ (x(t))τ̄ (t)], (17)
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where ¯τ = 1/N
∑N

i=1 τi,t (t). In addition, the agent also makes a decision about the
fraction,φi,t , of time t wealth, given by total wage earnings, that is saved. Thus,
the savings are equal to

si,t (t) = φi,t (t)w(t)(1− τi,t (t))x(t). (18)

These decisions govern the accumulation of physical capital in this economy over
time.

The model has two steady states, the low-income, poverty trap and the high-
growth, high-income steady state. The first one is equivalent to the steady state
of a neoclassical model with no growth in human capital and no technological
progress. In this steady state,τ = 0 for all i and allt and human capital remains at
its initial level; that is,x(t)must be constant for allt . The other is the steady state
in whichτ >0 for all i and allt . Thus,x(t) is growing at the constant rate so that,
for t large enough,γ (t)→ γ̂ . The low-income steady state is locally stable in the
perfect-foresight dynamics, whereas the high-income steady state is saddlepath
stable.

In the GA model, agenti ’s, i ∈ {1, . . . , N}, decision about the fraction of time
that is spent training,τi,t ∈ [0, 1], and his/her decision about the fraction of wealth
that is saved,φi,t ∈ [0, 1], are represented by a binary string of lengthl , wherel/2
bits are used for coding of each of the two decisions. The rules’ fitness values are
again equal to the values of the utilities earned at the end of the second period of
life. The rules are updated using reproduction, crossover, and mutation. At eacht ,
there are two populations of rules, one representing the young agent and the other
representing the old ones.

Regardless of the initial conditions, evolutionary economies eventually take off
and reach the high-growth steady state that is the globally stable equilibrium un-
der these dynamics. Once the high-growth steady state is reached (which happens
with probability 1), the economy stays there forever. The initial level ofx(t) is
the variable crucial for the timing of the take-off. The lower the level, the longer
the time that the economy spends in the poverty trap. Initially, the GA quickly
reaches the low-income steady state. At that point, most of the decision rules pre-
scribe no time investment in training because investment in human capital yields
lower return and results in lower fitness values. However, because of the effects
of mutation, there is always a small fraction of rules with positive values ofτi,t .
Those rules disappear from the population because of selection pressure. Never-
theless, they contribute to the increase inx(t). Over time, asx(t) increases, it
reaches the threshold level beyond which the return on human capital becomes
high and fitness values of rules that invest in training increase. Once this hap-
pens, selection pressure changes because decision rules that call for investing
positive amounts of time in training now yield higher fitness values than those
decision rules that continue to instruct their owners to invest zero time in train-
ing. At this point, the GA quickly takes the economy toward the high-income
steady state in which individualτi,t ’s take positive values. The transition phase is
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relatively short, and once the economy is in the high-income steady state, it stays
there forever.

Because the exact date of the take-off depends on the specific sequence of mu-
tations that are responsible for the accumulation of human capital, economies that
start with identical initial conditions can have different timing of the development
take-off. In general, higher rates of experimentation with nonzero investment in
training (i.e., higher rates of mutation) imply shorter average time required for the
take-off.

The existing models of growth with multiple steady states do allow for sus-
tained differences in growth rates across economies, but cannot explain how coun-
tries that are initially in poverty traps make the transition to a high-development
steady state. At the same time, the evolutionary model is able to explain not just
long periods of time spent in the neighborhood of poverty traps, but also even-
tual transition toward the high-growth steady states. It captures two important
facts about development that most of the perfect-foresight models fail to take
account of. The first is the result that for initially low levels of human capital
per capita, levels that would characterize preindustrial economies, a population
of boundedly rational agents spends many generations in the neighborhood of
the low-income steady state before eventually taking off toward the high-income
steady state. This accounts for the fact from Maddison (1982) that today’s rich-
est countries were once stagnant for hundreds of years. The second is the result
that initially identical economies might experience take-off at very different times.
This is important because different take-off dates imply very different levels of
per capita income across economies once they all reach high-income steady state.
This accounts for another development fact, that there is a large and persistent
disparity in the levels of per capita income across nations [Parente and Prescott
(1993)].

3.5. Search Model of Money

Marimon et al. (1989) study evolutionary adaptation in a search model of money
[Kiyotaki-Wright (1989)]. Depending on the parameter values, this model can
have different unique stationary equilibria, as well as multiple stationary equilib-
ria. Using a version of Holland’s (1975)classifier systems, Marimon et al. examine
two issues: the learnability of different unique equilibria and the selection of equi-
librium in an environment with multiple equilibria.

A classifier system is a collection of if-then rules calledclassifiersthat have
condition and action parts.9 The condition part usually is defined over the trinary
alphabet,{0, 1, #}, where the wild card # is interpreted as a “don’t care” symbol.
The wildcard character is an important part of the condition because it allows
agents to decide which pieces of information are relevant and to ignore the others
in an environment that is constantly changing. An action part can be a binary string
or a string of real numbers. Each classifier has a strength that is the measure of its
performance in a given environment.
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In every t , a classifier thatpostsits message, thus determining the system’s
action, is selected using Holland’sbucket brigadealgorithm. First, a list of classi-
fiers whose condition part matches the current state is determined. These classifiers
submit the bids that are proportional to their strengths, and the classifier with the
highest bid is chosen to post its message. This way, the rules that are highly fit
are given preference over other rules. The bid is subtracted from the classifier’s
strength and paid to other classifiers responsible for generating the state to which
the classifier was matched.

Then, the GA is used within the classifier system to generate new rules that are
tried. Unlike the bucket brigade, which is implemented in every periodt , the GA
is applied after a given number of periods,Tga. The call to the GA can be made
randomly, withTgaspecifying the average value. It also can be done asynchronously
across different classifier systems.

Only a fraction of the entire population of classifiers is replaced when the call
to the GA is made. The classifiers that are replaced are chosen on the basis of poor
performance. The invocation of GA learning also may be conditioned on particular
events such as lack of match or poor performance. Finally, mutation is modified
because classifier systems use the trinary alphabet. The mutated character changes
to one of the other two with equal probability: 0→ {1, #}, 1→ {0, #}, #→{0, 1}.

In the Kiyotaki-Wright economy, there are three types of agents and three types
of goods,i = 1, 2, 3. Type i receives utility from consuming goodi , and can
produce goodi ∗ = i + 1 modulo 3. All goods are indivisible, and each can be
stored at a costsk, s3> s2> s1> 0. All agents are assumed to receive the same
utility from consumptionu(i )> s3 andu(k)= 0, k 6= i , and to have a commmon
discount factorβ ∈ (0, 1). The economy lives forever and there is a large and
equal number of agents of each type. The economy and each agent within it live
forever.

In each time period, all agents are randomly matched without regard to their
type. An agent has to make two decisions sequentially. The first is whether or not
to trade, given the good she is holding and the good that the partner is holding.
The trade occurs only if both partners propose to trade. The second is whether to
consume a good that she is holding or to carry it to the following period. If the
good is consumed, the agent automatically produces another goodi ∗. She is also
charged the storage cost of either the good just produced or, if the decision was
not to consume, of the good carried to the following period.

In the “fundamental equilibrium,” type 1 stores only good 2 in order to exchange
it with type 2. Type 3 stores only good 1 in order to exchange it with type 2. Type 2
stores good 1 half of the time, which is exchanged for good 3, and stores good 3
half of the time, which is exchanged for good 1. Good 1, with the lowest storage
cost, serves the role of the medium of exchange.

In the “speculative equilibrium,” in addition to good 1 being accepted by type 2
agents, good 3, which has the highest storage cost, becomes acceptable by type 1
agents. This speculative strategy is optimal whenever the difference in costs from
storing good 3 rather than good 2 is less than the discounted expected utility benefit
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of storing good 3 rather than good 2. Type 1 players are better off speculating in
good 3 (rather than good 2) if storing good 3 makes it more likely that they will
be able to successfully trade for their desired consumption good, good 1, and
the additional likelihood of this event more than outweighs the additional cost of
storing good 3 rather than good 2. This equilibrium is an example of the economy
in which an endogenously determined medium of exchange, good 3, which has
the highest storage costs, is dominated in the rate of return.

Depending on the parameter values, there are economies with a unique funda-
mental equilibrium, with a unique speculative equilibrium, as well as the economies
where both of these stationary equilibria exist. The questions are whether these
unique stationary equilibria can be learned by boundedly rational agents and what
equilibrium is selected in the economies with multiple stationary equilibria.

In the Marimon et al. model, each agent uses two interconnected classifier sys-
tems. The first one, theexchangeclassifier system, determines the trading decision,
and the second one, theconsumptionclassifier system, determines the consumption
decision. Agents care about long-run average level of utility.

The exchange classifier system consists of a list of strings of length 7. The first six
bits are defined over the trinary alphabet and are used as a condition part, encoding
the agent’s own good stored and partner’s good stored. Each of these takes three
bits. For the trading decision, the code is in the binary alphabet(1, 0), where 1
means trade, while 0 means don’t trade. The consumption classifier consists of
four positions. The first three positions are written over the trinary alphabet and
encode the post-trade holdings of agenti . The fourth position can take a value of
1 or 0 and represents the action part that decides on whether or not the current
holdings should be consumed. Here is an example of two exchange classifiers and
their interpretation:

Own storage Partner storage Trading decision
1 0 0 0 0 1 1
0 0 1 # # 0 0

The first classifier instructs an agent carrying good 1 and who is matched with
someone carrying good 3 to trade. The second classifier instructs an agent carrying
good 3 and who is matched with someone not carrying good 3 not to trade.

The first three positions are written over the trinary alphabet and encode the
post-trade holdings of agenti . The fourth position can take a value of 1 or 0 and
represents the action part that decides on whether the current holdings should be
consumed. Here is also an example of a consumption classifier that instructs the
agent who is not holding good 1 (in a post-trade subperiod) not to consume:

Holdings Consumption
0 # # 0

Once two agents are paired and the current holdings of goods are determined,
exchange classifiers are matched to the current state. The exchange classifiers
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whose condition parts are matched to the current state form a class of potential
bidders that participate in anauction. The purpose is to select a classifier that
makes the decision of agenti at timet . Among the matched classifiers, the rule
with the highest strength is given the right to decide.10

The post-trade state of the world then is used to form a list of consumption
classifiers whose condition parts match this state, and the consumption classifier
from the list with the highest strength makes a consumption decision.10

Only the winning classifiers pay their bids by having them deducted from their
strengths. The bid of the winning exchange classifier att is paid to the winning
consumption classifier att − 1, which is the classifier that is to be credited with
setting the pretrading state at timet . The bid of the winning consumption classifier
at t is paid to the winning exchange classifier at timet , which is to be credited
with setting the postexchange state att , thereby giving the winning consumption
classifier a chance to bid. (If a classifier does not generate any immediate or future
payoffs, it will drop out of competition because of the penalty of losing some of
its strength when chosen.) In the Marimon et al. implementation, the updating of
classifiers’ strengths is formulated as a stochastic approximation algorithm where
strengths represent cumulative averages of past payoffs.

In general, each agent in a model could have an exchange/consumption classifier
system. However, in the Marimon et al. setup, all agents of the same type use the
same classifier system to make their decisions.

Marimon et al. use several different operators to generate new rules.Creation
is used in case there is no classifier that matches the condition part of the state. A
new classifier is created with its condition part defined by the current state, and the
action part randomly generated.Diversificationis implemented in cases in which
all classifiers whose condition part matches the message result in the same action,
1 or 0. A new classifier whose condition part encodes the current state and the
action part opposite to that of the existing classifiers is added to the system.

Specializationis applied randomly with probability that is diminishing over
time. The winning classifier is checked to see whether there are any #’s in the
condition part. A new classifier is obtained by exposing each # to a probability of
switching to either 0 or 1, depending on which one of the two encodes the current
state that was matched to the classifier’s condition.

A version of crossover calledgeneralizationis performed in two steps. First,
two integers are drawn randomly, from [1, 7]. Then, with probability 0.5, the
crossover is performed eitherin, meaning between the two numbers, orout to the
left and to the right of the two selected integers. Within the chosen area, the specific
value of any position (0 or 1) where the two classifiers disagree is changed to #
for both strings. The children are each assigned strengths that are the average of
their parents’ strengths. For each child, a randomly selected individual from the
population of “potential exterminants” is deleted.

For each set of the economic parameter values, Marimon et al. conducted sim-
ulations with (1) the complete set of rules where the GA was not implemented
and (2) simulations with random initialization of classifiers and use of the genetic

https://doi.org/10.1017/S1365100500016059 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100500016059


396 JASMINA ARIFOVIC

algorithm. For the economy in which only the fundamental stationary equilib-
rium exists, the classifier system converged to that equilibrium. However, for the
economy in which the unique speculative equilibrium exists, the classifier system
failed to converge to the equilibrium. Instead, it evolved toward the distribution
of holdings that resembled the fundamental equilibrium. In the economy in which
both the fundamental and the speculative equilibrium exist, the classifier system
settled initially to the holdings quite similar to the speculative equilibrium hold-
ings. However, it moved away from that equilibrium and settled in the fundamental
equilibrium.

A number of other studies [Basci (1999), Staudinger (1998)] as well as the
evidence from the experiments with human subjects [e.g., Duffy and Ochs (1999)]
have shown that agents can coordinate on fundamental equilibria, but that they
have difficulty coordinating on the speculative equilibrium. Basci simulates a sys-
tem with a complete set of classifiers and introduces two modifications to induce
players of type 1 to adopt the speculative strategy. First, he reduces the differential
in storage cost between goods 3 and 2; second, he allows a certain fraction of
agents to choose strategies according to their social (i.e., population-wide) values,
which is referred to asimitation. Neither one of these, when implemented alone,
helps the system to evolve toward the speculative equilibrium, but the combina-
tion of the two does result in a high frequency of convergence to the speculative
equilibrium. Staudinger, who uses a GA implementation, also varied the size of
the storage cost differential and found that, for small enough differential, the GA
always converged to the speculative equilibrium. Overall, speculative equilibria
seem to be difficult to learn both by boundedly rational agents as well as by
human subjects. This is another example where, in addition to the equilibrium
selection result, we can say that there are equilibria that are “hard” to learn. In
this case, this is also supported by the evidence from the experiments with human
subjects.

The fact that it is very difficult for both the boundedly rational agents and
human subjects to adopt speculative trading strategies raises the question about
the plausibility of the speculative equilibrium in the Kiyotaki-Wright environment
and the question whether this represents a good way to model the rate-of-return
dominance of money.

4. EVOLUTIONARY DYNAMICS IN THE ABSENCE OF EQUILIBRIUM
BEHAVIOR

In this section, we look at several evolutionary models of bounded rationality that
result in the long-run dynamics different from the rational-expectations dynamics.
We borrow a term from Bullard (1994) and call these dynamicslearning equilibria.
The common feature of the models considered in this section is that there is per-
sistence in fluctuations of the prices and excess volatility of the models’ variables.
These evolutionary economies do not converge to REE and exhibit the features of
long-run behavior different from the REE dynamics.
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4.1. Model of Mutual Fund Investors

Lettau (1997) uses GAs to model behavior of mutual fund investors in a simple
portfolio-choice model. There is a single risky asset whose value,v, is normally
distributed. The price of this asset,p0, is constant and given exogenously to mutual
fund investors. The agent’s utility is given byU (W)=−exp(−λW), whereλ is
the coefficient of absolute risk aversion andW is the net payoff equal to(v− p0).
Under rational expectations, the optimal solution for a demand for the risky asset,
s, is s∗ =α∗1v̄−α∗2 p0 with optimal coefficientsα∗1 andα∗2, α

∗
1=α∗2= 1/γ σ 2

v .

Mutual fund investors are represented by a population of binary strings. A
binary string decodes into the value ofαi,t that investori uses at timet . During
a time periodt, t ∈ {1, . . . , Tmax}, there areS realizations of the asset’s return,
and investors makeS portfolio decisions using their values ofαi,t ’s that remain
fixed duringt . After S realizations, the population is updated using reproduction,
crossover, and mutation. The fitness of each rule is given as a cumulative utility
overSdrawings. Mutation decreases exponentially over time.

Lettau’s simulations show that GA adaptive behavior leads to risk-taking bias
that depends on the number of market observationsS that the agents use before
they update their investment portfolio. For small values ofS, GA converges to
ᾱ > α∗ indicating overinvestment into the risky asset. This bias vanishes asSgets
large. Because of the distribution of asset returns, the selection pressure promotes
lucky rules that overinvest in the risky asset for smallS. As S increases, agents are
exposed to more trials and the chances of doing well due to luck decrease.

However, the patterns of behavior of mutual fund investors are much more
volatile than what can be captured by a simple optimal portfolio-choice model
or an adaptive model that converges to a constant portfolio-choice value. In fact,
Lettau’s analysis of the data on the flows in and out of mutual funds reveals that
flows into mutual funds are positively correlated with returns, that flows are more
sensitive to negative returns than to positive ones, and that evidence is stronger for
riskier mutual funds.

To capture this more volatile behavior, Lettau modifies his GA model by in-
troducing entry and exit of investors. At eacht , a fixed number of new investors
whose investment strategies are randomly generated enter the population and re-
place the same number of existing investors. The investors (or strategies) that exit
the population are randomly determined. In addition, he setsS= 1, and keeps the
rate of mutation constant for the entire length of each simulation. The continuous
source of diversity from exit and entry, the minimal value ofS, and a nondecreasing
mutation rate resulted in persistent volatility of the value of ¯α.

Lettau conducts two sets of GA simulations. (1) using the normal distribution
of returns with the mean and variance values equal to those calculated from the
actual mutual fund data, and (2) using the actual mutual fund returns. In both sets
of simulations, GA agents exhibit the same pattern of behavior that looks very
much like the behavior of mutual fund investors; that is, flows into mutual funds
are positively correlated with returns, and flows are more sensitive to negative
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returns than to positive ones. As with the patterns of actual mutual fund flows, the
GA portfolio adjustment is more extreme for high-risk mutual fund returns.

4.2. Artificial Stock Market

The underlying economic environment of the artificial stock market [Arthur et al.
(1997), LeBaron et al. (1999)] is again the simple asset-pricing model where
two assets are traded. The first is a risk-free bond which is in infinite supply
and pays a constant interest rate,r . The second is a risky stock, in fixed supply
N, that pays a stochastic dividend,dt , which follows an autoregressive process.
The model has a richer structure than the Lettau’s model. Prices are determined
endogenously on the basis of agents’ demands for risky assets and the fixed supply
of the asset. The functional form of the agent’s utility is again constant absolute
risk aversion (CARA) utility given byU (W)=−exp(−λW). Under CARA utility
and Gaussian distributions of risky asset prices, agenti ’s demand,xi,t , for holding
shares of the risky asset is given by

xi,t = Ei,t (pt+1+ dt+1)− pt (1+ r )

λσ 2
i,t,p+d

, (19)

where pt is the price of the risky asset att , andσ 2
i,t,p+d is agenti ’s forecast of

the conditional variance ofp+ d. (This relationship holds in the linear rational
expectations equilibrium where distribution of prices is Gaussian.) Given these
individual demands, the equilibrium pricept can be computed from the market-
clearing condition where total demand must equal the number of shares issued;
that is,

N∑
i=1

xi,t = N. (20)

In the homogenous rational expectations equilibrium, the optimal forecasting func-
tion has the following form

E(pt+1+ dt+1) = a(pt + dt )+ b, (21)

wherea= ρ andb is a constant term that includes the values ofρ, d̄, r, λ, and
σ 2

p+d.

In the artificial stock market setup, agents’ subjective expectational modes
are represented by sets of rules that map states into forecasts. Each agent,i ∈
{1, . . . , N}, is endowed with a population ofM condition/forecast rules that are a
modification of Holland’s “condition-action” classifier system. The set of states in-
cludes both “technical” information that compares current price to moving averages
of different length (important for detecting a trend in prices), and “fundamental”
that includes information on dividend price ratios.

A condition part of a rule is defined over a trinary alphabet, of 0, 1, and # (don’t
care), and consists of 12 bits corresponding to states. A forecast part of the rule is
a real-valued vector of length 3 corresponding to linear forecast parameters, and a
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conditional variance estimate. A forecast of a given rulej of agenti is then given
as a linear combination of the price and dividend by

Ei, j (pt+1+ dt+1) = ai, j (pt + dt )+ bi, j (22)

with σ̂ 2
p+d= σ 2

i, j .
At time periodt , an investori makes a decision about the demand for risky

assetxi,t in the following way: First, the list of rules whose condition part matches
the current state is determined and the most accurate rule is chosen. The investor
uses the forecast estimates of this rule to formulate the demand for shares by
substituting the valuesai, j , bi, j , andσ 2

i, j into equation(22). Once all of the demands
are submitted, the current pricept is calculated using(19) and(20). At the end
of the trading periodt , agents update the accuracy of all the matched forecasting
rules according to an exponentially weighted average of squared forecast error,

v2
t,i, j =

(
1− 1

τ

)
v2

t−1,i, j +
1

τ
{(pt + dt )− [ai, j (pt−1+ dt−1)+ bi, j ]}2. (23)

The GA is applied on average everyk periods, asynchronously across the agents.
A fraction of worst-performing rules is replaced by new rules generated through
tournament selection,uniformcrossover, and mutation. With uniform crossover,
the new child’s bit string is built one bit at a time, choosing a bit from each parent
in the corresponding position with equal probability. For the real-number part of
the rule, three different methods of crossover are used at random. First, all of the
real values are chosen from one parent selected at random. Second, a real value is
chosen from each parent with equal probability. Third, the new values are created
from a weighted average of the two parents’ values, using 1/σ 2

j as the weight for
each rule. The weights are normalized to sum to 1.

Two types of mutation are performed. For the condition part, the bits are flipped
at random. For the forecast part, either new values are chosen randomly from the
allowable ranges, using a uniform distribution, or the values are changed by a
small, randomly chosen, amount.

Two sets of simulations were conducted. One in which the GA was implemented
every 1,000 periods on average, and the other in which it was implemented every
250 periods on average, called slow-, and fast-learning cases, respectively. The
two sets of simulations gave qualitatively different patterns of behavior. In the
slow-learning simulations, the market price quickly converged to the rational ex-
pectations price, whereas in the fast-learning simulations thecomplexbehavior
emerged.

LeBaron et al. (1999) examine the time-series properties of the asset prices gen-
erated in two sets of simulations in greater detail. The fast-learning simulations
show evidence for the presence of ARCH effects that is also a feature of actual
asset-price time series. Both slow- and fast-learning cases show little indication
of autocorrelation in the residuals of asset returns, which is similar to actual mar-
kets. Finally, both cases show persistence in trading volume series and positive
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contemporaneous correlation between volume and volatility, again the feature of
actual series.

Tests also showed additional predictability coming from technical trading bits as
well as fundamental bits for the fast-learning case, while no such extra predictabil-
ity was found in the slow-learning case. Both technical trading rules [see Brock
et al. (1992)] and dividend price ratios [see Campbell and Shiller (1988)] have
been shown to have some predictive value with actual time series of asset prices.
Note that in the rational-expectations equilibrium, neither one of these two types
of indicators, technical or fundamental, reveals any extra information because all
of the relevant information is contained in the lagged price.

Classifier systems in economic environments.We have seen two applications
of the classifier systems to economic environments, to the search model of money
and to the mean-variance asset-pricing model. Classifier systems are designed to
evolve a set of rules that work well in the environments that require the use of
different rules, avoiding the undue effects of competition among them. It is worth
pointing out that an equivalent GA can be constructed for a number of environments
where different parts of a binary string are used under different circumstances. The
Kiyotaki–Wright environment is one such example. As we have seen, Staudinger
(1998) used a GA representation to evolve the set of rules for this environment.
Classifier systems can be interpreted as models of individual learning, in some
respects similar to the multiple-population GA. Again, elements of social learning
can be added by having agents exchange some of their rules.

Both applications of classifier systems that have been described in the survey
use the GA for the updating of rules. However, some of the applications do not
use the GA and the updating of classifiers takes place through the bucket brigade
algorithm only [e.g., Lettau and Uhlig (1999)]. In this case, the system is based on
the reinforcement of the rules that are initially specified as population members
whose asymptotic behavior can be characterized analytically.

Lettau and Uhlig (1999) implement this type of classifier system in a dynamic
programming problem. Using stochastic approximation methods, they study the
asymptotic outcome of classifier system learning and show that certain aspects
of the classifier system are closely related to the value function in dynamic pro-
gramming. In general, the learnable decision function is not unique and may not
coincide with the optimal decision function even if that function is attainable. They
use this result to explain the empirical puzzle of excess sensitivity of consumption
to transitory income.

4.3. Search for Optimal Trading Rules

Another strand of literature has used evolutionary algorithms, genetic program-
ming (GP) in particular, to search for optimal trading rules [Allen and Karjalainen
(1999), Neely et al. (1997)] in stock and foreign exchange markets. This research
does not strictly fall into the category of models of Section 4. However, we take
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a detour in order to describe GP and its applications to finance because technical
trading emerged as an endogenous phenomenon in the artificial stock market.

GP [Koza (1992)] is an extension of GAs where rules are represented as hierar-
chical compositions of functions of varying length. In these tree-like structures, the
successors of each node provide the arguments for the function identified with the
node. The terminal nodes (i.e., nodes with no successors) correspond to the input
data. The set of functions appropriate to the particular problem is prespecified.
Working with structures of varying length is intended to overcome the limitations
of the fixed-length genetic algorithm strings.

Like GAs, GP also maintains a population of genetic structures. The evolution
takes place in a way very similar to the GA, using reproduction, crossover, and
mutation on a population of tree structures. Crossover recombines two tree struc-
tures by replacing a randomly selected subtree in the first parent with a subtree
from the second parent. (The operation is subject to the restriction that the resulting
tree must be a well-defined rule.) Mutations are introduced by using a randomly
generated tree in place of the second parent with a small probability. The initial
population of trees is randomly generated.

In the above applications, trading rules are represented as trees. Functions that
are usually specified are real-valued functions that include a function that computes
a moving average of past prices (average) in a time window specified by a real-
valued argument (rounded to an integer when the rule is evaluated), arithmetic
operations(+,−, /, ∗), a function returning the absolute value of the difference
between two real numbers (norm), Boolean functions that include logical functions
(if-then-else, and, or, not) and comparisons of two real numbers(>,<), Boolean
constants (true, false), and real constants.

Allen and Karjalainen (1999) were the first to use GP to find profitable trading
rules for the S&P 500 Index using daily prices from 1928 to 1995. They did not
find evidence that GP rules could earn consistent excess returns (after transaction
costs) over a simple buy-and-hold strategy in the out-of-sample test periods.

However, a search for well-performing technical trading rules in foreign ex-
change markets resulted in different findings. Neely et al. (1997) use it in the
foreign exchange markets [four currencies (deutschemark, yen, pound sterling,
and Swiss frank) against dollars, and deutschemark/yen, and pound sterling/Swiss
frank) and find rules that generate economically significant excess returns after
transaction costs when tested out-of-sample. It is interesting that the rules identi-
fied by GP are similar to those commonly used by technical traders.

GP has greater flexibility than GAs because it works with strings of variable
length. However, trees that evolve through GP simulations often have a very com-
plicated nested structure with a large number of levels and nodes, and sometimes a
large number of redundant parts. Consequently, it is very difficult to interpret them.
Although GP seems quite suitable for applications like the ones described above,
where the task is to search for the rules from the available time series, they may
be less useful for modeling learning in general-equilibrium-type models where
learning interacts with the environment. Inability to determine what the agents’
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rules actually mean and how they affect other endogenous variables hinders the
usefulness of GP in this type of environments.

4.4. Model with Costly Rational-Expectations Predictor

Brock and Hommes (1998a) find that evolving the selection of prediction strategies
can result in chaotic dynamics. They consider a version of the cobweb model in
which a continuum of agents can choose between two different predictors,H1 and
H2, that correspond to two types of expectations,naive(price this period will be
just equal to the last period’s price) and rational expectations. The fractionsn1,t

andn2,t of agents usingH1 andH2, respectively, changes over time.
Agents use a discrete choice model along the lines of Manski and McFadden

(1981) to choose a predictor that they will use in the following period. The frac-
tions of chosen predictors change over time according to the profits earned by
agents. Agents can buy a rational-expectations predictor,H1, at small but positive
information costC. This indicates an extra effort that must be invested to obtain a
more sophisticated price forecast. Alternatively, they can obtain a simple predictor,
H2, for free. At time periodt + 1, the market pricept+1 is given by

pt = A− B(n1,tq1,t + n2q2,t ) (24)

whereq1,t andq2,t are optimal quantities chosen by agents using predictorsH1

andH2, respectively, and

π1,t = b

2
p2

t − C, π2,t = b

2
pt (2pt − pt−1) (25)

are the profits realized at pricept . The updated fraction of agents that will use
predictorHj , j ∈ {1, 2}, at timet + 1, is given by

nj,t+1 = exp[βπ j,t ]/Zt , Zt =
2∑

j=1

exp[−βπ j,t ] (26)

The parameterβ is the intensity of choice, measuring how fast agents switch
predictors, that is, how sensitive the mass of traders is to differences in fitness
across trading strategies. The special limiting case withβ = +∞ corresponds
to the neoclassical deterministic choice model, where in each period all agents
choose the optimal predictor. Ifβ = 0, the mass of traders distributes itself evenly
between the two predictors. Equations (24)–(26) describe what Brock and Hommes
call the adaptive rational equilibrium dynamics.11

The case particularly interesting for the dynamics of the system is again the
cobweb-unstable case where the ratio of the slopes of demand and supply is greater
than 1. If all agents use the simple predictor, the steady state with pricep∗ is
unstable. IfC = 0 and all agents employ rational expectations, the steady state is
globally stable.
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What happens when agents can use both predictors andC> 0? Consider first an
initial state where prices are close to the steady-state value and almost all agents
use naive expectations. The use of naive expectations results in a divergence from
the steady state. As prices diverge from the steady-state value, the prediction er-
ror from the naive expectations will increase. Consequently, a number of agents
willing to use rational expectations increases. As this fraction increases, prices
eventually will be pushed back toward their steady-state value. At this point, the
prediction error of naive expectations becomes small again. This implies that
the net profit corresponding to the sophisticated predictor becomes negative be-
cause of the information costs and the whole process is repeated. The speed at
which the switching occurs depends on the intensity of choice,β. The value ofβ
determines dynamics of the system.

For the cobweb-unstable case (B/b> 1) andC> 0, the system is globally unsta-
ble for a large enough value ofβ. Brock and Hommes prove that there is a range
of values ofβ for which the two-period cycle is stable. Asβ increases further,
numerical simulations show that the two-cycle loses stability and two stable four-
cycles are created, and for even larger values, simulations indicate the occurrence
of a chaotic attractor. Brock and Hommes prove that the system is chaotic for a
positive Lebesgue measure set of (high)β-values.12

Brock and Hommes point out that, with the analytical results they provide, their
work can be viewed as complementary to the more numerically oriented evolu-
tionary models of expectations [e.g., Arthur et al. (1997)]. In fact, there is a parallel
between the intensity of choice that indicates how fast agents change predictors
and the speed at which agents update their rules in artificial stock markets. Higher
intensity of choice and more frequent updating of rules result in more complicated
dynamics.

4.5. Model of Exchange-Rate Behavior

This part of the survey reviews the role played by evolutionary algorithms in
modeling of the exchange-rate dynamics. Persistent fluctuations have characterized
the behavior of the exchange rates ever since the flexible exchange-rate system was
introduced. However, neither structural models nor time-series models have been
successful in capturing a high percentage of the variation in the exchange rate at
short- or medium-term frequencies [Meese and Rogoff (1983), Frankel and Rose
(1995)]. On the other hand, evolutionary dynamics [Arifovic (1996), Arifovic
(1999)] result in persistent exchange-rate fluctuations that are driven by changes
in agent’s beliefs.

Arifovic (1996) uses the GA in a two-country overlapping generations model
identical to the one described in Section 3, except that now there are two currencies
that are perfect substitutes. Agents can hold any of the two currencies without any
restrictions. There are now two monetary authorities, one supplyingH1(t)= H1

of currency 1 and the otherH2(t)= H2 of currency 2. The exchange ratee(t)
between the two currencies is defined ase(t)= p1(t)/p2(t), where p1(t) is the
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nominal price in terms of currency 1 andp2(t) is the nominal price in terms of
currency 2. When there is no uncertainty, the return on the two currencies must be
equal,

R1(t) = R2(t) = p1(t)

p1(t + 1)
= p2(t)

p2(t + 1)
, t ≥ 1, (27)

whereR1(t) andR1(t) are the gross real rate of return betweent andt + 1.
From equation(27) it follows that the exchange rate is constant over time:

e(t + 1) = e(t) = e, t ≥ 1.

Agents’ savings,s(t), in the first period of life, are equal to the sum of real
holdings of currency 1 and currency 2. Aggregate savings that represent real-
world money demand are equal to the sum of young agents’ savings; that is,
S(t)= Ns(t). Because the rates of return on the two currencies are identical, the
agents are actually indifferent as to which currency they hold. Because of this,
equations for individual money demands are not well defined. This fact results in
the indeterminacy of the exchange rate [Kareken and Wallace (1981)] that asserts
that if there is a monetary equilibrium where savings demand and money supplies
are equal for an exchange rate,e, then there exists an equilibrium for any exchange
rateê∈ (0,∞), ê 6= e. Consider the equilibrium condition that aggregate savings
(real-world money demand) equals real-world money supply:

S(t) = H1+ H2e

p(t)
. (28)

Then, if there is an equilibrium for a price sequence,{p1(t), p2(t)}, for the ex-
change ratee, we can find a sequence{ p̂1(t), p̂2(t)} for the exchange ratêe that
results in the same sequence of real rates of return as the original price sequence
and, in turn, in the same values of aggregate savings. The reason why this can be ac-
complished is the equivalence between the two currencies as savings instruments.

The GA economy has a structure identical to the one described before; that is
at eacht , there are two populations of binary strings, representing the rules of
the young and the old agents. The difference is that now a binary stringi that
characterizes agenti of generationt consists of two parts. The first part represents
the agents’ savings decision and decodes into the numbersi (t)∈ [0, w1]. The
second part represents the agent’s portfolio decision, that is, what fraction of the
savings to place in currency 1, and decodes into the numberλi (t) ∈ [0, 1]. Agenti
of generationt places the amount ofλi (t)si (t) into currency 1, and the remaining
part given by [1− λi (t)]si (t) in currency 2.

The sequence of events corresponds to the one for the single-currency model.
First, the nominal prices at timet and the rates of return betweent − 1 and t
are computed. The exchange rate is determined. Next, the nominal holdings of
currencies 1 and 2 are computed for each member of generationt . These holdings
of monies are carried over to periodt + 1.
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Agents of generationt − 1 use their holdings of monies to purchase the con-
sumption good. Their second-period consumption is computed and, finally, utilities
of the members of generationt − 1 are computed, which in turn determine the fit-
ness values of their decision rules. At the end of a cycle of two periods, agents
update their rules using reproduction, crossover, mutation, and election.

The results of simulations show persistent fluctuations in the exchange rate,
whereas average values of savings stay close to the values of the stationary REE.
The results are robust to the changes in the parameter values. Moreover, the sta-
tionary REE is unstable under the GA dynamics.

The out-of-equilibrium heterogeneity of the portfolio-fraction values results in
the inequality of the rates of return on two currencies,R1(t) andR2(t). The rates
of return depend on the movements ofsi (t)s andλi (t)s that belong to different
populations, but since there is not much movement insi (t)s, the movements in
λi (t)sare driving the dynamics. Let us assume that savings remain at the stationary
value,s∗, and thatH1= H2. Then, the rates of return on two currencies are given
by R1(t)= λ̄(t)/λ̄(t − 1), andR2(t)= [1− λ̄(t)]/[1− λ̄(t − 1)]. The GA agents
seek to exploit this arbitrage opportunity by placing larger fractions of their savings
into the currency that had a higher rate of return in the previous period.

In general, increasing sequences ofλ̄(t) are required to preserveR1(t) > R2(t),
and decreasing sequences to preserveR1(t)< R2(t). Suppose thatR1(t − 1)>
R2(t−1). At t , agents will attempt to put larger fractions into currency 1. Because
of the election,̄λ(t)≥ λ̄(t−2) (these are theλ’s that belong to the same population
of rules). However, it is the relationship betweenλ̄(t) andλ̄(t − 1), which belong
to different populations, that determinesR1(t) andR2(t).

If λ̄(t)> λ̄(t − 1), the direction of the inequality is preserved; that is,R1(t)>
R2(t), the value of currency 1 increases. On the other hand, if the aggregate change
is not large enough,̄λ(t)< λ̄(t − 1), andR1(t)< R2(t). The reversal of inequality
will prompt the agents to start placing more savings into currency 2, that is, start
decreasing individualλi (t)’s. When this happens,̄λ(t) starts moving in the other
direction. These dynamics bring about fluctuations in the portfolio fraction and,
consequently, in the exchange rate that persist over time. Overall, very high and
very low values of̄λ(t) are less likely than the intermediate values. Asλ̄(t) takes
on relatively high (low) values, the probability of obtaining higher (lower) values
decreases. To obtain an increasing sequence ofλ̄(t)values, more and more bits have
to be switched from 0 to 1. As̄λ(t) increases, the number of these bits decreases.
Thus as̄λ(t) gets larger, the probability of further increases will decrease. A similar
argument applies for a decreasing sequence ofλ̄(t)values and an increasing number
of zeroes.

This prediction is confirmed by the results of simulations that show that the mass
of distribution of the values of̄λ(t) is concentrated in the interval [0.4, 0.6]. The
same distribution of the values ofλ̄(t)was observed in the experiments with human
subjects, where the same economies were simulated. Most of the values (87%)
were concentrated in the same interval. Two other features of the experimental
data are worth pointing out. The values of the individual portfolio fractions and
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thus the values of the exchange rates did not settle down, but kept fluctuating.
At the same time, the values of the first-period consumption settled close to the
stationary values. Thus the genetic algorithm simulations capture these features of
the experimental data.

Arifovic (1999) studies the same model but uses a real number representation
of the decision rules. Thus a decision rule of agenti of generationt is defined
by two real numbers,si (t) ∈ [0, w1] andλi (t) ∈ [0, 1]. The updating takes place
using imitation, experimentation, and election. The imitation operator in this setup
is equivalent to the reproduction with proportionate selection. Experimentation is
equivalent to mutation and is performed in the following way: A random number
is drawn from the uniform distribution, forsi (t) from the interval [0, w1], and for
λi (t) from the interval [0, 1]. With this rule representation and updating scheme, the
evolutionary algorithm represents a version of the stochastic replicator dynamics.13

The instability of a stationary equilibrium is preserved under this updating
scheme and the main features of the dynamics remain the same. In particular,
the mass of distribution of̄λ(t) is concentrated in the (same) interval [0.4, 0.6].
This represents one of the first studies that examine the dynamics under binary
and real-number representation and demonstrate that the qualitative features of the
dynamics are preserved under different rule representation schemes.

Overall, evolutionary models of the exchange rate generate persistent fluctua-
tions of the exchange rates that result from agents’ portfolio adjustments. It is worth
pointing out that statistical learning algorithms might not generate the persistent
exchange-rate volatility in the same OG environment. For example, the stochastic
approximation algorithm converges to a stationary REE with the constant value of
the exchange rate [see Sargent (1993)].

Rational agent versus boundedly rational agents.In the same exchange-rate
model with real-number representation of decision rules, Arifovic (1999) intro-
duces a rational agent who has enough knowledge of the model to be able to make
two-period-ahead forecasts of the rates of return on two currencies. One rational
agent is born at eacht and lives for two periods. On the basis of these forecasts,
the agent makes her optimal portfolio decision. Rational agents’ decisions do not
affect the price levels.

The performance of the rational agent, in terms of the average utilities earned
over a long period of time, are compared to the performance of boundedly rational
agents. The results show that the rational agent performs only slightly better than
the average and the median boundedly rational agents. The differences are greater
for larger rates of mutation, indicating that boundedly rational agents do worse if
they experiment more. However, the best within a generation of boundedly rational
agents always does better than the rational agent and the difference increases with
the rate of experimentation.

Model with deficits. Finally, it is worth pointing out that study of the same type
of the overlapping generations environment where two countries finance deficits
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of different sizes through seignorage does not generate persistent exchange-rate
volatility (Arifovic, in press). Note that this economy is also characterized by the
indeterminacy of the equilibrium exchange rate.

The results show that the currency used to finance the larger of the two deficits
cannot survive in a free competition between the two currencies. Evolution of
agents’ decision rules results in a flight away from this currency until it eventually
becomes valueless. At the end of the adjustment process, agents hold all of their
savings in the currency used to finance the lower of the two deficits. Thus, the
economy converges to the equilibrium in which only the low-deficit currency is
valued. This equilibrium is equivalent to a stationary equilibrium of the single-
currency model. The speed of adjustment depends on the size of the difference
between the two deficits. The larger the difference, the smaller the number of
periods that it takes to complete the process during which agents bring the holdings
of the high-deficit currency down to zero.

4.6. Recurrent Currency Crisis

In the dynamics of currency crisis in the emerging markets, there is usually no
apparent reason for a sudden shift in investors’ expectations.14 Models of specula-
tive attacks where a currency crisis can take place due to the existence of sunspot
equilibria [e.g., Cole and Kehoe (1996), Jeanne and Masson (2000)] do not show
how investors coordinate on a currency crisis path. Arifovic and Masson (1999)
describe an evolutionary model that results in recurrent episodes of currency crisis
that are driven solely by changes in investors’ beliefs. The economy consists of a
population ofn risk-neutral investors who make portfolio decisions, that is, how
much of their wealthW to invest in an emerging market at the ratert at time period
t . Investors invest the rest of their wealth in the U.S. market at the constant rate of
return,r ∗. At eacht , investori, i ∈ {1, . . . ,n}, is characterized by a probability
of devaluationπ i

t , π
i
t ∈ [0, πmax]. That represents the expectation of how likely

devaluation in the following period is. Let ¯π t be the average of these expectations.
The expected amount of devaluation,δe, is equal across investors and constant
over time.

Since this is a model with heterogeneous beliefs and no explicit assumption of
optimizing behavior, the no-arbitrage condition cannot determine the value ofrt .
Instead, it is assumed that emerging market banks set the interest rate on bank
deposits. They use the average of investors’ expectations as a measure of the
expected value of devaluation. Thus, the interest rate on emerging market deposits
rt is set equal to the U.S. rate plus a weighted average of the expected rate of
devaluation:

rt = (1+ r ∗)(1+ ρ)
n∏

i=1

(
1+ π i

t δ
e
) 1

n − 1, (29)

whereρ is a constant risk premium on the return on emerging market deposits. In-
vestori ’s rule for making a portfolio decision is given byλi

t = 0 or 1 as(1+ r ∗)><
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(1+ rt )/[(1+ ρ)(1+ π i
t δ

e)]. Let λ̄t be the average portfolio decision. At time
t , the amount of emerging market deposits held by all foreign investors isDt =∑n

i=1 λ
i
t W. Note that in a representative-agent model of rational, risk-neutral in-

vestors, the portfolio fraction value is indeterminate.
The underlying model is a balance-of-payments model with the following equa-

tions describing the change in reservesRt = Rt−1 + Tt + Dt − (1+ rt−1)Dt−1

and the trade balanceTt = α + βTt−1 + εt . whereε is assumed to be normally
distributed with mean zero and varianceσ 2.

Provided thatRt is above 0, there is no devaluation att ; that is,δt = 0. However,
if reserves would otherwise be negative, there is a devaluation that reduces the
amount repaid on borrowing undertaken att − 1 so that reserves att equal zero.

Individual rates of return that investors earn determinefitnessat timet . Thus,
a fitness value of expectationi, µi

t , is equal toµi
t = rt − δt if investor i invested

her wealth in the emerging market, and toµi
t = r ∗ if she invested in the U.S.

market. A population of rules is updated every period using the two previously
described operators: imitation and experimentation. Experimentation is performed
with probability pex by drawing a random number from the uniform distribution,
in the interval [0, πmax].

Simulations exhibit recurrent devaluations: extended periods ofδt = 0 are fol-
lowed by instances of devaluation,δt > 0, which take place over several periods.
During the periods whenδt = 0, π̄ t and, consequently,rt are decreasing whilēλt

andRt are increasing. On the other hand, during the periods ofδt > 0, π̄t , andrt

are increasing,Rt is equal to zero, and̄λt is decreasing. Devaluations are triggered
by reversal in the general pattern of falling values of ¯π t .

Note that, in any given period, as long asπ i
t < π̄ t , investori will invest in the

emerging market and as long asδt = 0 will earn the returnrt > r ∗. Thus, any in-
dividual investor has to be more optimistic than the average investor in order to
invest in the emerging market. In the absence of devaluation, the evolutionary
dynamics drive the value of ¯π t down and increase the proportion of investors
in the emerging market. However, eventually, ¯π t becomes small enough and en-
ters into the region where a reversal of its decline occurs. This reversal occurs
because there is a limit to the number of investors, so that increasing optimism
cannot continue indefinitely. Once ¯π t starts increasing, investors become more
and more pessimistic about emerging markets. To invest in an asset with the rate
of returnr ∗, they have to be more pessimistic than the average investor. Eventu-
ally, asπ̄ t becomes high enough, another reversal occurs and it starts decreasing
again. Thus, the observed dynamics look very much like the dynamics of currency
crisis observed in actual markets where there is no apparent reason for a sudden
shift in investors’ expectations and a withdrawal of deposits from the emerging
market.

In addition to simulations, Arifovic and Masson consider two simplified versions
of the model. The first model is identical to the one used in simulations except
that the number of investors is infinite. The analysis shows that, if ¯π t becomes too
low, and gets into the range of values [0, πmax/2], this results in a reversal with
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π̄ t+1− π̄ t > 0. This triggers a crisis with several periods of devaluation that result
in the increasing values of ¯π t . However, as ¯π t enters into the region where its
values are higher thanπmax/(1+ pex), this triggers another reversal in its behavior
and the crisis is halted.

The second is a model with infinite number of investors and only two types of
expectations,π l andπh, corresponding to a low and high expected probability of
devaluation. Those withπh invest in the safe asset, and those withπl invest in the
emerging market. Arifovic and Masson characterize the behavior of the change in
λ̄t+1 over time and show that, as it is increasing, it reaches a critical, maximum
value ofλ∗ after which there is no further increase in its value, and (in the absence
of large trade surpluses), reserves decline over time and lead to devaluation. After
devaluation, the valuēλt+1 drops to the value ofpex and then starts increasing
again. Thus, this model results in a cyclical behavior ofλ̄t+1 that is independent
of the initial conditions.

5. CONCLUDING REMARKS

Two questions frequently arise regarding the implementation of evolutionary al-
gorithms, genetic algorithms in particular, in economic modeling. The first is the
issue of interpretation of learning at the level of population and the second is the
question of interpretation and motivation for the use of the crossover operator. For
example, Fudenberg and Levine (1998) note that applications of GAs have tended
to assume that an entire population of players jointly implements a GA, rather
than each individual player implementing a GA, and that this implementation
poses problems of how to motivate and interpret this type of learning, particularly
with respect to the information required for application of crossover. They suggest
that, instead, individual agents could implement GAs.

These models have been primarily used as models ofsocial learning where an
entire population(s) evolves through imitation, exchange of ideas, and experimen-
tation. However, as some applications show, these algorithms also can be used as
models ofindividual learning, where evolution takes place on a set of competing
beliefs of an indivdiual agents. (The examples are the use of the multiple-population
GA in the cobweb model and the use of classifier systems in the search model of
money and in the artificial stock market.) Which evolutionary paradigm is more
appropriate depends on context and on a particular model. At the macroeconomic
level, it seems plausible that, over time, learning takes place at the level of the
economy, that is, that agents observe each other’s decisions and imitate those
agents that have been successful in the past. Notions of imitation of successful
firms or investors have been around in economic literature for a long time. Social
learning represents explicit modeling of these notions.15 On the other hand, if the
objective of research is the examination of strategic interactions in game-theoretic
framework, then individual learning might be a more appropriate paradigm.

The question of motivation and interpretation of crossover can be answered in
two ways. One is that it is used to capture the idea of exchange of information

https://doi.org/10.1017/S1365100500016059 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100500016059


410 JASMINA ARIFOVIC

between agents, and the second is that the evolutionary process can be represented
with imitation (reproduction) and experimentation (mutation) only. The question
remains what the impact of crossover is. Are there are going to be qualitative
differences in the results of simulations with and without crossover?

Evolutionary algorithms have proven successful in addressing a number of is-
sues in macroeconomic environments. They are useful devices in the selection
of equilibria. When evidence from the experiments with human subjects is used
for evaluation, they perform well in capturing the main features of the experi-
mental data (e.g., cobweb model, single currency and two-currency overlapping
generations economy, search model of money).

Related to the issue of equilibrium selection is the learnability of equilibria. In
other words, how hard is it to learn certain equilibria? Interesting results that come
out of the study of evolutionary algorithms show that there are equilibria that are
easier to learn and others that cannot be learned. One of the examples is the search
model of money, where agents always coordinate on the fundamental equilibrium,
or what seems to be close to the fundamental equilibrium allocations, and are
not able to learn how to coordinate on the speculative equilibria. The other is the
overlapping generations model with periodic and chaotic equilibrium trajectories,
where genetic algorithm coordinates on equilibria of low order, and never selects
high-order equilibria which again appear to be hard to learn. Both of these results
are supported by evidence from the experiments with human subjects.

In addition to equilibrium selection, the use of evolutionary modeling has also
been useful in providing a description of the transitional dynamics in a model
of growth with human capital accumulation. Moreover, this type of model can
account for different timing of development takeoffs in case of the economies with
identical initial conditions, and for persistence in differences in per capita income
across the economies. The results on transitional dyanamics in a growth model
suggest another important area of research that has not been explored so far. It is
the behavior of these models in the environments where there are sudden policy
changes. Transitional, evolutionary dynamics could be quite different from the RE
predictions, particularly in the economies with multiple equilibria.

Competition of different forecasting rules is another issue that has been exam-
ined. This competition in a coevolutionary environment brings more stability to
the economy (cobweb model) and can evolve populations of heterogenous fore-
casts that result in identical, equilibrium decision rules, which suggests that agents
need not have identical forecasts to coordinate on an equilibrium path (n-period
overlapping generations economy).

These models also have had success in capturing features of the actual time series
of asset prices that a number of asset-pricing models and models of exchange rate
have failed to account for (e.g., models of mutual fund investors, artificial stock
market exchange rate, and currency crisis). The analysis showed that time series
generated by the artificial stock market overall match the actual time series much
better than RE versions of the asset-pricing models. In general, RE models cannot
capture the features of the actual asset-price time series and cannot explain the
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observed volume of trading, its persistence, and its co-movement with volatility
of asset prices.

The observed volatility of the exchange rate in a two-currency model matches
the features observed in the experiments with human subjects. The persistence of
volatility is the feature of the actual time series of exchange rates that other models
of the exchange-rate behavior have failed to account for. An evolutionary model
of currency crisis generates dynamics that look very much like the dynamics of
the actual currency crisis.

Another interesting finding from the long-run learning dynamics different from
rational expectations equilibrium outcomes is that the frequency of learning can
qualitatively change the dynamics of the system. More frequent updating leads
to persistent volatility of flows in and out of mutual funds, and to complex stock
market dynamics. Similarly, higher intensity of choice in the cobweb model results
in chaotic trajectories.

One of the challenges that the research in this area faces is the extension of
evolutionary models to the general equilibrium type of economies with multiple
markets. The main issue is the one of determination of prices. These models
cannot take advantage of computing prices through simultaneous determination of
agents’ optimal decisions and market-clearing conditions. Instead, the calculation
of prices has to be explicitly modeled by describing a bargaining process or some
other equilibrating mechanism. This adds an extra layer of complexity on top of
the dynamics that tend to be quite complicated anyway. However, this obstacle
will have to be overcome if these models are to be more widely used in the general
equilibrium setting.

As already noted, agents’ beliefs and actions affect the price levels, which in turn
affect agents’ payoffs in models with evolutionary learning. These self-referential
systems with heterogenous beliefs that evolve over time result in complicated
dynamics that cannot be characterized analytically. However, techniques similar
to those used in evolutionary game theory could be used in some of the models
to examine the local stability of equilibria under the evolutionary dynamics. In
addition, the analysis of the asymptotic behavior of the simplified versions of
models can improve our understanding of simulations and provide support for the
observed behavior (e.g., a cobweb model with two types of predictors, model of
currency crisis). Finally, the competition of different rules, where their survival
depends on performance, is an important feature that distinguishes evolutionary
learning from statistical learning. This feature can be used to gain further insights
into the evolutionary dynamics by examining the ways in which algorithms interact
with economic environments in which they are implemented.

NOTES

1. There is a large number of applications of these algorithms in other areas of economics and in
game theory. For an overview, see Dawid (1999).

2. For an introduction to GAs see Goldberg (1989) or Michalewicz (1996).
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3. Chen and Yeh (1994) appliedgenetic programmingto the cobweb model. They found that the
evolutionary process modeled using the genetic programming gets in the neighborhood of the REE for
both the stable and the unstable case.

4. For further details on how the condition is derived, see Dawid (1999).
5. Note that the least-squares estimate of the inflation rate was obtained by regression of prices on

past prices. Evans and Honkapohja (1999) note that the failure of least-squares learning to converge
might be the result of this particular learning scheme. Since the price level in either steady state is a
trended series, whereas the inflation rate is not, it would be more natural to estimate the inflation rate
by its sample mean.

6. TheE-stability analysis [Evans and Honkapohja (1995a)] selects the two-cycle over the steady
state in this model. This result is interesting in light of the result obtained with the application of
the genetic algorithm: TheE-stability selection criterion correctly predicts the outcome of the genetic
algorithm adaptation in this model.

7. The stability of steady state and periodic equilibria under learning dynamics has been the subject
of a number of studies, e.g., Guesnerie and Woodford (1991) and Evans and Honkapohja (1995a,b).

8. See Van Huyck et al. (1994).
9. Goldberg (1989) and Sargent (1993) provide good descriptions of classifier systems.
10. The selection also can be made randomly with probabilities proportional to classifiers’ strengths.
11. More generally, a performance measure that is a weighted average of past realized net profits

can be used instead of the last-period profits. The choice of the length of the horizon and the weights
is going to affect the dynamics of the system.

12. Brock and Hommes (1998b) use the same framework to study the behavior of investors using
different predictors in a simple mean-variance model and show the possibility for the emergence of
chaotic trajectories.

13. Notice that there is no operator that corresponds to crossover. It has been omitted to allow a
greater degree of analytical tractability.

14. For example, Eichengreen et al. (1996) failed to identify significantly worse macroeconomic
fundamentals in periods of crisis versus periods of noncrisis.

15. Note that the framework of evolutionary game theory is also based on the specification of
learning dynamics at the level of population.
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