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Abstract We study the invariance of KMS states on graph C∗-algebras coming from strongly connected
and circulant graphs under the classical and quantum symmetry of the graphs. We show that the unique
KMS state for strongly connected graphs is invariant under the quantum automorphism group of the
graph. For circulant graphs, it is shown that the action of classical and quantum automorphism groups
preserves only one of the KMS states occurring at the critical inverse temperature. We also give an
example of a graph C∗-algebra having more than one KMS state such that all of them are invariant
under the action of classical automorphism group of the graph, but there is a unique KMS state which
is invariant under the action of quantum automorphism group of the graph.
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1. Introduction

For a C∗-algebra A, (A, σ) is called a C∗-dynamical system if there is a strongly
continuous map σ : R → Aut(A). When H is a finite-dimensional Hilbert space, a C∗-
dynamical system (B(H), σ) is given by a self-adjoint operator H ∈ B(H) in the sense
that σt(A) = eitHAe−itH . For such a C∗-dynamical system, it is well known that at any
inverse temperature β ∈ R, the unique thermal equilibrium state is given by the Gibbs
state

ωβ(A) =
Tr(e−βHA)
Tr(e−βH)

, A ∈ A.

For a general C∗-dynamical system (A, σ), the generalization of the Gibbs states is the
KMS (Kubo–Martin–Schwinger) states. A KMS state for a C∗-dynamical system (A, σ) at
an inverse temperature β ∈ R is a state τ ∈ A∗ that satisfies the KMS condition given by

τ(ab) = τ(bσiβ(a)),
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Invariance of KMS states on graph C*-algebras 763

for a, b in a dense subalgebra of A called the algebra of analytic elements of (A, σ).
For a general C∗-dynamical system, unlike the finite-dimensional case, KMS states do
not exist at every temperature. Even if they exist, generally nothing can be said about
their uniqueness at a given temperature. It is worth mentioning that in Physics liter-
ature, the uniqueness of KMS state often is related to phase transition and symmetry
breaking.

One of the mathematically well-studied KMS states are the KMS states for the C∗-
dynamical systems on the graph C∗-algebras (see [6, 9]). For a finite-directed graph Γ,
the dynamical system is given by the C∗-algebra C∗(Γ) and the automorphism σ being
the natural lift of the canonical gauge action on C∗(Γ). In [6], it is shown that there
is a KMS state at the critical inverse temperature ln(ρ(D)) if and only if ρ(D) is an
eigenvalue of D with eigenvectors having all entries non- negative, where ρ(D) is the
spectral radius of the vertex matrix D of the graph. For a general graph C∗-algebra,
we can not say anything about the uniqueness of KMS states. In [6], for strongly con-
nected graphs, such uniqueness result has been obtained. In fact, for strongly connected
graphs, there is a unique KMS state occurring only at the critical inverse tempera-
ture. However, for another class called the circulant graphs, one can show that KMS
states at the critical inverse temperature are not unique. In this context, it is interest-
ing to study invariance of KMS states under some natural added (apart from the gauge
symmetry) internal symmetry of the graph C∗-algebra and see if such an invariance
could force the KMS state to be unique in certain cases. It is shown in [14] that for
a graph Γ, the graph C∗-algebra has a natural generalized symmetry coming from the
quantum automorphism group Aut+(Γ) (see [2]) of the graph itself. This symmetry is
generalized in the sense that it contains the classical automorphism group Aut(Γ) of the
graph. In this paper, we study the invariance of the KMS states under this generalized
symmetry.

For a strongly connected graph Γ, we show that the unique KMS state is preserved
by the quantum automorphism group Aut+(Γ). This result has a rather interesting con-
sequence on the ergodicity of the action of Aut+(Γ) on the graph. It is shown that
for a non-regular strongly connected graph Γ, Aut+(Γ) can not act ergodically. Then
we study another class of graphs called the circulant graphs. Circulant graphs admit
KMS states at the inverse critical temperature, but they are not necessarily unique.
But due to the transitivity of the action of the automorphism group, it is shown that
there exists a unique KMS state which is invariant under the classical or quantum sym-
metry of the system. In fact, we also show that the only temperature where the KMS
state could occur is the inverse critical temperature. Finally, we show by an example
that invariance of the KMS state under the action of the quantum symmetry group
forces the KMS state to be unique. More precisely, we give an example of a graph with
48 vertices coming from the Linear Binary Constraint system (LBCS, see [11]) where
the corresponding graph C∗-algebra has more than one KMS state all of which are
preserved by the action of the classical automorphism group of the graph. However,
it has a unique Aut+(Γ) invariant KMS state. In this example also, the only possible
inverse temperature at which the KMS state could occur is the inverse critical temper-
ature. This shows that in deed where the classical symmetry fails to fix KMS state,
the richer ‘genuine’ quantum symmetry of the system plays a crucial role to fix a KMS
state.
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2. Preliminaries

2.1. KMS states on graph C∗-algebra without sink at the critical inverse
temperature

A finite directed graph is a collection of finitely many edges and vertices. If we denote
the edge set of a graph Γ by E = (e1, . . . , en) and the vertex set of Γ by V = (v1, . . . , vm)
then recall the maps s, t : E → V from [13] and the vertex (or the adjacency) matrix D
which is an m × m matrix whose ijth entry is k if there are k-number of edges from vi

to vj . We denote the space of paths by E∗ (see [6]). vE∗w will denote the set of paths
between two vertices v and w.

Definition 2.1. Γ is said to be without sink if the map s : E → V is surjective. Fur-
thermore Γ is said to be without any multiple edge if the adjacency matrix D has entries
either 1 or 0.

Remark 2.2. Note that the graph C∗-algebra corresponding to a graph without sink
is a Cuntz–Krieger algebra. The reader might see [4] for more details on Cuntz–Krieger
algebra.

Now we recall some basic facts about graph C∗-algebras. The reader might consult
[13] for details on graph C∗-algebras. Let Γ = {E = (e1, . . . , en), V = (v1, . . . , vm)} be a
finite, directed graph without sink. In this paper, all the graphs are finite, without sink
and without any multiple edges. We assign partial isometries Si’s to edges ei for all
i = 1, . . . , n and projections pvi

to the vertices vi for all i = 1, . . . ,m.

Definition 2.3. The graph C∗-algebra C∗(Γ) is defined as the universal C∗-
algebra generated by partial isometries {Si}i=1,...,n and mutually orthogonal projections
{pvk

}k=1,...,m satisfying the following relations:

S∗
i Si = pt(ei),

∑
s(ej)=vl

SjS
∗
j = pvl

.

The KMS states at various inverse temperatures on a graph C∗-algebra are well known
and we refer the reader to [6] for details. The critical inverse temperature of a graph C∗-
algebra is given by ln(ρ(D)) where ρ(D) is the spectral radius of the vertex matrix D of
the underlying graph. In this subsection, we mainly collect a few results on the existence
of KMS states at the critical inverse temperature on graph C∗-algebras coming from
graphs without sink. We continue to assume Γ to be a finite, connected graph without
sink and with vertex matrix D. We denote the spectral radius of D by ρ(D). With this
notation, combining Proposition 4.1 and Corollary 4.2 of [6], we have the following

Proposition 2.4. The graph C∗-algebra C∗(Γ) has a KMSln(ρ(D)) state if and only if
ρ(D) is an eigenvalue of D such that it has eigenvector with all entries being non-negative.

Lemma 2.5. Suppose Γ is a finite directed graph without sink with vertex matrix D.
If ρ(D) is an eigenvalue of D with an eigenvector v whose entries are strictly positive
such that vT D = ρ(D)vT , then the only possible inverse temperature where the KMS
state could occur is ln(ρ(D)).
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Proof. Suppose β ∈ R is another possible inverse temperature where a KMS state
say φ could occur. Then since we have assumed our graph to be without sink, eβ is an
eigenvalue of D. Let us denote an eigenvector corresponding to eβ by w = (w1, . . . , wm)
so that wi = φ(pvi

). Since φ is a state, wi ≥ 0 for all i = 1, . . . ,m with at least one entry
being strictly positive. We have

Dw = eβw

⇒ vT Dw = vT eβw

⇒ (ρ(D) − eβ)vT w = 0

By assumption, all the entries of v are strictly positive and wi ≥ 0 for all i with at least
one entry being strictly positive which imply that vT w �= 0 and hence eβ = ρ(D) i.e.
β = ln(ρ(D)). �

We discuss examples of two classes of graphs which are without sink such that they
admit KMS states only at the critical inverse temperature. We shall use them later in
this paper.

Strongly connected graphs:

Definition 2.6. A graph is said to be strongly connected if vE∗w is non-empty for all
v, w ∈ V .

Definition 2.7. An m × m matrix D is said to be irreducible if for i, j ∈ {1, . . . , m},
there is some k > 0 such that Dk(i, j) > 0.

We state the following two well-known results without proof.

Proposition 2.8. A graph is strongly connected if and only if its vertex matrix is
irreducible.

Proposition 2.9. An irreducible matrix D has its spectral radius ρ(D) as an eigen-
value with one-dimensional eigenspace spanned by a vector with all its entries being
strictly positive (called the Perron–Frobenius eigenvector).

As a corollary we have

Corollary 2.10. Let Γ be a strongly connected graph. Then the graph C∗-algebra
C∗(Γ) has a unique KMSln(ρ(D)) state. In fact by (b) of Theorem 4.3 of [6], this is the
only KMS state.

Circulant graphs:

Definition 2.11. A graph with m vertices is said to be circulant if its automorphism
group contains the cyclic group Zm.

It is easy to see that if a graph is a circulant, then its vertex matrix is determined by
its first-row vector say (d0, . . . , dm−1). More precisely, the vertex matrix D of a circulant
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graph is given by
⎡
⎢⎢⎢⎢⎢⎢⎣

d0 d1 . . . dm−1

dm−1 d0 . . . dm−2

.

.

.
d1 d2... d0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Remark 2.12. Note that a circulant graph is always without sink except the trivial
case where it has no edge at all. This is because if ith vertex of a circulant graph is a sink,
then the ith row of the vertex matrix will be zero forcing all the rows to be identically
zero.

Let ε be a primitive mth root of unity. The following is well known (see [10]):

Proposition 2.13. For a circulant graph with vertex matrix as above, the eigenvalues
are given by

λl = d0 + εld1 + · · · + ε(m−1)ldm−1, l = 0, . . . , (m − 1)

It is easy to see that λ =
∑m−1

i=0 di is an eigenvalue of D and it has a normalized
eigenvector given by ( 1

m , . . . , 1
m ). Since |λl| ≤ λ, we have

Corollary 2.14. For a circulant graph Γ with vertex matrix D, D has its spectral
radius λ as an eigenvalue with a normalized eigenvector (not necessarily unique) having
all its entries non-negative.

Combining the above corollary with Proposition 2.4, we have

Corollary 2.15. For a circulant graph Γ, C∗(Γ) has a KMSln(λ) state.

Lemma 2.16. For a circulant graph Γ without sink, the only possible temperature
where a KMS state could occur is the critical inverse temperature.

Proof. As we have assumed the circulant graphs are without sink, it is enough to
show that the vertex matrix D of Γ satisfies the conditions of Lemma 2.5. It is already
observed that the eigenvalue λ has an eigenvector with all its entries being positive
(column vector with all its entries 1 to be precise). Also since the row sums are equal
to column sums which are equal to λ, (1, . . . , 1)D = λ(1, . . . , 1). Hence an application of
Lemma 2.5 finishes the proof. �

Note that KMS states at the critical inverse temperature are not necessarily unique,
since the dimension of the eigenspace of the eigenvalue λ could be strictly larger than 1
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Figure 1. Circulant graph with more than one KMS state.

as the example in Figure 1 illustrates. We take the graph whose vertex matrix is given
by ⎡

⎢⎢⎣
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦ .

Hence the graph is circulant with its spectral radius 2 as an eigenvalue with multiplicity 2.
So the dimension of the corresponding eigenspace is 2 violating the uniqueness of the KMS
state at the critical inverse temperature ln(2).

2.2. Quantum automorphism group of graphs as symmetry of graph
C∗-algebra

2.2.1. Compact quantum groups and quantum automorphism groups

In this subsection, we recall the basics of compact quantum groups and their actions
on C∗-algebras. The facts collected in this subsection are well known and we refer the
readers to [12, 15, 16] for details. All the tensor products in this paper are minimal.

Definition 2.17. A compact quantum group (CQG) G is a pair (C(G),ΔG) such
that C(G) is a unital C∗-algebra and ΔG : C(G) → C(G) ⊗ C(G) is a unital C∗-
homomorphism satisfying

(i) (id ⊗ ΔG) ◦ ΔG = (ΔG ⊗ id) ◦ ΔG.

(ii) Span{ΔG(C(G))(1 ⊗ C(G))} and Span{ΔG(C(G))(C(G) ⊗ 1)} are dense in C(G) ⊗
C(G).

Remark 2.18. Strictly speaking the quantum group G is the dual object of the pair
(C(G),ΔG). But following [12], we shall refer the dual object (C(G),ΔG) as the quantum
group itself without mentioning it explicitly.

Given a CQG G, there is a canonical dense Hopf ∗-algebra C(G)0 in C(G) on which
an antipode κ and counit ε are defined. Given two CQG’s G1 and G2, a CQG morphism
between them is a unital C∗-homomorphism π : C(G1) → C(G2) such that (π ⊗ π) ◦
ΔG1 = ΔG2 ◦ π.
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Definition 2.19. Given a (unital) C∗-algebra C, a CQG G is said to act faithfully on
C if there is a unital C∗-homomorphism α : C → C ⊗ C(G) satisfying

(i) (α ⊗ id) ◦ α = (id ⊗ ΔG) ◦ α.

(ii) Span{α(C)(1 ⊗ C(G))} is dense in C ⊗ C(G).

(iii) The ∗-algebra generated by the set {(ω ⊗ id) ◦ α(C) : ω ∈ C∗} is norm-dense in
C(G).

Definition 2.20. An action α : C → C ⊗ C(G) is said to be ergodic if α(c) = c ⊗ 1
implies c ∈ C1.

Definition 2.21. Given an action α of a CQG G on a C∗-algebra C, α is said to
preserve a state τ on C(G) if (τ ⊗ id) ◦ α(a) = τ(a)1 for all a ∈ C.

Definition 2.22 (Def 2.1 of [3]). Given a unital C∗-algebra C, the quantum auto-
morphism group of C is a CQG G acting faithfully on C satisfying the following universal
property:

If B is any CQG acting faithfully on C, there is a surjective CQG morphism π : C(G) →
C(B) such that (id ⊗ π) ◦ α = β, where β : C → C ⊗ C(B) is the corresponding action of
B on C and α is the action of G on C.

From now on, we shall drop the suffix of Δ whenever the quantum group is clear from
the context.

Example 2.23. If we take a space of n points Xn then the quantum automorphism
group of the C∗-algebra C(Xn) is denoted by S+

n . The underlying C∗-algebra C(S+
n ) is

the universal C∗ algebra generated by {uij}i,j=1,...,n satisfying the following relations (see
Theorem 3.1 of [15]):

u2
ij = uij , u∗

ij = uij ,
n∑

k=1

uik =
n∑

k=1

uki = 1, i, j = 1, . . . , n.

The coproduct on the generators is given by Δ(uij) =
∑n

k=1 uik ⊗ ukj .

2.2.2. Quantum automorphism group of finite graphs and graph C∗-algebras

Recall the definition of finite, directed graph Γ = ((V = v1, . . . , vm), (E = e1, . . . , en))
without any multiple edge from Subsection 2.1.

Definition 2.24. The quantum automorphism group of a graph Γ without any multi-
ple edge will be denoted by Aut+(Γ). The underlying C∗-algebra C(Aut+(Γ)) is defined to
be the quotient C(S+

n )/(AD − DA), where A = ((uij))i.j=1,...,m, and D is the adjacency
matrix for Γ. The coproduct on the generators is again given by Δ(uij) =

∑m
k=1 uik ⊗ ukj .

For the classical automorphism group Aut(Γ), the commutative C∗-algebra C(Aut(Γ))
is generated by uij where uij is a function on Sn taking value 1 on the permutation which
sends ith vertex to jth vertex and takes the value zero on other elements of the group.
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It is a quantum subgroup of Aut+(Γ). The surjective CQG morphism π : C(Aut+(Γ)) →
C(Aut(Γ)) sends the generators to generators.

Remark 2.25. Since Aut+(Γ) is a quantum subgroup of S+
n , it is a Kac algebra and

hence κ(uij) = u∗
ji = uji. Applying κ to the equation AD = DA, we get AT D = DAT ,

where AT = ((uji)).

With analogy of vertex-transitive action of the automorphism group of a graph, we
have the following

Definition 2.26. A graph Γ is said to be quantum vertex transitive if the generators
uij of C(Aut+(Γ)) are all non-zero.

Remark 2.27. It is easy to see that if a graph is vertex transitive, it must be quantum
vertex transitive.

Proposition 2.28 (Corollary 3.7 of [11]). The action of Aut+(Γ) on C(V ) is ergodic
if and only if the action is quantum vertex transitive.

Remark 2.29. For a graph Γ = (V,E), when we talk about ergodic action, we always
take the corresponding C∗-algebra to be C(V ).

In the next proposition, we shall see that in fact for a finite, connected graph Γ without
multiple edge the CQG Aut+(Γ) has a C∗-action on the infinite-dimensional C∗-algebra
C∗(Γ).

Proposition 2.30 (see Theorem 4.1 of [14]). Given a directed graph Γ without
multiple edge, Aut+(Γ) has a C∗-action on C∗(Γ). The action is given by

α(pvi
) =

m∑
k=1

pvk
⊗ uki

α(Sj) =
n∑

l=1

Sl ⊗ us(el)s(ej)ut(el)t(ej).

Proposition 2.31. Suppose Γ = (V = (v1, . . . , vm), E = (e1, . . . , en)) is a finite,
directed graph without any multiple edge as before. For a KMSβ state τ on the graph
C∗-algebra C∗(Γ), Aut+(Γ) preserves τ if and only if (τ ⊗ id) ◦ α(pvi

) = τ(pvi
)1 for all

i = 1, . . . ,m.

We start with proving the following lemma which will be used to prove the above
proposition. In the following lemma, Γ = (V,E) is again a finite, directed graph without
any multiple edge.

Lemma 2.32. Suppose Aut+(Γ) preserves some linear functional τ on C(V ). Then
τ(pvi

) �= τ(pvj
) ⇒ uij = 0.
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Proof. Let i, j be such that τ(pvi
) �= τ(pvj

). By the assumption,

(τ ⊗ id) ◦ α(pvi
) = τ(pvi

)1

⇒
∑

k

τ(pvk
)uki = τ(pvi

)1.

Multiplying both sides of the last equation by uji and using the orthogonality, we get
τ(pvj

)uji = τ(pvi
)uji i.e. (τ(pvj

) − τ(pvi
))uji = 0 and hence uji = 0 as τ(pvi

) �= τ(pvj
).

Applying κ, we get uij = uji = 0. �

Proof. If Aut+(Γ) preserves τ , then (τ ⊗ id) ◦ α(pvi
) = τ(pvi

)1 for all i = 1, . . . , m
trivially. For the converse, given (τ ⊗ id) ◦ α(pvi

) = τ(pvi
)1 for all i = 1, . . . ,m, we need

to show that (τ ⊗ id) ◦ α(SμS∗
ν) = τ(SμS∗

ν)1 for all μ, ν ∈ E∗. The proof is similar to that
of Theorem 3.5 of [8]. It is easy to see that for |μ| �= |ν|, (τ ⊗ id) ◦ α(SμS∗

ν) = 0 = τ(SμS∗
ν).

So let |μ| = |ν|. For μ = ν = ei1ei2 . . . eip
, we have SμS∗

μ = Si1 . . . Sip
S∗

ip
. . . S∗

i1
. So

(τ ⊗ id) ◦ α(SμS∗
μ) = (τ ⊗ id)

( ∑
Sj1 · · ·Sjp

S∗
jp
· · ·S∗

j1 ⊗ us(ej1 )s(ei1 )ut(ej1 )t(ei1 )

· · ·us(ejp )s(eip )ut(ejp )t(eip )us(ejp )s(eip ) · · ·ut(ej1 )t(ei1 )us(ej1 )s(ei1 )

)

By the same argument as given in the proof of the Theorem 3.5 of [8], for Sj1 · · ·Sjp
= 0,

us(ej1 )s(ei1 )ut(ej1 )t(ei1 ) · · ·us(ejp )s(eip )ut(ejp )s(tip ) = 0 and hence the last expression equals
to ∑

e−β|μ|τ(pt(ejp ))us(ej1 )s(ei1 )ut(ej1 )t(ei1 ) . . . us(ejp )s(eip )ut(ejp )t(eip )

us(ejp )s(eip ) . . . ut(ej1 )t(ei1 )us(ej1 )s(ei1 )

Observe that any KMSβ state restricts to a state on C(V ) so that by Lemma 2.32, for
τ(pt(ejp )) �= τ(pt(eip )), ut(ejp )t(eip ) = 0. Using this, the last summation reduces to

e−β|μ| ∑ τ(pt(eip ))us(ej1 )s(ei1 )ut(ej1 )t(ei1 ) · · ·us(ejp )s(eip )ut(ejp )t(eip )

us(ejp )s(eip ) . . . ut(ej1 )t(ei1 )us(ej1 )s(ei1 ).

Using the same arguments used in the proof of Theorem 3.13 in [7] repeatedly, it can be
shown that the last summation actually equals to e−β|μ|τ(pt(eip )) = τ(SμS∗

μ). Hence

(τ ⊗ id) ◦ α(SμS∗
μ) = τ(SμS∗

μ)1.

With similar reasoning, it can easily be verified that for μ �= ν, (τ ⊗ id) ◦ α(SμS∗
ν) = 0 =

τ(SμS∗
ν)1. Hence by linearity and continuity of τ , for any a ∈ C∗(Γ), (τ ⊗ id) ◦ α(a) =

τ(a).1. �

If we apply Proposition 2.31 to the action of classical automorphism group of a graph
on the corresponding graph C∗-algebra, we get the following
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Lemma 2.33. Given a KMSβ state τ on C∗(Γ), we denote the vector
(τ(pv1), . . . , τ(pvm

)) by N τ . If we denote the permutation matrix corresponding to an
element g ∈ Aut(Γ) by B, then Aut(Γ) preserves τ if and only if BN τ = N τ .

Proof. Follows from the easy observation that (τ ⊗ id) ◦ α(pvi
) = τ(pvi

)1 implies
BN τ = N τ for the classical automorphism group of the graph. �

3. Invariance of KMS states under the symmetry of graphs

3.1. Strongly connected graphs

Recall the unique KMS state of C∗(Γ) for a strongly connected graph Γ with vertex
matrix D. We denote the ijth entry of D by dij . The unique KMS state at the critical
inverse temperature ln(ρ(D)) is determined by the unique normalized Perron–Frobenius
eigenvector of D corresponding to the eigenvalue ρ(D). If the state is denoted by τ , the
eigenvector is given by ((τ(pvi

)))i=1,...,m where m is the number of vertices. Now we prove
the main result of this subsection.

Theorem 3.1. For a strongly connected graph Γ, Aut+(Γ) preserves the unique KMS
state of C∗(Γ).

Proof. Note that by Proposition 2.31, it suffices to show that (τ ⊗ id) ◦ α(pvi
) =

τ(pvi
)1∀ i = 1, . . . , m. Recall the action of Aut+(Γ) on C∗(Γ). We continue to denote

the matrix ((uij)) by A. For a state φ of C(Aut+(Γ)), we denote the vector whose ith
entry is (τ ⊗ φ) ◦ α(pvi

) by vφ. Then

(Dvφ)i =
∑

j

dij(τ ⊗ φ) ◦ α(pvj
)

=
∑
j,k

τ(pvk
)φ(dijukj)

=
∑

k

τ(pvk
)φ

(∑
j

dijukj

)

=
∑

k

τ(pvk
)φ

(∑
j

ujidjk

)
(DAT = AT Dby Remark 2.25)

=
∑
j,k

djkτ(pvk
)φ(uji)

= ρ(D)
∑

j

τ(pvj
)φ(uji)(D((τ(pi)))T = ρ(D)((τ(pvi

)))T )

= ρ(D)(τ ⊗ φ) ◦ α(pvi
).

Hence vφ is an eigenvector of D corresponding to the eigenvalue ρ(D). By the one
dimensionality of the eigenspace, we have some constant Cφ such that (τ ⊗ φ) ◦ α(pvi

) =
Cφτ(pvi

) for all i = 1, . . . ,m. To determine the constant Cφ, we take the summation over
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i on both sides and get
∑

i

(τ ⊗ φ) ◦ α(pvi
) = Cφ

∑
i

τ(pvi
)

⇒
∑
i,j

τ(pvj
)φ(uji) = Cφ

⇒
∑

j

τ(pvj
)
∑

i

φ(uji) = Cφ

⇒ Cφ = 1.

Hence φ((τ ⊗ id) ◦ α(pvi
)) = φ(τ(pvi

)1) for all i and for all state φ which implies that
(τ ⊗ id) ◦ α(pvi

) = τ(pvi
)1 for all i = 1, . . . , m. �

We end this subsection with a proposition about the non-ergodicity of the action of
Aut+(Γ) on C(V ) for a strongly connected graph Γ = (V,E). Note that the following
proposition does not deal with states on the infinite-dimensional C∗-algebra C∗(Γ).

Proposition 3.2. For a strongly connected graph Γ, if the Perron–Frobenius eigen-
vector is not a multiple of (1, . . . , 1), then the action of Aut+(Γ) is non-ergodic.

Proof. It follows from Lemma 2.32, Theorem 3.1 and Proposition 2.28. �

Remark 3.3. It is known that non-regular graphs can never be quantum vertex tran-
sitive (see Lemma 3.2.3 of [5]). However, Proposition 3.2 gives an alternative proof of the
result in case of the strongly connected graphs since the vertex matrix of a non-regular
graph can not have (1, . . . , 1) as an eigenvector.

3.2. Circulant graphs

Consider a finite graph Γ = (V,E) with m-vertices (v1, . . . , vm). Recall the notation
N τ for a KMSβ state τ on C∗(Γ).

Lemma 3.4. Given a graph Γ such that Aut(Γ) acts transitively on its vertices,
BN τ = N τ for all B ∈ Aut(Γ) if and only if N τ

i = N τ
j for all i, j = 1, . . . ,m.

Proof. If N τ
i = N τ

j for all i, j = 1, . . . , m, then BN τ = N τ for all B ∈ Aut(Γ) trivially.
For the converse, let N τ

i �= N τ
j for some i, j. Since the action of the automorphism group

is transitive, there is some B ∈ Aut(Γ) so that B(vi) = vj and hence BN τ �= N τ . �

Now recall from the discussion following Corollary 2.15 and Lemma 2.16 that for a
circulant graph, the KMS states exist only at the critical inverse temperature, but they
are not necessarily unique. We shall prove that if we further assume the invariance of
such a state under the action of the automorphism group of the graph, then it is unique.

Proposition 3.5. For a circulant graph Γ there exists a unique Aut(Γ) invariant KMS
state on C∗(Γ).
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Proof. Since for a circulant graph, the automorphism group acts transitively on the
set of vertices, by Lemma 3.4 and Lemma 2.33, a KMSβ state τ is Aut(Γ) invariant
if and only if τ(pvi

) = 1
m for all i. This coupled with the fact that ( 1

m , . . . , 1
m ) is an

eigenvector corresponding to the eigenvalue λ (= spectral radius) finishes the proof of
the proposition. �

Remark 3.6. We remark that the group invariant KMS state is also invariant under
the action of quantum automorphism group of the underlying graph. Since τ(pvi

) =
τ(pvj

), it is easy to see that for the action of Aut+(Γ), (τ ⊗ id) ◦ α(pvi
) = τ(pvi

)1 for all
i = 1, . . . ,m. Hence an application of Proposition 2.31 finishes the proof of the claim.

3.3. Graph of the Mermin–Peres magic square game

We start this subsection by clarifying a few notation to be used in this subsection.
Given an undirected graph Γ, we make it directed by declaring that both (i, j) and (j, i)
are in the edge set whenever there is an edge between two vertices vi and vj . The vertex
matrix of such a directed graph is symmetric by definition. In this subsection, we use the
notation

−→
Γ for the directed graph coming from an undirected graph Γ in this way. Γ will

always denote an undirected graph.

Remark 3.7. By definition, Aut+(
−→
Γ ) ∼= Aut+(Γ) and hence Aut(

−→
Γ ) ∼= Aut(Γ)

(see [2]).

Given two graphs Γ1 = (V1, E1),Γ2 = (V2, E2), their disjoint union Γ1 ∪ Γ2 is defined
to be the graph Γ = (V,E) such that V = V1 ∪ V2. There is an edge between two vertices
vi, vj ∈ V1 ∪ V2 if both the vertices belong to either Γ1 or Γ2 and they have an edge in
the corresponding graph.

Proposition 3.8. Let Γ1,Γ2 be two non-isomorphic connected graphs. Then the

automorphism group of
−−−−−→
Γ1 ∪ Γ2 is given by Aut(

−→
Γ1) × Aut(

−→
Γ2).

Proof. The result follows from Theorem 2.5 of [17] and Remark 3.7. �

Proposition 3.9. Let Γ1 and Γ2 be two non-isomorphic connected graphs such that−→
Γ1 and

−→
Γ2 have symmetric vertex matrices D1 and D2 having equal spectral radius

say λ. Then for the graph Γ = Γ1 ∪ Γ2, C∗(
−→
Γ ) has infinitely many KMS states at the

critical inverse temperature ln(λ) such that all of them are invariant under the action of

Aut(
−→
Γ ) ∼= Aut(

−→
Γ1) × Aut(

−→
Γ2).

To prove the proposition, we require the following

Lemma 3.10. Let A ∈ Mn(C) and B ∈ Mm(C). Then the spectral radius of the matrix[
A 0n×m

0m×n B

]
is equal to max{sp(A), sp(B)}.

Proof. It follows from the simple observation that any eigenvalue of the matrix[
A 0n×m

0m×n B

]
is either an eigenvalue of A or an eigenvalue of B. �
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Proof of Proposition 3.9. We assume that
−→
Γ1 has n-vertices and

−→
Γ2 has m-vertices.

Let us denote the vertex matrix of
−→
Γ by D. D is given by the matrix[

D1 0n×m

0m×n D2

]
.

Then the spectral radius is equal to λ by Lemma 3.10. Also, it is easy to see that
the spectral radius is an eigenvalue of the matrix D. Now λ has a one-dimensional
eigenspace for D1 spanned by say w1 and a one-dimensional eigenspace for D2 spanned
by say w2 as both the graphs are connected and hence strongly connected as directed
graphs. We take both the eigenvectors normalized for convenience. Then for D, the
eigenspace corresponding to λ is two dimensional spanned by the vectors w1 = (w1, 0m)
and w2 = (0n, w2) where 0k is the zero k-tuple. So the eigenspace of D corresponding
to the eigenvalue λ is given by {ξw1 + ηw2 : (ξ, η) ∈ C

2 − (0, 0)}. For any (ξ, η) ∈ C
2,

ξw1 + ηw2 = (ξw1, ηw2). It is easy to see that there are infinitely many choices of ξ, η
such that corresponding eigenvector is normalized with all its entries being non-negative
which in turn give rise to infinitely many KMS states. The set of normalized vectors
is given by {(ξw1, (1 − ξ)w2) : 0 ≤ ξ ≤ 1}. We shall show that any B ∈ Aut(

−→
Γ ) keeps

such a normalized eigenvector invariant. Let w = (ξw1, (1 − ξ)w2) be one such choice. By
Proposition 3.8, any B ∈ Aut(

−→
Γ ) can be written in the matrix form

[
B1 0n×m

0m×n B2.

]
, for

Bi ∈ Aut(
−→
Γi) and i = 1, 2. Then Bw = (ξB1w1, (1 − ξ)B2w2). Since w1, w2 are Perron–

Frobenius eigenvectors of D1,D2 respectively with both the graphs
−→
Γ1,

−→
Γ2 strongly

connected, by Proposition 3.1, Bi(wi) = wi for i = 1, 2. So Bw = (ξw1, (1 − ξ)w2) = w.
Hence an application of Lemma 2.33 completes the proof of the proposition. �

Now we turn to the main object of study of this subsection. A linear binary constraint
system (LBCS) F consists of a family of binary variables x1, . . . , xn and constraints
C1, . . . , Cm, where each Cl is a linear equation over F2 in some subset of the variables
i.e. each Cl is of the form

∑
xi∈Sl

xi = bl for some Sl ⊂ {x1, . . . , xn}. Corresponding to
every LBCS F , one can associate a graph (see section 6.2 of [1]) to be denoted by G(F).
The following is an example of an LBCS.

x1 + x2 + x3 = 0 x1 + x4 + x7 = 0

x4 + x5 + x6 = 0 x2 + x5 + x8 = 0

x7 + x8 + x9 = 0 x3 + x6 + x9 = 1,

where the addition is over F2. From now on F will always mean the above LBCS.

Definition 3.11. Given an LBCS F , its homogenization F0 is defined to be the LBCS
obtained by assigning zero to the right-hand side of every constraint Cl.

In light of the Theorem 6.2, 6.3 and 6.4 of [1], the corresponding graphs G(F) and G(F0)
are quantum isomorphic, but not isomorphic. The graph G(F) is called the graph of
Mermin–Peres magic square game.

Both the graphs G(F) and G(F0) are vertex transitive (in fact they are Cayley as
mentioned in [11]) and hence quantum vertex transitive by Remark 2.27. Combining the
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facts that G(F) and G(F0) are quantum isomorphic and quantum vertex transitive with
Lemma 4.15 of [11], we get

Lemma 3.12. For the LBCS F , the disjoint union of G(F) and G(F0) is quantum
vertex transitive.

By Remark 3.7,

Corollary 3.13.
−−−−−−−−−→G(F) ∪ G(F0) is quantum vertex transitive.

It can be verified that both the graphs G(F) and G(F0) are connected with 24 ver-
tices each such that the vertex matrices of the graphs

−−−→G(F) and
−−−−→G(F)0 have spectral

radius 9 (see Figures 2 and 3). Then since they are non-isomorphic, by Proposition 3.9,
C∗(

−−−−−−−−−→G(F) ∪ G(F0)) has infinitely many KMS states at the critical inverse temperature
ln(9) all of which are invariant under the action of the classical automorphism group of−−−−−−−−−→G(F) ∪ G(F0). But as mentioned earlier, if we further assume that the KMS state at the
critical inverse temperature is invariant under the action of Aut+(

−−−−−−−−−→G(F) ∪ G(F0)), then it
is necessarily unique. We prove it in the next theorem.

Theorem 3.14. For the LBCS F , the graph C∗-algebra C∗(
−−−−−−−−−→G(F) ∪ G(F0)) has a

unique Aut+(
−−−−−−−−−→G(F) ∪ G(F0))-invariant KMS state τ given by

τ(SμS∗
ν) = δμ,ν

1
9|μ|48

.

Proof. By Corollary 3.13, the graph
−−−−−−−−−−→
(G(F) ∪ G(F0)) is quantum vertex transi-

tive. Hence by Lemma 2.32, for any Aut+(
−−−−−−−−−→G(F) ∪ G(F0)) invariant KMS state τ on

C∗(
−−−−−−−−−→G(F) ∪ G(F0))) at the critical inverse temperature ln(9), we have τ(pvi

) = τ(pvj
) for

all i, j. That forces τ(pvi
) to be 1

48 for all i = 1, . . . , 48. Since ( 1
48 , . . . , 1

48 ) is an eigenvector

corresponding to the eigenvalue 9, there is a unique KMS state on C∗(
−−−−−−−−−→G(F) ∪ G(F0)) at

the critical inverse temperature ln(9) satisfying

τ(SμS∗
ν) = δμ,ν

1
9|μ|48

.

Aut+(
−−−−−−−−−→G(F) ∪ G(F0)) preserves the above KMS state by following the same line of argu-

ments as given in Remark 3.6. To complete the proof, we need to show that the only
possible inverse temperature where a KMS state could occur is the critical inverse tem-
perature. For that first notice that the graph

−−−−−−−−−→G(F) ∪ G(F0) is without sink. We have
already observed that the spectral radius 9 has an eigenvector with all entries being
strictly positive (column vector with all its entries 1

48 ). Also the vertex matrix of the

graph
−−−−−−−−−→G(F) ∪ G(F0) is symmetric implying that ( 1

48 , . . . , 1
48 )D = 9( 1

48 , . . . , 1
48 ). Hence an

application of Lemma 2.5 finishes the proof of the theorem. �
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Figure 2. Graph G(F).
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Figure 3. Graph G(F0).
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4. Concluding remarks

1. In light of the Theorem 3.1, for strongly connected graphs, we can relax the condition
on the graph in [8]. In that paper regularity of the underlying graph was assumed to
ensure that Aut+(Γ) belongs to the category CΓ

τ (see [8] for notation) for the unique
KMS state τ on a strongly connected graph Γ. Now we have for a strongly connected
graph Γ (regular or not) with its unique KMS state τ , the category CΓ

τ contains Aut+(Γ).
2. In all the examples considered in this paper, KMS states always occur at the crit-

ical inverse temperature. But, in general, it might be interesting to see if some natural
symmetry could also fix the inverse temperature. In this context, one can possibly look
at the graphs with sink which has a richer supply of KMS states (see [9]).
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