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The investigation into the foundational aspects of linguistic mechanisms for programming

long-running transactions (such as the scope operator of WS-BPEL) has recently renewed

the interest in process algebraic operators that, due to the occurrence of a failure, interrupt

the execution of one process, replacing it with another one called the failure handler. We

investigate the decidability of termination problems for two simple fragments of CCS (one

with recursion and one with replication) extended with one of two such operators, the

interrupt operator of CSP and the try-catch operator for exception handling. More precisely,

we consider the existential termination problem (existence of one terminated computation)

and the universal termination problem (all computations terminate). We prove that, as far as

the decidability of the considered problems is concerned, under replication there is no

difference between interrupt and try-catch (universal termination is decidable while

existential termination is not), while under recursion this is not the case (existential

termination is undecidable while universal termination is decidable only for interrupt). As a

consequence of our undecidability results, we show the existence of an expressiveness gap

between a fragment of CCS and its extension with either the interrupt or the try-catch

operator.

1. Introduction

The investigation into the foundational aspects of so-called service composition languages,

see, for example, WS-BPEL (OASIS 2003) and WS-CDL (W3C 2004), has recently

attracted the attention of the concurrency theory community. In particular, one of the

main novelties of such languages is concerned with primitives for programming long-

running transactions. These primitives permit, on the one hand, the interruption of processes

when some unexpected failure occurs and, on the other hand, the activation of alternative

processes named failure handlers that are responsible for compensating those activities

that, even if completed, must be undone due to the occurred failure.

Several recent papers have proposed process calculi that include operators for process

failure handling, for example, there have been, just to mention a few, StAC (Butler and

Ferreira 2004), cJoin (Bruni et al. 2004), cCSP (Butler et al. 2003), πt (Bocchi et al. 2003),

SAGAS (Bruni et al. 2005), web-pi (Laneve and Zavattaro 2005), ORC (Misra and Cook

2007), SCC (Boreale et al. 2006), COWS (Lapadula et al. 2007), SOCK (Guidi et al. 2008)
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and the Conversation Calculus (Vieira et al. 2008). This huge number of calculi that

include mechanisms for interruption and failure handling is evidence of the limitations

of the usual process calculi, which just include communication primitives, in providing

adequate support for a formal investigation of long-running transactions, or of fault and

compensation handling in languages for service composition.

In order to perform a formal investigation of these interruption operators, we have

decided to concentrate on just two of them that we consider well established because they

have been taken either from the tradition of process calculi or from popular programming

languages: the interrupt operator of CSP (Hoare 1985) and the try-catch operator for

exception handling in languages such as C++ or Java. The interrupt operator P�Q

executes P until Q executes its first action; when Q starts executing, the process P is

definitely interrupted. The try-catch operator tryP catchQ executes P , but if P performs

a throw action it is definitely interrupted and Q is executed instead.

We have found these operators particularly useful because, even though very simple,

they are expressive enough to model the typical operators for programming long-running

transactions. For instance, we can consider an operator scopex(P, F, C) corresponding to

a simplified version of the scope construct of WS-BPEL. The meaning of this operator

is as follows. The main activity P is executed. If a fault is raised by P, its execution is

interrupted and the fault handler F is activated. If the main activity P completes, but an

outer scope fails and calls for the compensation of the scope x, the compensation handler

C is executed.

If we assume that the main activity P communicates internal failure with the action

throw (we use a notation common in process calculi: an overlined action, for example,

a, is complementary to the corresponding non-overlined one, for example, action a, and

complementary actions allow parallel processes to synchronise) and completion with end,

and the request for compensation corresponds with the action x, we can model the

behaviour of scopex(P, F, C) with both the try-catch,

try P catch F | end.x.C

and the interrupt operator,

P�(f.F) | throw.f | end.x.C

where the vertical bar means parallel composition.

These two operators appear to be very similar as they both allow for the combination

of two processes P and Q, where the first one executes until the second one performs

its first action. However, there is an interesting distinguishing feature: in the try-catch

operator, the decision to interrupt the execution of P is taken inside P (by means of

the execution of the throw action), while in the interrupt operator this decision is taken

from Q (by executing any initial action). For instance, in the above example of modelling

the scopex(P, F, C) operator using the interrupt operator, we had to include an additional

process throw.f, which captures the request for interruption coming from the main activity

and the forwarding of it to the fault handler. Another difference between the try-catch and

interrupt operators is that the former includes an implicit scoping mechanism, which has

no counterpart in the interrupt operator. More precisely, the try-catch operator defines
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Interrupt Try-catch

CCS�
! CCStc!

Replication existential termination undecidable existential termination undecidable

universal termination decidable universal termination decidable

CCS�
rec CCStcrec

Recursion existential termination undecidable existential termination undecidable

universal termination decidable universal termination undecidable

Table 1. Summary of the results

a new scope for the special throw action, which is bound to a specific instance of the

exception handler.

Starting from these intuitive and informal evaluations of the differences between these

operators, we decided to perform a more rigorous and formal investigation. To this

end, we have considered two restriction-free fragments of CCS (Milner 1989), one with

replication and one with restriction, and we have extended them with either the interrupt

or the try-catch operator to produce the four calculi CCS�
! , CCStc

! , CCS�
rec and CCStc

rec,

as shown in Table 1. We have decided to consider calculi without restriction, the standard

explicit binder operator of CCS, in order that we can observe the impact of the implicit

binder of try-catch. Moreover, we decided to consider replication and recursion separately

because in CCS there is an interesting interplay between these operators and binders, as

proved in Busi et al. (2003): in the case of replication, it is possible to compute, given a

process P , an upper bound to the nesting depth of binders for all derivatives of P (that

is, those processes that can be reached from P after a sequence of transitions). In CCS

with recursion, however, this upper bound cannot be computed in general.

For each of the resulting calculi, we have investigated the decidability of the fol-

lowing termination problems: existential termination (that is, there exists a terminated

computation) and universal termination (that is, all computations terminate). The results

obtained are shown in Table 1. In order to prove that existential termination is unde-

cidable in the calculi, we reduce the termination problem for Random Access Machines

(RAMs) (Shepherdson and Sturgis 1963; Minsky 1967), which is a well-known Turing

complete formalism, to the existential termination problem in CCS�
! and CCStc

! . As

replication is a special case of recursion, we have that the same undecidability result also

holds for CCS�
rec and CCStc

rec. For universal termination, we proceed as follows. We first

prove that it is undecidable in CCStc
rec by reduction of the RAM termination problem to

universal termination in that calculus. Then we separately prove that universal termination

is decidable in CCStc
! and in CCS�

rec. As recursion is more general than replication, the

latter result allows us to conclude that universal termination is decidable in CCS�
! also.

The most significant technical contribution of this paper concerns the proof of

decidability of universal termination in CCS�
rec. This is because, while proving decidability

of universal termination in CCStc
! is done by resorting to the approach in Busi et al. (2003)

based on the existence of an upper bound to the nesting depth of operators in the

derivatives of a process, proving termination in CCS�
rec requires us to deal with an
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unbounded nesting depth of the interrupt operators. For this reason, we need to use a

completely different technique, which is based on devising a particular transformation

of terms into trees (of unbounded depth) and considering an ordering on such trees.

The particular transformation devised must be ‘tuned’ in such a way that the ordering

obtained is, on the one hand, a well-quasi-ordering (and to prove this we exploit the

Kruskal Tree theorem (Kruskal 1960)), but, on the other hand, strongly compatible with

the operational semantics. Obtaining and proving the latter result is particularly intricate,

and requires us also to slightly modify the operational semantics of the interrupt operator

in a termination-preserving way and, technically, to introduce different kinds of trees on

subterms and contexts in order to interpret transitions on trees.

Another interesting consequence of our undecidability results (in particular, the unde-

cidability of existential termination) is the existence of an expressiveness gap between a

fragment of CCS (without restriction and relabelling, and with guarded choice) and its

extension with either interrupt or try-catch. In fact, we observe that existential termination

is decidable for this calculus, but this is not the case for its extensions with either interrupt

or try-catch. Thus, there exists no computable encoding of the considered interruption

operators into this fragment that preserves at least existential termination.

The paper is structured as follows. In Section 2, we define the calculi under consideration.

In Section 3, we prove the undecidability of existential termination in CCS�
! and CCStc

! .

In Section 4, we prove the undecidability of universal termination in CCStc
rec. In Section 5,

we prove the decidability of universal termination for CCStc
! and CCS�

rec. In Section 6,

we evaluate the impact of our results on the evaluation of the expressive power of the

calculi under consideration, and, finally, in Section 7 we give some concluding remarks.

2. The calculi

We start by considering the fragment of CCS (Milner 1989) without recursion, restriction

or relabelling (which we will call finite core CCS or just finite CCS). Then we present

the two infinite extensions with either replication or recursion, the new interrupt operator,

and, finally, the try-catch operator.

Definition 2.1 (finite core CCS). Let Name, ranged over by x, y, . . . , be a denumerable

set of channel names. The class of finite core CCS processes is described by the following

grammar:

P ::= 0 | α.P | P + P | P |P α ::= τ | x | x.

The term 0 denotes the empty process, while the term α.P has the ability to perform the

action α (which is either the unobservable τ action or a synchronisation on a channel

x) and then behaves like P . Two forms of synchronisation are available: the output x

and the input x. The sum construct + is used to make a choice among the summands

while parallel composition | is used to run parallel programs. We use just α to denote the

process α.0.

For input and output actions α, that is, α �= τ, we write α for the complement of α: that

is, if α = x, then α = x and if α = x, then α = x. We use n(P ) to denote the channel names
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PRE : α.P
α−→ P PAR :

P
α−→ P ′

P |Q α−→ P ′|Q

SUM :
P

α−→ P ′

P + Q
α−→ P ′

COM :
P

α−→ P ′ Q
α−→ Q′

P |Q τ−→ P ′|Q′

Table 2. The transition system for finite core CCS (symmetric rules of PAR and SUM

omitted)

that occur in P . The names in a label α, written n(α), is the set of names in α, that is, the

empty set if α = τ or the singleton {x} if α is either x or x.

Table 2 shows the set of transition rules for finite core CCS.

Definition 2.2 (CCS!). The class of CCS! processes is defined by adding the production

P ::= !α.P to the grammar of Definition 2.1.

The transition rule for replication is

!α.P
α−→ P |!α.P .

Definition 2.3 (CCSrec). We assume a denumerable set of process variables, ranged over by

X. The class of CCSrec processes is defined by adding the productions P ::= X | recX.P

to the grammar of Definition 2.1. In the process recX.P , recX is a binder for the process

variable X and P is the scope of the binder. We consider (weakly) guarded recursion,

that is, in the process recX.P , each occurrence of X (which is free in P ) occurs inside a

subprocess of the form α.Q.

The transition rule for recursion is

P {recX.P/X} α−→ P ′

recX.P
α−→ P ′

where P {recX.P/X} denotes the process obtained by substituting recX.P for each free

occurrence of X in P , that is, each occurrence of X that is not inside the scope of a

binder recX. Note that CCS! is equivalent to a fragment of CCSrec. In fact, the replication

operator !α.P of CCS! is equivalent (according, for example, to the standard definition of

strong bisimilarity) to the recursive process recX.(α.(P |X)).

We now introduce the extensions having the new process interruption operator.

Definition 2.4 (CCS�
! and CCS�

rec). The class of CCS�
! and CCS�

rec processes is defined by

adding the production P ::= P�P to the grammars of Definition 2.2 and Definition 2.3,

respectively.

https://doi.org/10.1017/S0960129509007683 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509007683


M. Bravetti and G. Zavattaro 570

The transition rules for the interrupt operator are

P
α−→ P ′

P�Q
α−→ P ′�Q

Q
α−→ Q′

P�Q
α−→ Q′

We will now complete the list of calculi that we will consider by giving the definitions

of the calculi extended by having the new try-catch operator.

Definition 2.5 (CCStc
! and CCStc

rec). The class of CCStc
! and CCStc

rec processes is defined

by adding the productions P ::= tryP catchP and α ::= throw to the grammars of

Definition 2.2 and Definition 2.3, respectively. The new action throw is used to model the

raising of an exception.

The transition rules for the try-catch operator are

P
α−→ P ′ α �= throw

tryP catchQ
α−→ tryP ′ catchQ

P
throw−→ P ′

tryP catchQ
τ−→ Q

We use
∏

i∈I Pi to denote the parallel composition of the indexed processes Pi, and∏
n P to denote the parallel composition of n instances of the process P (if n = 0, then∏
n P denotes the empty process 0).

In the following we will only consider closed processes, that is, processes without free

occurrences of process variables. Given a closed process Q, its internal runs Q −→ Q1 −→
Q2 −→ . . . coincide with sequences of τ labelled transitions, that is, P −→ P ′ if and only

if P
τ−→ P ′. We use −→+ to denote the transitive closure of −→, and −→∗ to denote the

reflexive and transitive closure of −→.

A process Q is dead if there exists no Q′ such that Q −→ Q′. We say that a process P

existentially terminates if there exists P ′ such that P −→∗ P ′ and P ′ is dead. We say that

P universally terminates if all its internal runs terminate, that is, the process P cannot give

rise to an infinite computation: formally, P universally terminates if and only if there exists

no family {Pi}i∈ IN such that P0 = P and Pj −→ Pj+1 for any j. Observe that universal

termination implies existential termination, but the converse does not hold.

3. The undecidability of existential termination in CCS�
! and CCStc

!

We prove that CCS�
! and CCStc

! are powerful enough to model, at least in a non-

deterministic way, any Random Access Machine (RAM) (Shepherdson and Sturgis 1963;

Minsky 1967), which is a well-known register-based Turing powerful formalism.

A RAM (denoted R in the following) is a computational model composed of a finite

set of registers r1, . . . , rn that can hold arbitrary large natural numbers, together with

a program composed of indexed instructions (1 : I1), . . . , (m : Im), that is a sequence

of simple numbered instructions, such as arithmetical operations (on the contents of

registers) or conditional jumps. An internal state of a RAM is given by (i, c1, . . . , cn) where

i is the program counter indicating the next instruction to be executed, and c1, . . . , cn
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are the current contents of the registers r1, . . . , rn, respectively. Given a configuration

(i, c1, . . . , cn), its computation proceeds by executing the instructions in sequence, unless a

jump instruction is encountered. The execution stops when an instruction number higher

than the length of the program is reached. Note that the computation of the RAM

proceeds deterministically (it does not exhibit non-deterministic behaviours).

Without loss of generality, we assume that the registers contain the value 0 at both

the beginning and end of the computation. In other words, the initial configuration is

(1, 0, . . . , 0) and, if the RAM terminates, the final configuration is (i, 0, . . . , 0) with i > m

(that is, the instruction Ii is undefined). More formally, we use (i, c1, . . . , cn) →R (i′, c′
1, . . . , c

′
n)

to indicate the fact that the configuration of the RAM R changes from (i, c1, . . . , cn) to

(i′, c′
1, . . . , c

′
n) after the execution of the ith instruction (→∗

R is the reflexive and transitive

closure of →R).

The RAM instructions have two possible formats:

— (i : Succ(rj)): add 1 to the contents of register rj;

— (i : DecJump(rj , s)): if the contents of register rj is not zero, then decrease it by 1 and

go to the next instruction, otherwise jump to instruction s.

Our encoding is non-deterministic because it introduces computations that do not follow

the expected behaviour of the RAM being modelled. However, all these computations are

infinite. This ensures that, given a RAM, its model has a terminating computation if and

only if the RAM terminates. This proves that existential termination is undecidable.

In both this section and the next, which is devoted to the proof of the undecidability

results, we reason up to a structural congruence ≡ in order to rearrange the order

of parallel composed processes and to abstract away from the terminated processes 0.

We define ≡ as the least congruence relation satisfying the usual axioms: P |Q ≡ Q|P ,

P |(Q|R) ≡ (P |Q)|R and P |0 ≡ P .

Let R be a RAM with registers r1, . . . , rn, and instructions (1 : I1), . . . , (m : Im). We model

registers and instructions separately.

The program counter is modelled by a message pi indicating that the ith instruction is

the next to be executed. For each 1 � i � m, we model the ith instruction (i : Ii) of R by a

process that is guarded by an input operation pi. Once activated, the instruction performs

its operation on the registers and then updates the program counter by producing pi+1

(or ps in the case of a jump).

Formally, for any 1 � i � m, the instruction (i : Ii) is modelled by [[(i : Ii)]], which is a

shorthand notation for the following processes:

[[(i : Ii)]] : !pi.(incj .loop | pi+1) if Ii = Succ(rj)

[[(i : Ii)]] : !pi.
(
τ.(loop | decj .loop.loop.pi+1) +

τ.zeroj .ack.ps
)

if Ii = DecJump(rj , s).

It is worth noting that every time an increment operation is performed, a process loop

is spawned. This process will be removed by a corresponding decrement operation. The

modelling of the DecJump(rj , s) instruction decides internally whether to decrement or to

test the register for zero.
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In the case of decrement, if the register is empty, the instruction deadlocks because

the register cannot actually be decremented. Nevertheless, before trying to decrement the

register, a process loop is generated. As we will discuss in the following, the presence of

this process prevents the encoding from terminating. If the decrement operation is actually

executed, two instances of the process loop are removed, one instance corresponding to

the one produced before the execution of the decrement, and one instance corresponding

to a previous increment operation.

In the case of testing for zero, the corresponding register will have to be modified as

we will discuss below. As this modification requires the execution of several actions, the

instruction waits for an acknowledgment before producing the new program counter ps.

We now show how to model the registers using either the interrupt or try-catch

operators. In both cases we exploit the following idea. Every time the register rj is

incremented, a decj process is spawned, which permits the subsequent execution of a

corresponding decrement operation. In the case of testing the register rj for zero, we will

exploit either the interrupt or the try-catch operators in order to remove all the active

processes decj , thus resetting the register. If the register is not empty when it is reset, the

computation of the encoding no longer reproduces the RAM computation. However, this

‘wrong’ computation certainly does not terminate, thus we can conclude that we faithfully

model at least the terminating computations. Divergence in the case of a ‘wrong’ reset

is guaranteed by the fact that if the register is not empty, k instances of decj processes

are removed with k > 0, and k instances of the process loop (previously produced by the

corresponding k increment operations) will never be removed. As discussed above, the

presence of loop processes prevents the encoding from terminating. This is guaranteed by

considering, for example, the divergent process

LOOP : loop.(l | !l.l).

Formally, we model each register rj , when it contains cj , using one of the following

processes, which we denote [[rj = cj]]
� and [[rj = cj]]

tc:

[[rj = cj]]
� :

(
!incj .decj |

∏
cj
decj

)
�

(
zeroj .nrj .ack

)
[[rj = cj]]

tc : try
(
!incj .decj |

∏
cj
decj | zeroj .throw

)
catch

(
nrj .ack

)
.

It is worth observing that, when a test for zero is performed on the register rj , an

output operation nrj is executed before sending the acknowledgment to the corresponding

instruction. This action is used to activate a new instance of the process [[rj = 0]], as

the process modelling the register rj is removed by the execution of either the interrupt

or the try-catch operators. The activation of new instances of the process modelling the

registers is obtained simply by considering, for each register rj , (one of) the following two

processes:

!nrj .[[rj = 0]]� !nrj .[[rj = 0]]tc.

We are now able to define formally our encoding of RAMs, as well as its properties.

Definition 3.1. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and

registers r1, . . . , rn, and let Γ be either � or tc. Given the configuration (i, c1, . . . , cn) of R,
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we define

[[(i, c1, . . . , cn)]]
Γ
R =

pi | [[(1 : I1)]] | . . . | [[(m : Im)]] |
∏∑ n

j=1 cj
loop | LOOP |

[[r1 = c1]]
Γ | . . . | [[rn = cn]]

Γ | !nr1.[[r1 = 0]]Γ | . . . | !nrn.[[rn = 0]]Γ

to be the encoding of the RAM R in either CCS�
! or CCStc

! , where Γ = � or Γ = tc,

respectively. The processes [[(i : Ii)]], LOOP , and [[rj = cj]]
Γ are as defined above.

The following proposition states that every step of the computation of a RAM can

be mimicked by the corresponding encoding. On the other hand, the encoding could

introduce additional computations. The proposition also states that all these additional

computations are infinite.

Proposition 3.2. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and

registers r1, . . . , rn, and let Γ be either � or tc. Given a configuration (i, c1, . . . , cn) of R,

we have that, if i > m and cj = 0 for each j, with 1 � j � n, then [[(i, c1, . . . , cn)]]
Γ
R is a

dead process, otherwise:

1 If (i, c1, . . . , cn) →R (i′, c′
1, . . . , c

′
n), we have [[(i, c1, . . . , cn)]]

Γ
R →+ [[(i′, c′

1, . . . , c
′
n)]]

Γ
R .

2 If [[(i, c1, . . . , cn)]]
Γ
R −→ Q1 −→ Q2 −→ · · · −→ Ql is a, possibly zero-length, internal run

of [[(i, c1, . . . , cn)]]
Γ
R , then one of the following holds:

— There exists k, with 1 � k � l, such that we have Qk ≡ [[(i′, c′
1, . . . , c

′
n)]]

Γ
R , with

(i, c1, . . . , cn) →R (i′, c′
1, . . . , c

′
n).

— Ql −→+ [[(i′, c′
1, . . . , c

′
n)]]

Γ
R , with (i, c1, . . . , cn) →R (i′, c′

1, . . . , c
′
n).

— Ql does not existentially terminate.

Proof. First, if i > m and ci = 0, ∀1 � i � n, then [[(i, c1, . . . , cn)]]
Γ
R is obviously a

dead process because no loop process is included among the parallel processes composing

[[(i, c1, . . . , cn)]]
Γ
R and all other processes are stuck on inputs that cannot be triggered.

If, instead, i > m and there exists i, with 1 � i � n, such that ci > 0, then [[(i, c1, . . . , cn)]]
Γ
R

can only perform a unique reduction: the one originated by the synchronisation with the

divergent process LOOP . Thus both statements 1 and 2 are trivially satisfied.

Otherwise, i � m, and we suppose (i, c1, . . . , cn) →R (i′, c′
1, . . . , c

′
n). We have two cases:

— If Ii is a Succ(rj) instruction, the process [[(i, c1, . . . , cn)]]
Γ
R may perform a reduction

sequence composed of two reduction steps that lead to [[(i′, c′
1, . . . , c

′
n)]]

Γ
R: the first

reduction is caused by the synchronisation on pi and the second by the synchronisation

on incj . Every process occurring in such a sequence has at most one alternative

reduction: the synchronisation with the divergent process LOOP . Thus both statements

1 and 2 are satisfied.

— If Ii is a DecJump(rj , s) instruction, we have two subcases depending on whether cj = 0

or cj > 0.

– If cj = 0, then [[(i, c1, . . . , cn)]]
Γ
R may perform a reduction sequence composed of six

or seven reduction steps (six in the case of Γ = tc and seven in the case of Γ = �)

that leads to [[(i′, c′
1, . . . , c

′
n)]]

Γ
R: the first reduction is caused by the synchronisation

on pi; the second by the internal τ action in the right-hand side of the choice in
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the encoding of DecJump(rj , s); the third by the synchronisation on zeroj; then,

if Γ = tc, the fourth by the execution of throw inside the encoding of the rj
register, or if Γ = �, the fourth and fifth by the synchronisation on zj and stopj
inside the encoding of the rj register; and, finally, the last two reductions are

caused by the synchronisations on nrj and ack. Apart from the process reached

by the first reduction step, every process occurring in such a sequence has at most

one alternative reduction: the synchronisation with the divergent process LOOP .

However, for the process reached by the first reduction step, there is, possibly,

in addition to the above alternative reduction, another alternative reduction: the

reduction caused by the internal τ action in the left-hand side of the choice in

the encoding of DecJump(rj , s). Such a reduction leads to a process where an

additional instance of the process loop is produced, and, since synchronisation on

decj cannot occur (because cj = 0), such a process can perform a unique reduction:

the reduction originated by the synchronisation with the divergent process LOOP .

Thus both statements 1 and 2 are satisfied.

– If cj > 0, then [[(i, c1, . . . , cn)]]
Γ
R may perform a reduction sequence composed of

five reduction steps that leads to [[(i′, c′
1, . . . , c

′
n)]]

Γ
R: the first reduction is caused by

the synchronisation on pi; the second by the internal τ action in the left-hand side

of the choice in the encoding of DecJump(rj , s); the third by the synchronisation

on decj; and the fourth and fifth by the synchronisation on loop (two times).

Apart from the process reached by the first reduction step, every process occurring

in such a sequence has at most one alternative reduction: the synchronisation

with the divergent process LOOP . However, for the process reached by the first

reduction step, there is, possibly, in addition to the above alternative reduction,

another alternative reduction: the reduction caused by the internal τ action in the

right-hand side of the choice in the encoding of DecJump(rj , s). Such a reduction

leads to a process that may perform a reduction sequence composed of two or

three reduction steps (two in the case of Γ = tc and three in the case of Γ = �)

that leads to a process with the following structure of parallel components: the

number of loop processes is strictly greater than the sum of the numbers of deck
processes for all 1 � k � n. Such a sequence is composed of an initial reduction

caused by the synchronisation on zeroj and then, in the case of Γ = tc, a second

reduction caused by the execution of throw inside the encoding of the rj register, or,

in the case of Γ = �, a second and third reduction caused by the synchronisation

on zj and stopj inside the encoding of the rj register. Note that in both cases,

an interruption (or exception) is generated that, since cj > 0, removes at least

one occurrence of a decj process (without removing a corresponding number of

occurrences of loop processes). It is easy to see that the process reached by such

a sequence does not existentially terminate: the possibility of reaching a dead

process depends crucially on the capability of removing all loop processes (the

only thing that can prevent the LOOP divergent process from being activated by

synchronisation) and the removal of one loop process can only be done by the

encoding after one decj process is correspondingly removed. Finally, every process
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occurring in the last reduction sequence has at most an alternative reduction: the

synchronisation with the divergent process LOOP . Thus both statements 1 and 2

are satisfied.

Thus, we have the following corollary.

Corollary 3.3. Let R be a RAM. The RAM R terminates if and only if [[(1, 0, . . . , 0)]]ΓR
existentially terminates (for both Γ = � and Γ = tc).

Proof. If the RAM R terminates, it follows immediately, by induction on the length

of the computation of the RAM, from Proposition 3.2 (first part plus statement 1) that

[[(1, 0, . . . , 0)]]ΓR can reach a dead state.

For the opposite implication, we show that if the RAM R does not terminate,

then [[(1, 0, . . . , 0)]]ΓR does not existentially terminate. If this were not the case, and we

could reach a dead process from [[(1, 0, . . . , 0)]]ΓR , we can show that this would violate

Proposition 3.2 (statement 2) by induction on the length of an assumed reduction sequence

from the encoding of a configuration reached by the non-terminating RAM to the dead

process.

This proves that existential termination is undecidable in both CCS�
! and CCStc

! . As

replication is a particular case of recursion, the same undecidability result also holds for

CCS�
rec and CCStc

rec.

4. Undecidability of universal termination in CCStc
rec

In this section we prove that universal termination is also undecidable in CCStc
rec. This result

follows from the existence of a deterministic encoding of RAMs satisfying the following

stronger soundness property: a RAM terminates if and only if the corresponding encoding

universally terminates.

The basic idea of the new modelling is to represent the number cj , stored in the register

rj , using a process composed of cj nested try-catch operators. This approach can be

adopted in CCStc
rec because standard recursion admits recursion in depth – it was not

applicable in CCStc
! because replication only supports recursion in width. By recursion

in width, we mean that the recursively defined term can expand only in parallel as, for

instance, in recX.(P |X) (corresponding to the replicated process !P ) where the variable X

is an operand of the parallel composition operator. By recursion in depth, we mean that

the recursively defined term also expands under other operators such as, for instance, in

recX.(try (P |X) catchQ) (corresponding to an unbounded nesting of try-catch operators).

Let R be a RAM with registers r1, . . . , rn, and instructions (1 : I1), . . . , (m : Im). We will

start by presenting the modelling of the instructions, which is similar to the encoding

presented in the previous section. Note that here we do not need to assume that all the

registers have value 0 in a terminating configuration. We encode each instruction (i : Ii)

using the process [[(i : Ii)]], which is a shorthand for the following process:

[[(i : Ii)]] : recX.pi.(incj .pi+1|X) if Ii = Succ(rj)

[[(i : Ii)]] : recX.pi.
(

(zeroj .ps + decj .ack.pi+1)|X
)

if Ii = DecJump(rj , s).
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As in the previous section, the program counter is modelled by the process pi, which

indicates that the next instruction to execute is (i : Ii). The process [[(i : Ii)]] simply

consumes the program counter process, then updates the registers (respectively, performs

a test for zero), and, finally, produces the new program counter process pi+1 (respectively,

ps). Notice that in the case of a decrement operation, the instruction process waits for

an acknowledgment before producing the new program counter process. This is necessary

because the register decrement requires the execution of several operations.

The register rj , which we assume to be initially empty, is modelled by the process

[[rj = 0]], which is a shorthand for the process

[[rj = 0]] : recX.
(
zeroj .X + incj .tryRj catch (ack.X)

)
where, to simplify the notation, we have used the shorthand Rj defined by

Rj : recY .
(
decj .throw + incj .tryY catch (ack.Y )

)
.

The process [[rj = 0]] is able to react either to test for zero requests or increment

operations. In the case of increment requests, a try-catch operator is activated. A recursive

process is installed within this operator that reacts to either increment or decrement

requests. In the case of an increment, an additional try-catch operator is activated (thus

increasing the number of nested try-catch operators). In the case of a decrement, a failure

is raised, which removes the active try-catch operator (thus decreasing the number of

nested try-catch operators) and emits the acknowledgment required by the instruction

process. When the register returns to being empty, the outer recursion reactivates the

initial behaviour.

Formally, the register rj with contents cj > 0 is modelled by the following process

composed of the nesting of cj try-catch operators:

[[rj = cj]] : try(
try(

· · ·
tryRj catch (ack.Rj)

· · ·
)

catch (ack.Rj)
)

catch (ack.[[rj = 0]])

where Rj is as defined above. We are now able to define formally the encoding of RAMs

in CCStc
rec.

Definition 4.1. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and

registers r1, . . . , rn. Given the configuration (i, c1, . . . , cn), we define the encoding of the

RAM R in CCStc
rec to be

[[(i, c1, . . . , cn)]]R = pi | [[(1 : I1)]] | . . . | [[(m : Im)]] | [[r1 = c1]] | . . . | [[rn = cn]].

The new encoding faithfully reproduces the behaviour of a RAM, as stated by the

following proposition, in which we use the notion of a deterministic internal run, which is
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defined as follows: an internal run P0 −→ P1 −→ . . . −→ Pl is deterministic if for every

process Pi, with i < l, Pi+1 is the unique process Q such that Pi −→ Q.

Proposition 4.2. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and

registers r1, . . . , rn. Given a configuration (i, c1, . . . , cn) of R, we have that, if i > m, then

[[(i, c1, . . . , cn)]]R is a dead process, otherwise:

1 If (i, c1, . . . , cn) →R (i′, c′
1, . . . , c

′
n), we have [[(i, c1, . . . , cn)]]R →+ [[(i′, c′

1, . . . , c
′
n)]]R .

2 There exists a non-zero length deterministic internal run

[[(i, c1, . . . , cn)]]
Γ
R −→ Q1 −→ Q2 −→ · · · −→ [[(i′, c′

1, . . . , c
′
n)]]

Γ
R

such that (i, c1, . . . , cn) →R (i′, c′
1, . . . , c

′
n).

Proof. First, if i > m, then [[(i, c1, . . . , cn)]]R is obviously a dead process because all

processes (of which it is comprised through parallel composition) are stuck on inputs that

cannot be triggered.

Otherwise, if i � m, suppose (i, c1, . . . , cn) →R (i′, c′
1, . . . , c

′
n). There are two cases:

— If Ii is a Succ(rj) instruction, the process [[(i, c1, . . . , cn)]]R proceeds deterministically

by performing a reduction sequence composed of two reduction steps that lead to

[[(i′, c′
1, . . . , c

′
n)]]R: the first reduction is caused by the synchronisation on pi and the

second by the synchronisation on incj . Thus both statements 1 and 2 are satisfied.

— If Ii is a DecJump(rj , s) instruction, there are two subcases depending on whether

cj = 0 or cj > 0.

– If cj = 0, then [[(i, c1, . . . , cn)]]R proceeds deterministically by performing a reduction

sequence composed of two reduction steps that lead to [[(i′, c′
1, . . . , c

′
n)]]R: the

first reduction is caused by the synchronisation on pi and the second by the

synchronisation on zeroj . Thus both statements 1 and 2 are satisfied.

– If cj > 0, then [[(i, c1, . . . , cn)]]R proceeds deterministically by performing a reduction

sequence composed of four reduction steps that lead to [[(i′, c′
1, . . . , c

′
n)]]R: the first

reduction is caused by the synchronisation on pi; the second by the synchronisation

on decj; the third by the execution of throw inside the innermost try-catch clause

in the encoding of the rj register; and the fourth by the synchronisation on ack.

Thus both statements 1 and 2 are satisfied.

Thus, we have the following corollary.

Corollary 4.3. Let R be a RAM. The RAM R terminates if and only if [[(1, 0, . . . , 0)]]R
universally terminates.

Proof. The proof of this corollary is the same as that of Corollary 4.3, but using

Proposition 4.2 instead of Proposition 3.2.

This proves that universal termination is undecidable in CCStc
rec.
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5. Decidability of universal termination in CCStc
! and CCS�

rec

In the RAM encoding presented in the previous section, natural numbers are represented

by chains of nested try-catch operators, which are constructed by exploiting recursion.

In this section we prove that both recursion and try-catch are strictly necessary. In fact,

if we consider replication instead of recursion, or the interrupt operator instead of the

try-catch operator, universal termination turns out to be decidable.

These results are based on the theory of well-structured transition systems (Finkel

and Schnoebelen 2001). We start by recalling some basic definitions and results for

well-structured transition systems that will be used in the following.

A quasi-ordering, also known as a pre-order, is a reflexive and transitive relation.

Definition 5.1. A well-quasi-ordering (wqo) is a quasi-ordering � over a set S such that

for any infinite sequence s0, s1, s2, . . . in S, there exist indices i < j such that si � sj .

Transition systems can be formally defined as follows.

Definition 5.2. A transition system is a structure TS = (S,→), where S is a set of states

and →⊆ S × S is a set of transitions. We write Succ(s) to denote the set {s′ ∈ S | s → s′}
of immediate successors of S . TS is finitely branching if all Succ(s) are finite.

Well-structured transition systems, defined as follows, provide the key tool for deciding

the properties of computations.

Definition 5.3. A well-structured transition system with strong compatibility is a transition

system TS = (S,→) equipped with a quasi-ordering � on S such that the following two

conditions hold:

1 Well-quasi-ordering: � is a well-quasi-ordering.

2 Strong compatibility: � is (upward) compatible with →, that is, for all s1 � t1 and all

transitions s1 → s2, there exists a state t2 such that t1 → t2 and s2 � t2.

In the following we use the notation (S,→,�) for transition systems equipped with a

quasi-ordering �.

The following theorem (which is a special case of a result in Finkel and Schnoebelen

(2001)) will be used to obtain our decidability results.

Theorem 5.4. Let (S,→,�) be a finitely branching, well-structured transition system

with strong compatibility, decidable � and computable Succ. The existence of an infinite

computation starting from a state s ∈ S is decidable.

Rather than prove the decidability of universal termination in CCS�
rec using the original

transition system, we will use one that is termination equivalent to it instead. The new

transition system does not eliminate interrupt operators during the computation, so

the nesting of interrupt operators can only grow, and never shrinks. As we will see,

this transformation will be needed for proving that the ordering that we consider on

processes is strongly compatible with the operational semantics. Formally, we define the
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new transition system
α�−→ for CCS�

rec by considering the transition rules of Definition 2.3

(where
α�−→ is substituted for

α−→) plus the following rules

P
α�−→ P ′

P�Q
α�−→ P ′�Q

Q
α�−→ Q′

P�Q
α�−→ Q′�0

Notice that the first of the above rules is as in Definition 2.4, while the second is different

because it does not remove the � operator.

As we did for the standard transition system, we assume that the reductions �−→ of

the new semantics corresponds to the τ-labelled transitions
τ�−→. For the new semantics

also, we say that a process P universally terminates if and only if all its computations are

finite, that is, it cannot give rise to an infinite sequence of reductions �−→.

To prove the equivalence of the semantics of CCS�
rec presented in Section 2 with the

alternative semantics presented in this section with respect to termination, we need to

define the following congruence between processes:

Definition 5.5. We define ≡T as the least congruence relation satisfying the axiom

P�0 ≡T P .

The equivalence result (equivalence with respect to termination) can be easily proved

with the help of the following propositions.

Proposition 5.6. Let P ,Q ∈ CCS�
rec with P ≡T Q. If P

α−→ P ′, then there exists Q′ such

that Q
α−→ Q′ and P ′ ≡T Q′.

Proof. The proof is by induction on the proof of the relation P ≡T Q.

Proposition 5.7. Let P ,Q ∈ CCS�
rec with P ≡T Q. If P

α�−→ P ′, then there exists Q′ such

that Q
α�−→ Q′ and P ′ ≡T Q′.

Proof. The proof is by induction on the proof of the relation P ≡T Q.

Proposition 5.8. Let P ∈ CCS�
rec. If P

α�−→ P ′, then there exists P ′′ such that P
α−→ P ′′

and P ′ ≡T P ′′.

Proof. The proof is by induction on the proof of the derivation P
α�−→ P ′.

Proposition 5.9. Let P ∈ CCS�
rec. If P

α−→ P ′, then there exists P ′′ such that P
α�−→ P ′′

and P ′ ≡T P ′′.

Proof. The proof is by induction on the proof of the derivation P
α−→ P ′.

Corollary 5.10. Let P ∈ CCS�
rec. Then P universally terminates according to the semantics

−→ if and only if P universally terminates according to the new semantics �−→.

We now prove the decidability of universal termination in CCStc
! and in CCS�

rec

separately in the following two subsections.
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5.1. Universal termination is decidable in (CCStc
! ,−→)

The proof for CCStc
! is just a reformulation of the proof given in Busi et al. (2009)

for decidability of universal termination in CCS without relabelling and with replication

instead of recursion.

We first define a quasi-ordering on processes for (CCStc
! ,−→), which turns out to be

a well-quasi-ordering compatible with −→. Then, exploiting Theorem 5.4, we can show

that universal termination is decidable.

Definition 5.11. Let P ∈ CCStc
! . We use Deriv(P ) to denote the set of processes reachable

from P through a sequence of reduction steps:

Deriv(P ) = {Q | P −→ ∗Q}.

To define the wqo on processes, we need the following structural congruence.

Definition 5.12. We define ≡ as the least congruence relation satisfying the axioms

P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R P |0 ≡ P .

We are now ready to define the quasi-ordering on processes.

Definition 5.13. Let P ,Q ∈ CCStc
! . We write P  Q if and only if there exist n,

P ′, R, P1, . . . , Pn, Q1, . . . , Qn, S1, . . . , Sn such that P ≡ P ′|
∏n

i=1 tryPi catch Si and Q ≡
P ′|R|

∏n
i=1 tryQi catch Si, and Pi  Qi for i = 1, . . . , n.

The above definition can be seen as a definition by induction on the nesting depth of try-

catch operators. In the base case, we have n = 0, thus P  Q if and only if Q contains the

processes in P plus other processes in parallel. In the inductive case, P  Q if each process

tryPi catch Si occurring in P has a corresponding process tryQi catch Si with Pi  Qi.

Theorem 5.14. Let P ∈ CCStc
! . Then the transition system (Deriv(P ),−→,) is a finitely

branching, well-structured transition system with strong compatibility, decidable  and

computable Succ.

Proof. In the following we show precisely how to obtain the proof of this result from

the analogous proof in Busi et al. (2009) for the decidability of universal termination in

CCS without relabelling and with replication instead of recursion.

First we need to introduce some auxiliary definitions. Let P ∈ CCStc
! . Using dtc(P ) to

denote the maximum number of nested try-catch operators in process P , we have

dtc(0) = 0

dtc(α.P ) = dtc(!α.P )

= dtc(P )

dtc(P + Q) = dtc(P |Q)

= max({dtc(P ), dtc(Q)})

dtc(tryP catchQ) = max({1 + dtc(P ), dtc(Q)}).
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The set of sequential subprocesses of P is defined by

Sub(0) = {0}
Sub(α.P ) = {α.P } ∪ Sub(P )

Sub(!α.P ) = {!α.P } ∪ Sub(P )

Sub(P + Q) = {P + Q} ∪ Sub(P ) ∪ Sub(Q)

Sub(P |Q) = Sub(P ) ∪ Sub(Q)

Sub(tryP catchQ) = Sub(P ) ∪ Sub(Q).

Finally, let catch(P ) be the set of the processes used as handlers of exceptions in try-catch

operators occurring in P :

catch(P ) = {S | ∃Q : tryQ catch S occurs in P }.

The proof of the theorem is then performed by using exactly the same formal machinery

as used in Busi et al. (2009) to prove their corresponding Theorem 8, which includes their

Definition 17, Lemma 2, Propositions 10–13, Corollary 2 and Theorems 6 and 7, with the

following replacements (in statements and proofs): all occurrences in Busi et al. (2009) of

CCS! are replaced by CCStc
! ; of ≡w by ≡; of bn(P ) by catch(P ); of dν by dtc; of �−→

by −→; of (νxi)Q by tryQ catch Si; of xi by Si; and, finally, in the proof of Busi et al. (2009,

Theorem 8), we must replace the justification for the statement that the transition system

of P is finitely branching by ‘The fact that (Deriv(P ),−→) is finitely branching follows

from an inspection of the transition rules (in particular, of the operational rule for the

!α.P operator presented in Section 2 of this paper)’.

Corollary 5.15. Let P ∈ CCStc
! . The universal termination of process P is decidable.

5.2. Universal termination is decidable in (CCS�
rec, �−→)

According to the ordering defined in Definition 5.13, we have P  Q if Q has the same

structure of nesting of try-catch operators and at each point of this nesting, Q contains

at least the same processes (plus some other processes in parallel). This is a well-quasi-

ordering in the calculus with replication because, given P , it is possible to compute an

upper bound to the number of nestings in any process in Deriv(P ). In the calculus with

recursion, this upper bound does not exist as recursion permits the generation of nesting

with unbounded depth (this is, for example, used in the deterministic RAM modelling of

Section 4). For this reason, we need to move to a different ordering, which is inspired by the

ordering on trees used in Kruskal (1960). This allows us to use the Kruskal Tree theorem,

which states that the trees defined on a well-quasi-ordering form a well-quasi-ordering.

The remainder of this section is devoted to the definition of how to associate trees to

processes of CCS�
rec, and how to extract from these trees an ordering for (CCS�

rec, �−→),

which turns out to be a wqo.
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We take E to be the set of (open) terms of CCS�
rec and P to be the set of CCS�

rec

processes, that is, closed terms. Pseq is the subset of P of terms P such that either P = 0 or

P = α.P1 or P = P1 + P2 or P = recX.P1, with P1, P2 ∈ E. Let Pint = {P�Q | P ,Q ∈ P}.
Given a set E, we use E∗ to denote the set of finite sequences of elements in E. We use

‘;’ as a separator for elements of a set E when denoting a sequence w ∈ E∗, ε to denote

the empty sequence and len(w) to denote the length of a sequence w. Finally, we use wi

to denote the ith element in the sequence w (starting from 1) and e ∈ w to stand for

e ∈ {wi | 1 � i � len(w)}.

Definition 5.16. Let P ∈ P. We define the flattened parallel components of P , denoted

FPAR(P ), as the sequence over Pseq ∪ Pint given by

FPAR(P1|P2) = FPAR(P1);FPAR(P2)

FPAR(P ) = P if P ∈ Pseq ∪ Pint.

Given a sequence w ∈ E∗, we define the sequence w′ ∈ E ′∗ obtained by filtering w with

respect to E ′ ⊆ E as follows. For 1 � i � len(k), w′
i = wki , where k ∈ {1, . . . , len(w)}∗ is

such that k is strictly increasing, that is, j ′ > j implies kj ′ > kj , and, for all h, we have

wh ∈ E ′ if and only if h ∈ k. In the following we use FINT (P ) to denote the sequence

obtained by filtering FPAR(P ) with respect to Pint and FSEQ(P ) to denote the sequence

obtained by filtering FPAR(P ) with respect to Pseq .

In the following we map processes into ordered trees (with both a left to right ordering

of children at every node and the usual child to parent ordering). We use IN to denote the

set of positive natural numbers, that is, IN = {1, 2, . . .}.

Definition 5.17. A tree t over a set E is a partial function from IN∗ to E such that dom(t)

is finite, is closed with respect to sequence prefixing and is such that �n;m ∈ dom(t) and

m′ � m, with m′ ∈ IN, implies �n;m′ ∈ dom(t).

Example 5.18. (ε, l) ∈ t denotes the fact that the root of the tree has label l ∈ E and

(1; 2, l) ∈ t denotes the fact that the second son of the first son of the root of the tree t

has label l ∈ E.

Let Pinth = {�Q | Q ∈ P} be a set representing interruption handlers.

Definition 5.19. Let P ∈ P. We define the tree of P , denoted TREE(P ), as the minimal

tree TREE(P ) over P∗
seq ∪Pinth (and minimal auxiliary tree TREEodd(P ′) over P∗

seq ∪Pinth,

with P ′ ∈ Pint) satisfying:

— (ε, FSEQ(P )) ∈ TREE(P )

— (�n, l) ∈ TREEodd(FINT (P )i) implies (i;�n, l) ∈ TREE(P )

— (ε,�Q) ∈ TREEodd(P ′�Q)

— (�n, l) ∈ TREE(P ′) implies (1;�n, l) ∈ TREEodd(P ′�Q).

Example 5.20. The tree t of the process

P = (a + b)|
(
(recX.(a.X|c))�R

)
|c|((a|c)�S)
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Fig. 1. Tree t associated with process P of Example 5.20.

Fig. 2. The function ϕ from dom(t) to dom(t′) of Example 5.22 strictly preserves order inside trees.

for some processes R and S is

t = {(ε, a + b; c), (1,�R), (1; 1, recX.(a.X|c)), (2,�S), (2; 1, a; c)}.

The tree t is shown in Figure 1.

In the following, we define the ordering between processes using the ordering on trees

used in Kruskal (1960) applied to the particular trees obtained from processes by our

transformation procedure. In order to do this, we introduce the notion of an injective

function that strictly preserves order inside trees: a possible formal way to express

homeomorphic embedding between trees, which is used in Kruskal’s Theorem (Kruskal

1960), and which we take from Simpson (1985).

We take �T to be the ancestor pre-order relation inside trees, which is defined by�n �T �m

if and only if �m is a prefix of �n (or �m = �n). Moreover, we take ∧T to be the minimal

common ancestor of a pair of nodes, that is, �n1 ∧T �n2 = min{�m|�n1 �T �m ∧ �n2 �T �m}.

Definition 5.21. We say that an injective function ϕ from dom(t) to dom(t′) strictly preserves

order inside trees if and only if for every �n,�m ∈ dom(t), we have:

— �n �T �m implies ϕ(�n) �T ϕ(�m).

— ϕ(�n ∧T �m) = ϕ(�n) ∧T ϕ(�m).

Example 5.22. Consider tree t of Example 5.20 and a tree t′ such that

dom(t′) = {ε, 1, 1; 1, 2, 2; 1, 2; 1; 1, 2; 1; 1; 1, 2; 1; 2, 2; 1; 2; 1)}.

The injective function

ϕ = {(ε, ε), (1, 1), (1; 1, 1; 1), (2, 2), (2; 1, 2; 1; 2; 1)},

which is shown in Figure 2, strictly preserves order inside trees.
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Fig. 3. Function ϕ shows that P  Q for P and Q of Example 5.24.

Definition 5.23. Let P ,Q ∈ P. P  Q if and only if there exists an injective function ϕ

from dom(TREE(P )) to dom(TREE(Q)) such that ϕ strictly preserves order inside trees

and for every �n ∈ dom(ϕ), either:

— there exists R ∈ P such that TREE(P )(�n) = TREE(Q)(ϕ(�n)) = �R; or

— TREE(P )(�n), TREE(Q)(ϕ(�n)) ∈ P∗
seq and, if len(TREE(P )(�n)) > 0, there exists an

injective function f from

{1, . . . , len(TREE(P )(�n))}
to

{1, . . . , len(TREE(Q)(ϕ(�n)))}
such that for every i ∈ dom(f), we have TREE(P )(�n)i = TREE(Q)(ϕ(�n))f(i).

Notice that  is a quasi-ordering in that it is obviously reflexive and one can immediately

verify, taking into account the two conditions for the injective function in the above

definition, that it is transitive.

Example 5.24. Consider the process

P = (a + b)|
(
(recX.(a.X|c))�R

)
|c|((a|c)�S)

of Example 5.20 and its associated tree t. Also consider process

Q = (a + b)|
(
(recX.(a.X|c))�R

)
|c|

(
(d|(f�S ′′))|((a|c|e)�S ′)�S

)
,

for some processes R, S, S ′ and S ′′, and its associated tree

t′ = {(ε, a + b; c), (1,�R), (1; 1, recX.(a.X|c)), (2,�S), (2; 1, d),

(2; 1; 1,�S ′), (2; 1; 1; 1, f), (2; 1; 2,�S ′′), (2; 1; 2; 1, a; c; e)}.

The domain of t′ is the same as in Example 5.22, hence the function

ϕ = {(ε, ε), (1, 1), (1; 1, 1; 1), (2, 2), (2; 1, 2; 1; 2; 1)}

strictly preserves order inside trees. It is easy to observe (see Figure 3) that ϕ also maps

exception handlers into identical exception handlers and sequences of sequential terms

into sequences of sequential terms that include a larger (multi)set of sequential terms,

hence P  Q.
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We now redefine on the transition system (CCS�
rec, �−→) the function Deriv(P ) that

associates to a process the set of its derivatives.

Definition 5.25. Let P ∈ CCS�
rec. We use Deriv(P ) to denote the set of processes reachable

from P through a sequence of reduction steps:

Deriv(P ) = {Q | P �−→∗
Q}.

We are now ready to state our main result, which can be proved by simultaneously

exploiting Higman’s Theorem on sequences (Higman 1952) (also known as Higman’s

Lemma) and Kruskal’s Theorem on trees (Kruskal 1960).

Theorem 5.26. Let P ∈ CCS�
rec. Then the transition system (Deriv(P ), �−→,) is a finitely

branching, well-structured transition system with strong compatibility, decidable  and

computable Succ.

Proof. See Section 5.2.1.

Corollary 5.27. Let P ∈ CCS�
rec. The termination of process P is decidable.

As replication is a particular case of recursion, the same decidability result also holds

for CCS�
! .

5.2.1. Proving Theorem 5.26 We first extend the definitions of sequential and interruption

terms and of FPAR(P ) to open terms. Eseq is the subset of E of terms P such that

either P = 0 or P = α.P1 or P = P1 + P2 or P = recX.P1, with P1, P2 ∈ E. Let

Eint = {P�Q | P ,Q ∈ E}. We extend the definition of FPAR(P ) to open terms P ∈ E by

replacing the second clause in the definition of FPAR(P ) with:

FPAR(P ) = P if P ∈ Eseq ∪ Eint ∪ {X|X ∈ Vars}

where Vars is the denumerable set of variables X in the syntax of E terms.

A context is a term PX of E that includes a single occurrence of the free variable X

(and possibly other free variables). A flat parallel context is a term P i
X of E such that

P i
X is a context and the sequence w ∈ (Eint ∪ {X})∗ obtained by filtering FPAR(P i

X) with

respect to Eint ∪ {X} is such that wi = X.

Definition 5.28. Let P ∈ P. We define the context tree of P , denoted CONX(P ), as the

minimal tree CONX(P ) over contexts PX (and minimal auxiliary tree CONodd
X (P ′) over

contexts PX , with P ′ ∈ Pint) satisfying:

— (ε, X) ∈ CONX(P ).

— (�n, P ′
X) ∈ CONodd

X (P ′), with P ′ ∈ Pint, implies

(i;�n, P i
X{P ′

X/X}) ∈ CONX(P i
X{P ′/X}).

— (ε, X) ∈ CONodd
X (P ′�Q).

— (�n, P ′
X) ∈ CONX(P ′) implies (1;�n, P ′

X�Q) ∈ CONodd
X (P ′�Q).

https://doi.org/10.1017/S0960129509007683 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509007683


M. Bravetti and G. Zavattaro 586

Fig. 4. CONX(P ) and SUBT (P ) for the process P of Example 5.29, where

P = (a + b)|((recX.(a.X|c))�R)|c|((a|c)�S ).

We define the subterm tree of P , denoted SUBT (P ), as the tree satisfying the following

condition. (�n, P ′) ∈ SUBT (P ) if and only if there exists a context PX such that (�n, PX) ∈
CONX(P ) and P ′ is the term such that PX{P ′/X} = P . Similarly, (�n, P ′) ∈ SUBTodd(P ),

with P ∈ Pint, if and only if there exists a context PX such that (�n, PX) ∈ CONodd
X (P ) and

P ′ is the term such that PX{P ′/X} = P .

Example 5.29. Consider process

P = (a + b)|
(
(recX.(a.X|c))�R

)
|c|((a|c)�S)

of Example 5.20. The tree CONX(P ) is

{(ε, X),

(1, (a + b)|X|c|((a|c)�S)),

(1; 1, (a + b)|
(
X�R

)
|c|((a|c)�S)),

(2, (a + b)|
(
(recX.(a.X|c))�R

)
|c|X),

(2; 1, (a + b)|
(
(recX.(a.X|c))�R

)
|c|(X�S))}.

The tree SUBT (P ) is

{(ε, P ), (1, (recX.(a.X|c))�R), (1; 1, recX.(a.X|c)), (2, (a|c)�S), (2; 1, a|c)}.

Both trees are shown in Figure 4.

In the following we will use TREE�n(P ) to stand for TREE(P )(�n), CON�n(P ) to stand

for CON(P )(�n) and SUBT�n(P ) to stand for SUBT (P )(�n).

Proposition 5.30.

— (�n, l) ∈ TREE(P ) if and only if (�n, P ′) ∈ SUBT (P ) and:

– l = FSEQ(P ′) if len(�n) is even or zero;

– l = �Q, with P ′ = P ′′�Q for some P ′′, if len(�n) is odd.

— (�n, l) ∈ TREEodd(P ), with P ∈ Pint, if and only if (�n, P ′) ∈ SUBTodd(P ) and:
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– l = �Q, with P ′ = P ′′�Q for some P ′′, if len(�n) is even or zero;

– l = FSEQ(P ′) if len(�n) is odd.

Proof. First note that FINT (P )i = P ′ if and only if there exists a flat parallel context

P i
X such that P i

X{P ′/X} = P and P ′ ∈ Pint. Using this, we can rewrite the second clause

in the definition of TREE(P ) as

(�n, l) ∈ TREEodd(P ′), with P ′ ∈ Pint, implies (i;�n, l) ∈ TREE(P i
X{P ′/X}),

which makes it similar to the corresponding clause in the definition of CONX(P ).

The statement is then trivially proved to hold by induction on len(�n), with len(�n) = 0

as the base case.

In the following we use rchn(t) to denote the number of children of the root of a

(non-empty) tree t. We have rchn(t) = max{k|k ∈ dom(t)}.

Definition 5.31. Let w,w′ ∈ E∗. We define the sequence obtained by inserting w′ in w at

position i, with 1 � i � len(w) + 1, as the sequence w′′ with length len(w) + len(w′) such

that:

— ∀1 � n � i − 1. w′′
n = wn.

— ∀1 � n � len(w′). w′′
i−1+n = w′

n.

— ∀i � n � len(w). w′′
len(w′)+n = wn.

Let t, t′ be trees over E such that (ε, w) ∈ t and (ε, w′) ∈ t′ with w,w′ ∈ E ′∗ ⊆ E. We

define the tree obtained by inserting t′ in t at position (i, j), with 1 � i � len(w) + 1 and

1 � j � rchn(t) + 1, as the minimal tree t′′ such that:

— (ε, w′′) ∈ t′′ where w′′ is obtained by inserting w′ in w at position i.

— ∀�n, 1 � m � j − 1. (m;�n, l) ∈ t implies (m;�n, l) ∈ t′′.

— ∀�n, 1 � m � rchn(t′). (m;�n, l) ∈ t′ implies (j − 1 + m;�n, l) ∈ t′′.

— ∀�n, j � m � rchn(t). (m;�n, l) ∈ t implies (rchn(t′) + m;�n, l) ∈ t′′.

Finally, we define the sequence obtained from w ∈ E∗ by removing the ith element,

with 1 � i � len(w), written w − i, as the sequence w′ ∈ E∗ such that len(w′) = len(w) − 1,

∀1 � n � i − 1. w′
n = wn and ∀i + 1 � n � len(w). w′

n−1 = wn.

We now prove that  satisfies the strong compatibility property with respect to the

transition system (CCS�
rec, �−→). The proof exploits the following lemma.

Lemma 5.32. SUBT�n(P )
α�−→ P ′ implies P

α�−→ CON�n
X(P ){P ′/X}.

Proof. We show by induction on len(�n), where 0 is the base case, that:

— SUBT�n(P )
α�−→ P ′ implies P

α�−→ CON�n
X(P ){P ′/X}.

— SUBTodd(P )(�n)
α�−→ P ′ implies P

α�−→ CONodd
X (P )(�n){P ′/X}.

The induction step is worked out as a trivial consequence of the fact that P
α�−→ P ′ implies

P�Q
α�−→ P ′�Q and P |Q α�−→ P ′|Q.

Theorem 5.33. Let P ,Q, P ′ ∈ P. If P
α�−→ P ′ and P  Q, then there exists Q′ ∈ P such

that Q
α�−→ Q′ and P ′  Q′.
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Proof. The proof is by induction on depth(TREE(P ))/2, where for any tree t we

take depth(t) = max{len(�n)|�n ∈ dom(t)}. It is easy to see that for every P ∈ P, we

have that depth(TREE(P )) is even (because �n ∈ dom(TREE(P )) and len(�n) odd implies

�n; 1 ∈ dom(TREE(P )) ).

Therefore, we will prove the assertion for any P having a certain depth(TREE(P ))/2,

taking depth(TREE(P ))/2 = 0 as the base case of the induction.

Since P  Q, there exists an injective strictly order-preserving ϕ such that the labels

of TREE(P ) and TREE(Q) are correctly related. In particular, there exists an injection

f from {1, . . . , len(TREEε(P ))} to {1, . . . , len(TREEϕ(ε)(Q))} such that TREEε(P )i =

TREEϕ(ε)(Q)f(i). There are two cases:

(a) P
α�−→ P ′ is inferred from the move P1

α�−→ P ′
1 of a single process P1 ∈ FPAR(P ); or

(b) α = τ and P
α�−→ P ′ is inferred from the moves P1

a�−→ P ′
1 and P2

a�−→ P ′
2 of two

processes P1, P2 ∈ FPAR(P ).

In the following we develop (a), then show that (b) can be treated as a consequence

of (a). There are three subcases for (a):

(1) P1 ∈ FSEQ(P ).

(2) P1 = P2�P3, for some P2, P3, and P1
α�−→ P ′

1 is inferred from a move P3
α�−→ P ′

1 of the

process to the right-hand side of �.

(3) P1 = P2�P3, for some P2, P3, and P1
α�−→ P ′

1 is inferred from a move P2
α�−→ P ′

2 of the

process to the left-hand side of �.

Note that the second and third subcases can only arise if depth(TREE(P ))/2 > 0. We

give the proof for each of the subcases in turn:

(1) Assume that P1 is the process at the jth position in the sequence FSEQ(P ) and that

the first process of Pint to the right of P1 in the sequence FPAR(P ) is at the kth

position in the sequence FINT (P ).

First notice that TREE(P ′) is obtained by inserting TREE(P ′
1) in the tree

TREE(P ) − {(ε, FSEQ(P ))} ∪ {(ε, FSEQ(P ) − j)}

at position (j, k).

From the existence of the function f above, we derive P1 ∈ TREEϕ(ε)(Q). Let

Q1 = SUBTϕ(ε)(Q). Assume that P1 is the process at the j ′th position in the sequence

FSEQ(Q1) and that the first process of Pint to the right of P1 in the sequence

FPAR(Q1) is at the k′th position in the sequence FINT (Q1). We have Q1
α�−→ Q′

1,

where TREE(Q′
1) is obtained by inserting TREE(P ′

1) in the tree

TREE(Q1) − {(ε, FSEQ(Q1))} ∪ {(ε, FSEQ(Q1) − j)}

at position (j ′, k′).
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Using Lemma 5.32, we derive Q
α�−→ CON

ϕ(ε)
X (Q){Q′

1/X}. Now consider

ϕ′ = {(ε, ϕ(ε))} ∪
{(m;�n, ϕ(ε); z;�n′)|1 � m � k − 1∧
((ϕ(ε); z;�n′ = ϕ(m;�n) ∧ ϕ(m;�n) � k′ − 1)∨
(ϕ(ε); z − (rchn(t′);�n′ = ϕ(m;�n) ∧ ϕ(m;�n) � k′))} ∪

{(k − 1 + m;�n, ϕ(ε); k′ − 1 + m;�n)|(m;�n) ∈ dom(t′)} ∪
{(rchn(t′) + m;�n, ϕ(ε); z;�n′)|k � m � rchn(t)∧
((ϕ(ε); z;�n′ = ϕ(m;�n) ∧ ϕ(m;�n) � k′ − 1)∨
(ϕ(ε); z − (rchn(t′);�n′ = ϕ(m;�n) ∧ ϕ(m;�n) � k′))},

where t = TREE(P ) and t′ = TREE(P ′
1). ϕ

′ is a strictly order-preserving injection

such that the labels of P ′ and Q′ = CON
ϕ(ε)
X (Q){Q′

1/X} are correctly related, so

P ′  Q′. In particular, the existence of an injection f′ from {1, . . . , len(TREEε(P ′))}
to {1, . . . , len(TREEϕ′(ε)(Q′))} such that TREEε(P ′)i = TREEϕ′(ε)(Q′)f′(i) derives from

the existence of the injection f between the sequences labelling the nodes ε and ϕ(ε) =

ϕ′(ε) of P and Q: f′ is obtained from f by removing the pair (j, j ′) (corresponding to

the removal of P1 from both sequences) and then simply accounting for the insertion

of the same sequence FSEQ(P ′
1) in both sides. Notice that the preservation of the

minimal common ancestor property holds because, when, in TREE(P ′), i; 1;�n nodes,

with k � i � k+rchn(TREE(P ′)), are involved and are considered together with nodes

j; 1;�m for some j < k ∨ j > k + rchn(TREE(P ′)), �m, the minimal common ancestor is

the root ε. Moreover, the nodes ϕ′(i; 1;�n) = ϕ′(ε); i − k + k′; 1;�n and ϕ′(j) have ϕ′(ε)

as a minimal common ancestor – this follows by the construction of TREE(Q′) from

TREE(Q) and because the injection ϕ preserves the ancestor pre-order.

(2) We assume that P1 is the process at the ith position in the sequence FINT (P ).

We have TREEi(P ) = TREEϕ(i)(Q) = �P3, so SUBTϕ(i)(Q) = Q1�P3 for some

Q1 ∈ P and SUBTϕ(i)(Q)
α�−→ P ′

3�0.

Using Lemma 5.32, we derive Q
α�−→ CON

ϕ(i)
X (Q){P ′

1�0/X}. Now consider

ϕ′ = ϕ − {(i; 1;�n,�m)|�n,�m ∈ IN∗} ∪ {(i; 1;�n, ϕ(i); 1;�n)|�n ∈ dom(TREE(P ′
1))}.

ϕ′ is a strictly order-preserving injection such that the labels of P ′ and

Q′ = CON
ϕ(i)
X (Q){P ′

1�0/X}

are correctly related, so P ′  Q′. Notice that the preservation of the minimal common

ancestor property holds because, when, in TREE(P ′), i; 1;�n nodes are involved and

are considered together with nodes j; 1;�m for some j �= i, �m, the minimal common

ancestor is the root ε. Since the nodes i, j have ε as a minimal common ancestor, ϕ(i)

and ϕ(j) must have ϕ(ε) as a minimal common ancestor. Moreover, the injection ϕ

preserves the ancestor pre-order and ϕ′ differs from ϕ just over nodes ϕ(i; 1;�n′) for

some �n′, so ϕ(i; 1;�n) and ϕ(j; 1;�m) must have ϕ′(ε) as a minimal common ancestor.

(3) We assume that P1 is the process at the ith position in the sequence FINT (P ).
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We have ϕ′ = {(�n,�m)|ϕ(i; 1;�n) = ϕ(i; 1);�m} (which makes sense because ϕ preserves

the ancestor pre-order) is a strictly order-preserving injection such that the labels of

P2 and SUBTϕ(i;1)(Q) are correctly related; hence P2  SUBTϕ(i;1)(Q).

By applying the induction hypothesis, we can show that there exists Q′
1 ∈ P such that

SUBTϕ(i;1)(Q)
α�−→ Q′

1 and P ′
2  Q′

1, so there exists a strictly order-preserving injection

ϕ′′ such that the labels of TREE(P ′
2) and TREE(Q′

1) are correctly related.

Using Lemma 5.32, we can derive Q
α�−→ CON

ϕ(i;1)
X (Q){Q′

1/X}. Now consider

ϕ′′′ = ϕ − {(i; 1;�n,�m)|�n,�m ∈ IN∗} ∪ {(i; 1;�n, ϕ(i; 1);�m)|ϕ′′(�n) = �m}.

ϕ′′′ is a strictly order-preserving injection such that the labels of P ′ and Q′ =

CON
ϕ(i;1)
X (Q){Q′

1/X} are correctly related, so P ′  Q′. Notice that the preservation

of the minimal common ancestor property holds because, when, in TREE(P ′), i; 1;�n

nodes are involved and are considered together with nodes j; 1;�m for some j �= i, �m,

the minimal common ancestor is the root ε. Since the nodes i, j have ε as a minimal

common ancestor, ϕ(i) and ϕ(j) must have ϕ(ε) as a minimal common ancestor.

Moreover, the injection ϕ preserves the ancestor pre-order and ϕ′′′ differs from ϕ just

over nodes ϕ(i; 1;�n′) for some �n′, so ϕ(i; 1;�n) and ϕ(j; 1;�m) must have ϕ′′′(ε) as a

minimal common ancestor.

Case (b), α = τ and P
α�−→ P ′, is inferred from the moves P1

a�−→ P ′
1 and P2

a�−→ P ′
2

of two processes P1, P2 at different positions in FPAR(P ). Suppose P1 is at position i in

FPAR(P ) and P2 is at position j in FPAR(P ).

Consider the flat parallel context P i
X such that P i

X{P1/X} = P and P
j
X such that

P
j
X{P2/X} = P . We have P

a�−→ P i
X{P ′

1/X} and P
a�−→ P

j
X{P ′

2/X}. Therefore, by the same

proof as in the previous case, there exists Q′′ and Q′′′ such that Q
a�−→ Q′′ and Q

a�−→ Q′′′.

Now observe that, no matter which of the three cases above applies for the inference

of a move of P , in the above proof we identify Q1 and Q2 in FPAR(SUBTϕ(ε)(Q))

such that Q1
a�−→ Q′

1 and Q2
a�−→ Q′

2. Moreover, Q1 and Q2 are at different positions in

FPAR(SUBTϕ(ε)(Q)) because:

— If Q1 and Q2 are both Pseq terms (subcase 1 above), the injective function f yields Q1

and Q2 at different positions because P1, P2 are at different positions.

— If Q1 and Q2 are both Pint terms (subcases 2 and 3), and using k for the position of P1

in FINT (P ) and h for the position of P2 in FINT (P ) (obviously k �= h), then Q1 is

the term at position k′, where k′;�n = ϕ(k) for some�n, in FINT (SUBTϕ(ε)(Q)) and Q2

is the term at position h′, where h′;�m = ϕ(h) for some �m, in FINT (SUBTϕ(ε)(Q)) and

we must have k′ �= h′ because otherwise ϕ would not preserve the minimal common

ancestor of nodes k and h (which is the root ε).

In order to prove the assertion, we need to use another property of the terms Q′

and injective functions ϕ′ (and the related injective function f′ relating TREEε(P ′) and

TREEϕ(ε)(Q′)) showing that P ′  Q′ built in the previous case (subcases 1, 2 and 3).

Consider a term in FSEQ(P ) that is not P1 and let z be its position in FSEQ(P ). If m is

the position that such a term assumes in FSEQ(P i
X{P ′

1/X}), then f′(m) is the position that

the f(z)th term in FSEQ(SUBTϕ(ε)(Q)) (which is not Q1 because f is injective) assumes
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in FSEQ(Qi′

X{Q′
1/X}), where Qi′

X is such that Q = CON
ϕ(ε)
X (Q){Qi′

X{Q1/X}/X}. Similarly,

consider a term in FINT (P ) that is not P1 and let z be its position in FINT (P ). If m is the

position that such a term assumes in FINT (P i
X{P ′

1/X}), then m′ such that m′;�n = ϕ′(m),

for some �n, is the position that the z′th term in FINT (SUBTϕ(ε)(Q)), with z′;�n = ϕ(z)

(which is not Q1 because ϕ is injective and preserves the minimal common ancestor),

assumes in FINT (Qi′

X{Q′
1/X}).

Since the two processes P1, P2 are at different positions in FPAR(P ), then P
a�−→

P i
X{P ′

1/X} a�−→ P ′, where the two moves are inferred from the moves P1
a�−→ P ′

1 and

P2
a�−→ P ′

2, respectively. From the first move, by building a corresponding move for Q to

Q′ and an injective function ϕ′ (and the related injective function f′ relating TREEε(P ′)

and TREEϕ(ε)(Q′)) as in the previous case, we have

Q
a�−→ Q′ ≡ CON

ϕ(ε)
X (Q){Qi′

X{Q′
1/X}/X},

which is inferred from a move Q1
a�−→ Q′

1 of Q1. Moreover, if P2 ∈ Pseq and m is the

position that term P2 (which is inside P i
X) assumes in FSEQ(P i

X{P ′
1/X}), then f′(m) is the

position that Q2 (which is inside Qi′

X) assumes in FSEQ(Qi′

X{Q′
1/X}). If, instead, P2 ∈ Pint

and m is the position term P2 (which is inside P i
X) assumes in FINT (P i

X{P ′
1/X}), then m′

such that m′;�n = ϕ′(m), for some �n, is the position that Q2 (that is inside Qi′

X) assumes in

FINT (Qi′

X{Q′
1/X}). From the second move, we have that we can similarly build a move

from CON
ϕ(ε)
X (Q){Qi′

X{Q′
1/X}/X} to CON

ϕ(ε)
X (Q){Q′′/X}, which is inferred from a move

Q2
a�−→ Q′

2 of Q2 (because of the correspondence between P2 and Q2 in ϕ′ detailed above),

and an injective function ϕ′′ showing that P ′  CON
ϕ(ε)
X (Q){Q′′/X}. Therefore, since Q1

and Q2 are in different positions in FPAR(SUBTϕ(ε)(Q)), we have SUBTϕ(ε)(Q)
τ�−→ Q′′,

so, by Lemma 5.32, Q
τ�−→ CON

ϕ(ε)
X (Q){Q′′/X}.

In order to prove that  is a wqo, we exploit both Higman’s Theorem, which allows

us to lift a wqo on a set S to a corresponding wqo on S∗, that is, the set of finite

sequences on S, and Kruskal’s Tree Theorem, which allows us to lift a wqo on a set S
to a corresponding wqo on trees over S.

Definition 5.34. Let S be a set and � a wqo over S. The relation �∗ over S∗ is defined

as follows. Let t, u ∈ S∗, with t = t1t2 . . . tm and u = u1u2 . . . un. We define t �∗ u if and

only if there exists an injection f from {1, 2, . . . , m} to {1, 2, . . . , n} such that ti � uf(i) and

1 � f(1) < . . . < f(m) � n.

Note that the relation �∗ is a quasi-ordering over S∗.

Theorem 5.35 (Higman). Let S be a set and � be a wqo over S. Then the relation �∗
is a wqo over S∗.

Definition 5.36. Let S be a set and � a wqo over S. The relation �tree on the set of

trees over S is defined as follows. Let t, u be trees over S. We define t �tree u if and only

if there exists a strictly order-preserving injection ϕ from dom(t) to dom(u) such that for

every �n ∈ dom(ϕ) we have t(�n) � u(ϕ(�n)).
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Note that the relation �tree is a quasi-ordering for the set of trees over S.

Theorem 5.37 (Kruskal). Let S be a set and � be a wqo over S. Then the relation �tree

is a wqo on the set of trees over S.

Moreover, the following trivial proposition will be used to show that  is a wqo.

Proposition 5.38. Let S be a finite set. Then equality is a wqo over S.

In order to apply Kruskal, we need first to define a wqo on the set of labels of the trees

associated to the derivatives of a process P . To prove this result, we show that these labels

are sequences of elements taken from a finite domain (then we can apply Proposition 5.38

and Theorem 5.35). We first introduce some auxiliary notation.

Given a process P ∈ CCS�
rec, we define the set Pseq(P ) of the sequential subprocesses

of P and the set Pinth(P ) of the interruption handlers that are included in P as follows:

Pseq(P ) = {Q ∈ Pseq | Q ∈ ClSub(P )}
Pinth(P ) = {�Q ∈ Pinth | ∃R ∈ P : R�Q ∈ ClSub(P )}

where ClSub(P ) is the set of the closures of the subterms of P , that is, P ′ ∈ ClSub(P ) if

the closed term P ′ is obtained from a subterm P ′′ of P by replacing each free variable in

P ′′ with the corresponding binding recursion inside P . For instance, if

P = recX.a.recY .(b.X + c.Y )

we have, for example, that

b.
(
recX.a.recY .(b.X + c.Y )

)
+ c.recY .

(
b.

(
recX.a.recY .(b.X + c.Y )

)
+ c.Y

)
is in ClSub(P ) in that it is obtained as the closure of the subterm b.X + c.Y of P . Note

that, obviously (since we always consider variable definitions as they appear inside P ,

which does not change during the replacements), the order of variable replacement is

not important given that we replace variables until we reach a closed term: if we replace

variable definitions considering them from inner to outer scopes, that is, the definition

of Y before the definition of X in the example above, we do not have to repeat any

replacements for the same variable.

Since subterms of a term are finitely many and for each term there is exactly one

closure of it, it follows immediately that both Pseq(P ) and Pinth(P ) are always finite.

Proposition 5.39. Given a process P ∈ CCS�
rec, the sets Pseq(P ) and Pinth(P ) are finite.

Proof. The proof is by induction on the structure of P .

We now define the set PP of those processes whose sequential subprocesses and

interruption handlers either occur in P or are 0 and �0, respectively. The latter is needed

to include terms derived from P due to the (modified) semantics of the � operator (see

the termination preserving transformation of the semantics at the beginning of Section 5).
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Definition 5.40. Let P be a process of CCS�
rec. We use PP to denote the set of CCS�

rec

processes defined by

PP = {Q ∈ CCS�
rec | Pseq(Q) ⊆

(
Pseq(P ) ∪ {0}

)
∧ Pinth(Q) ⊆

(
Pinth(P ) ∪ {�0}

)
}.

Note that for every P , the set PP is infinite as there are no restrictions on the number

of instances of the sequential subprocesses or of the interrupts. Nevertheless,  is a wqo

on the set PP , as shown by the following theorem.

Theorem 5.41. Let P ∈ CCS�
rec. The relation  is a wqo over PP .

Proof. We prove the theorem by showing the existence of a wqo � such that for every

Q,R ∈ PP , if Q � R, then Q  R also.

The new relation � is defined as follows. Given Q,R ∈ PP , we define Q � R if and

only if TREE(Q) (=∗)
tree TREE(R) where (=∗)

tree is a relation on trees obtained from

the identity over Pseq(P ) ∪ Pinth(P ) lifted to sequences according to Definition 5.34, and

then lifted to trees according to Definition 5.36. As Pseq(P )∪Pinth(P ) is finite, =∗ is a wqo

(Proposition 5.38 and Higman’s Theorem (Theorem 5.35)). Thus, by Kruskal’s Theorem

(Theorem 5.37), we have that (=∗)
tree is a wqo also.

We still need to show that � implies . To prove this, we show that given Q � R, the

conditions reported in the Definition 5.23 are also satisfied by Q and R, and thus Q  R

also.

Consider Q � R. Then there exists an order preserving injective function ϕ from

dom(TREE(Q)) to dom(TREE(R)) such that for every �n ∈ dom(ϕ), we have

TREE(Q)(�n) =∗ TREE(R)(ϕ(�n)).

There are two possible cases: either TREE(Q)(�n) ∈ Pinth or TREE(Q)(�n) ∈ P∗
seq .

— In the first case, TREE(Q)(�n) = TREE(R)(ϕ(�n)) = �S for some S ∈ P (so the first

item of Definition 5.23 holds).

— In the second case, TREE(Q)(�n) =∗ TREE(R)(ϕ(�n)), that is, there exists an injective

function f from {1, . . . , len(TREE(Q)(�n))} to {1, . . . , len(TREE(R)(ϕ(�n)))} such that

1 � f(1) < . . . < f(len(TREE(Q)(�n))) � len(TREE(R)(ϕ(�n)))

and

TREE(Q)(�n)i = TREE(R)(ϕ(�n))f(i)

(so the second item of Definition 5.23, where we simply require that f is injective,

holds).

In order to prove that (CCS�
rec, �−→) is a well-structured transition system, we simply

have to show that for every P the derivatives of P , that is, Deriv(P ), is a subset of PP .

This follows from the following proposition.

Proposition 5.42. Let P ∈ CCS�
rec and Q ∈ PP . If Q

α�−→ Q′, then Q′ ∈ PP .

Proof. The proof is by induction on the proof of transition Q
α�−→ Q′.
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Corollary 5.43. If P ∈ CCS�
rec, then Deriv(P ) ⊆ PP .

We now complete the proof of decidability of termination in (CCS�
rec, �−→).

Proof of Theorem 5.26. The fact that (Deriv(P ),−→) is finitely branching follows from

an inspection of the transition rules taking into account the weak guardedness constraint

in recursions. Strong compatibility was proved in Theorem 5.33. The fact that  is a wqo

on Deriv(P ) is a consequence of Corollary 5.43 and Theorem 5.41.

6. Interpretation of the results

We now discuss the computational power of the calculi considered in this paper. In the

proof of the undecidability results we have considered RAMs, which constitute a Turing-

complete formalism in the classical setting, that is, given a partial recursive function

there is a corresponding RAM program that computes it. This means that whenever

the function is defined, the corresponding RAM program is guaranteed to complete its

computation yielding the correct value.

We have shown that it is possible to encode deterministically any RAM in CCStc
rec, so

we can conclude that the calculus is Turing complete according to the following criterion:

— Given a partial recursive function with a given input there is a corresponding process

such that:

– if the function is defined for the input, then all computations of the process

terminate and make the corresponding output available (it is sufficient to count

the nesting depth of the try-catch operator in the subprocess of the final process

that represents the output register);

– if the function is not defined for the input, then all computations of the process

do not terminate.

For the other calculi discussed, the decidability of universal termination allows us

to conclude that the calculi are not Turing complete according to the above criterion.

Nevertheless, in the proof of the undecidability of existential termination in these calculi,

we showed that RAMs can be encoded in such a way that at least the terminating

computations respect RAM computations. We can conclude that these calculi satisfy a

weaker criterion.

— Given a partial recursive function with a given input, there is a corresponding process

such that:

– if the function is defined for the input, then there exists at least one compu-

tation that terminates and, moreover, all computations that terminate make the

corresponding output available;

– if the function is not defined for the input, then all computations of the process

do not terminate.

The difference with respect to the above criterion for Turing completeness is in the first

item: when the function is defined, the corresponding process may have some computations

that do not terminate. We can refer to this weaker criterion for Turing universality as
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weak Turing completeness. We can conclude that CCStc
rec is Turing complete while CCS�

! ,

CCStc
! , and CCS�

rec are only weakly Turing complete.

We now compare the computational strength of the interrupt and try-catch operators

with respect to calculi that lack such operators. In particular, we consider a fragment of

CCS (which we will refer to as GCCS in the following) that is obtained by removing

restriction and relabelling, and by assuming that the operands of a choice are always

prefixed processes, as in α1.P1 +α2.P2. It is well known that the processes of GCCS can be

translated into strongly bisimilar finite Petri-nets (Goltz 1988). As existential and universal

termination are decidable for finite Petri-nets (see, for example, Esparza and Nielsen (1994)

for a survey of decidable properties in Petri-nets), and because strong bisimilarity preserves

both existential and univeral termination (that is, an existentially (respectively, universally)

terminating process cannot be strongly bisimilar to a non-existentially (respectively, non-

universally) terminating process), we can conclude that both termination problems are

decidable in GCCS (in fact, it is sufficient to check existential (respectively, universal)

termination on the Petri-nets obtained by removing all transitions different from those

representing τ actions). Thus, GCCS is not weakly Turing complete. As all the encodings

of RAMs that we have presented in this paper exploit guarded choice only, we can

conclude that if we extend GCCS with the interrupt operator we get a weakly Turing

complete calculus, and if we extend GCCS with try-catch we get Turing completeness. In

the light of this last observation, we can conclude that:

— there exists no computable encoding of the interrupt operator in GCCS that preserves

existential termination;

— there exists no computable encoding of the try-catch operator in GCCS that preserves

either existential or universal termination;

— there exists no computable encoding of the try-catch operator in GCCS extended with

the interrupt operator that preserves universal termination.

The last item formalises an interesting impossibility result for the encodability of try-

catch into the interrupt operator. As far as the inverse encoding is concerned, one might

consider modelling the interrupt operator in terms of try-catch using an encoding like

[[P�Q]] =

{
try (P |throw) catchQ if Q can execute at least one action

P otherwise.

It is easy to see that given a process P including the interrupt operator, the corresponding

encoding reproduces all the computations of P . Thus, if P existentially terminates, then its

encoding also existentially terminates. However, the encoding does not preserve existential

termination because the opposite implication does not hold. For instance, consider the

process

a.recX.(τ.X) | b.c | (a.b)�c,

which does not existentially terminate. According to the approach followed by the previous

encoding, this process is modelled by

a.recX.(τ.X) | b.c | try (a.b|throw) catch c,
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which, instead, does existentially terminates when the throw action is the first to be

executed. We leave the investigation of a faithful encoding of the interrupt operator in

terms of try-catch for future work.

7. Conclusion and related work

In this paper we have investigated the impact of the interrupt and the try-catch operators

on the decidability of existential and universal termination in fragments of CCS with

either replication or recursion. Table 1 in the Introduction summarised all the results

proved in this paper, and we discussed the impact of these results in Section 6.

It is worth comparing the results proved in this paper with similar results presented in

Busi et al. (2003; 2009). In those papers, the interplay between replication/recursion and

restriction is studied: a fragment of CCS with restriction and replication is proved to be

weakly Turing powerful (according to the criteria presented in the previous section), while

the corresponding fragment with recursion is proved to be Turing complete. The main

result proved in Busi et al. (2003; 2009) is the decidability of universal termination in CCS

with replication instead of recursion. In those papers, general replication !P is considered

instead of the more constrained guarded replication !a.P considered in the current paper.

We can generalise the results we have proved in this paper for CCS�
! and CCStc

! by

considering general replication instead of guarded replication. The undecidability results

hold trivially when we move from guarded to general replication. As far as the decidability

results are concerned, we will now show how to modify the proof in Section 5.1 in order

to prove the decidability of universal termination in the case of general replication also.

Since we use the theory of well-structured transition systems, we need to consider a

finitely branching transition system. To do this, we will carry out the proof on the

alternative finitely branching transition system obtained by considering the following

rules for replication:

P
α−→ P ′

!P
α−→ P ′| !P

P
α−→ P ′ P

α−→ P ′′

!P
τ−→ P ′| P ′′| !P

These are equivalent, with respect to universal termination (see the proof in Busi

et al. (2003; 2009)), to the usual semantics:

P |!P α−→ P ′

!P
α−→ P ′

As far as the try-catch operator is concerned, the proof in Section 5.1 applies equally to

general replication (defined according to the finitely branching rules) if we replace !α.P

by !P in the definition of dtc( ) and Sub( ). As far as the interrupt operator is concerned,

we also need to replace all occurrences of tryP catchQ by P�Q.

The interplay between restriction and replication/recursion observed in Busi et al. (2003)

and Busi et al. (2009) is similar to what we have proved in this paper for the interplay

between the try-catch operator and replication/recursion. This proves a strong connection
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between restriction and try-catch, at least as far as computational power is concerned.

Intuitively, this follows from the fact that, like restriction, the try-catch operator defines

a new scope for the special throw action that is bound to a specific exception handler.

On the other hand, the interrupt operator does not have the same computational power.

In fact, the calculus with recursion and interrupt is only weakly Turing powerful. This

follows from the fact that this operator does not provide a similar binding mechanism

between the interrupt signals and the interruptible processes.

It is worth comparing our criterion for the evaluation of the expressive power with the

criterion used by Palamidessi in Palamidessi (2003) to distinguish the expressive power of

the synchronous and asynchronous π-calculus. Namely, in that paper, it was proved that

there exists no modular embedding of the synchronous into the asynchronous π-calculus

that preserves any reasonable semantics. When we prove that universal termination

(respectively, existential termination) is undecidable in one calculus but not in another,

we also prove that there exists no computable encoding (and thus also no modular

embedding) of the first calculus into the second that preserves any semantics preserving

universal termination (respectively, existential termination).

If we assume that the termination of one computation is observable (as is done, for

instance, in process calculi with explicit termination (Baeten et al. 2008)), we have that

any reasonable semantics (according to the notion of reasonable semantics presented in

Palamidessi (2003)) preserves both universal and existential termination.

Finally, we should mention the investigation into the expressive power of the disrupt

operator (which is similar to our interrupt operator) carried out by Baeten and Bergstra

in the technical report Baeten and Bergstra (2000). They considered a different notion of

expressive power: one calculus is more expressive than another if it generates a larger set

of transition systems. We consider a stronger notion of expressive power: one calculus is

more expressive than another if it supports a more faithful modelling of Turing complete

formalisms.
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