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The conserved phase field system with a small parameter in the n-dimensional case (n < 3) is
considered. An asymptotic solution, describing the free interface dynamics, is constructed and
justified. As the small parameter tends to zero, the limiting solution satisfies the modified Stefan
problem with corrected Gibbs—Thomson law.

1 Introduction

We shall consider the conserved phase field system [1]
0,(0+1p) = kA0 +f(x,1), (x,1)eQ,
—7y0, ¢ = E2A(E* AP+ (2a) " (P — ") + k., 0).

Here Q =02x(0,T), Q < R" is a bounded domain with smooth (C*) boundary 0%,
n<3, T<oo;0,=0/0t 4is the Laplace operator; ¢ is the normalized temperature; ¢ is
the order functions; / > 0, k > 0, «, are constants; f(x,?) is a smooth function; 7, > 0,
£ >0, and a > 0 are parameters. The physical meaning of 7,, &, a, and the whole model (1)
for the phase transitions have been discussed elsewhere [1-3]. General models for non-
isothermal phase transitions with a conserved order function are proposed in Alt & Pawlow
[4]. Nevertheless, the simplest model (1) is of independent interest, since it qualitatively
describes the actual physical processes.

We shall study the structure of the solution of (1) and analyse how to pass to the limit
from the microscopic description to the macroscopic one. It is well-known that the form
of the limiting problem depends on the relations between the parameters a, £ and 7,. We
restrict our consideration to thecasea < 1,£ < 1,7, < 1, £éaV/* = const, 7,a™' = const. Let
us introduce a small parameter ¢—0 and set

)

a=¢/2, £=+Ve, 1,=ke, k=const>0. 2)

For simplicity, we also assume that k = /= 1. Completing (1) with natural initial and
boundary conditions, we obtain our basic mathematical model
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00+ ¢) = 40+ f(x, 1),
—ked,p = A Ap+P—¢*+ek, 0), 3)
Olieg = 0°(x,€),  Bliog = °(x,0), OOy =0, ygly=0, x4l =0.

Here N is the external normal to 02, 0, = 0/0N, and X = [0, 7] x 0Q.

Like the solution of the Cahn-Hilliard equation (the second equation in (3) with
6 = const), the solution of (3) is very complicated, since its behaviour varies depending on
different stages of the phase separation process in binary alloys. (For example, the solution
can be oscillatory [5], or of soliton type [6], or of the ‘tanh’-type [6—10]). At present, the
solution to (3) with arbitrary initial data can be analysed in detail only by numerical
methods. However, by setting some special initial data, one can thoroughly study certain
types of solutions. In this paper we restrict our consideration to the dynamics of the free
boundary I, between the pure phases, which, from the macroscopic viewpoint (as ¢ — 0), at
each instant of time occupy the domains Q;, where ¢ = —1, and Q;, where ¢ = +1,
Q=0 U QU I,; (here and below f—(x, ) = lim, ,f(x,¢€)). So we shall assume that
the initial data 6°(x,¢), ¢°(x,¢) are smooth functions (for ¢ > 0) such that ¢’ =41,
0° = 0F(x) for xe QF , where 07 are sufficiently smooth on Q3 functions such that [0F]] =0,
[0,071l, # 0, and that the initial interface I’ is a sufficiently smooth closed surface of
codimension 1 such that I, N 02 = . Here and below [f]|, is the jump of the function
fon I, 0, = 0/0vis the derivative along the normal to I',, > 0. For definiteness, we assume
that 002, N 002 = 0Q2.

The Cahn-Hilliard equation was proposed by Cahn and Hilliard [11-13] as a simple
model for the process of phase separation of a binary alloy at a fixed temperature. Surveys
of physical aspects of this model are also given in Novick-Cohen & Segel [5]. The
equilibrium theory for the Cahn—Hilliard equation in the one-dimensional case in which
g2 ~a < 1, 7, = const is investigated in Alikakos ef al. [14] and Carr et @l. [15]. The initial
value problem for the Cahn—Hilliard equation is explicitly investigated in the case in which
7o, & and a are constants, n < 3 and ¢ = const. For a description of the results from the
mathematical and physical viewpoint, the reader is referred elsewhere [10, 16—19], where the
existence and uniqueness theorems, as well as the existence of an attractor are proved. The
multidimensional Cahn—Hilliard equation with a small parameter has been considered by
Pego [9] and Stoth [10]. System (1) has also been considered [1, 2, 6, 8].

Let us discuss the results of Caginalp [2], related to case (2). By using the matching
method, the two first terms for the inner expansion have been found in a neighbourhood
I’ of the free boundary I', = {xe Q,r(x,1) =0}, 1 = 0:

0= 0%, +ele r+ ) @,07+2,00), +V2[R,0%1,
xIn(2cosh((r/e+r")/ V2)+w,(r/e+r,5,0+0f].1/2, 4)
¢ = tanh((r/e+r")/ V2)+eD,(r/e+71,5,1).
The outer expansion in the domains Q7 < QF, 1 >0 is:
0=0%(x,0+e0f(x,0), ¢==+1+edi(x,0).

Here we have set «, =2, r is the signed distance function, J, =d,(¢)—0 as ¢—0,
I'hn QF # &, rt =r'(x,1) is a smooth function, s = s(x, 7) are (local) coordinates on I';
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D,(n,s,1) = 5J—r|r[+w2(17, 8, 1); w,(y,8,1), i =1, 2, are smooth functions exponentially de-
creasing as 5 >+ o0; 0*(x, ) is the solution of the modified Stefan problem

L0F =40%, 120, xeQf,

[0,0%N, =20, Kk, =0%, 0F_=05(x), 0,07:=0, ©)

>

where v, is the normal velocity of the motion of the boundary, .#; is the mean curvature of
the surface I, k, > 0 is a constant.

Unfortunately, in Caginalp [2] the construction of the matching method is such that an
additional summand is omitted in the Gibbs—Thomson condition in (5). The point is that
the construction of the first correction to the outer expansion necessarily implies the
following equality:

AGi—0%)=0, in Q\I,

i.e. ¢ may differ from 6+ by a function harmonic in Q\7,. However, in Caginalp [2], this
condition was replaced by the following:

g =0, ©6)

Let us discuss the consequence of this change of conditions. By using the method of
Caginalp [2], we calculate the second-order corrections in the domains Q* (in which the
expansions are matched) common for the outer and inner expansion; for the order-function
we obtain the outer expansion:

p=+1+eb0 (x,)+epF(x,1), >0, xeQFn QF, 7
and the inner expansion in the same domain:
¢=+1 —i—e‘gilr[—l-(—;z(r/e—i-Ri)(C1 +27°2«[0, gi]h{). ®)

Here C,|, is an arbitrary function.
The matching conditions for (7) and (8) necessarily imply the relation

k2770, 0%, = [0,0% 1,

which holds only for x = 24/2. Thus, in the general case, it is impossible to match the
external and internal expansions. This fact follows from the construction presented in
Caginalp [2]. In this construction it is assumed that the solution may grow with respect to
the fast (internal) variable, which means that the next terms of the expansion contribute to
the preceding terms. In fact, by (4) we have 6 = §i|,f+ra,, giln—i- O(¢) for t 20 and
xeQ¥ n QF, where r is of order 0(¢"), 1/2 < p < 1; thus the second summand cannot be
considered as a remainder of order (O(¢). Moreover, for the derivative of 6, we obtain that
0,0 =0, §i|17+ O(e) for all 1 > 0 and xe Q¥ n Q} if and only if in (4) we take into account
the ‘small correction’ in curly brackets. In Caginalp [2] this reasoning resulted in the correct
Stefan condition in (5) by taking into account the first correction in (4). However, in
Caginalp [2] the second corrections were not considered, though there are similar relations
for ¢:
¢ =+ 1+e0,+rCH)+0(), 1>0, xeQf nQF,

0,¢ = cCH+0(c?), C*=C,+2"2k[0,0%].
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We shall now derive the Gibbs—Thomson condition. It appears when we calculate the first
correction @,, i.e. when we solve the equation

BD+(1-3yH P, = —%X,I—Zéﬂ,—t—i-c,
where y = tanh(y/ v/2), ¢ is a ‘constant’ of integration, here and below f,=0,1=72on.

— K
We rewrite @, as @, = ¢1i|rt +w,(y, 1), where w,—~0 as y—+ oo (see formula (4.25) in
Caginalp [2]). Then ¢ = 2(0* — ¢7)| r,- For this equation to hold, we have the necessary and

sufficient condition
| Gor=ngi, - sixaxar=o

which implies «, #, = (EHG. The Gibbs—Thomson condition is derived in Caginalp [2] by
using relation (6). However, as shown above, we can match the lower terms of the
asymptotic expansion if the function ¢; differs from 6+ by a certain function @+ harmonic
in Q\I,. Since, in the general case, @7| r, does not vanish, some additional summands appear
on the right-hand side of the Gibbs—Thomson condition. Below we will formulate the
Gibbs-Thomson condition and set the problem for obtaining the additional function @=.

The existence of polynomial summands in the inner expansion necessarily requires a very
accurate construction of low-order terms, that is, on the ith step of the asymptotic
procedure we must take into account the (i+ 1)th corrections to the solution. This fact is
well-known. A description of this accurate use of the matching method can be found, for
example, in II’in [20].

At the same time, there is an alternative method [21-24] for constructing asymptotic
solutions with localized ‘fast’ variations. This method, in which a detailed analysis of
lower-order terms is not required, is a modification of the two-scale method for obtaining
solutions with localized ‘fast’ variations. A modification of this method for phase
transition problems was proposed elsewhere [6-8, 25, 26]. The main idea of this method is
to construct such analogues of the inner and outer expansions that they are defined over
the whole range of independent variables. This implies that there are no summands
polynomially increasing in the ‘fast’ variable.

Here we have the following important points. Suppose the ‘fast’ variation of the solution
u is localized in a small neighbourhood of the smooth surface I',, for example,

u= A(x,f)tanh(S(x, ) /e), I, ={xeQ,S(x,/)=0}, S, AeC™.

Then, to calculate the function S at each instant of time, it is sufficient to define only its zero
surface {x, y(x) = 1} = {x, S(x, {) = 0} and the first normal derivative S” on [, since in an
e-neighbourhood of I, the smooth function S cannot vary more than ((¢) and outside an
e'’-neighbourhood of I, (0 < § < 1), the solution varies slowly with precision up to €(¢*).
Furthermore, in the traditional two-scale method we first construct a rapidly varying
solution u(S/e¢, x, ) in the ‘extended’ space R' x 2 x [0, T, assuming that u = u(y, x, t) and
that the variables » and x, 7 are independent. Then we calculate the trace u(y, x, )|, _,.. This
approach is justified for solutions with rapid oscillations everywhere. However, for
solutions with localized fast variation we can construct the rapidly varying components
only in the subspace R!x 79, where 79, is an ¢! >-neighbourhood of the surface 7, =

{(x,0)€0,t = (x)} = | J;e10.011;- That is, we know beforehand that our final goal is only
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the trace u(y, X, 1)],_g,.- In its turn, since u(7, x, ) smoothly depends on ‘slowly’ varying
variables x and ¢, we can calculate the solution in two stages: in the first stage we define
the trace i = u(y, x, 1)],,,, of u on the section R* x 7,; in the second stage we construct a
sufficiently smooth continuation of i outside R' x 7,. Needless to say, this continuation
must be constructed sufficiently accurately, but there is some freedom in choosing this
continuation. Namely, this freedom provides the boundedness (uniformly in g€ R', x, € Q)
of all terms of the asymptotic expansion.

Let us return to the problem concerning the choice of the initial data to problem (3). The
limiting functions 67 (x) may be taken arbitrarily: they must satisfy only the natural
matching conditions for the limiting initial-boundary value problem. Nevertheless, we
cannot choose the regularization 6°(x, €), ¢°(x, €) arbitrarily if we want to stay in the chosen
class of prelimiting solutions. It is well-known that the problem of the dynamics of the free
boundary is described by the Van der Waals-type solution

$°(x. ) = tanh(r,(x)/e v 2) + 6 (x, ), ©

where r, is the signed distance function, r, > 0 in Q} and r, <0 in Q,, ¢! is a function
bounded in C. The tanh-type form of the solution (in the principal term) appears in the
phase field system (for example, [16,25,27-31]), for the Cahn—Hilliard equation [5, 9, 10, 14,
16, 18], and for the conserved phase field system [2,7,8] not only when we construct the
asymptotic solution, but also when we prove the solvability of the initial-boundary value
problem with a small parameter [27, 28, 30, 31]. Such a universal form of the principal term
of the solution is related to the fact that the chemical potential (the energy of the phase field
system)

TP = J {%6|V¢|2+%(¢2—1>2} dx

takes its minimum at the hyperbolic tangent function; . [tanh(r,/¢ v/2)] < const as ¢ 0.
Hitherto, the problem about the degree of freedom in choosing ¢{ and the problem of how
to smooth the temperature has remained unsolved. The asymptotic analysis of the phase
field system shows that 6°(x, ¢) can be arbitrary outside an ¢-neighbourhood of I, and that
this function must be of a fixed form inside this neighbourhood; thus the choice of
¢9(x, 1) must be matched with the choice of #°(x,¢). The latter fact corresponds to the
relation between 0 and ¢ arising when we consider the free energy

g1 = f {%e|V¢|2+4i€<¢2— D=, 6¢} dx.

However, the analysis of the solution of the phase field system [27, 28] shows that we stay
in the sharp-fronted situation, if we add sufficiently small perturbations to the fixed initial
data 6%, @2, i.e. if

fix>

16° = O s LAQ) | + [|6° — piis LARQ) | < Ce™. (10)

fix >
Therefore, the last bound describes the stability domain for the tanh-type solution of the
phase field system. We note that a condition close to (10) was also obtained in Soner [30],
although quite different methods were used in Soner [30] and Omel’yanov et al. [27,28].
Nevertheless, the question of whether condition (10) is optimal remains open.
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In the present paper we show how to choose the initial data for the conserved phase
field system: by constructing an asymptotic solution, we find some fixed initial data
0" = 67, (x,¢), " = ¢ (x,¢) and, justifying the asymptotics, we obtain the stability domain
for our solution.

The main result of the paper is the derivation of the limiting problem in C(Q) as ¢—~0
for a sequence of tanh-type solutions of (3). This problem, namely, the ‘superposition’ of
the modified Stefan problem for the limiting temperature 6(x, 1) (0 = 6* as xe QF,1 > 0)
and of the Mullins—Sekerka problem for an auxiliary function ®@(x, ) (@ = &+ as xe Q;F,
t = 0) has the form

0,0 = A40* +f(x,1), AP* =0, xeQf, >0, (11)
'9it:0 = 00i(x)7 XEQSL, aN 6+|Z = 07 a7\, ¢+|Z = 0)
(12)
[0+, =0, [®*],, =0,
0,041, =20, [,®], =—«v, (13)
div(Vy [ Vi) = 6,7 6,0 +B4), gy, = 0. (14)
Here I', = {xe Q,y/(x) = t} is the interface at the time instant ¢; v, = —1/|Vy/| is the normal

velocity of motion of [,; Q=0Q U Q, U I,; F=F*(x, ¥(x));0, =— (Vi /|Vy|, V),
Kk, = 31/2.Itis easy to see that the left-hand side in (14) is the mean curvature %, of I',. The
uniqueness of the functions @* follows from the normalization condition

f (@*+ﬁﬁ*)dx+J <q5+ﬁ@)dx:1(1,
of 2 Q 2

where K is the first coefficient of the expression

J P’(x,e)dx = X €'K,.

Q =0

The following theorem (which can be proved in a way similar to Radkevich [26]) implies
the classical solvability of problem (11)-(14) (in the Holder space C').

Theorem 1  Let the initial Ty belong to the class C'** and let 0F € C'(QF), where I, > 2m is
a non-integer number and m > 2. Suppose that dist(I',,02) = const > 0 and all matching
conditions for problem (11)-(14) hold with precision up to order m. Suppose

Qs(;i = (pi|c=o€ CZ”(QJL)

satisfies  the problem: A®g =0 in Qf, 0,®;=0 on Q2 and [P5]l, =0,
#,00, D51l = 200,051l

0,081, > ATy and @,®;+0,p),, >0,

where A, is a sufficiently large constant depending on the principal curvatures of the surface
I'y. Then there exists a sufficiently small number T > 0 such that on the time interval (0, T)
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there exists a classical solution of problem (11)-(14), @*, 6* € C*V*(Q%), where the non-
integer number | satisfies the condition [I/2) = m—2, [I/2] is the integer part of [/2,
Oy ={xeQ;,1€(0, 7))

2 Asymptotic solution

Let us consider the general method for constructing the asymptotic solution of problem
(3) with an arbitrary precision. We shall need some classes of functions. Let
S = S(R}; C*(Q2)), where S is the Schwartz space, # = {f(5,x,1)e C*(R' x 0),0,fe ¥},
and let 2 = {f(r,x’,1)e C*(R} x X)} be the class of exponentially vanishing (w.r.t. 7)
boundary—layer functions.

Let us note that, for the Van der Waals-type solution, the limit of ¢ as ¢ — 0 is a Heaviside
function discontinuous on /', and the limit of ¢ as ¢ — 0 has a weak discontinuity on 7. This

implies that the asymptotic solution should be taken to have the following form:

O(x,t,€) = 9M(x, t,€)+ “//M(—S(x’ J N v, e) ,
e e
15)

P(x,t,€) = e DY (x,t,6)+ W' ”(MX—‘ X, 1, e>,
€

where the functions 9, @ (uniformly smooth w.r.t. ¢€[0, 1], x, € Q, the so-called ‘regular
part’) give an analogue of the outer expansion:
M M
V(x,te) = e O0(x,1), DPY(x,t,e) = T e p(x,1);
0 Jj=1

J=

the functions ¥, #™ (rapidly varying near the free and external boundaries) give an
analogue of the inner expansion:

VM7 X1, €) = po(x, 1) Vi(p, X, 1)

M
+ X lp,(x, ) Vi, x, )+ Uy, x, )+ Y(1, X7, 1)},
j=1
WMy, 1,x,t,¢) = x(9, X, 1)
M )
+ E 6‘7{?’9(3@ l) Gj(n) x’ t) + I/I/](ﬂ, x7 l) + Zj(T’ X’, l)}

Jj=1

Here x is the distance from a point xeQ to a point x €3 along the interior normal;
S, i Vi 01 € C*(Q), 9, SIFt + 0; Y(7,x',1), Z(1,Xx', )€ Z; the other functions belong to
the space #. We assume that

xt==+1, U/=0, W;=0, pilr, =0, v, =0, (16)
where I, = {xeQ,S(x,1)=0},i=0,1,...,M, j=1,2,..., M. Here and below

f* = lim f(y,x,1) foreach fe#.

p-t o
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The definition of the classes #, £ and the above assumptions imply that y is a
regularization of the Heaviside function, the fast variation of which is localized in an -
neighbourhood of the free boundary; Y, Z,, j = 1,2,..., M, are boundary-layer functions
localized near the external boundary. For convenience, the functions p, V,e #,i=0,1, ...,
M and y,G,e#, j=1,2,..., M are grouped as separate summands, since these functions
have an additional property: p; V; and vy, G, vanish on the free boundary. Thus, in a small
neighbourhood of I, the functions p, V; and vy, G, present a regularization of the weakly
discontinuous functions of the form f(y) =a*y,+ay_, where 5, =9 for » >0 and
7, =0 for <0, y_=9—y,, a" + a. Obviously, we have f(n =+0)=f(n =—0)=0,
[0f)l,-o = a"—a =+ 0. Furthermore, outside small neighbourhoods of the free and external
boundaries, i.e. as 9y —~+ 0, and 700 we have 0,4+ p, V;+ U, + Y, =< 0,+p, V4 U. Since
all the functions in the latter relation are arbitrary for the moment, we can redefine ¢, (for
example, by setting ¢, :=0,+ U or 6,:=0,+ U;), and thus set one of the limiting values U;
or U; equal to zero. For definiteness, we set U; = W, = 0. Without loss of generality
([22]), we also assume that S = r—y(x), y = y(»,x) and

Viop, x, 1) = o (x, )+ o (x, ) x, G, X, 1) = i (x, )+ (x, 1) x,

(17
208 (x, 1) = Vi(x, )+ Vi(x, 0, 2uf(x,0) = G;(x,0)+Gj(x,1),

since we can add the soliton-type functions contained in ¥, and G, into U; and W,
respectively, j=1,2,..., M.

First, let us obtain the regular terms of expansion (15). Substituting (15) in (3) and
passing to the limit as # —~+ o0, 7—>00, ¢ >0, we obtain

A=) x*) =0,

which does not contradict (16). Let us introduce the notation

0F =0y+p, Vi, 0F =0,+p,Vi+UZF,
(18)
M

O = OF —0+/2, OFf =¢,+y,GF+ W, j=1,2,..

Obviously, the functions 6%, @* satisfy (12) if the assumptions (16) are satisfied and,
moreover, W, = 0. Further, substituting (15) into (3), passing to the limit as y— =+ oo,
700, and setting the terms of the order O(¢’) equal to zero, we obtain the relations

@,—4) 0% = fix,1), AQPE—x,0%) =0, }
(19)

@@= O =[x, 0, AQPE —ky O;y) = [ (X, 1)

Here /7 ,(x, 1), 17 4(x, ?) are functions of 6+, &5, ..., ;- | and their derivatives. In particular,
i = —0,B 5, = kO, PFFINBE)-

It is clear that the first two equations in (19) lead to equations (11) with respect to
functions 6* and @*.

Now we note that the supports of fast variations of the boundary-layer functions and of
functions rapidly varying on a neighbourhood of I, do not intersect (up to terms (0(¢®)).
Hence the solution in a neighbourhood of I, and in a neighbourhood of € is constructed
differently.

https://doi.org/10.1017/50956792597003227 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792597003227

Asymptotic solution of the conserved phase field system 9

Let us consider a neighbourhood of I',. Substituting (15) into (3), passing to the limit as
700, and setting the terms of the order 0(¢ ***) equal to zero, we have obtained the chain
of relations. The first has the form

(2ﬂ2)7183)€+)€—)?3=6, y—1 as gy—>o0.

Here and below we write F = F(, x, ey £ =1/ V2|Vi]. It can be easily shown that
if and only if the constant of integration c is equal to zero, this equation has a solution such
that ye # and y* % y~. It follows that the solution on Z, has the Van der Waals-type form
X(y, x) = tanh(f(y-yr,)), where another ‘constant’ of integration ¥, = 1,(x) is a function
from C*(Q).

Let us extend y (defined on the section (x, )€ 7, = | ;0.1 7€ R") by the identity to
x = (7, x) for all (x,7) € Q, ye R'. Now we note that 0, ¥ = O(F) Thus, setting the terms
O(e***) equal to zero, we get

RU,=F), U,~0 as 750, (20)
RLW =F/, W0 as 75>o0. 21
0 % 2 [ U)

Here L = (2% O+1-3y% F% F? are functions of 6,,V,,...,U, ,, W, , and of their
derivatives at the point ¢ = y/(x), k = 1,2,..., M. In particular

= I3,y +3x* ¢l (22)
F) = 2322(Vi, Vpy)d, Vo+ 0, x — (22 2,00 2 Vill (23)

It is not too difficult to prove the following statement [6, 22]:

Lemma 1 The solutions U, W, # of (20), (21) exist if and only if Fle ¥, Fte S, and

J Fldy =0, J Fédy =0, f 20, xdy =0,
where - - (24)

g i i 5 0 Ul .
e[ [ troarar[ [ #urarar

By (19), U,, W e # for all k > 1. Let us consider conditions (24) for k = 1. Using (22),
(23), it is easy to see that the second condition in (24) holds automatically. The first
condition in (24) leads to the relation

(V. Vo) + Q2B 0, po)l,y[Vil +2 = 0, (25)

where [V] = V*—V". Note that Vp|, =—p, Vi, for any smooth function p such that
plr, = 0. Hence, (25) implies
Vi, Vol [Vl = =2 (26)

Since 0,€ C*(Q) and p,| r, =0, we get the first condition (13).
Furthermore, since % = o o,x+ 3¢ (x*—1), after simple calculations we obtain that the
third condition (24) for k = 1 is equivalent to (14).
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Now, since (24) are satisfied for k = 1, we can obtain the functions

U, = S0+ ) x+u,(.x), Wy = w0, x).

Here

v v

& ==8 =28y(x), u,=p"Ex—In@2cosh&)l._y,.y, €
(1, X) = 0, ,(1, X) +1,(X) X»,(Wa x)e,

i, is the ‘constant’ of integration. Therefore, the functions W7 are actually equal to zero,
so we obtain the continuity conditions (11).
Let us define the extensions p, V,, W;, v, G,

@7

100 I/0 = pO O(’O+(x> l) +100 “E(Xa l) X(Wa X),
V1 G+ W=y (G D+ 7 W (X 1) X, %) + 0, (7, ). }

Here
pody = (0. =20,+0.)/2, pyag =07 =0.)/2, vipi = (P}, —2¢,+Py,)/2,
Vibh = (P.—D1)/2, 0F, Df,
are sufficiently smooth extensions of 6%, @f =k, 0% /2+®* in QF U I'],, such that the
heat equation and the Laplace equation are satisfied, respectively. Here 0 < 4 < 1 is an

arbitrary number. Hence, we have obtained the formulas for the first terms of the
asymptotic expansion

0y = (0;(x, )+ 0,(x,1)/2+(0.(x, 1) = 0, (x, 1)) tanh( S(y + ¥, (x))) /2,
$1 = tanh( S0y + (X)) + ek, 05 +(P: (x, 1) + P, (x, 1)) (28)
+ (@, (x, ) — D, (x, 1)) tanh( Sy +1fr1(x))) + 2, (1, X)} /2,
where 7 = (t—y(x))/e, w, € . Note that outside I', we have
0 =0+ +[(0;—06,) O(e™"]+U(e), xeQf,
¢ = X +el®f +[(D),— Py,) O(e™)]+w,}+ 0.
This implies that the expressions in square brackets are of maximal value ((¢) in an ¢' -
neighbourhood of I',, 0 < p < 1, and they are exponentially small outside this neigh-
bourhood. Hence the freedom in choosing the extensions 0, @F results in corrections of
order ()(¢) which automatically are taken into account when we construct the next
approximations.
Let us consider equations (20), (21) in the case k = 2. The right-hand sides of these
equations have the form
Fy = 2{VY 10,y 0 Vi =20V Vpi) 0, i = a0 X+ ey
F{ = (2P 112,03 0,(L(W; +7,G) =3¢, * (29)
_Ha»]X +g(00 +100 I/O)) - 2Kﬁ2 ay X + a?f‘?”t::ﬁ'
Here f5€ &, f$e # are functions of w,,, u,, 9, and y at the point ¢ = .
It is easy to see that the first two conditions (24) for k£ = 2 have the form

- L . .
ay (Vi Vpl)'l"t = 2J fadn, & 650,p0— 20 a/)’lll", = KV,. (30)
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The first condition (30) can be rewritten as the condition for the jump of the normal
derivative 6f on I,. By (26), the second condition (30) can be easily transformed to the
second condition (13). Finally, after some calculations the third condition (24) for k = 2
can be transformed to the linear inhomogeneous equation for the phase correction i, :

Ay =", i, =0. @31

Here 7 is the variation of the operator #; from (14), the right-hand side f¥1(x) depends
on the functions ¢, 0%, @;.

To satisfy the boundary conditions on 02 we must construct the boundary-layer
functions. After some routine calculations (see also [6-8]) we find Z, =0 for j=1,2,3,
and ¥;,=0forj=1,...,5, and

Z,= =270y A exp(—V27), Yy =—2720,0, 4]y exp(—V27).

It remains to consider the initial conditions. Relation (9) with the fast variable
1y = Fo(X)/€, where r, is the distance function, is a natural form of the initial value of ¢,
whereas the asymptotics depends on the variable » = (¢ —/(x))/e+ i, with functions ¢ and
Y, unknown beforehand. Note that /|, = 0 and |, = 0, the unit vector V(y/|Vi|)I, is
normal to [, and directed opposite to Vr,|,. Therefore, for any functions f(7, x)e #

Sfro/e.x) = (= +eyr)/(IVigle) + g1 /e + g0 X) + 15/ IV, X)
+ef (/IVl, ) {90, &, +0,59°0; g} + O,

where g, = r,—/IVi/l, g, = — ) /IVY1. 0, = [Vy| (V. V), and 5 = — e+, for 1 = 0.
We also take into account that /7 €%, and hence, the function [3*f7| are bounded in C for
all k < M.

Furthermore, in §3 we prove that the initial perturbation (@(¢®) (in the sense of L*(Q)) do
not take the Van der Waals-type solution out of the stability domain. Therefore, we fix the
initial data only up to the terms (@(¢?). The above constructions imply that outside a small
neighbourhood of I the initial value of temperature may be arbitrary; however, the form
of 6°(x,¢) in an e-neighbourhood of I'; and the form of ¢°(x,¢) in Q2 are fixed.

Finally, analysing our construction, we obtain the statement.

Theorem 2 Let the assumptions of Theorem 1 hold and m = m(M) be sufficiently large.
Then for any integer M > 0 there exist functions
M )
O3 = Oy +po Vot Z €0, +p, Vi + Ui+ Y) + " Uy + V),
j=1
My2 (32)
w=xt2X d(¢j+’)/j Gj+ m+zj) +eM*? Zyis
j=1
such that
005+ s — 405 —flx, 1) = " T,

KOO, P+ A6 A5+ B — B+ ek, B) = 17 7Y,
On O5ils = M F?wa Oy Pls =0, vAPuls = e F?\éf’

s (33)
), = 0°(x, ¢) + 0.
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Here 0, 7 %, F4! are (smooth for ¢ > 0) functions such that
10; Q)| < ey Ver 17 % LA+ |17 s LX) < e, Ve, (34)
17 55 CI+ 17 55 CO < ¢y I1FS; CON+F5 CRI< e, (35)

where the constants c; are independent of e.

3 Justification of the asymptotic solution

In this section we shall obtain estimates for the difference between the exact 0, ¢ and
asymptotic solutions 655, ¢3; of problem (3). Let us introduce the notation o = 0 —05;,
o = ¢— ¢ and let us consider only initial data 6°, ¢° that exhibit a special behaviour to be
defined below. Then, from (3) and (33), we get the following problem:

o(c+w)—do=—e"FI,, (36)

kO, w+A(edo+e (1 =3¢ -3¢, 0—0)+k,0) =—e" F%, (37)
Oy 0ly = —eM F?w Oyoly =0, 0ydo|,= —eV F?{], (38)
ol = _GMH/Z. ?wa 0l = _6M+1/2fﬁ1~ (39

Here #°%¢, F%¢ are smooth functions satisfying (34), (35), /% are functions from H?($2)
such that
I£55 LX)+ 11155 LA < e Ve (40)

with constant ¢ independent of ¢; H"(£2) denotes the Sobolev space. We also define
H{(Q) = {ue H*(Q),0yulg =0}, H*'(Q)={ueL*0,T; H(RQ)), 0,ue L*(Q)},
H*(Q) ={uel*0,T; HY(Q)),0, du|s = 0,0,ue L*(Q)}.
To simplify the notation, we omit the superscript denoting asymptotic solutions.

The main result of this section is

Theorem 3  Assume that there exists a solution of problem (3) such that 6 H*'(Q),
pe H*(Q) n C([0, T]; H3(Q)), where the quantity T > 0 is independent of ¢. Let also the
assumptions of Theorem 1 be satisfied and let M > 2. Then the estimates

lr; L=(0, T); LA | + |3 L=((0, T); LAR) | + | Veor; LAQ) || < ce™™,

41
Vo LXQ)| < ce ', | dw; LAQ)|| < ce @D

hold with constant c independent of e.

The main obstacle to the derivation of a priori estimates (41) is the rapidly-varying
coefficient ¢,, in (37). This is typical for nonlinear equations; the summand

J= lfj (Vo, V(¢3, w))dx dr’

appears on the right-hand side of the energy inequality, while on the left-hand side we have
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only |w; L*((0, T; LA(22))||? and ¢||dw; L*(Q)||®. It is clear that trivial estimates (for example,
by the maximum modulus) allow us to prove that the discrepancy is bounded only for the
time 7, ~ ¢*. The first observation is that, to overcome this difficulty, we can rewrite the
‘bad’ summand o(1 —3¢2,) /e as the sum of —2w/¢ and 3(1 —¢3,) w/e. Thus, we obtain the
summand 2¢7' ||[Vw; L*(Q)|* on the left-hand side of the energy inequality and the
expression

t 't
J, = Ef J (1=¢2)IVolPdxdt' +J,,, Jp, = EJ f w? A(¢p2)dxdr
€JoJa €JoJa

on the right-hand side. Obviously, if we again estimate the functions 1 —¢3, and 4(¢2,) by
the maximum of the modulus, there is no result, but we now can use the fact that with
precision up to O(¢) the functions 1 — ¢2, and ¢* 4(¢3,) are bounded by a constant (in C) and
localized in an e-neighbourhood of the free boundary I',. Here the main point is Lemma
3 about estimating integrals of the form I = [ % v(x/e) f(x) dx, where v(y)€.¥ is a known
function, exponentially decreasing outside the point = 0. To estimate f we can use the
norms in L*(R') only for k=1 and k = 2. Lemma 3 (which was proved to justify the
asymptotic to the KAV equation [23], the complete proof has been presented in [27]) implies
that for sufficiently small ¢ the first summand in J, is bounded from above by o(R,), where

R,=¢"|Vo; LAQ)|*+elldw; LX(Q)I*.

Since on the left-hand side of the energy inequality we have k R, with a constant k > 0
independent of ¢, we see that the first summand in J, is no obstacle to the derivation of a
priori estimate for all finite 7.

The second point is that we can rewrite the second summand in J; in the form

3 t 9 t
Jp=—= w*vdxdt’' +— w* v {1—¢3,+ 0(e)y dx dr,
¢ JolJe 2¢% )y Jo

where v = v(f(t— +er,)/€) > 0 is a non-negative soliton-type function, and hence the
first integral in J,, can be carried over to the left-hand side of the energy inequality,
|v,] < constv. By Lemma 3 we now can prove that for sufficiently small ¢ the second
summand in J,, has the upper bound k(R,+ 3¢ |w vv; L¥0, t; L*(Q2))||?)/4. Therefore,
the second summand is no longer an obstacle to the derivation of a priori estimate for all
finite 7.

It should be noted that a statement similar to Lemma 3 has been proved [33] to justify
a boundary-layer asymptotic for the semi-linear Dirichlet problem. However, in the
boundary-layer situation the rapidly-varying v is localized in a small neighbourhood of the
external boundary, and the discrepancy vanishes on the boundary. The condition f|,, = 0
used in Berges & Fraenkel [33] considerably simplifies the estimation of the integral I.
Obviously, in the phase transition problems the remainder does not necessarily vanish on
T

¢

Proof of Theorem 3 At first, let us derive the auxiliary estimates
s L=((0, T); LAQ) + llos L=((0, T); LX) | + [Vo; LAQ) || < ce™ 2,

42
Vo LAQ)| < e6™™, | dw; LXQ)| < ce. “
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Multiplying equations (36), (37) by o, w, respectively, and integrating on 2, we get the
relations

537 |0'|2+j w,ocdx+ |Vo|?* = _EMJ
Q

Q

o7, dx—eM”J o F,dx, (43)

o

d 3 2 ;
22 ol +e | 4o+ |oVo |2+ Vo 2
2dt € €

=2 oV -gimar=2 | Wov, 0

+x, J (Vw,Vo)dx—eM J
Q

T, dx—i—eM”J o(k, F,+ F5)dx'. (44)
o

o

Here and below | f| denotes the L* Q) norm of f. Further, multiplying (36) by w,
integrating on 2 and summing with (43), we obtain

1d
P+ el?P+2 | wodx;+|Va|*+ | (Vo,Vo)dx
2dt o o
= —e“’j (w+0) ?i,dx—e‘”“f (w+0o)F,dx". (45)
Q @

Let us fix a constant K > 0. Now, multiplying (44) by K and summing with (45), we get the
equality

ld 2 2
S|+ ol o2 |

2K , ) , K ;
a)o’dx}+€|Vw|2+ HVO‘H2+6K|\A(UH2+3T [wVw|?
K K
=2 @ovon a2 | @o.v6, 00
€ Je € Jo
+(k, K— I)J (Vw,Vo’)dx—eMJ {(w+0)Fo+0KF4 dx
Q Q
—6‘”“j {(w+0)F, —w Kk, F, + F%)} dx’. O (46)
o
We shall analyse the terms in the right-hand side of (46).

Lemma 2 Let ¢,, be the asymptotic expansion (32). Then

if (Vo,V(o(1 —¢3))) dx = —;J (l/):xt dx+1, (47)

1—1 [Vol*(1 — 2)d)c—i—i o (1— 2)dx—i—1 2 Aldx
_6 0 @ X 262 Q/))Xt X 2 Q(U Xt ﬁ

- J |Vw|2(2X + 6¢j€l ¢f€l dx— J‘ o(Vo,V(2x ¢TT + 6(¢TT %)) dx
Q Q

1 1 [ w? -
+ 2J wxg(Vw, Vﬁ) dx+2eJ ?az({ﬂ 0, x 07, X) =€ A4, X0, X, 1) dx.
Q Q
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Here IT = 2V, V) + Ay, ¢% = (b, —x)/¢, the variables y and x in the expression in curly
brackets are independent.

Proof of Lemma 2 Using (38), it is easy to establish that

IJ (Vo,V(o(1—¢3))) dx = ZJ [Vol*(1 — x?) dx+216j w? A(y?) dx

- f IVol*2x +e3;) ¢3 dx — J o(Vo, V2xg3; +e($7)?) dx.  (48)

Since 1—y* = ¢y,/B, we have

J—i w* A( 2)dx——1 23111 dx
T2, NI TR X))

It is clear that

J——l w_ng dx+l w® Aldx+2 ® Vle dx (49)
BV ATR T P A PRt S

Using the explicit form of the function y, we obtain

CZAX((I_ y//)/e’ X) = {XS _X —€ ﬁay X(% x) + ezAx XC’?: x)}|1]:(t—1,’//e)'

Thus

w? 0 2 [ ? 3 w?
Y pydx =25 | Lydx—2 | 2oy —yH)da
J;ﬂal xdx ezjgﬂ){tdx ezfgﬁ)(t( X% dx

_IJ wza({ﬁw_eAZX(7l’x)}

€)oot o

) dx.
n=@t—y)/e

This equality and (48), (49) complete the proof of Lemma 2. O

Further, by using the embedding theorem and (35), we get

4€M+1

f [(0+0) Ff, = Kk, i, + F{)]dx’
QR

<ce"N(Jo; L2EQ)| + o LA@Q)]) < ce*™ ™ + || + o5

Here and below ¢ denotes a universal constant and || /|, is the H*(Q2) norm. It is also easy

to see that
1 . 1 e
2 J wo dx SaH(qu—l—&Ho‘Hz, cx=§(/<K—|—\/(KK) +4),
Q
2 J (Vo,Vo)dx| < ¢ V2| Vo2 + 3| Va2
Q
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Therefore, integrating (46) w.r.t. ¢ and choosing ¢ small enough, we obtain the inequality

t

a—1 ; K |
——ol*+ ol @+ | = Vol*+5IVa|?
20 € 2

0
3K 3K [ o

+eK|Aa)|'2+wVw|2+zf thdx}dt’
€ e Jof

t

< C€2JI+1+J

0

{3K|1| +e(lol*+lo]®)

3K
+—
€

J (Vo, V(y, %)) dx

}dz’. (50)
To estimate the integral I we shall need the following:

Lemma 3 (Omel’yanov, 1983). For any nonnegative functions f(x)e L*(RY)N L'(RY),
v(x)€ S(RY), there exists a constant ¢, > 0 such that, for all ¢€(0,¢,),

[ soe()ax < sz +depn ),

where 8 is a constant such that & = ke'* ™, ne(0,1/2), and k > 0 is a constant. Here c,(9) is
a constant depending on § and on |v(x); L*(RY) n L'(RY)| such that 0 < ¢,(8) < const/d?, and
p(e) >0 as ¢ 0.

Let us estimate the first two terms of 1.

Lemma 4 Let ¢ be small enough. Then for arbitrary constants 8, > 0

1 5
Ef [Vol*(1 =) dx < 7 [Vo [ 4¢,0,) 672 | 4w 1)
-, :

1 [ ? , 8, [ »* .
S| 5 x0-= <2 | =y, d . 2,
f X1 = 2 dx f 7 Xdve @) Vol (52)

Proof Denote by .4, a p neighbourhood of the interface I';, where p > 0 is a constant
independent of ¢. Since 1—y* = O(¢*) outside ./, we have

1 1 .
—f [Vwl2(1 —y?) dx = —J [Vw2(1 —y?) dx + ¢ J [Vo|?dx.
€Jo € lu Je)

Choosing p sufficiently small, we pass to the variables y = (y,, ..., y,) in ./, where y, is the
coordinate normal to I',. Then in A = {y,|y,| < W, Y; <y, < Y/, i=2,..,n we have

no Yo
I, = f [Vwl*(1 —y*)dx =TT J J |Vw|zv<J;1,y, t) Jdy,dy,,
N i=2Jv; J-p

[

where J is the Jacobian of this change of variables, |%|=|wa\|x:m(yyt),
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v(y,y,t) = cosh™(p(y +11),—0cy.o- By Lemma 3 and the embedding theorem for n = 1,

we get
n Yl-+ (T n 1/2
it [ [ Worsan e [ worran)” o

i=2J v} - -

N

< O [IVo[*+ce 7% p(e) {7 Vo | * + e, (| Vo |* + [ do]|*)}
< & [IVol*+cep(e) {]| Vol* + €' | do||*,

where we choose k, = 1+k,/3 and use that J > 0 is a bounded smooth function. Here and
below we omit the dependence of ¢ (0) on the function y and on the constants §. It is clear
that, choosing J, we take into account that ¢ (J) ~oco as d—0. Similarly,

1 2 % 2 62 2 \,% —1/2
- wx(l—x)dxgg w® xy*dx+cple)e

€ Vv =" Jo

n Yl-+ - o
I | o VXS L(—p wIP2 lo vIx*s H' (—p, w2 dy,
i-2Jv;
< dye? oVt |2+ cep(e){e™ o VY* [P+ Vol %,
where y* = y,/f. Lemma 4 is proved. [

Further, we have the trivial estimates

1
x| Vo, V= |dx
L X( /f)

f w(Vw, Ve(¢¥)?) dx
o

< clovl vy Vol < o vVy*|IP+c|Voll?,

< cvelol*+cllVol?/ e,

Using notation (15) and (17) for the first correction to the asymptotic expansion ¢, we now
have the equality V(x¢3,) = V(x(¢, + 11 + 71 by X+ W) +g,. where
I/Vi = I/f/l = gOWZX)]—i_w‘ZX)]
satisfies equation (21) for k = 1. Here and below by g,,i > 0, we denote (vector)-functions
bounded in C(Q). By direct calculations we obtain
&Vx+&Vx, =(—8+2xg)x, V¥ +g, =¢ g Vx* +g,,
V(772 X)/) = ("' +86) (g 7+ 8¢ 7/2) cosh™ 77|y,=/3(<¢—¢/)/e+¢/,) =¢ ' 8o VX* + &1
Therefore
<

U o(Vo, V(yor,)) dx VYE| Vo +c o] Vol
Q

c
Vel
<ce o VyF [P +ee Vol +e Ve |o]*

In the same way, we have
w? w? 1+9°
Z 204 v
U ; o[{( X0 )

o cosh®y dx

n=pt—y) /etiry)

a1
< ce

}dx
n={t—y)/e

< e o]+ o ViF %
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Finally,

29 (/ .0
Laalma., e
Q /)) al 677 n=@t—y)/e

where 8, > 0 is an arbitrary constant. The last term in the right-hand side of (53) was
estimated in Lemma 4. By the above constructions we obtain the bound for the integral /:

1

€

1

L2
et
e’ Jo ]

dx

y=(t=)/e

< ce oV [P+ Vol +ce o vVy*(T—x*) % (53)

~2

Lemma 5 Let ¢ be small enough. Then for arbitrary constants ¢', 8" > 0
< e?oVvyF|?+0 e [Vo|*+ce? o] +ce? || do]?. (54)

Let us estimate the last term in the right-hand side of (50). Using the Galiardo—Nirenberg
inequality, we obtain

1
- <
€

[N Y

J Vo, V(¢,, »®) dx

f 0] |vw|2dx+c;J Vol w? dx
Q € Ja

<o ol S ol o6 Vol o ¢ ol
<076 Vol 40" of 0]+ [ Ao|?) +e e 03I ] 200 (55)

with an arbitrary constant §” > 0. Choosing 8" = 1/2, 8" = §” = 1/12, and using (54), (55),
we can transform (50) as follows:
Xt 2} ’
2wl pdt
I}

<ce?pe f (U +e(U@)1dr. (56)

‘1 : : , 1 1
U(I)HJ{eV‘“'“rVvlz+edwlz+elwv(u|2+62
0

Here U(t) ={|w|?+|c|?} (), A=4/4—n), r=(12+n)/(4—n). Let us fix a number
T,e(0,T], T < oo, and let t€[0, 7;]. Then, according to the Gronwall lemma, (56) yields

z < (e e T MY, (57)
where z = max, ., ,,, U(7). Now we need the following lemma proved in Maslov & Mosolov
[34].

Lemma 6 Let positive numbers p, q, A satisfy the estimate
g <A1+ (p(1+A2)A (58)
Then the solutions of the inequality

O<Z<q+pzl+/\

belong to the set [0,Z_] U [Z,, o), where the numbers Z,, Z_ are such that

0<Z_ <q(l+1)/A< Z..
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In our case p = c¢T,¢". Therefore, since ¢ is small enough, the inequality (58) holds for
any M > 2. Since z = z(T;) depends continuously on 7; and

Z(O) < C€2J4+1 < ceZJT+1(1 +/\)//\’

we obtain the estimate

max U(f) < ce®™*! (59)
te[0,7}]

with a constant ¢ independent of e. It is easy to see that (59) and (56) yield the estimates
(42). Finally, repeating the construction [27], we obtain that (42) implies (41). This
completes the proof of Theorem 4. []

By using arguments similar to those in Theorem 4 and by (41), we easily estimate the
higher-order derivatives.

Theorem 4 Suppose assumptions of Theorem 4 are satisfied and
Ve ; L(Q)[ + Vo' ; LAQ)|| < e,
where o = a|,_,, ©° = 0|,_,. Then
|40 ; LAQ) | + Vo ; L=(0, T; LX) | + [[Vo; L*(0, T LX(Q)) |
+Vellw; LX0, T; H3(Q))|| < ceM™32,

where ¢ is a constant independent of €.

Theorem 5 Suppose assumptions of Theorem 5 are satisfied, M > 3, and also
[4w®; L*(Q)| < ceM52

Then
[0, w; LXQ)|| + Ve |w; L*0, T; H(Q))|| < ceM2,

where ¢ is a constant independent of ¢.

4 Conclusion

We have constructed the asymptotic ‘tanh’-type solution X, = (6%, ¢ ) of the
conserved phase field system (1) related to the case (2). The estimate (41) describes the
domain of stability for this solution with respect to the initial data. As in Omel’yanov et
al. [28], one can prove that ¥ | is an attractor in the space of solutions to (3), and that the
radius of the stability set is (¢"/?). The question whether condition (10) is optimal remains
open. Nevertheless, it is clear that the solution becomes ‘tanh’-type only after a stage of
bifurcations, if the initial data lie sufficiently far from « . For example, in the case of a
large relaxation time (£ ~ a'/?—0,7, = const) system (1) has the stable ‘tanh’-type
solution only for large times (1 ~ £7'), while for finite times the solution is of soliton-type
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[6,8]. As the time increases, a bifurcation necessarily starts, and the soliton-type solution
u®, transforms itself to a “‘tanh’-type one. It has been recently discovered that this problem
also has a rapidly oscillating solution for finite times (this result will be published). As the
time grows, a bifurcation occurs and the oscillatory solution #23, transforms itself to the
soliton-type one. Such behaviour implies that it is necessary to consider in more detail the
stability sets for u> ., for 42, and for u%,, the processes of bifurcations, and the process
of interaction between stable solutions. In our opinion, the analysis of these problems
allows us to describe the solution of basic mathematical models for phase transitions
related to arbitrary initial data, and, in particular, to describe the process of the phase

decomposition.
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