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We consider a class of optimal control problems for measure-valued nonlinear transport equations
describing traffic flow problems on networks. The objective is to minimise/maximise macroscopic
quantities, such as traffic volume or average speed, controlling few agents, e.g. smart traffic lights
and automated cars. The measure theoretic approach allows to study in a same setting local and
non-local drivers interactions and to consider the control variables as additional measures interacting
with the drivers distribution. We also propose a gradient descent adjoint-based optimisation method,
obtained by deriving first-order optimality conditions for the control problem, and we provide some
numerical experiments in the case of smart traffic lights for a 2–1 junction.
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1 Introduction

During the last years, the study of vehicular and pedestrian traffic flow problems has become a
very active area and an opportunity of information exchange between mathematical investigation
and applied research. From a mathematical point of view, these phenomena have been largely
studied due to their high complexity and the literature offers a broad variety of models devoted
to their description in a wide range of scenarios, see [4, 13, 15] for reviews. On the other side,
from an engineering point of view, it is important to model, simulate, predict, control and opti-
mise vehicular and pedestrian traffic in our society. These issues become more and more central
with the fast technological progress and it is of particular interest to understand how the latest
technologies, such as smart traffic lights, self-driving cars or big data, can be used to improve the
quality of movement for drivers or pedestrians on road networks and urban roads; see [8, 20].

In this paper, we propose a model to simulate and optimise traffic flow on networks based on
the theory of measure-valued transport equations. In this approach, the population is represented
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by a probability distribution which evolves according to a velocity field depending on the position
of the other individuals. In this way short- and long-range interaction mechanisms are readily
taken into account into the dynamics of the problem. Moreover, the measure approach easily
catches the multi-scale nature of vehicular traffic, composed both by a continuous distribution of
indistinguishable cars and by some special individuals such as automated cars and traffic lights.
With respect to other models considering transport equations with nonlocal interactions (see [2, 7,
11, 17]), the peculiarity of our model is to be defined on a network, posing additional difficulties
for the interpretation in a measure-theoretic sense of the transition conditions at the vertices.
Existence, uniqueness and continuous dependence results for the corresponding measure-valued
transport equation were provided in [5, 6].

In [3, 10, 9], the authors consider optimal control problems for measure transport equations
in the Euclidean space. Relying on a similar approach, we consider a model where, besides the
driver distributions, the velocity field depends also on an external distribution which interacts
with the original population in order to optimise, e.g. traffic volume or average speed on the road
network. As in [1, 20], our aim is to show that a small number of external agents can improve the
global behaviour of the population and, indeed, the typical examples of control variables we con-
sider and investigate are smart traffic lights and automated cars. Since the external distribution is
described by a measure evolving according to an appropriate dynamics, other control variables,
such as information about the behaviour of the traffic on the global network, can be considered.

The paper is organised as follows. In Section 2, we introduce the control problem from a
theoretical point of view: network structure, transport equation and cost functional. Section 3 is
devoted to two examples of control problem: traffic lights and self-driving cars as controls for
vehicular traffic. Section 4 focuses on numerical analysis for these problems: description and
properties of the chosen scheme and numerical tests on some case studies. In the Appendix, we
report the proofs of some theoretical results contained in the previous sections.

2 Problem formulation and theoretical setting

In this section we describe the main components of the traffic flow model, i.e. the structural com-
ponents (roadway and priority rules at the junctions), the dynamics of drivers motion (velocity,
interaction with other drivers, influence of the structural components) and the control problem
which has to be solved in order optimise the traffic flow on the network.

2.1 Structural components

Traffic routes are mathematically described by a network � = (V , E), where E = {e1, e2, . . . ,
e|E|} is the set of arcs/roads while the crossroads are represented by the set of the vertexes
V = {V1, . . . , V|V|}. The network is oriented and we write ek→ ej and, respectively, x→ y for
x, y ∈ � to mean that ek comes before ej and, respectively, x before y in the orientation of the
network. We assume that � is endowed with the minimum path distance d� and each arc ej ∈ E
is parameterised by a continuous bijective map πj : [0, Lj]→ ej, Lj ∈ (0,+∞], which complies
with the orientation of �, i.e. if V , W ∈ V are the vertexes of the arc ej oriented from V to W ,
then πj(0)= V and πj(Lj)=W .

For every V ∈ V , we denote by Inc(V ) the set of arcs in E whose end point is V and by Out(V )
the set of arcs in E whose starting point is V . Then, we divide the set of the vertexes, respectively,
in the sets of sources, sinks and junctions:
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S = {V ∈ V|Inc(V )=∅},
W = {V ∈ V|Out(V )=∅},
J = {V ∈ V|Out(V ) �= ∅, Inc(V ) �= ∅}.

Since the velocity term depends on the distribution of the cars on all the network, in order to
simplify the notations we prefer to consider a network without sinks, i.e. the set W is empty and
the terminal arcs always have infinite length. We also denote by L0 the minimal length of the
edges in E , i.e.

L0 = min
j=1,. . .,|E|

Lj. (2.1)

A convenient framework to study transport problems is given by the measure theoretic one, since
it allows to consider in a same setting macroscopic quantities such as a continuous distribution of
drivers and microscopic ones such as traffic lights and other elements of the model. We set �T =
�× [0, T] and we consider the metric space (�T , d) where d((x, t), ( y, s))= d�(x, y)+ |t− s|. For
a function φ : �T→R, we define the norm

‖φ‖BL =‖φ‖∞ + sup
(x,t), ( y,s)∈�T

x�=y
t �=s

|φ(x, t)− φ( y, s)|
d((x, t), ( y, s))

,

and we consider the Banach space BL(�T ) of bounded and Lipschitz continuous functions
equipped with norm ‖·‖BL. Denoted by M(�T ) the space of finite measure on �T , we define
a dual norm on this space by

‖μ‖∗BL= sup
φ∈BL(�T )
‖φ‖BL≤1

|〈μ, ϕ〉|.

Similar notations and definitions are employed for the Banach space M(�) and M([0, T]). In
the following we will always consider measures in M+(�T ), the cone of positive measures
in M(�T ). By the disintegration theorem, we consider measures μ ∈M+(�T ) which can be
decomposed as

μ(dxdt)= dμt(x)dt,

where μt ∈M+(�) represents the distribution at time t ∈ [0, T]. We remark that throughout the
paper we only consider measures without Cantorian part, since this kind of measure does not have
any significant interpretation for traffic flow problems. To model the behaviour of drivers at junc-
tions we assign a distribution matrix P(t)= ( pk j(t))

|E|
k,j=1, for t ∈ [0, T], satisfying the following

properties:

pk j ∈ BV ([0, T]), pk j(t) ∈ [0, 1],

|E|∑
j=1

pk j(t)= 1, ∀t ∈ [0, T], ∀k = 1, . . . , |E |, (2.2)

pk j(t)= 0 if either ek ∩ ej =∅ or ej→ ek .
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Here pk j(t) represents the fraction of drivers which at time t flows from an arc ek to an arc
ej. Hence, for every arc ek , we have a discrete probability distribution Pk(t)= {pk j(t)}j, which
describes the behaviour of drivers at the junction at time t. This quantity is defined on the basis
of the knowledge of the statistical behaviour of the traffic at a given day time (see [16, 19]). The
assumptions in (2.2) imply the mass cannot concentrate at the vertexes and therefore the total
mass is conserved at the internal junctions. Since we consider measures μ ∈M+(�T ) without
Cantorian part, we assume that pk j ∈ BV ([0, T]) so that for a measure μ ∈M+(�T ) the product
pk j ·μ still has no Cantorian part.

2.2 Driver motion

We now describe the nonlinear transport system which models the evolution of the traffic on the
network. The components of the system are the differential equations governing the evolution of
the traffic inside the arcs and the transition conditions at the vertices regulating the distribution
of the traffic flow at the junctions. It is important to remark that the velocity term is nonlocal
since drivers usually have a local knowledge of the traffic distribution in a visual area in front
of them; moreover, they may have a global knowledge of the traffic distribution on the entire
network thanks to appropriate navigation equipments.

We prescribe the initial mass distribution over �:

m0 =
∑
ej∈E

m j
0 ∈M+(�),

where m j
0 is restriction of m0 to ej, and the incoming traffic measure at the source nodes:

σ0 =
∑
Vi∈S

σ i
0, σ i

0 ∈M+({Vi} × [0, T]),

where σ i
0 is the restriction of σ0 to Vi, representing the flow of cars entering in the road network

at the vertex Vi. We consider the following system of measure-valued differential equations on
�T for the unknown measure m=∑ej∈E m j ∈M+(�T ) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tm j + ∂x(v j[mt,μt]m j)= 0 x ∈ ej, t ∈ (0, T], j= 1, . . . , |E |,
m j

t=0 =m j
0 x ∈ ej, j= 1, . . . , |E |,

m j
Vi=πj(0) =

⎧⎨
⎩

∑
ek∈Inc(Vi)

pk j(t)mk
Vi=πk (1) if Vi ∈ I

σ i
0 if Vi ∈ S ,

j= 1, . . . , |E |.
(2.3)

Observe that, for each arc ej, if the initial vertex Vi = πj(0) is internal, then the boundary con-
dition at Vi is given by a measure representing the mass flowing in ej from the arcs incident to
the vertex according to the distribution matrix P(t); if the initial vertex Vi = πj(0) is an incoming
traffic vertex, the inflow measure is the prescribed datum σ i

0. The outflow measure, i.e. the part
of the mass leaving the arc from the final vertex Vk = πj(1), is not given a priori but depends on
the evolution of the measure m inside the arc.

The velocity v = (v j)|E|j=1 depends on the solution mt itself, as well as on another distribu-
tion μt ∈M+(�), representing external forces acting on the drivers such as traffic lights and
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autonomous vehicles (more details will be given in the next section where we consider specific
models). We assume that

(H1) v is non-negative and bounded by vmax > 0;
(H2) v is Lipschitz with respect to the state variables, i.e. there exists L> 0 such that for

every ej ∈ E , ∀x, y ∈ ej, mi, μi ∈M+(�), for i= 1, 2

|v j[m1,μ1](x)− v j[m2,μ2]( y)| ≤ L(|x− y|+ ‖m1 −m2 ‖∗BL + ‖μ1 −μ2 ‖∗BL).

For the definition of measure-valued solution to the system (2.3), we refer to [6]. The next
theorem summarise the main results concerning existence, uniqueness and regularity of the
measure-valued solution to equation (2.3) in case of a fixed μ ∈M+(�T ).

Theorem 2.1 There exists a unique m ∈M+(�T ) which is a measure-valued solution to (2.3).
Moreover,

(i) There exists a positive constant C=C(T) such that

‖mt −mt′ ‖∗BL ≤C
∣∣t− t′1

∣∣+ σ0((t′, t])

for all t′, t ∈ [0, T] with t′ < t.

(ii) Given initial data m0,1, m0,2 ∈M+(�) and boundary data σ0,1, σ0,2 ∈M+([0, T]) and
denoted by m1, m2 ∈M+(�T ) the corresponding solutions, there exists a constant C=
C(T)> 0 such that

‖mT ,2 −mT ,1‖∗BL≤C
(‖m0,2 −m0,1‖∗BL + ‖σ0,2 − σ0,1‖∗BL

)
.

We will consider a velocity field of the form

v[m,μ](x) :=max{vf(x)− vI[m](x)− vE[μ](x), 0}, (2.4)

where vf : �→R+ is the desired velocity representing the speed of a car over a free road, vI[m](x)
is the interaction term due to the presence of other cars on the roads and vE[μ] is the interaction
term with an external distribution μ. Here, we describe the velocities vf and vI, while in the next
section we will consider velocities vE[μ] corresponding to the specific models discussed.

Concerning the free flow speed vf(x), which depends only on the state variable x, we assume
that this function is positive, bounded and Lipschitz continuous on each arc ej of the network �.
Hence, (H1) and (H2) are easily verified for vf.
We consider an interaction velocity vi given by the functional

vI[m](x) :=
∫
�

K(x, y)dm( y).

The interaction kernel K is defined as

K(x, y)= k(d�(x, y))χD(x)( y), (2.5)

where k is a Lipschitz continuous, nonincreasing, bounded function representing the strength of
interaction among cars in dependence on their distance, and χD(x) is the characteristic function
of the set D(x) representing the visual field of the driver. We assume that a driver has only the
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knowledge of the distribution of cars on the roads adjacent to the current position and therefore
we define the visual field as

D(x)= { y ∈ � : x→ y, d�(x, y)≤ R}
with R< L0 and L0 defined in (2.1). Hence it follows that, given x ∈ ek , if V = πk(Lk) ∈ V we
have D(x)⊂ ek ∪

(⋃
ej∈Out(Vi)

ej

)
. We prescribe for any ej ∈Out(V ) a weight αk j satisfying

0≤ αk j ≤ 1,
|E|∑
j=1

αk j = 1,

αk j = 0 if either ek ∩ ej = ∅ or ej→ ek ,

where the coefficients αk j represent the priority of a given route in the choice of the driver
depending on the basis of the observed traffic distribution. In conclusion, the interaction velocity
at x ∈ ek is given:

vI[m](x)=
|E|∑
j=1

αk j

∫
�

k(d�(x, y))χD(x)∩(ek∪ej)( y)dm( y).

Since the function K defined in (2.5) is non-negative and bounded, there exists a constant C> 0
such that

0≤ vI[m](x)≤Cm(�), ∀x ∈ �,

|vI[m1](x)− vI[m2](x)| ≤C‖m1 −m2‖∗BL, ∀x ∈ �, ∀m1, m2 ∈M+(�),

and therefore (H1) and (H2) are satisfied. The Lipschitz continuity with respect to x is more
delicate and for its proof we refer to [6, Section 5]. A specific example of function k is given by

k(x, y)= ρ2

(ρ1 + d�(x, y))β
,

which is inspired by a Cucker–Smale nonlocal interaction kernel (see [14]).

2.3 Mobility optimisation

We introduce a class of optimisation problems on networks involving the distribution m, given
by the solution of (2.3), the external distribution μ and a control variable u which has to be
designed in order to minimise/maximise a given objective functional.

We assume that the set of the admissible controls is given by a Banach space (U , ‖·‖U ). We
also denote by M+

M (�T ) the set of the measures μ ∈M+(�T ) such that ‖μ‖∗BL≤M . Then the
state space of the control problem is given by the space (X , ‖·‖X ) where

X =M+
M (�T )×M+

M (�T )× U ,

‖·‖X =‖·‖∗BL + ‖·‖∗BL + ‖·‖U .

For a given initial distribution m0 ∈M+(�) and an incoming traffic distribution σ0 ∈
M+([0, T]), we consider the optimisation problem:{

min{J (m,μ, u) : (m,μ, u) ∈X },
subject to the state equation (2.3).

(2.6)
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It is convenient to rewrite the previous minimisation problem in the following equivalent form:

min{J (m,μ, u)+�A(m,μ, u) : (m,μ, u) ∈X }, (2.7)

where A := {(m,μ, u) ∈X ; m solves equation(2.3)} and �A is the indicator function of the set A
defined as

�A(x) :=
{

0, x ∈ A,
+∞ otherwise.

A straightforward application of the direct method in Calculus of Variations gives the following
existence result for the minima of (2.7).

Theorem 2.2 Assume that

• J : X →R∪ {+∞} is bounded from below;

• J is lower semicontinuous in X , i.e. for any (mn,μn, un)⊂X such that (mn,μn, un)→
(m,μ, u), it holds J (m,μ, u)≤ lim infn→∞ J (mn,μn, un);

• the set A is closed under the topology induced by ‖·‖X .

Then the minimisation problem (2.6) has a solution.

A typical example of functional to be minimised is of the form

J (m,μ, u) :=−
∫ T

0

∫
�

v[mt,μt]dmt( y)dt+
∫
�×[0,T]

f (x, t, u)dm(x, t), (2.8)

where the first term in (2.8) represents the mean velocity on the network, while the second one
is a feedback term which depends on the choice of f . For example, if f (t, x, u)= χB(x), where
B⊂ � is closed, the functional minimises the amount of mass mt in a closed region B during the
time interval [0, T]. Another interesting class of control problems is the minimum time control
introduced, in a measure theoretic setting, in [10, 9].

3 Model examples: traffic lights and autonomous cars

This section is devoted to some applications of the abstract setting previously described with
the discussion of two significative problems in traffic flow optimisation. In the first example, we
optimise the duration of traffic lights in order to improve the circulation on the road network; in
the second example, we aim to regulate the traffic flow by a fleet of autonomous car.

For both these models we assume that the control variable u influences the traffic flow distribu-
tion m only by means of an external distribution μ=μ[u]. Hence the functional to be minimised
in (2.7) is of the form J (m, u) with m subject to equation (2.3) and μ determined by another
dynamical system for a given initial configuration μ0.

3.1 Smart traffic lights

An important element of a road network model is given by traffic lights: they influence the
behaviour of the drivers near the junction and can be used as an external control to regulate
the traffic flow. To model a traffic light, we follow the approach in [18]. Relying on the
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measure-theoretic setting, we describe a traffic light as a measure θ ∈M+(�T ), which is a Dirac
measure in space and a density with bounded variation in time.

We assume that there is at most one traffic light for each road and that it is located closed
to the terminal vertex V ∈ V of the arc ej. Since the position is fixed a priori while the activity
changes in time, a traffic light can be represented, with an abuse of notation, as the measure

∑
j∈Inc(V )

∫ T

0
uj(t)δV ( y)dt, (3.1)

where uj ∈ BV ([0, T], {0, 1}) is a function representing the state of the traffic light: uj(t)= 1 if
the light is red, uj(t)= 0 if green (for simplicity, we do not consider a yellow phase since the
corresponding driver reaction is strongly influenced by drivers’ culture).

Concerning the light phases, in order to exclude unrealistic scattering phenomena, we fix two
positive times TR, TG > 0 and we assume that the red phase cannot last more than TR

i and, anal-
ogously, the green phase must last at least TG to guarantee a proper traffic flow. Hence denoted
by τ1, τ2 ∈ [0, T] two consecutive switching times of the traffic light on the arc ej (corresponding
to jump discontinuities of uj), we assume that

if uj(τ
+
1 )= 1, then |τ1 − τ2|< TR,

if uj(τ
+
1 )= 0, then |τ1 − τ2|> TG. (3.2)

Moreover, we assume that a traffic light can be green only for one of the incoming roads in a
junction, i.e. ∑

j∈Inc(V )
uj + 1=N ,

TR ≥ (N − 1)TG, (3.3)

where N = #(Inc(V )).
Denote by F ⊂ E the set of the arcs containing a traffic light. Recalling (3.1), we consider

the measure dμ(x, t)=∑|E|j=1 uj(t)dμ j(x, t) on �T where dμ j(x, t)≡ 0 if ej /∈F and dμ j(x, t)=
δV (x)dt if ej ∈F ∩ Inc(Vi). The term uj, the phase duration of the traffic light on the road ej, can
be interpreted as the control variable. The set of admissible controls is given by

U = {u= {uj}j=1,. . .,|F | : uj ∈ BV ([0, T], {0, 1}) and satisfies equations (3.2) and (3.3)}. (3.4)

To describe the interaction of the drivers with the traffic lights, we define an external velocity
term vE[μ] in (2.4). Fixed an arc ej ∈F ∩ Inc(V ), then the restriction of vE[μ] to the arc ej is
given by

v
j

E[μ](x) :=
∫
�

H(x, y)dμt( y)= uj(t)H(x, V )δej (x).

We assume that the interaction kernel H is given by

H(x, y)=
{
vf max

{(
1− d� (x,y)

R

)
, 0
}

, if x→ y, d�(x, y)≤ R,

0 otherwise,
(3.5)

where vf is the desired velocity, and R≤ L0, for L0 as in (2.1), is the visibility radius. The driver
interaction with the traffic light, tuned by the signal uj, occurs only if the driver is sufficiently
close to the junction and becomes stronger getting closer.
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We need to show that the chosen set of control (3.4) satisfies the hypotheses of Theorem 2.2 for
X =M+

M (�T )×M+
M (�T )× U .

Lemma 3.1 The set of positive measures with bounded mass M+
M (�T ) is compact with respect

to ‖·‖∗BL.

Lemma 3.2 The set U defined in (3.4) is compact in (BV |E|([0, T]), ‖·‖L1 ).

Lemma 3.3 Assume X =M+
M (�T )×M+

M (�T )× U , where U satisfies the hypothesis of Lemma
3.2. The set A is closed under the topology induced by ‖·‖X .

The proofs of the previous results are given in the Appendix.

3.2 Regulating traffic flow by means of autonomous cars

In this second application, we aim to optimise the traffic flow by exploiting another distribution of
cars, possibly given by autonomous vehicles, of which we can control the velocity. Indeed some
experiments (see [20]) have shown that it is possible to avoid stop-and-go phenomena regulating
the interactions among drivers by means of external agents (autonomous vehicles, traffic light,
signaling panels, etc.). The approach in this section is inspired to [3] where the authors present an
optimisation problem for a transport equation in the euclidean space with the control represented
by a second distribution μ evolving according to another transport equation.

The dynamics of the autonomous cars is similar to the one of rest of the drivers, with the
difference that it can be controlled in order to minimise the objective functional. Hence for a
given initial distribution μ0 (typically μ0 =∑x∈�a

δx for some finite set �a ⊂ �), the measure
μ ∈ �T representing the distribution of the fleet of the autonomous car satisfies the nonlinear
transport equation⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tμ
j + ∂x(u · v j[mt,μt]μ j)= 0 x ∈ ej, t ∈ (0, T], j= 1, . . . , |E |,

μ
j
t=0 =μ j

0 x ∈ ej, j= 1, . . . , |E |,

μ
j
V=πj(0) =

⎧⎨
⎩

∑
ek∈Inc(V )

qk j(t)μk
V=πk (1) if V ∈ I

0 if V ∈ S ,
j= 1, . . . , |E |.

(3.6)

We assume that the velocity field v[mt,μt] in (3.6) is the same of problem (2.3) and it is defined
as in equation (2.4). Moreover, we assume that the drivers are not able to discern between not-
autonomous and autonomous cars, and therefore vI = vE. Hence we can rewrite the velocity field
(2.4) as

v[η]=max{0, vf − vI[η]},
where, in our setting, η=m+μ.

On the other side, since we want to regulate the velocity of the distribution μ we add a control
term u and we assume that the control set is given by

U = LipL(�T , [0, 1]), (3.7)
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i.e. the set of Lipschitz functions from �× [0, T] to [0,1] with Lipschitz constant L> 0. In this
way, if v[mt,μt] satisfies the assumptions of Theorem 2.1, then also u · v[mt,μt] satisfies the
same assumptions, and therefore system (3.6), given (mt)t∈[0,T], admits a unique measure-valued
solution. Moreover, since we require that u(x, t) ∈ [0, 1], then the autonomous cars can only slow
the traffic distribution. Observe that system (3.6) also differs from (2.3) for the distribution matrix
Q= (qk j(t))

|E|
k, j=1 at the junctions. Actually it is reasonable to assume that Q does not coincide

with the distribution matrix P since the autonomous cars can behave differently from the rest of
the drivers at the junctions and adopt different routes. We assume that the matrix Q satisfies the
assumptions in (2.2).

Existence of a solution (m,μ) to the coupled transport systems (2.3)–(3.6) can be proved by a
fixed point argument.

Given m ∈C([0, T], M+(�)), consider the map

�1 : C([0, T], M+(�))→C([0, T], M+(�)),

which associates to m the unique solution of (3.6). Similarly, given μ ∈C([0, T], M+(�)), define
a map

�2 : C([0, T], M+(�))→C([0, T], M+(�)),

which associates to μ the solution �2(μ) of (2.3). Hence, defined a map � := (�1,�2), the
solution of the coupled system (2.3)–(3.6) is given by a fixed point of�. By an argument similar
to the one already used in [12, 13] for analogous results, it is possible to prove that � is a
contraction and therefore existence of a unique solution to the system (2.3)–(3.6) is obtained.

We conclude this section with the following lemma, which allows to apply Theorem 2.2 to the
present case.

Lemma 3.4 Assume X =M+
M (�T )×M+

M (�T )× U , where U is defined by (3.7). Then, the set
A is closed under the topology induced by ‖·‖X .

4 Numerical solution via optimality conditions

In this section we formally derive first-order optimality conditions for the optimisation problem
(2.6) in the case of a traffic light for a 2–1 junction. Then we build a gradient descent adjoint-
based method to approximate the solution of the discretised optimality system and present some
numerical experiments.

4.1 Optimality conditions

We consider a network � composed of a junction with two roads converging in a single one,
namely we have E = {e1, e2, e3}, V = {V0, V1, V2, V3} and J = {V0}, S = {V1, V2}, W = {V3},
Inc(V0)= {e1, e2} and Out(V0)= {e3}, as shown in Figure 1.

To simplify the presentation, we neglect the drivers interaction term, since the computation in
the general case is similar but more involved. We place a traffic light at V0 in order to maximise
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FIGURE 1. Example of 2–1 junction.

FIGURE 2. Reconstruction of control u from switching durations s= (s1, . . . , sS).

the average speed on the network. In this setting a single control u ∈ BV ([0, T], {0, 1}) is enough
to describe the system, indeed we define edge-wise the velocity v by

v1[u](x, t)=max
{
v1

f (x)− u(t)H(x, V0), 0
}
,

v2[u](x, t)=max
{
v2

f (x)− (1− u(t))H(x, V0), 0
}
,

v3(x, t)= v3
f (x),

where for j= 1, 2, 3, v j
f is the free flow speed on ej and H is defined as in (3.5).

Since the switching of the traffic light is intrinsically a discrete process, we translate the control
problem into a finite dimensional setting. More precisely, we consider a vector s= (s1, . . . , sS) ∈
RS , whose components represent the durations of S − 1 successive switches, where the inte-
ger number S > 1 is fixed a priori. Then the control u(t) is easily reconstructed from a given
value u(0)= u0 ∈ {0, 1} at initial time and from the switching times τi =∑i

k=1 si for i= 1, . . . , S.
Defining recursively ui = 1− ui−1 for i= 1, . . . , S and τ0 = 0 we set (see Figure 2):

u(t)= us(t)=
S−1∑
i=0

uiχ[τi,τi+1)(t).

Following this approach we avoid several difficulties. Indeed, BV ([0, T], {0, 1}) is not even a
vector space and taking admissible variations of a given control or imposing constraints on the
switching durations is in practice not easy at all. One could work instead with the convex sub-
set BV ([0, T]; [0, 1]) of L2(0, T) and look for bang–bang controls. This can prevent unrealistic
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mixing of mass at the junction, due to the additional yellow phase for the traffic light (interme-
diate values in (0, 1)), but chattering phenomena can occur. In our setting we just work in RS ,
chattering is not allowed by construction, and we can easily apply variations/constraints to the
switching durations being sure that the control always remains in BV ([0, T], {0, 1}).

Assuming that the measure m has a density, i.e. dm=m(x, t)dxdt for some function m : �×
[0, T]→R, we want to minimise the cost functional

J (m, us)=−
∫ T

0

∫
�

v[us](x, t)m(x, t)dxdt, (4.1)

subject to {
∂tm j + ∂x(v jm j)= 0 in ej × (0, T), j= 1, 2, 3,

m j(·, 0)=m j
0 in ej.

(4.2)

We also assume null incoming traffic in the network during the whole evolution, imposing

m1
x=V1
= 0, m2

x=V2
= 0, t ∈ [0, T], (4.3)

and the mass conservation condition at the internal vertex V0

m3
x=V0
=m1

x=V0
+m2

x=V0
. (4.4)

We formally apply the method of Lagrange multipliers in order to derive first-order optimality
conditions. We define the Lagrangian as

L(m, us, λ) := J (m, us)+
∫ T

0

∫
�

(−∂tλ− v∂xλ)mdxdt

+
∫
�

(λ(x, T)m(x, T)− λ(x, 0)m0(x))dx

+
∑

j=1,2,3

∫ T

0

(
λ j(V E

j , t)v j(V E
j , t)m j(V E

j , t)− λ j(V I
j , t)v j(V I

j , t)m j(V I
j , t)

)
dt,

where V I
j and V E

j denote the initial and, respectively, the final vertex of the arc ej. Observe that
the terms involving the Lagrange multiplier λ derive from the weak formulation of the transport
equation on �.

We evaluate the derivates of the Lagrangian with respect to m and s (recall that u= us). We
first consider an admissible increment w for m which preserves the boundary and transition
conditions, i.e.

w1(V1, t)= 0, w2(V2, t)= 0, w3(V0, t)=w1(V0, t)+w2(V0, t) t ∈ [0, T], (4.5)

and we compute

〈∂mL, w〉 =
∫ T

0

∫
�

(−∂tλ− v∂xλ− v)wdxdt+
∫
�

λ(x, T)w(x, T)dx

+
∫ T

0

∑
j=1,2,3

(
λ j(V E

j , t)v j(V E
j , t)w j(V E

j , t)− λ j(V I
j , t)v j(V I

j , t)w j(V I
j , t)

)
dt. (4.6)
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Imposing 〈∂mL, w〉 = 0 for any admissible w, we get the following time-backward advection
equation with a source term

− ∂tλ
j − v j∂xλ

j = v j in ej × (0, T), j= 1, 2, 3, (4.7)

and the final condition

λ j(x, T)= 0 in ej, j= 1, 2, 3.

Note that for (4.7), V3 is an inflow vertex where a boundary condition has to be prescribed, while
V1 and V2 are outflow ones. Writing explicitly the remaining boundary terms in (4.6), we have

∫ T

0

(
λ1v1w1(V0, t)− λ1v1w1(V1, t)+ λ2v2w2(V0, t)

−λ2v2w2(V2, t)+ λ3v3w3(V3, t)− λ3v3w3(V0, t)
)

dt= 0.

By taking w compactly supported in a neighbourhood of V3, we get the boundary condition

λ3(V3, t)= 0 in [0, T],

whereas for w compactly supported in a neighbourhood of V0, recalling (4.5), we get

∫ T

0

{(
λ1v1 − λ3v3

)
w1(V0, t)+ (λ2v2 − λ3v3

)
w2(V0, t)

}
dt= 0. (4.8)

The mass conservation condition (4.4) can be rewritten as

v3(V0, t)m3(V0, t)= v1(V0, t)m1(V0, t)+ v2(V0, t)m2(V0, t) t ∈ [0, T],

since the control law u models a traffic light which bring to halt the speed of the drivers at V0 in
e1 and, alternatively, in e2, in such a way that there is mass flow either from e1 to e3 or from e2

to e3. If I1 ⊆ [0, T] is an interval where u(t)= 1 (red light for e1), then in this interval the speed
v1(V0, t) is null and therefore m1(V0, t)= 0 (recall that mass concentration at the vertices is not
admitted). Similarly if u(t)= 0 for t ∈ I2 (red light for e2), we get m2(V0, t)= 0 for t ∈ I2. An
admissible increment, in order to preserve the transition condition for m, has to satisfy the same
property and by (4.8), we get

λ3(V0, t)v3(V0, t)= λ1(V0, t)v1(V0, t)+ λ2(V0, t)v2(V0, t),

or, more explicitly,

λ1(V0, t)v1(V0, t)= λ3(V0, t)v3(V0, t) if t ∈ {v1(V0, t) �= 0},
λ2(V0, t)v2(V0, t)= λ3(V0, t)v3(V0, t) if t ∈ {v2(V0, t) �= 0} .
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We now compute the derivative of L with respect to us for an increment ϕ ∈RS

〈∂sL, ϕ〉 =−
∫ T

0

∫
�

∂sv · ϕ(∂xλ+ 1)mdxdt+
∫ T

0

{ ∑
j=1,2,3

λ j(V E
j , t)∂sv

j(V E
j , t) · ϕm j(V E

j , t)

− λ j(V I
j , t)∂sv

j(V I
j , t) · ϕm j(V I

j , t)

}
dt .

Recalling (4.3) and since v3 is independent of us, we get

〈∂sL, ϕ〉 =
∫ T

0

{
−
∫

e1

∂sv
1 · ϕ(∂xλ

1 + 1)m1 dx−
∫

e2

∂sv
2 · ϕ(∂xλ

2 + 1)m2 dx

+ λ1(V0, t)∂sv
1(V0, t) · ϕm1(V0, t)+ λ2(V0, t)∂sv

2(V0, t) · ϕm2(V0, t)

}
dt,

where

∂sv
1(x, t) · ϕ =−H(x, V0)∇su

s(t) · ϕ, ∂sv
2(x, t) · ϕ =H(x, V0)∇su

s(t) · ϕ

and

∇su
s(t) · ϕ =

S∑
i=1

(−1)ui−1δτi(t)ϕi .

We conclude

〈∂sL, ϕ〉 =
S∑

i=1

(−1)ui−1

{∫
e1

H(x, V0)(∂xλ
1(x, τi)+ 1)m1(x, τi)dx− λ1(V0, τi)H(V0, V0)m1(V0, τi)

−
∫

e2

H(x, V0)(∂xλ
2(x, τi)+ 1)m2(x, τi)dx+ λ2(V0, τi)H(V0, V0)m2(V0, τi)

}
ϕi .

Summarising, the dual problem for (4.2)–(4.4 ) is

{−∂tλ
j − v j∂xλ

j = v j in ej × (0, T), j= 1, 2, 3,

λ j(·, T)= 0 in ej,

with the boundary condition

λ3(V3, t)= 0, in [0, T],

and the transmission condition

λ j(V0, t)v j(V0, t)= λ3(V0, t)v3(V0, t) if t ∈ {v j �= 0}, j= 1, 2.

https://doi.org/10.1017/S0956792518000621 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000621


Traffic optimisation on networks 1201

Finally, if we impose box constraints TG < si < TR for i= 1, . . . , S, the optimal solution
(m, us, λ) should satisfy, for all s̄ ∈RS such that TG < s̄i < TR, the variational inequality

〈∂sL(m, us, λ), s̄− s〉 ≥ 0. (4.9)

Remark 4.1 If the velocity field contains the drivers interaction term, then the dual problem for
(4.2)–(4.4) is given by{−∂tλ

j − v j∂xλ
j − ν ∗ (m∂xλ)= v j + ν ∗m in ej × (0, T), j= 1, 2, 3

λ j(·, T)= 0 in ej

with the same boundary and transition conditions, where (ν ∗ φ)(x)= ∫
�

K( y, x)φ( y)dy. The
additional terms in the equation represent a time-backward counterpart of the nonlocal term
in the forward equation. Indeed, note that the kernel K is not symmetric by definition and the
integration is here performed with respect to the first variable, looking at y→ x and not x→ y
as in (2.5).

4.2 Discretisation

The above optimality system can be discretised using, for instance, finite difference schemes and
solved by some root-finding algorithm. Here we do not solve the whole discrete system at once;
we instead obtain an approximate solution splitting the problem in three simple steps. With a
fixed control, we first solve the forward equation in m, then we solve the backward equation in
λ, and finally update the control using the expression we obtained for the gradient ∂sL, iterating
up to convergence. The resulting procedure is a gradient descent method, summarised in the
following algorithm.

Algorithm [Forward–Backward system with Gradient Descent]

Step 0. Choose ε > 0, β > 0 and set J (0) = 0;

Step 1. Fix an initial guess for s(0) ∈RS , u0 ∈ {0, 1} and set k = 0;

Step 2. Use s(k) to build the control u(k);

Step 3. Solve the forward problem for m(k) with control u(k);

Step 4. Solve the backward problem for λ(k) with control u(k);

Step 5. Compute J (k+1) = J (m(k), s(k)).
If |J (k+1) − J (k)|< ε go to Step 8, otherwise update J (k)← J (k+1) and continue;

Step 6. Compute ∂sL at (m(k), u(k), λ(k));

Step 7. Update s(k)←�{TG ,TR}
(
s(k) − β∂sL(m(k), u(k), λ(k))

)
, k← k + 1 and go to Step 2

(�{TG ,TR} denotes the component-wise projection on the interval [TG, TR]);

Step 8. Accept (m(k), u(k), λ(k)) as an approximate solution of the optimal control problem for
(4.1).

In the actual implementation of the algorithm, we employ a standard scheme for conservation
laws with a superbee flux limiter, to solve the forward equation in m. On the other hand, the
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adjoint advection equation in λ is solved by means of a standard time-backward upwind scheme.
We choose the numerical grid in space and time subject to a sharp CFL condition, in order to
mitigate the numerical diffusion and better observe the nonlocal interactions. Moreover, we com-
pute all the integrals appearing in the functional J , in the nonlocal terms and in the expression
of the gradient ∂sL, by means of a rectangular quadrature rule. We also employ a simple inexact
line search technique to compute a suitable step β for the gradient update in Step 7. Finally, the
application of control constraints is easily obtained by projection. More precisely, given compat-
ible durations 0< TG < TR and the updated s(k) in Step 7, we set s(k)

i ←max{TG, min{s(k)
i , TR}}

for i= 1, . . . , S.

4.3 Numerical experiments

As a preliminary test we compare the local and the nonlocal cases. We consider only the evolu-
tion of the density m along the edge e1 and we set the control u(t)≡ 1 to keep the traffic light at
the end of the road activated (red) during the whole simulation. We choose the length �(e1)= 1
and R1 = 1

8 for the visibility radius of the traffic light. On the other hand, we choose the nonlocal
interaction kernel (2.5) with k(r)= 25

1+r and visibility radius R= 15dx, where dx is the step size
of the space grid. Finally, we set the final time T = 1.25, the free flow speed v1

f ≡ 1 and the initial
distribution m0(x)= χ[0.1,0.15](x).

Figure 3 shows the evolution of m and v at different times for both local and nonlocal cases.
Note that the velocity v decreases from v1

f to zero with a linear ramp while approaching the traffic
light, according to the definition (3.5) for H .

In the local case v does not depend on time, since u is constant. The density m proceeds
without changing profile (except some numerical diffusion at the boundary of its support), then
starts concentrating close to the traffic light. At the final time, all the mass is concentrated at the
point closest to the traffic light.

In the nonlocal case, drivers interactions are clearly visible both in m and v. The initial density
readily activates the nonlocal term in v, and m starts assuming the well-known triangle-shaped
profile. Close to the traffic light we observe a slowing-down that propagates backward up to
the beginning of the queue, preventing mass concentration. At final time the profile becomes
stationary, we observe that v is zero in the whole support of m.

We proceed with a test for validating the proposed numerical method. We consider the case of
a single switching time τ ∈ [0, T], namely we choose s= (s1, s2)= (τ , T − τ ) without constraints
and u0 = 1, so that the corresponding control is just us(t)= χ[0,τ ](t) (red light on e1 for t≤ τ ).
This reduces the optimisation problem to a minimisation in dimension one that can be analysed
by an exhaustive search in τ and then compared with our adjoint-based algorithm. We set all the
parameters as in the previous test, in particular, we choose constant free flow speeds vf

1 = vf
2 =

vf
3 ≡ 1. We also assume that, apart from m0, no additional mass enters or leaves the network for

all t ∈ [0, T].
We start with m0 = (m1

0, m2
0, m3

0)= (χ[0.1,0.15](x), χ[0.6,0.65](x), 0), i.e. two distributions of equal
mass on e1 and e2 that arrive at the traffic light at different times (m2 first and then m1). In
Figure 4(a) we plot the corresponding (normalised) mean velocity v̄(τ )=−J (m, us)/M as a
function of τ , where M = ∫ T

0

∫
�

m(x, t)dxdt.
The scenario is pretty clear. If the switch occurs before m2 reaches the traffic light, then only

m1 will move from e1 to e3 and the mean velocity cannot improve. For larger values of τ , also m2
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FIGURE 3. Red traffic light: local case vs. nonlocal case.

(a) (b)

FIGURE 4. Mean velocity for a single switch of the traffic light: well-separated (a) vs. overlapping (b)
densities.
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will gradually move to e3, and v̄(τ ) increases. If now the switch is placed just after m2 leaves e2

and before m1 approaches the traffic light, v̄ exhibits a plateau and we get the best performance,
both distributions move as they are on a free road. Note that, due to the nonlocal interactions, the
maximum of v̄ is less than the free flow speed. Finally, as τ keeps increasing up to T , m1 starts
getting stuck at the traffic light, and v̄(τ ) decreases.

Now let us repeat the exhaustive computation of the mean velocity v̄(τ ) with m0 = (m1
0,

m2
0, m3

0)= (χ[0.6,0.65](x), χ[0.6,0.65](x), 0), two distributions of equal mass on e1 and e2, starting at
the same distance from the traffic light. Figure 4(b) shows the shape of the corresponding v̄.
We observe that the maximum of v̄ is lower than in the previous test, and it is achieved at a
single point instead of an interval. This clearly depends on the fact that the two densities are
not well separated as before and it is not possible to place a switch without penalising the over-
all traffic flow. Moreover, note that an absolute minimum appears just after the initial plateau.
Interestingly, this means that if the switch occurs too early both densities slowdown, whereas the
optimal choice corresponds to switch just after m2 leaves e2 (see Figure 6).

These two simple examples show that, in general, the numerical optimisation of the traffic light
is a very challenging problem, since there is a wide number of local extrema where the gradient
descent algorithm can stop. To overcome this issue, we perform several runs with random initial
guesses for the controls, and we select the solution obtaining the best result.

Figure 5 shows the optimal solution at different times in the case of well separated. The solu-
tion is computed by the gradient descent method and achieves the absolute maximum of the
corresponding mean velocity.

Similarly, Figure 6 refers to the case of overlapping densities. We clearly observe that on e1

the traffic is stopped until m2 leaves e2.
We conclude with a more complete example, also including control constraints. All the param-

eters are the same of the previous tests, but we fix to S = 5 the number of switching durations
(corresponding to four switching times) and we start with u0 = 0, i.e. green light on e1. Moreover,
we set the constraints TG = 0.15, TR = 0.3, and m0 is given edge-wise by

m1
0(x)= χ[0.1,0.15](x)+ χ[0.4,0.45](x), m2

0(x)= χ[0.1,0.15](x)+ χ[0.6,0.65](x), m3
0(x)= 0.

Note that, with this choice, we are mixing together the two cases analysed before. Indeed, the
initial density consists of four blocks which are, respectively, pairwise overlapped and well sep-
arated. The optimal solution produced by the gradient descent algorithm is s∗ = (0.227, 0.251,
0.259, 0.3, 0.21). Figure 7 shows the corresponding evolution at different times. We observe that
the first switch occurs before m2 approaches the traffic light. This allows the first block of m2 to
proceed without slowdowns from e2 to e3. The second switch occurs immediately after this block
leaves e2, so that also the first block of m1 can leave e1 almost undisturbed before the traffic light
switches again. Now, the remaining densities on e1 and e2 are in overlapping configuration, m2

goes first, while m1 stops. Finally, the last switch occurs just after m2 leaves e2, so that also m1

can move to e3 for the remaining time.
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FIGURE 6. Optimal solution for overlapping densities.
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Appendix. Some complementary results for the variational problems

Proof of Lemma 3.1 Assume without loss of generality that M = 1. It is well known that for
μ ∈M+

M (�T ), |μ|TV =μ(�T )≤ 1.

By Banach–Alaoglu theorem, it follows the compactness with respect to the weak*-
convergence, which implies the same property with respect to the ‖·‖∗BL convergence.

Proof of Lemma 3.2 Since (3.3) is just a condition which defines the dependence among the
components of u ∈ U , we prove the compactness of

U = {u ∈ BV ([0, T], {0, 1}) and u satisfies (3.2)}.

Let {un}n∈N ⊂ U . Denote by τ n
i the switching times of un. By (3.2), for every two consecutive

switching times τ n
k , τ n

k+1 ∈ [0, T], if un(τ n
k )= 1, then

|τ n
k − τ n

k+1|< TR,

otherwise,

|τ n
k − τ n

k+1|> TG.

Since un(t) ∈ {0, 1}, we can assume that there exists a subsequence, still denoted by un, such that
either un(0)= 1 or un(0)= 0 for every n ∈N . Assume now that, w.l.o.g., un(0)= 1 for every
n ∈N and denote by In the set of switching times of un. It follows that

T

TR
≤ #(In)≤ T

TG
.

As before, we can assume, without loss of generality, that there exists N ∈N such that #(In)=N
for all n ∈N. Since In ⊂ [0, T], applying the Cantor diagonal procedure, it follows that there exists
a subsequence (Ink )k∈N such that τ nk

i → τi for i= 1 . . .N . In this way, we define a candidate u as
limit for the subsequence unk from the switching times set {τ1 . . . τN } and u(0)= 1. To conclude,
we only need to show that unk → u in L1. By construction,

‖unk − u‖L1 =
N∑

i=1

|τ nk
i − τi| ≤N sup

i=1. . .N
|τ nk

i − τi|→k→∞0.

Proof of Lemma 3.3 (traffic lights) In this case, the distribution μ has no role since it depends
exclusively on u. Hence, we reduce on X =M+(�T )× U , where U is defined by (3.4).

Let (mn, un)n∈N ⊂ A such that (mn, un)→ (m, u) with respect to the norm ‖· ‖∗BL + ‖·‖L1 .
The closure on the first component derives from the proof of Lemma 4.1 in [3] and the results
in [6].
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Instead, the closure on the second component derives from the compactness of U . Indeed, there
exists a subsequence (unk )k∈N which converges to ũ ∈ U , but it also converges to u by assumption.
Then, it follows that u= ũ ∈ U .

Proof of Lemma 3.4 (autonomous cars) It follows adopting the argument in the previous
proof, for X =M+

M (�T )×M+M (�T )× U endowed with the norm ‖·‖∗BL + ‖·‖∗BL + ‖·‖∞.
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