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The conserved phase field system with a small parameter in the n-dimensional case (n% 3) is

considered. An asymptotic solution, describing the free interface dynamics, is constructed and

justified. As the small parameter tends to zero, the limiting solution satisfies the modified Stefan

problem with corrected Gibbs–Thomson law.

1 Introduction

We shall consider the conserved phase field system [1]

¥
t
(θlφ)¯k∆θf(x, t), (x, t) `Q,

®τ
!
¥
t
φ¯ ξ #∆(ξ #∆φ(2a)−" (φ®φ$)κ

"
θ).

5

6

7

8

(1)

Here Q¯Ω¬(0,T ), ΩZRn is a bounded domain with smooth (C¢) boundary ¥Ω,

n% 3, T!¢ ; ¥
t
¯ ¥}¥t, ∆ is the Laplace operator; θ is the normalized temperature; φ is

the order functions ; l" 0, k" 0, κ
"

are constants ; f(x, t) is a smooth function; τ
!
" 0,

ξ" 0, and a" 0 are parameters. The physical meaning of τ
!
, ξ, a, and the whole model (1)

for the phase transitions have been discussed elsewhere [1–3]. General models for non-

isothermal phase transitions with a conserved order function are proposed in Alt & Pawlow

[4]. Nevertheless, the simplest model (1) is of independent interest, since it qualitatively

describes the actual physical processes.

We shall study the structure of the solution of (1) and analyse how to pass to the limit

from the microscopic description to the macroscopic one. It is well-known that the form

of the limiting problem depends on the relations between the parameters a, ξ and τ
!
. We

restrict our consideration to the case a' 1, ξ' 1, τ
!
' 1, ξa−"/#¯ const, τ

!
a−"¯ const. Let

us introduce a small parameter εU 0 and set

a¯ ε}2, ξ¯oε, τ
!
¯ κε, κ¯ const" 0. (2)

For simplicity, we also assume that k¯ l¯ 1. Completing (1) with natural initial and

boundary conditions, we obtain our basic mathematical model
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¥
t
(θφ)¯∆θf(x, t),

®κ ε ¥
t
φ¯∆(ε#∆φφ®φ$ε κ

"
θ),

θr
t=!

¯ θ!(x, ε), φr
t=!

¯φ!(x, ε), ¥
N

θrΣ ¯ 0, ¥
N

φrΣ ¯ 0, ¥
N

∆φrΣ ¯ 0.
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(3)

Here N is the external normal to ¥Ω, ¥
N

¯ ¥}¥N, and Σ¯ [0,T ]¬¥Ω.

Like the solution of the Cahn–Hilliard equation (the second equation in (3) with

θ¯ const), the solution of (3) is very complicated, since its behaviour varies depending on

different stages of the phase separation process in binary alloys. (For example, the solution

can be oscillatory [5], or of soliton type [6], or of the ‘ tanh’-type [6–10]). At present, the

solution to (3) with arbitrary initial data can be analysed in detail only by numerical

methods. However, by setting some special initial data, one can thoroughly study certain

types of solutions. In this paper we restrict our consideration to the dynamics of the free

boundary Γ
t
between the pure phases, which, from the macroscopic viewpoint (as εU 0), at

each instant of time occupy the domains Ω−

t
, where φa ¯®1, and Ω+

t
, where φ- ¯1,

Ω¯Ω−

t
eΩ+

t
eΓ

t
; (here and below f®(x, t)¯ limεU

!
f(x, t, ε)). So we shall assume that

the initial data θ!(x, ε), φ!(x, ε) are smooth functions (for ε" 0) such that φ!¯³1,

θa !¯ θ³

!
(x) for x `Ω³

!
, where θ³

!
are sufficiently smooth on Ω³

!
functions such that [θ³

!
]rΓ

!

¯ 0,

[¥ν θ
³

!
]rΓ

!

1 0, and that the initial interface Γ
!

is a sufficiently smooth closed surface of

codimension 1 such that Γ
!
f ¥Ω¯W. Here and below [ f ]rΓ

t

is the jump of the function

f on Γ
t
, ¥ν ¯ ¥}¥ν is the derivative along the normal to Γ

t
, t& 0. For definiteness, we assume

that ¥Ω+

t
f ¥Ω¯ ¥Ω.

The Cahn–Hilliard equation was proposed by Cahn and Hilliard [11–13] as a simple

model for the process of phase separation of a binary alloy at a fixed temperature. Surveys

of physical aspects of this model are also given in Novick-Cohen & Segel [5]. The

equilibrium theory for the Cahn–Hilliard equation in the one-dimensional case in which

ξ #C a' 1, τ
!
¯ const is investigated in Alikakos et al. [14] and Carr et al. [15]. The initial

value problem for the Cahn–Hilliard equation is explicitly investigated in the case in which

τ
!
, ξ, and a are constants, n% 3 and θ¯ const. For a description of the results from the

mathematical and physical viewpoint, the reader is referred elsewhere [10, 16–19], where the

existence and uniqueness theorems, as well as the existence of an attractor are proved. The

multidimensional Cahn–Hilliard equation with a small parameter has been considered by

Pego [9] and Stoth [10]. System (1) has also been considered [1, 2, 6, 8].

Let us discuss the results of Caginalp [2], related to case (2). By using the matching

method, the two first terms for the inner expansion have been found in a neighbourhood

Γ δ
"
t

of the free boundary Γ
t
¯²x `Ω, r(x, t)¯ 0´, t& 0:

θ¯ θa ³rΓ
t

ε²(ε−" rr") (¥ν θ
a +¥ν θ

a −)rΓ
t

o2 [¥ν θ
a ³]rΓ

t

¬ln (2 cosh ((r}εr")}o2))ω
"
(r}εr", s, t)θa ³

"
rΓ

t

´}2,

φ¯ tanh((r}εr")}o2)εΦ
"
(r}εr", s, t).

5

6

7

8

(4)

The outer expansion in the domains Ω³
t,δ

#

ZΩ³
t
, t& 0 is :

θ¯ θa ³(x, t)ε θa ³
"
(x, t), φ¯³1ε φa ³

"
(x, t).

Here we have set κ
"
¯ 2, r is the signed distance function, δ

i
¯ δ

i
(ε)U 0 as εU 0,

Γ δ
"
t

fΩ³
t,δ

#

1W, r"¯ r"(x, t) is a smooth function, s¯ s(x, t) are (local) coordinates on Γ
t
;
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Asymptotic solution of the conser�ed phase field system 3

Φ
"
(η, s, t)¯ θa ³rΓ

t

ω
#
(η, s, t) ; ω

i
(η, s, t), i¯ 1, 2, are smooth functions exponentially de-

creasing as ηU³¢ ; θa ³(x, t) is the solution of the modified Stefan problem

¥
t
θa ³ ¯∆θa ³, t& 0, x `Ω³

t
,

[¥ν θ
a ³]rΓ

t

¯ 2�ν, κ
#
+

t
¯ θa ³rΓ

t

, θa ³r
t=!

¯ θ³

!
(x), ¥

N
θa +rΣ ¯ 0, (5)

where �ν is the normal velocity of the motion of the boundary, +
t
is the mean curvature of

the surface Γ
t
, κ

#
" 0 is a constant.

Unfortunately, in Caginalp [2] the construction of the matching method is such that an

additional summand is omitted in the Gibbs–Thomson condition in (5). The point is that

the construction of the first correction to the outer expansion necessarily implies the

following equality:

∆(φa ³
"
®θa ³)¯ 0, in ΩcΓ

t
,

i.e. φa ³
t

may differ from θa ³ by a function harmonic in ΩcΓ
t
. However, in Caginalp [2], this

condition was replaced by the following:

φa ³
"

¯ θa ³. (6)

Let us discuss the consequence of this change of conditions. By using the method of

Caginalp [2], we calculate the second-order corrections in the domains Ω$
t

(in which the

expansions are matched) common for the outer and inner expansion; for the order-function

we obtain the outer expansion:

φ¯³1ε θa ³(x, t)ε#φa ³
#
(x, t), t" 0, x `Ω$

t
fΩ³

t
, (7)

and the inner expansion in the same domain:

φ¯³1ε θa ³rΓ
t

ε#(r}εR³) (C
"
³2−&/# κ[¥ν θ

a ³]rΓ
t

). (8)

Here C
"
rΓ

t

is an arbitrary function.

The matching conditions for (7) and (8) necessarily imply the relation

κ 2−$/#[¥ν θ
a ³]rΓ

t

¯ [¥ν θ
a ³]rΓ

t

,

which holds only for κ¯ 2o2. Thus, in the general case, it is impossible to match the

external and internal expansions. This fact follows from the construction presented in

Caginalp [2]. In this construction it is assumed that the solution may grow with respect to

the fast (internal) variable, which means that the next terms of the expansion contribute to

the preceding terms. In fact, by (4) we have θ¯ θa ³rΓ
t

r ¥ν θ
a ³rΓ

t

/(ε) for t& 0 and

x `Ω$
t
fΩ³

t
, where r is of order /(εµ), 1}2%µ! 1; thus the second summand cannot be

considered as a remainder of order /(ε). Moreover, for the derivative of θ, we obtain that

¥ν θ¯ ¥ν θ
a ³rΓ

t

/(ε) for all t& 0 and x `Ω$
t
fΩ³

t
if and only if in (4) we take into account

the ‘small correction’ in curly brackets. In Caginalp [2] this reasoning resulted in the correct

Stefan condition in (5) by taking into account the first correction in (4). However, in

Caginalp [2] the second corrections were not considered, though there are similar relations

for φ :

φ¯³1ε(θa ³rΓ
t

rC³rΓ
t

)/(ε#), t& 0, x `Ω$
t
fΩ³

t
,

¥ν φ¯ εC³rΓ
t

/(ε#), C³ ¯C
"
³2−&/# κ[¥ν θ

a ³]rΓ
t

.
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We shall now derive the Gibbs–Thomson condition. It appears when we calculate the first

correction Φ
"
, i.e. when we solve the equation

¥#η Φ
"
(1®3χ#)Φ

"
¯®+

t
χη®2θa ³rΓ

t

c,

where χ¯ tanh(η}o2), c is a ‘constant ’ of integration, here and below fη ¯ ¥η f¯ ¥f}¥η.

We rewrite Φ
"

as Φ
"
¯φa ³

"
rΓ

t

ω
#
(η, t), where ω

#
U 0 as ηU³¢ (see formula (4.25) in

Caginalp [2]). Then c¯ 2(θa ³®φa ³
"
)rΓ

t

. For this equation to hold, we have the necessary and

sufficient condition &¢

−¢

(3(χ #®1)φa ³
t
rΓ

t

®+
t
χη)χη) dη¯ 0,

which implies κ
#
+

t
¯φa ³

"
rΓ

t

. The Gibbs–Thomson condition is derived in Caginalp [2] by

using relation (6). However, as shown above, we can match the lower terms of the

asymptotic expansion if the function φa ³
"

differs from θa ³ by a certain function Φ³ harmonic

in ΩcΓ
t
. Since, in the general case, Φ³rΓ

t

does not vanish, some additional summands appear

on the right-hand side of the Gibbs–Thomson condition. Below we will formulate the

Gibbs–Thomson condition and set the problem for obtaining the additional function Φ³.

The existence of polynomial summands in the inner expansion necessarily requires a very

accurate construction of low-order terms, that is, on the ith step of the asymptotic

procedure we must take into account the (i1)th corrections to the solution. This fact is

well-known. A description of this accurate use of the matching method can be found, for

example, in Il’in [20].

At the same time, there is an alternative method [21–24] for constructing asymptotic

solutions with localized ‘fast ’ variations. This method, in which a detailed analysis of

lower-order terms is not required, is a modification of the two-scale method for obtaining

solutions with localized ‘fast ’ variations. A modification of this method for phase

transition problems was proposed elsewhere [6–8, 25, 26]. The main idea of this method is

to construct such analogues of the inner and outer expansions that they are defined over

the whole range of independent variables. This implies that there are no summands

polynomially increasing in the ‘fast ’ variable.

Here we have the following important points. Suppose the ‘fast ’ variation of the solution

u is localized in a small neighbourhood of the smooth surface Γ
t
, for example,

u¯A(x, t) tanh(S(x, t)}ε), Γ
t
¯²x `Ω,S(x, t)¯ 0´, S,A `C¢.

Then, to calculate the function S at each instant of time, it is sufficient to define only its zero

surface ²x,ψ(x)¯ t´3 ²x,S(x, t)¯ 0´ and the first normal derivative S « on Γ
t
, since in an

ε-neighbourhood of Γ
t
the smooth function S cannot vary more than /(ε) and outside an

ε"−δ-neighbourhood of Γ
t
(0! δ! 1), the solution varies slowly with precision up to /(ε¢).

Furthermore, in the traditional two-scale method we first construct a rapidly varying

solution u(S}ε,x, t) in the ‘extended’ space R"¬Ω¬[0,T ], assuming that u¯ u(η,x, t) and

that the variables η and x, t are independent. Then we calculate the trace u(η,x, t)rη=S/ε
. This

approach is justified for solutions with rapid oscillations everywhere. However, for

solutions with localized fast variation we can construct the rapidly varying components

only in the subspace R"¬4δ

T
, where 4δ

T
is an ε"−δ-neighbourhood of the surface 4

T
¯

²(x, t) `Qa , t¯ψ(x)´¯V
t`[!,T]

Γ
t
. That is, we know beforehand that our final goal is only
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the trace u(η,x, t)rη=S/ε
. In its turn, since u(η,x, t) smoothly depends on ‘slowly’ varying

variables x and t, we can calculate the solution in two stages : in the first stage we define

the trace u] ¯ u(η,x, t)r
t=ψ(x)

of u on the section R"¬4
T
; in the second stage we construct a

sufficiently smooth continuation of u] outside R"¬4
T
. Needless to say, this continuation

must be constructed sufficiently accurately, but there is some freedom in choosing this

continuation. Namely, this freedom provides the boundedness (uniformly in η `R",x, t `Q)

of all terms of the asymptotic expansion.

Let us return to the problem concerning the choice of the initial data to problem (3). The

limiting functions θ³

!
(x) may be taken arbitrarily : they must satisfy only the natural

matching conditions for the limiting initial-boundary value problem. Nevertheless, we

cannot choose the regularization θ!(x, ε), φ!(x, ε) arbitrarily if we want to stay in the chosen

class of prelimiting solutions. It is well-known that the problem of the dynamics of the free

boundary is described by the Van der Waals-type solution

φ!(x, ε)¯ tanh(r
!
(x)}εo2)ε φ!

"
(x, ε), (9)

where r
!

is the signed distance function, r
!
" 0 in Ω+

!
and r

!
! 0 in Ω−

!
, φ!

"
is a function

bounded in C. The tanh-type form of the solution (in the principal term) appears in the

phase field system (for example, [16, 25, 27–31]), for the Cahn–Hilliard equation [5, 9, 10, 14,

16, 18], and for the conserved phase field system [2, 7, 8] not only when we construct the

asymptotic solution, but also when we prove the solvability of the initial-boundary value

problem with a small parameter [27, 28, 30, 31]. Such a universal form of the principal term

of the solution is related to the fact that the chemical potential (the energy of the phase field

system)

& [φ]¯&
Ω
(12 εr~φr#

1

4ε
(φ#®1)#*dx

takes its minimum at the hyperbolic tangent function; & [tanh(r
!
}εo2)]% const as εU 0.

Hitherto, the problem about the degree of freedom in choosing φ!

"
and the problem of how

to smooth the temperature has remained unsolved. The asymptotic analysis of the phase

field system shows that θ!(x, ε) can be arbitrary outside an ε-neighbourhood of Γ
!
, and that

this function must be of a fixed form inside this neighbourhood; thus the choice of

φ!

"
(x, t) must be matched with the choice of θ!(x, ε). The latter fact corresponds to the

relation between θ and φ arising when we consider the free energy

&θ[φ]¯&
Ω
(12 εr~φr#

1

4ε
(φ#®1)#®κ

"
θφ*dx.

However, the analysis of the solution of the phase field system [27, 28] shows that we stay

in the sharp-fronted situation, if we add sufficiently small perturbations to the fixed initial

data θ!
fix

, φ!
fix

, i.e. if

sθ!®θ!
fix

;L#(Ω)ssφ!®φ!
fix

;L#(Ω)s%C εn/#. (10)

Therefore, the last bound describes the stability domain for the tanh-type solution of the

phase field system. We note that a condition close to (10) was also obtained in Soner [30],

although quite different methods were used in Soner [30] and Omel’yanov et al. [27, 28].

Nevertheless, the question of whether condition (10) is optimal remains open.
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In the present paper we show how to choose the initial data for the conserved phase

field system: by constructing an asymptotic solution, we find some fixed initial data

θ!¯ θ!
fix

(x, ε),φ!¯φ!
fix

(x, ε) and, justifying the asymptotics, we obtain the stability domain

for our solution.

The main result of the paper is the derivation of the limiting problem in C(Qa ) as εU 0

for a sequence of tanh-type solutions of (3). This problem, namely, the ‘superposition’ of

the modified Stefan problem for the limiting temperature θa (x, t) (θa ¯ θ³ as x `Ω³
t
, t& 0)

and of the Mullins–Sekerka problem for an auxiliary function Φa (x, t) (Φ{ ¯Φ³ as x `Ω³
t
,

t& 0) has the form

¥
t
θ³ ¯∆θ³f(x, t), ∆Φ³ ¯ 0, x `Ω³

t
, t" 0, (11)

θ³
t=!

¯ θ³

!
(x), x `Ω³

!
, ¥

N
θ+rΣ ¯ 0, ¥

N
Φ+rΣ ¯ 0,

[θ³]rΓ
t

¯ 0, [Φ³]rΓ
t

¯ 0,

5

6

7

8

(12)

[¥ν θ
³]rΓ

t

¯®2�ν, [¥ν Φ
³]rΓ

t

¯®κ�ν, (13)

div(r~ψr−"~ψ)¯ κ
#
(2−" κ

"
θ] ³Φ] ³), ψrΓ

!

¯ 0. (14)

Here Γ
t
¯²x `Ω,ψ(x)¯ t´ is the interface at the time instant t ; �ν ¯®1}r~ψr is the normal

velocity of motion of Γ
t
; Ω¯Ω+

t
eΩ−

t
eΓ

t
; F] ¯F³(x,ψ(x)) ; ¥ν ¯®(~ψ}r~ψr,~),

κ
#
¯ 3o2. It is easy to see that the left-hand side in (14) is the mean curvature +

t
of Γ

t
. The

uniqueness of the functions Φ³ follows from the normalization condition

&
Ω+
t

0Φ+
κ
"

2
θ+1dx&

Ω−
t

0Φ−
κ
"

2
θ−1dx¯K

"
,

where K
"

is the first coefficient of the expression

&
Ω

φ!(x, ε) dx¯ 3
i&!

εi K
i
.

The following theorem (which can be proved in a way similar to Radkevich [26]) implies

the classical solvability of problem (11)–(14) (in the Ho$ lder space C l ).

Theorem 1 Let the initial Γ
!
belong to the class C l

!
+# and let θ³

!
`C l

!(Ω³

!
), where l

!
" 2m is

a non-integer number and m" 2. Suppose that dist(Γ
!
, ¥Ω)& const" 0 and all matching

conditions for problem (11)–(14) hold with precision up to order m. Suppose

Φ³

!
¯Φ³r

t=!
`C l

!(Ω³

!
)

satisfies the problem: ∆Φ³

!
¯ 0 in Ω³

!
, ¥

N
Φ+

!
¯ 0 on ¥Ω and [Φ³

!
]rΓ

!

¯ 0,

κ
"
[¥ν Φ

³

!
]rΓ

!

¯ 2[¥ν θ
³

!
]rΓ

!

.

¥ν θ
³

!
rΓ

!

&Λ
!
(Γ

!
) and (¥ν Φ+

!
¥ν Φ−

!
)rΓ

!

" 0,

where Λ
!
is a sufficiently large constant depending on the principal cur�atures of the surface

Γ
!
. Then there exists a sufficiently small number T" 0 such that on the time inter�al (0,T )
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there exists a classical solution of problem (11)–(14), Φ³, θ³ `C l,l/#(Q³
T
), where the non-

integer number l satisfies the condition [l}2]¯m®2, [l}2] is the integer part of l}2,

Q³
T

¯²x `Q³
t
, t ` (0,T )´.

2 Asymptotic solution

Let us consider the general method for constructing the asymptotic solution of problem

(3) with an arbitrary precision. We shall need some classes of functions. Let

3¯S(R"
η ;C

¢(Ωa )), where S is the Schwartz space, (¯² f(η,x, t) `C¢(R"¬Qa ), ¥η f `3 ´,
and let 0¯² f(τ,x«, t) `C¢(R"

+
¬Σ)´ be the class of exponentially vanishing (w.r.t. τ)

boundary–layer functions.

Let us note that, for the Van der Waals-type solution, the limit of φ as εU 0 is a Heaviside

function discontinuous on Γ
t
and the limit of θ as εU 0 has a weak discontinuity on Γ

t
. This

implies that the asymptotic solution should be taken to have the following form:

θ(x, t, ε)¯"M(x, t, ε)6M0S(x, t)

ε
,
x
N

ε
,x, t, ε1 ,

φ(x, t, ε)¯ εΦM(x, t, ε)7M0S(x, t)

ε
,
x
N

ε
,x, t, ε1 ,

5

6

7

8

(15)

where the functions "M, ΦM (uniformly smooth w.r.t. ε ` [0, 1],x, t `Q, the so-called ‘regular

part ’) give an analogue of the outer expansion:

"M(x, t, ε)¯ 3
M

j=!

εj θ
j
(x, t), ΦM(x, t, ε)¯ 3

M

j="

εj−"φ
j
(x, t) ;

the functions 6M, 7M (rapidly varying near the free and external boundaries) give an

analogue of the inner expansion:

6M(η, τ,x, t, ε)¯ ρ
!
(x, t)V

!
(η,x, t)

3
M

j="

εj²ρ
j
(x, t)V

j
(η,x, t)U

j
(η,x, t)Y

j
(τ,x«, t)´,

7M(η, τ,x, t, ε)¯χ(η,x, t)

3
M

j="

εj²γ
j
(x, t)G

j
(η,x, t)W

j
(η,x, t)Z

j
(τ,x«, t)´.

Here x
N

is the distance from a point x `Ω to a point x« ` ¥Ω along the interior normal ;

S, ρ
i
, γ

j
, θ

i
, φ

j
`C¢(Qa ), ¥

t
S rΓ

t

1 0; Y
j
(τ,x«, t), Z

j
(τ,x«, t) `0 ; the other functions belong to

the space (. We assume that

χ³ ¯³1, U+

j
¯ 0, W+

j
¯ 0, ρ

i
rΓ

t

¯ 0, γ
j
rΓ

t

¯ 0, (16)

where Γ
t
¯²x `Ω,S(x, t)¯ 0´, i¯ 0, 1,…,M, j¯ 1, 2,…,M. Here and below

f ³ ¯ lim
ηU³¢

f(η,x, t) for each f `(.
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The definition of the classes (, 0 and the above assumptions imply that χ is a

regularization of the Heaviside function, the fast variation of which is localized in an ε-

neighbourhood of the free boundary; Y
j
, Z

j
, j¯ 1, 2,…,M, are boundary-layer functions

localized near the external boundary. For convenience, the functions ρ
i
V
i
`(, i¯ 0, 1,…,

M and γ
j
G

j
`(, j¯ 1, 2,…,M are grouped as separate summands, since these functions

have an additional property: ρ
i
V
i
and γ

j
G

j
vanish on the free boundary. Thus, in a small

neighbourhood of Γ
t
the functions ρ

i
V
i
and γ

j
G

j
present a regularization of the weakly

discontinuous functions of the form f(η)¯ a+η
+
a−η

−
, where η

+
¯ η for η& 0 and

η
+
¯ 0 for η% 0, η

−
¯ η®η

+
, a+ 1 a−. Obviously, we have f(η¯0)¯ f(η¯®0)¯ 0,

[¥fη]rη=!
¯ a+®a− 1 0. Furthermore, outside small neighbourhoods of the free and external

boundaries, i.e. as ηU³¢, and τU¢ we have θ
j
ρ

j
V
j
U

j
Y

j
Q θ

j
ρ

j
V³

j
U³

j
. Since

all the functions in the latter relation are arbitrary for the moment, we can redefine θ
j
(for

example, by setting θ
j
B θ

j
U+

j
or θ

j
B θ

j
U−

j
), and thus set one of the limiting values U+

j

or U−

j
equal to zero. For definiteness, we set U+

j
¯W+

j
¯ 0. Without loss of generality

([22]), we also assume that S¯ t®ψ(x),χ¯χ(η,x) and

V
j
(η,x, t)¯α+

j
(x, t)α−

j
(x, t)χ, G

j
(η,x, t)¯µ+

j
(x, t)µ−

j
(x, t)χ,

2α³
j
(x, t)¯V+

j
(x, t)³V−

j
(x, t), 2µ³

j
(x, t)¯G+

j
(x, t)³G−

j
(x, t),

5

6

7

8

(17)

since we can add the soliton-type functions contained in V
j

and G
j

into U
j

and W
j
,

respectively, j¯ 1, 2,…,M.

First, let us obtain the regular terms of expansion (15). Substituting (15) in (3) and

passing to the limit as ηU³¢, τU¢, εU 0, we obtain

∆((1®(χ³)#)χ³)¯ 0,

which does not contradict (16). Let us introduce the notation

θ³ ¯ θ
!
ρ

!
V³

!
, θ³

j
¯ θ

j
ρ

j
V³

j
U³

j
,

Φ³ ¯Φ³

"
®θ³}2, Φ³

j
¯φ

j
γ

j
G³

j
W³

j
, j¯ 1, 2,…,M.

5

6

7

8

(18)

Obviously, the functions θ³, Φ+ satisfy (12) if the assumptions (16) are satisfied and,

moreover, W−

"
¯ 0. Further, substituting (15) into (3), passing to the limit as ηU³¢,

τU¢, and setting the terms of the order /(εj) equal to zero, we obtain the relations

(¥
t
®∆) θ³ ¯ f(x, t), ∆(2Φ³

"
®κ

"
θ³)¯ 0,

(¥
t
®∆) θ³

k
¯ f ³

k,θ
(x, t), ∆(2Φ³

k
®κ

"
θ³
k−"

)¯ f ³
k,φ

(x, t).

5

6

7

8

(19)

Here f ³
k,θ

(x, t), f ³
k,φ

(x, t) are functions of θ³,Φ³

"
,…,Φ³

k−"
and their derivatives. In particular,

f ³

",
θ ¯®¥

t
Φ³

"
, f ³

#,
φ ¯ κ ¥

t
Φ³

"
y3∆(Φ³

"
)#.

It is clear that the first two equations in (19) lead to equations (11) with respect to

functions θ³ and Φ³.

Now we note that the supports of fast variations of the boundary-layer functions and of

functions rapidly varying on a neighbourhood of Γ
t
do not intersect (up to terms /(ε¢)).

Hence the solution in a neighbourhood of Γ
t
and in a neighbourhood of ¥Ω is constructed

differently.
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Let us consider a neighbourhood of Γ
t
. Substituting (15) into (3), passing to the limit as

τU¢, and setting the terms of the order /(ε−#+k) equal to zero, we have obtained the chain

of relations. The first has the form

(2β#)−" ¥#η χ] χ] ®χ] $¯ c, χ] U 1 as ηU¢.

Here and below we write F] ¯F(η,x, t)r
t=ψ(x)

, β¯ 1}o2 r~ψr. It can be easily shown that

if and only if the constant of integration c is equal to zero, this equation has a solution such

that χ] `( and χ] + 1χ] −. It follows that the solution on 4
t
has the Van der Waals-type form

χ] (η,x)¯ tanh(β(η-ψ
"
)), where another ‘constant ’ of integration ψ

"
¯ψ

"
(x) is a function

from C¢(Ωa ).
Let us extend χ] (defined on the section (x, t) `4

T
¯V

t`[!,T]
Γ

t
, η `R") by the identity to

χ3χ] (η,x) for all (x, t) `Qa , η `R". Now we note that ¥η 6
- ¯/(ε). Thus, setting the terms

/(ε−#+k) equal to zero, we get

¥#η U]
k
¯F] θ

k
, U]

k
U 0 as ηU¢, (20)

¥#η LW W]
k
¯F] φ

k
, W]

k
U 0 as ηU¢. (21)

Here LW ¯ (2β#)−" ¥#η1®3χ#,F] φ
k
,F] θ

k
are functions of θ

!
,V

!
,…,U

k−"
,W

k−"
and of their

derivatives at the point t¯ψ(x), k¯ 1, 2,…,M. In particular

F] φ
"
¯ ¥#η²ΠW ¥η χ3χ#φ

"
´r
t=ψ, (22)

F] θ
"
¯ 2β#²2(~ψ,~ρ

!
) ¥η V

!
¥η χ®η(2β#)−" ¥

t
ρ
!
¥#η V

!
´r
t=ψ. (23)

It is not too difficult to prove the following statement [6, 22] :

Lemma 1 The solutions U]
k
,W]

k
`( of (20), (21) exist if and only if F] θ

k
`3, F] φ

k
`3, and

where

&¢

−¢

F] θ
k
dη¯ 0, &¢

−¢

F] φ
k
dη¯ 0, &¢

−¢

f] φ
k
¥η χdη¯ 0,

f] φ
k
¯& η

−¢
& η«

−¢

F] φ
k
(η§,x) dη§dη«®&¢

−¢
& η«

−¢

F] φ
k
(η§,x) dη§dη«.

5

6

7

8

(24)

By (19), U]
k
,W]

k
`( for all k& 1. Let us consider conditions (24) for k¯ 1. Using (22),

(23), it is easy to see that the second condition in (24) holds automatically. The first

condition in (24) leads to the relation

(2(~ψ,~ρ
!
)(2β#)−" ¥

t
ρ
!
)r
t=ψ[V

]
!
]2¯ 0, (25)

where [V ]¯V+®V−. Note that ~ρrΓ
t

¯®ρ
t
~ψrΓ

t

for any smooth function ρ such that

ρrΓ
t

¯ 0. Hence, (25) implies

(~ψ,~ρ
!
)rΓ

t

[V]
!
]¯®2. (26)

Since θ
!
`C¢(Qa ) and ρ

!
rΓ

t

¯ 0, we get the first condition (13).

Furthermore, since f] φ
"
¯ΠW ¥η χ3φ]

"
(χ#®1), after simple calculations we obtain that the

third condition (24) for k¯ 1 is equivalent to (14).
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Now, since (24) are satisfied for k¯ 1, we can obtain the functions

U]
"
¯ ζ] +

"
(x)ζ] −

"
(x)χu

"
(η,x), W]

"
¯ω

"
(η,x).

Here
ζ] +
"
¯®ζ] −

"
¯ 2β#ψ

"
(x), u

"
¯β−"(ξ χ®ln (2 cosh ξ ))rξ=β(η+ψ

"
)
`3,

ω
"
(η,x)¯ω

","
(η,x)ψ

#
(x)χη(η,x) `3,

ψ
#
is the ‘constant ’ of integration. Therefore, the functions W+

"
are actually equal to zero,

so we obtain the continuity conditions (11).

Let us define the extensions ρ
!
V
!
, W

"
, γ

"
G

"

ρ
!
V
!
¯ ρ

!
α+

!
(x, t)ρ

!
α−

!
(x, t)χ(η,x),

γ
"
G

"
W

"
¯γ

"
µ+

"
(x, t)γ

"
µ−

"
(x, t)χ(η,x)ω

"
(η,x).

5

6

7

8

(27)

Here

ρ
!
α+

!
¯ (θ+

c
®2θ

!
θ−

c
)}2, ρ

!
α−

!
¯ (θ+

c
®θ−

c
)}2, γ

"
µ+

"
¯ (Φ+

"c
®2φ

"
Φ−

"c
)}2,

γ
"
µ
"
¯ (Φ+

"c
®Φ−

"c
)}2, θ³

c
, Φ³

"c

are sufficiently smooth extensions of θ³, Φ³

"
¯ κ

"
θ³}2Φ³ in Ω³

t
eΓy

t,δ
, such that the

heat equation and the Laplace equation are satisfied, respectively. Here 0! δ' 1 is an

arbitrary number. Hence, we have obtained the formulas for the first terms of the

asymptotic expansion

θas

!
¯ (θ+

c
(x, t)θ−

c
(x, t))}2(θ+

c
(x, t)®θ−

c
(x, t)) tanh(β(ηψ

"
(x)))}2,

φas

"
¯ tanh(β(ηψ

"
(x)))ε²κ

"
θas

!
(Φ+

c
(x, t)Φ−

c
(x, t))

(Φ+

c
(x, t)®Φ−

c
(x, t)) tanh(β(ηψ

"
(x)))2ω

"
(η,x)´}2,

5

6

7

8

(28)

where η¯ (t®ψ(x))}ε, ω
"
` 3. Note that outside Γ

t
we have

θ¯ θ³[(θ+

c
®θ−

c
)/(eyβη)]/(ε), x `Ω³

t
,

φ¯χε²Φ³

"
[(Φ+

"c
®Φ−

"c
)/(eyβη)]ω

"
´/(ε#).

This implies that the expressions in square brackets are of maximal value /(ε) in an ε"−µ-

neighbourhood of Γ
t
, 0!µ! 1, and they are exponentially small outside this neigh-

bourhood. Hence the freedom in choosing the extensions θ³
c
, Φ³

c
results in corrections of

order /(ε) which automatically are taken into account when we construct the next

approximations.

Let us consider equations (20), (21) in the case k¯ 2. The right-hand sides of these

equations have the form

F] θ
#
¯ 2β#²r~ψr# ¥

t
ρ
"
η ¥#η V

"
®2(~ψ,~ρ

"
) ¥η V

"
®ψ

#
¥#η χf θ

#
´r
t=ψ,

F] φ
#
¯²²2β#ΠW ®η ¥η ¥t

´ ¥η(L
W (W

"
γ

"
G

"
)®3φ

"
χ#

®ΠW ¥ηχg(θ
!
ρ

!
V
!
))®2κβ# ¥η χ¥#η f φ

#
´r
t=ψ.

5

6

7

8

(29)

Here f θ

#
`3, f φ

#
`( are functions of ω

""
, u

"
, η, and χ at the point t¯ψ.

It is easy to see that the first two conditions (24) for k¯ 2 have the form

α] −
"
(~ψ,~ρ

"
)rΓ

t

¯
1

2&¢

−¢

f θ

#
dη, κ

"
α] −
!
¥ν ρ

!
®2µ] −

"
¥ν γ

"
rΓ

t

¯ κ�ν. (30)
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The first condition (30) can be rewritten as the condition for the jump of the normal

derivative θ³

"
on Γ

t
. By (26), the second condition (30) can be easily transformed to the

second condition (13). Finally, after some calculations the third condition (24) for k¯ 2

can be transformed to the linear inhomogeneous equation for the phase correction ψ
"
:

+«ψ
"
¯ f ψ

"(x), ψ
"
rΓ

!

¯ 0. (31)

Here +« is the variation of the operator +
t
from (14), the right-hand side f ψ

"(x) depends

on the functions ψ, θ³, Φ³

"
.

To satisfy the boundary conditions on ¥Ω we must construct the boundary-layer

functions. After some routine calculations (see also [6–8]) we find Z
j
¯ 0 for j¯ 1, 2, 3,

and Y
j
¯ 0 for j¯ 1,…, 5, and

Z
%
¯®2−$/# ¥

N
∆Φ+

"
rΣ exp(®o2 τ), Y

'
¯®2−&/# ¥

N
¥
t
∆Φ+

"
rΣ exp(®o2 τ).

It remains to consider the initial conditions. Relation (9) with the fast variable

η
!
¯ r

!
(x)}ε, where r

!
is the distance function, is a natural form of the initial value of φ,

whereas the asymptotics depends on the variable η¯ (t®ψ(x))}εψ
"
with functions ψ and

ψ
"
unknown beforehand. Note that ψrΓ

!

¯ 0 and ψ
"
rΓ

!

¯ 0, the unit vector ~(ψ}r~ψr)rΓ
!

is

normal to Γ
!

and directed opposite to ~r
!
rΓ

!

. Therefore, for any functions f(η,x) `(

f(r
!
}ε,x)¯ f((®ψεψ

"
)}(r~ψrε)g

"
}εg

#
,x)f(η}r~ψr,x)

ε f !η(η}r~ψr,x) ²η ¥ν g
#
rΓ

!

0, 5η# ¥#η g
"
rΓ

!

´/(ε#),

where g
"
¯ r

!
®ψ}r~ψr, g

#
¯®ψ

"
}r~ψr, ¥ν ¯ r~ψr−"©~ψ,~ª, and η¯®ψ}εψ

"
for t¯ 0.

We also take into account that f !η `3, and hence, the function rηk f !ηr are bounded in C for

all k%M.

Furthermore, in §3 we prove that the initial perturbation /(ε$) (in the sense of L#(Ω)) do

not take the Van der Waals-type solution out of the stability domain. Therefore, we fix the

initial data only up to the terms /(ε#). The above constructions imply that outside a small

neighbourhood of Γ
!
the initial value of temperature may be arbitrary; however, the form

of θ!(x, ε) in an ε-neighbourhood of Γ
!

and the form of φ!(x, ε) in Ω are fixed.

Finally, analysing our construction, we obtain the statement.

Theorem 2 Let the assumptions of Theorem 1 hold and m¯m(M ) be sufficiently large.

Then for any integer M& 0 there exist functions

θas

M
¯ θ

!
ρ

!
V
!
3

M

j="

εj(θ
j
ρ

j
V
j
U

j
Y

j
)εM+"(U

M+"
Y

M+"
),

φas

M
¯χ 3

M+#

j="

εj(φ
j
γ

j
G

j
W

j
Z

j
)εM+$Z

M+$

5

6

7

8

(32)

such that

¥
t
(θas

M
φas

M
)®∆θas

M
®f(x, t)¯ εM &θ

M
,

κ ε ¥
t
φas

M
∆(ε#∆φas

M
φas

M
®(φas

M
)$ε κ

"
θas

M
)¯ εM+"&φ

M
,

¥
N

θas

M
rΣ ¯ εM+"F θ

M
, ¥

N
φas

M
rΣ ¯ 0, ¥

N
∆φas

M
rΣ ¯ εM Fφ

M
,

θas

M
r
t=!

¯ θ!(x, ε)θh .

5

6

7

8

(33)
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Here θh , & φ,θ

M
, Fφ,θ

M
are (smooth for ε" 0) functions such that

sθh ; L#(Ω)s% c
!

oε, s& θ

M
; L#(Ω)ss& φ

M
; L#(Ω)s% c

"

oε, (34)

s& θ

M
; C(Qa )ss& φ

M
; C(Qa )s% c

#
, sFφ

M
; C(Σ)ssFφ

M
; C(Σ )s% c

$
, (35)

where the constants c
j
are independent of ε.

3 Justification of the asymptotic solution

In this section we shall obtain estimates for the difference between the exact θ, φ and

asymptotic solutions θas

M
, φas

M
of problem (3). Let us introduce the notation σ¯ θ®θas

M
,

ω¯φ®φas

M
and let us consider only initial data θ!, φ! that exhibit a special behaviour to be

defined below. Then, from (3) and (33), we get the following problem:

¥
t
(σω)®∆σ¯®εM &θ

M
, (36)

κ ¥
t
ω∆(ε∆ωε−"ω(1®3φ#

M
®3φ

M
ω®ω#)κ

"
σ)¯®εM &φ

M
, (37)

¥
N

σrΣ ¯®εM+"F θ

M
, ¥

N
ωrΣ ¯ 0, ¥

N
∆ωrΣ ¯®εM Fφ

M
, (38)

σr
t=!

¯®εM+"/# f θ

M
, ωr

t=!
¯®εM+"/# f φ

M
. (39)

Here &θ,φ

M
, F θ,φ

M
are smooth functions satisfying (34), (35), f θ,φ

M
are functions from H #(Ω)

such that

s f θ

M
; L#(Ω)ss f φ

M
; L#(Ω)s% coε (40)

with constant c independent of ε ; Hk(Ω) denotes the Sobolev space. We also define

H #

!
(Ω)¯²u `H #(Ω), ¥

N
ur¥Ω ¯ 0´, H #,"(Q)¯²u `L#(0,T ; H #

!
(Ω)), ¥

t
u `L#(Q)´,

H %,"(Q)¯²u `L#(0,T ; H %(Ω)), ¥
N

∆urΣ ¯ 0, ¥
t
u `L#(Q)´.

To simplify the notation, we omit the superscript denoting asymptotic solutions.

The main result of this section is

Theorem 3 Assume that there exists a solution of problem (3) such that θ `H #,"(Q),

φ `H %,"(Q)fC([0,T ] ; H #

!
(Ω)), where the quantity T" 0 is independent of ε. Let also the

assumptions of Theorem 1 be satisfied and let M& 2. Then the estimates

sω ;L¢((0,T ) ;L#(Ω))ssσ ;L¢((0,T ) ;L#(Ω))ss~ω ;L#(Q)s% c εM+",

s~σ ;L#(Q)s% c εM+"/#, s∆ω ;L#(Q)s% c εM

5

6

7

8

(41)

hold with constant c independent of ε.

The main obstacle to the derivation of a priori estimates (41) is the rapidly-varying

coefficient φ
M

in (37). This is typical for nonlinear equations; the summand

J¯
1

ε & t

!

&
Ω

(~ω,~(φ#
M

ω)) dxdt«

appears on the right-hand side of the energy inequality, while on the left-hand side we have
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only sω ;L¢((0,T ;L#(Ω))s# and εs∆ω ;L#(Q)s#. It is clear that trivial estimates (for example,

by the maximum modulus) allow us to prove that the discrepancy is bounded only for the

time Tε C ε$. The first observation is that, to overcome this difficulty, we can rewrite the

‘bad’ summand ω(1®3φ#
M
)}ε as the sum of ®2ω}ε and 3(1®φ#

M
)ω}ε. Thus, we obtain the

summand 2ε−" s~ω ;L#(Q)s# on the left-hand side of the energy inequality and the

expression

J
"
¯

3

ε & t

!

&
Ω

(1®φ#
M
)r~ωr#dxdt«J

"#
, J

"#
¯

3

ε & t

!

&
Ω

ω#∆(φ#
M
) dxdt«

on the right-hand side. Obviously, if we again estimate the functions 1®φ#
M

and ∆(φ#
M
) by

the maximum of the modulus, there is no result, but we now can use the fact that with

precision up to /(ε) the functions 1®φ#
M

and ε#∆(φ#
M
) are bounded by a constant (in C ) and

localized in an ε-neighbourhood of the free boundary Γ
t
. Here the main point is Lemma

3 about estimating integrals of the form I¯ ! ¢

−¢ �(x}ε) f(x) dx, where �(η) `3 is a known

function, exponentially decreasing outside the point η¯ 0. To estimate f we can use the

norms in Lk(R") only for k¯ 1 and k¯ 2. Lemma 3 (which was proved to justify the

asymptotic to the KdV equation [23], the complete proof has been presented in [27]) implies

that for sufficiently small ε the first summand in J
"
is bounded from above by o(Rω), where

Rω ¯ ε−" s~ω ;L#(Q)s#εs∆ω ;L#(Q)s#.

Since on the left-hand side of the energy inequality we have kRω with a constant k" 0

independent of ε, we see that the first summand in J
"
is no obstacle to the derivation of a

priori estimate for all finite T.

The second point is that we can rewrite the second summand in J
"

in the form

J
"#

¯®
3

ε$& t

!

&
Ω

ω# �dxdt«
9

2ε$& t

!

&
Ω

ω# �
"
²1®φ#

M
/(ε)´dxdt«,

where �¯ �(β(t®ψεψ
"
)}ε)" 0 is a non-negative soliton-type function, and hence the

first integral in J
"#

can be carried over to the left-hand side of the energy inequality,

r�
"
r% const �. By Lemma 3 we now can prove that for sufficiently small ε the second

summand in J
"#

has the upper bound k(Rω3ε−$ sωo� ;L#(0, t ;L#(Ω))s#)}4. Therefore,

the second summand is no longer an obstacle to the derivation of a priori estimate for all

finite T.

It should be noted that a statement similar to Lemma 3 has been proved [33] to justify

a boundary-layer asymptotic for the semi-linear Dirichlet problem. However, in the

boundary-layer situation the rapidly-varying � is localized in a small neighbourhood of the

external boundary, and the discrepancy vanishes on the boundary. The condition f r¥Ω ¯ 0

used in Berges & Fraenkel [33] considerably simplifies the estimation of the integral I.

Obviously, in the phase transition problems the remainder does not necessarily vanish on

Γ
t
.

Proof of Theorem 3 At first, let us derive the auxiliary estimates

sω ;L¢((0,T ) ;L#(Ω))ssσ ;L¢((0,T ) ;L#(Ω))ss~σ ;L#(Q)s% c εM+"/#,

s~ω ;L#(Q)s% c εM+", s∆ω ;L#(Q)s% c εM.

5

6

7

8

(42)

https://doi.org/10.1017/S0956792597003227 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792597003227


14 G. A. Omel ’yano� et al.

Multiplying equations (36), (37) by σ, ω, respectively, and integrating on Ω, we get the

relations

1

2

d

dt
sσs#&

Ω

ω
t
σdxs~σs#¯®εM&

Ω

σ& θ

M
dx®εM+"&

¥Ω

σF θ

M
dx«, (43)

κ

2

d

dt
sωs#ε s∆ωs#

3

ε
sω~ωs#

2

ε
s~ωs#

¯
3

ε &Ω

(~ω,~(ω(1®φ#
M
))) dx®

3

ε &Ω

(~ω,~(φ
M

ω#)) dx

κ
#&

Ω

(~ω,~σ) dx®εM&
Ω

ω&φ

M
dxεM+"&

¥Ω

ω(κ
#
F θ

M
Fφ

M
) dx«. (44)

Here and below s f s denotes the L#(Ω) norm of f. Further, multiplying (36) by ω,

integrating on Ω and summing with (43), we obtain

1

2

d

dt (sωs#sσs#2&
Ω

ωσdx*s~σs#&
Ω

(~ω,~σ) dx

¯®εM&
Ω

(ωσ)&θ

M
dx®εM+"&

¥Ω

(ωσ)Fθ

M
dx«. (45)

Let us fix a constant K" 0. Now, multiplying (44) by K and summing with (45), we get the

equality

1

2

d

dt ((1κK ) sωs#sσs#2&
Ω

ωσdx*2K

ε
s~ωs#s~σs#εKs∆ωs#

3K

ε
sω~ωs#

¯
3K

ε &Ω

(~ω,~(ω(1®φ#
M
))) dx®

3K

ε &Ω

(~ω,~(φ
M

ω#)) dx

(κ
#
K®1)&

Ω

(~ω,~σ) dx®εM&
Ω

²(ωσ)&θ

M
ωK&φ

M
´dx

®εM+"&
¥Ω

²(ωσ)F θ

M
®ωK(κ

#
F θ

M
Fφ

M
)´dx«. * (46)

We shall analyse the terms in the right-hand side of (46).

Lemma 2 Let φ
M

be the asymptotic expansion (32). Then

1

ε &Ω

(~ω,~(ω(1®φ#
M
))) dx¯®

1

ε#&Ω

ω#

β
χ
t
dxI, (47)

I¯
1

ε &Ω

r~ωr#(1®χ#) dx
3

2ε#&Ω

ω#

β
χ
t
(1®χ#) dx

1

2&Ω

ω#χ
t
∆

1

β
dx

®&
Ω

r~ωr#(2χεφ$
M
)φ$

M
dx®&

Ω

ω(~ω,~(2χφ$
M
ε(φ$

M
)#)) dx

2&
Ω

ωχ
t0~ω,~

1

β1dx
1

2ε&Ω

ω#

β
¥
t
(²ΠW ¥η χ(η,x)®ε∆

x
χ(η,x)´rη=(t−ψ/ε)

) dx.
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Here ΠW ¯ 2(~ψ,~
x
)∆ψ, φ$

M
¯ (φ

M
®χ)}ε, the �ariables η and x in the expression in curly

brackets are independent.

Proof of Lemma 2 Using (38), it is easy to establish that

1

ε &Ω

(~ω,~(ω(1®φ#
M
))) dx¯

1

ε &Ω

r~ωr#(1®χ#) dx
1

2ε&Ω

ω#∆(χ#) dx

®&
Ω

r~ωr#(2χεφ$
M
)φ$

M
dx®&

Ω

ω(~ω,~(2χφ$
M
ε(φ$

M
)#)) dx. (48)

Since 1®χ#¯ ε χ
t
}β, we have

J¯
1

2ε&Ω

ω#∆(χ#) dx¯®
1

2&Ω

ω#
¥
¥t

∆01βχ1dx.

It is clear that

J¯®
1

2&Ω

ω#

β

¥
¥t

∆χdx
1

2&Ω

ω#χ
t
∆

1

β
dx2&

Ω

ωχ
t0~ω,~

1

β1dx. (49)

Using the explicit form of the function χ, we obtain

ε#∆χ((t®ψ)}ε,x)¯²χ$®χ®εΠW ¥η χ(η,x)ε#∆
x
χ(η,x)´rη=(t−ψ/ε)

.

Thus

&
Ω

ω#

β

¥
¥t

∆χdx¯
2

ε#&Ω

ω#

β
χ
t
dx®

3

ε#&Ω

ω#

β
χ
t
(1®χ#) dx

®
1

ε &Ω

ω#

β

¥
¥t 0(ΠW ¥χ(η,x)

¥η
®ε∆

x
χ(η,x)*)

η=(t−ψ)/ε
1dx.

This equality and (48), (49) complete the proof of Lemma 2. *

Further, by using the embedding theorem and (35), we get

4εM+")&
¥Ω

[(ωσ)F θ

M
®ωK(κ

#
F θ

M
Fφ

M
)] dx«)

% c εM+"(sω ;L#(¥Ω)ssσ ;L#(¥Ω)s)% c ε#M+#sωs#

"
sσs#

"
.

Here and below c denotes a universal constant and s f s
k
is the Hk(Ω) norm. It is also easy

to see that

2) &
Ω

ωσdx)%α sωs#
1

α
sσs#, α¯

1

2
(κKo(κK )#4),

2) &
Ω

(~ω,~σ) dx)% ε−"/# s~ωs#ε"/#s~σs#.

https://doi.org/10.1017/S0956792597003227 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792597003227


16 G. A. Omel ’yano� et al.

Therefore, integrating (46) w.r.t. t and choosing ε small enough, we obtain the inequality

α®1

2α
²sωs#sσs#´ (t)& t

!

(Kε s~ωs#
1

2
s~σs#

εK s∆ωs#
3K

ε
sω~ωs#

3K

ε# &Ω

ω#

β
χ
t
dx*dt«

% c ε#M+"& t

!

(3K rI rc(sωs#sσs#)


3K

ε ) &Ω

(~ω,~(φ
M

ω#)) dx)*dt«. (50)

To estimate the integral I we shall need the following:

Lemma 3 (Omel’yanov, 1983). For any nonnegati�e functions f(x) `L#(R")fL"(R"),

�(x) `S(R"), there exists a constant ε
!
" 0 such that, for all ε ` (0, ε

!
],

&¢

−¢

f(x) �0xε1dx% δs f ;L"(R")sc
v
(δ) ε$/#ρ(ε)s f ;L#(R")s,

where δ is a constant such that δ&k ε"/#−µ, µ ` (0, 1}2), and k" 0 is a constant. Here c
v
(δ) is

a constant depending on δ and on s�(x) ;L#(R")fL"(R")r such that 0! c
v
(δ)% const}δ#, and

ρ(ε)U 0 as εU 0.

Let us estimate the first two terms of I.

Lemma 4 Let ε be small enough. Then for arbitrary constants δ
i
" 0

1

ε &Ω

r~ωr#(1®χ#) dx%
δ
"

ε
s~ωs#cχ(δ

"
) ε(/# s∆ωs#, (51)

1

ε#&Ω

ω#

β
χ
t
(1®χ#) dx%

δ
#

ε# &Ω

ω#

β
χ
t
dxcχ(δ

#
) s~ωs#. (52)

Proof Denote by .µ a µ neighbourhood of the interface Γ
t
, where µ& 0 is a constant

independent of ε. Since 1®χ#¯/(ε¢) outside .µ, we have

1

ε &Ω

r~ωr#(1®χ#) dx¯
1

ε &.µ

r~ωr#(1®χ#) dxε$&
Ω

r~ωr#dx.

Choosing µ sufficiently small, we pass to the variables y¯ (y
"
,…, y

n
) in .µ, where y

"
is the

coordinate normal to Γ
t
. Then in .µ ¯²y, ry

"
r%µ, Y−

i
% y

i
%Y+

i
, i¯ 2,…, n´ we have

I
"
¯&

.µ

r~ωr#(1®χ#) dx¯ 0
n

i=#

&Y
+
i

Y
−
i

&µ

−µ

r~bωr#�0y"

ε
, y, t1 Jdy

"
dy

i
,

where J is the Jacobian of this change of variables, r~bωr¯ r~
x
ωs

x=x(y,t)
,
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�(η, y, t)¯ cosh−#(β(ηψ
"
))r

x=x(y,t)
. By Lemma 3 and the embedding theorem for n¯ 1,

we get

I
"
% 0

n

i=#

&Y
+
i

Y
−
i

(δ"&µ

−µ

r~bωr# Jdy
"
c ε$/#ρ(ε) 0 &µ

−µ

r~bωr% J #dy
"1"/#*dy

i

% δ
"
s~ωs#c ε$/#−k

"
−k

# ρ(ε) ²ε%k"/$ s~ωs#ε%k
%
(s~ωs#s∆ωs#)´

% δ
"
s~ωs#c ε"/# ρ(ε) ²s~ωs#ε% s∆ωs#´,

where we choose k
#
¯ 1k

"
}3 and use that J" 0 is a bounded smooth function. Here and

below we omit the dependence of cχ(δ) on the function χ and on the constants δ. It is clear

that, choosing δ, we take into account that cχ(δ)U¢ as δU 0. Similarly,

1

ε#&.µ

ω#χ*(1®χ#) dx%
δ
#

ε# &Ω

ω#χ*dxcρ(ε) ε−"/#

¬0
n

i=#

&Y
+
i

Y
−
i

sωh oJχ b*;L#(®µ,µ)s$/# sωh oJχ b*;H "(®µ,µ)s"/#dy
i

% δ
#
ε−# sωoχ* s#cε ρ(ε) ²ε−# sωoχ* s#ε−" s~ωs#´,

where χ*¯χ
t
}β. Lemma 4 is proved. *

Further, we have the trivial estimates

) &
Ω

ωχ
t0~ω,~

1

β1dx)% c sωoχ
t
s soχ

t
~ωs% cε−"sωoχ* s#c s~ωs#,

) &
Ω

ω(~ω,~ε(φ$
M
)#) dx)% coε sωs#cs~ωs#}oε,

Using notation (15) and (17) for the first correction to the asymptotic expansion φ, we now

have the equality ~(χφ$
M
)¯~(χ(φ

"
γ

"
µ+

"
γ

"
µ−

"
χW

"
))g

"
, where

W
"
¯W]

"
¯ g

!
η#χηψ

#
χη

satisfies equation (21) for k¯ 1. Here and below by g
i
, i& 0, we denote (vector)-functions

bounded in C(Qa ). By direct calculations we obtain

g
#
~χg

$
~χη ¯ (®g

#
2χ g

$
)χ

t
~ψg

%
¯ ε−"/# g

&

oχ*g
%
,

~(η#χη)¯ (ε−"g
'
) (g

(
ηg

)
η#) cosh−# ηrη=β((t−ψ)/ε+ψ

"
)
¯ ε−"/# g

*

oχ*g
"!

.

Therefore

) &
Ω

ω(~ω,~(χφ$
M
)) dx)% c

oε
sωoχ* s s~ωsc sωs s~ωs

% c ε−" sωoχ* s#c ε−"/# s~ωs#coε sωs#.

In the same way, we have

) &
Ω

ω#

β

¥
¥t ((∆x

χ(η,x)))
η=(t−ψ)/ε

*dx)% cε−"&
Ω

ω#

β

1η#

cosh# η)η=β((t−ψ)/ε+ψ
"
)

dx

% c ε"/# sωs#c ε−$/# sωoχ* s#.
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Finally,

1

ε ) &Ω

ω#

β

¥
¥t (0ΠW ¥χ¥η1)η=(t−ψ)/ε

*dx)¯ 1

ε#) &Ω

ω#0ΠW ¥#χ¥η#
1)

η=(t−ψ)/ε

dx)
% cε−"sωoχ*s#δ

$
ε−"s~ωs#cε−#sωoχ*(1®χ#)s#, (53)

where δ
$
" 0 is an arbitrary constant. The last term in the right-hand side of (53) was

estimated in Lemma 4. By the above constructions we obtain the bound for the integral I :

Lemma 5 Let ε be small enough. Then for arbitrary constants δ«, δ§" 0

rI r% δ« ε−# sωoχ* s#δ§ ε−" s~ωs#c ε"/# sωs#c ε(/# s∆ωs#. (54)

Let us estimate the last term in the right-hand side of (50). Using the Galiardo–Nirenberg

inequality, we obtain

1

ε ) &Ω

(~ω,~(φ
M

ω#)) dx)% c

ε &Ω

rωr r~ωr#dx
c

ε#&Ω

r~ωrω#dx

% c ε−" sωs()−n)/% sωs(%+n)/%

#
c ε−# s~ωs sωs()−n)/% sωsn/%

#

% δ¨ ε−" s~ωs#δ¨ ε(sωs#s∆ωs#)e ε−("#+n)/(%−n) sωs#()−n)/(%−n) (55)

with an arbitrary constant δ¨" 0. Choosing δ«¯ 1}2, δ§¯ δ¨¯ 1}12, and using (54), (55),

we can transform (50) as follows:

U(t)c& t

!

(1ε s~ωs#s~σs#ε s∆ωs#
1

ε
sω~ωs#

1

ε#))'χ
t

β
ω))#*dt«

% c ε#M+"c& t

!

²U(t«)ε−r(U(t«))"+λ´dt«. (56)

Here U(t)¯²sωs#sσs#´ (t), λ¯ 4}(4®n), r¯ (12n)}(4®n). Let us fix a number

T
"
` (0,T ], T!¢, and let t ` [0,T

"
]. Then, according to the Gronwall lemma, (56) yields

z% c(ε#M+"ε−r T
"
z"+λ), (57)

where z¯max
t`[!,T"

]
U(t). Now we need the following lemma proved in Maslov & Mosolov

[34].

Lemma 6 Let positi�e numbers p, q, λ satisfy the estimate

q!λ(1λ)−" (p(1λ))−"/λ. (58)

Then the solutions of the inequality

0% z% qp z"+λ

belong to the set [0,Z
−
]e [Z

+
,¢), where the numbers Z

+
, Z

−
are such that

0!Z
−
! q(1λ)}λ!Z

+
.
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In our case p¯ cT
"
ε−r. Therefore, since ε is small enough, the inequality (58) holds for

any M& 2. Since z¯ z(T
"
) depends continuously on T

"
and

z(0)% c ε#M+"% c ε#M+"(1λ)}λ,

we obtain the estimate

max
t` [!,T"

]

U(t)% c ε#M+" (59)

with a constant c independent of ε. It is easy to see that (59) and (56) yield the estimates

(42). Finally, repeating the construction [27], we obtain that (42) implies (41). This

completes the proof of Theorem 4. *

By using arguments similar to those in Theorem 4 and by (41), we easily estimate the

higher-order derivatives.

Theorem 4 Suppose assumptions of Theorem 4 are satisfied and

s~σ! ;L#(Ω)ss~ω! ;L#(Ω)s% c εM−$/#,

where σ!¯σr
t=!

, ω!¯ωr
t=!

. Then

s∆σ ;L#(Q)ss~σ ;L¢(0,T ;L#(Ω))ss~ω ;L¢(0,T ;L#(Ω))s

oε sω ;L#(0,T ;H $(Ω))s% c εM−$/#,

where c is a constant independent of ε.

Theorem 5 Suppose assumptions of Theorem 5 are satisfied, M& 3, and also

s∆ω! ;L#(Ω)s% c εM−&/#.

Then

s¥
t
ω ;L#(Q)soε sω ;L¢(0,T ;H #(Ω))s% c εM−#,

where c is a constant independent of ε.

4 Conclusion

We have constructed the asymptotic ‘ tanh’-type solution uas

tanh
¯ (θas

tanh
,φas

tanh
) of the

conserved phase field system (1) related to the case (2). The estimate (41) describes the

domain of stability for this solution with respect to the initial data. As in Omel’yanov et

al. [28], one can prove that uas

tanh
is an attractor in the space of solutions to (3), and that the

radius of the stability set is /(εn/#). The question whether condition (10) is optimal remains

open. Nevertheless, it is clear that the solution becomes ‘tanh’-type only after a stage of

bifurcations, if the initial data lie sufficiently far from uas

tanh
. For example, in the case of a

large relaxation time (ξC a"/#U 0, τ
!
¯ const) system (1) has the stable ‘ tanh’-type

solution only for large times (tC ξ−"), while for finite times the solution is of soliton-type
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[6, 8]. As the time increases, a bifurcation necessarily starts, and the soliton-type solution

uas

sol
transforms itself to a ‘tanh’-type one. It has been recently discovered that this problem

also has a rapidly oscillating solution for finite times (this result will be published). As the

time grows, a bifurcation occurs and the oscillatory solution uas

osc
transforms itself to the

soliton-type one. Such behaviour implies that it is necessary to consider in more detail the

stability sets for uas

tanh
, for uas

sol
, and for uas

osc
, the processes of bifurcations, and the process

of interaction between stable solutions. In our opinion, the analysis of these problems

allows us to describe the solution of basic mathematical models for phase transitions

related to arbitrary initial data, and, in particular, to describe the process of the phase

decomposition.
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