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Abstract

In this paper we propose a new approach to study the Parisian ruin problem for spectrally
negative Lévy processes. Since our approach is based on a hybrid observation scheme
switching between discrete and continuous observations, we call it a temporal approach
as opposed to the spatial approximation approach in the literature. Our approach leads to
a unified proof for the underlying processes with bounded or unbounded variation paths,
and our result generalizes Loeffen et al. (2013).
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1. Introduction

Insurance surplus analysis has long been a central focus in actuarial risk theory. In classical
risk theory, the event of ruin is defined as the first time the insurance surplus process drops
below level 0, which is essentially a standard first-passage time problem. One major extension
in the literature is the so-called Parisian ruin, i.e. the insurer will be granted a grace period if
the surplus is observed to be negative, and the Parisian ruin occurs only if the surplus process
fails to recover to level 0 within this grace period. The time of a Parisian ruin is referred as the
Parisian stopping time.

The Parisian ruin concept was first motivated by Parisian options; see, e.g. [4], [8], [9],
[12], [13], and [15]–[17]. Interestingly, researchers also found that the Parisian stopping time
provides an elegant mathematical model for Chapter 11 of the United States Bankruptcy Code
in corporate finance; see, e.g. [7], [11], [19], [20], and [26].

In the actuarial risk theory literature, researchers mainly focus on the study of Parisian ruin
for various insurance surplus processes with (downward) jumps. Dassios and Wu [14] first
solved the Parisian ruin probability, i.e. the probability that a Parisian ruin ever occurs, for
the classical Cramér–Lundberg model with exponential jumps. This work was later extended
by Czarna and Palmowski [10] to more general spectrally negative Lévy processes (SNLPs).
Loeffen et al. [28] further provided an elegant formula for the Parisian ruin probability of
SNLPs via only the so-called scale functions (see, e.g. [21]) and the law of the SNLP at a
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fixed time. Other extensions along this line include [5] and [24] with a random grace period,
[30] for renewal risk processes, and [27] for refracted SNLPs.

For the Parisian ruin problem of an SNLP with unbounded variation paths, in the spirit
of excursion theory, researchers mainly adopt an approximation approach (see, e.g. [10], [15],
[17], [27], and [28]) to address the difficulty that the unbounded variation paths oscillate around
the ruin threshold. This approach essentially perturbates the sample paths of the underlying
process in the spatial dimension, hence we refer to it as a spatial approximation approach. This
spatial approximation approach has also shown to be an efficient tool to study the occupation
time of Lévy processes and diffusion processes; see, e.g. [23] and [25].

In this paper we propose a new approach which is motivated from the so-called Poisson-
observed ruin. It is another extension of the classical ruin such that the event of ruin is
monitored discretely at independent Poisson arrival times; see, e.g. [1]–[3]. As discussed
in the aforementioned works, the Poisson observation scheme not only has many applications
in actuarial risk theory and queueing theory, but also provides a bridge between continuous-
time and discrete-time observations. Moreover, Poisson observation still leads to explicit exit
identities and generalizes continuous-time observation, which can be easily recovered when
the Poisson arrival rate goes to infinity.

Our new approach to the Parisian ruin problem is based on a hybrid observation scheme;
see the mathematical formulation and an illustrative graph in (2.2) and Figure 1, respectively.
Heuristically speaking, our hybrid observation scheme can be constructed by following the
principle that we observe discretely in the ‘noninterested’ zone (when the surplus is positive)
and continuously in the ‘interested’ zone (when the surplus is negative). More specifically, the
surplus insurance processX is first monitored discretely at Poisson arrival times with rate λ until
a negative surplus is observed. Then a fixed grace period b > 0 is granted to the insurer and X
is subsequently observed continuously during this grace period. The insurer is considered as
ruined at the end of the grace period unless the surplus recovers to a pre-specified spatial level
a ≥ 0 within the grace period. In the latter case, the observation scheme will be switched back
to the discrete Poisson scheme as soon as the surplus recovers to level a. Since we essentially
delay the classical Parisian stopping time using Poisson observations, we call our method a
temporal approach.

Under the SNLP framework, a compact closed-form expression for the ruin probability
is solved in terms of the scale functions and the law of SNLPs at a fixed time. Our result
generalizes the classical Parisian ruin probability solved by Loeffen et al. [28] which can be
recovered by letting a = 0 and λ ↑ ∞. Our approach can also be used to solve more general
Gerber–Shiu-type quantities, such as the Laplace transform of the time of ruin. However, we
will derive only the ruin probability because the general results are much longer.

We point out that the recovery barrier a is introduced only for a practical generalization and
this parameter plays no mathematical role. In other words, the derivation of the ruin probability
under the hybrid observation scheme is the same for a = 0 and a > 0. This is a major difference
between our temporal approach and the spatial approximation approach in which a is restricted
to be positive when the underlying process has unbounded variation paths. Essentially, since
the distributions of an SNLP at discrete observation times are continuous, we are able to bypass
the main difficulty of the oscillation of unbounded variation paths around the ruin threshold.
Consequently, our temporal approach provides a unified proof for SNLPs with bounded or
unbounded variation paths, whereas these two cases need to be treated separately using the
traditional spatial approximation approach.
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The contributions of this paper are two-fold. First, we propose a new risk model for actuarial
risk theory. A discrete observation scheme is adopted as long as the insurance business is
healthy, i.e. the surplus is observed to be positive. This is consistent with insurance practice
as a less frequent regulatory check is less onerous for both regulators and insurers when the
associated checking expenses are considered. But once the surplus is observed to be negative,
the observation scheme is enforced using a more stringent continuous scheme during the
grace period, which is also consistent with the potential financial seriousness of the situation.
If the surplus is successfully restored to a healthy level a, the financial distress is resolved
and the observations are switched back to the discrete scheme. Second, of interest from a
theoretical point of view, we introduce a new method to study the Parisian stopping time
problem. Compared with the spatial approximation approach, our temporal approach has a few
advantages. Underlying processes with bounded or unbounded variation paths can be treated
in a unified way. It is also more intuitive to design the approximation scheme by following the
principle of observing discretely in the ‘noninterested’zone and continuously in the ‘interested’
zone.

The rest of the paper is organized as follows. Section 2 is devoted to the mathematical
formulation of the hybrid observation scheme as well as the associated time of ruin. In Section 3
we review some preliminary results for SNLPs. In Section 4 we present the main results of
this paper, i.e. the ruin probability under the hybrid observation scheme and its limiting cases
(classical Parisian ruin) by taking a = 0 and λ ↑ ∞. Some numerical examples are provided
in Section 5.

2. A hybrid observation scheme and the associated time of ruin

Consider an insurance surplus process X = {Xt }t≥0, modelled by an SNLP defined on a
complete probability space (�,F ,F = {Ft }t≥0,P) satisfying the usual conditions. The first-
passage times of X for level x ∈ R are defined as

τ+(−)
x = inf{t ≥ 0 : Xt > (<)x}.

In what follows, we follow the convention that inf ∅ = ∞. We further define a sequence of
discrete observation times {ξn}n∈N as follows. For ease of notation, we denote N = {0, 1, 2, . . .}
and N+ = {1, 2, 3, . . .}. Let ξ0 = 0, and, for n ∈ N+,

ξn − ξn−1 =
{
eλn if Xξn−1 ≥ 0,

τ+
a ◦ θξn−1 + eλn if Xξn−1 < 0,

(2.1)

where {eλn}n∈N+ is a sequence of independent and identically distributed (i.i.d.) exponential
random variable with mean 1/λ > 0, the constant a ≥ 0 is called the recovery barrier, and θ is
the Markov shift operator such that Xt ◦ θs = Xs+t . Note that the discrete observation scheme
(2.1) can be regarded as delayed Poisson arrival times in the sense that the observations will be
paused once X is observed to be negative and it will be restarted once the surplus recovers to
level a.

We denote

T
λ,−
0 = inf{ξn : Xξn < 0, n ∈ N}

as the first time the surplus is observed below level 0 under the observation scheme {ξn}n∈N.
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Figure 1: Illustration of the ruin time under the hybrid observation scheme.

Clearly, T λ,−0 is identical to the ruin time observed at Poisson arrival times, i.e.

T
λ,−
0 = inf

{ n∑
i=1

eλi : X∑n
i=1 e

λ
i
< 0, n ∈ N

}
.

We then define the time of ruin under a hybrid observation scheme with recover barrier a ≥ 0
and grace period b > 0 as

ρλa,b = inf{t ∈ (ξn, τ+
a ◦ θξn) : Xξn < 0 and t − ξn ≥ b for n ∈ N}. (2.2)

Under the hybrid observation scheme, the surplus process X is first monitored discretely at
Poisson arrival times with rate λ until the surplus is observed to be negative. Then a grace
period of length b will be granted to the insurer and the surplus process will be observed
continuously during this grace period. The insurer is considered as ruined at the end of the
grace period unless the surplus recovers to level a within the grace period. In the latter case,
the observation scheme will be switched back to the discrete scheme as soon as the surplus
recovers to level a. Note that, if we let a = 0 and λ ↑ ∞, the time of ruin ρλ0,b becomes the
classical Parisian ruin time studied in, e.g. [9], [10], and [28]. In Figure 1 we illustrate the
hybrid observation scheme.

3. Preliminaries on SNLPs

In this section we briefly introduce some preliminary results on SNLPs. Throughout the
paper, we denote by Px the law ofX withX0 = x ∈ R. For brevity, we write P = P0. To avoid
triviality, we assume that |X| is not a subordinator and X satisfies the safe-loading condition,
namely,

E[X1] = ψ ′(0+) > 0, (3.1)

whereψ(s) = log E[esX1 ], s ≥ 0, is the Laplace exponent ofX. For any given q ≥ 0, we write

ψq(s) = ψ(s)− q.

The equation ψq(s) = 0 is known to have at least one positive solution, and we denote the
largest root by 	q . In particular, due to (3.1), we have 	0 = 0. The Laplace transform of the
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first-passage time τ+
x is given by

Eu[e−qτ+
x 1{τ+

x <∞}] = e−	q(x−u), u ≤ x, q ≥ 0; (3.2)

see, e.g. Theorem 3.12 of [22].
Scale functions play a significant role in the fluctuation theory of SNLPs; see, e.g. [21] or

[22, Chapter 8]. The scale function W(x) : R 
→ [0,∞) is the unique function supported on
[0,∞) with Laplace transform

∫ ∞

0
e−sxW(x) dx = 1

ψ(s)
, s > 0. (3.3)

It is known that W is continuous and strictly increasing on [0,∞). Further, we have

lim
x→∞W(x) = 1

ψ ′(0+) ; (3.4)

see, e.g. Lemma 3.3 of [21]. We then define the so-called second scale function Z(x, s) as

Z(x, s) = esx
(

1 − ψ(s)

∫ x

0
e−syW(y) dy

)
, x, s ≥ 0,

such that Z(x, 0) = Z(0, s) = 1. By (3.3), we can also rewrite Z(x, s) as

Z(x, s) = ψ(s)

∫ ∞

0
e−syW(x + y) dy, x ≥ 0, s > 0. (3.5)

Since the hybrid observation scheme introduced in this paper is closely related to Poisson
observations, we will use later the following exit identity for SNLPs with Poisson observations,
which was proved by Albrecher et al. [3, Equation (14)].

Lemma 3.1. For u ≥ 0 and s ≥ 0, we have

Eu[e
sX

T
λ,−
0 1{T λ,−0 <∞}] = λ

λ− ψ(s)

(
Z(u, s)− Z(u,	λ)

ψ(s)	λ

λs

)
. (3.6)

In particular, when s = 0, it is easy to see that (3.6) reduces to the ruin probability observed
at Poisson arrival times given by

Pu(T
λ,−
0 < ∞) = 1 − ψ ′(0+)	λ

λ
Z(u,	λ), u ≥ 0, (3.7)

which was first obtained by Landriault et al. [23]. Note that Pu(T
λ,−
0 < ∞) ≡ 1 if the safe-

loading condition (3.1) fails.
In Lemma 3.2 below, we summarize a few identities involving the scale function and the

law of X, which will be used later. They can all be found in [28], and the proof mainly uses
Kendall’s identity of SNLPs (see, e.g. Corollary VII.3 of [6]), i.e.

rP(τ+
z ∈ dr) dz = zP(Xr ∈ dz) dr.
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Lemma 3.2. For u, a ≥ 0 and θ, s > 0, we have

∫ ∞

0
e−θs

∫ ∞

a

z

s
P(Xs ∈ dz) ds = e−	θa

	θ
, (3.8)∫ ∞

0
W(z)

z

s
P(Xs ∈ dz) = 1, (3.9)

∫ ∞

0
e−θs

∫ ∞

a

[W(u+ z− a)−W(u)]z
s
P(Xs ∈ dz) ds =

∫ ∞

0

e−	θ (a+y)

	θ
W ′(u+ y) dy.

(3.10)

Note that everywhere differentiability of the scale functionW is not required as its derivative
appears only in integrals.

4. Main results

In this section we aim to first obtain the ruin probability Pu(ρ
λ
a,b < ∞) and then show that

limλ↑∞ lima↓0 Pu(ρ
λ
a,b < ∞) = lima↓0 limλ↑∞ Pu(ρ

λ
a,b < ∞), which actually coincides with

the compact formula of the Parisian ruin probability obtained by Loeffen et al. [28]. Hence,
in contrast to the spatial approximation approach used by Czarna and Palmowski [10] and
Loeffen et al. [28], our paper essentially provides a temporal approach to tackle the Parisian
ruin problem.

Theorem 4.1. For u, a ≥ 0 and λ, b > 0, we have

Pu(ρ
λ
a,b < ∞)

= 1 − ψ ′(0+)	λ
λ
Z(u,	λ)− ψ ′(0+)(	λ/λ)Z(a,	λ)

1 − ∫ b
0 λeλ(b−s)ga,a,λ(s) ds

∫ b

0
λeλ(b−s)gu,a,λ(s) ds,

where

gu,a,λ(s) =
∫ ∞

a

[
	λ

λ
Z(u,	λ)−W(u+ z− a)

]
z

s
P(Xs ∈ dz). (4.1)

Proof. By conditioning on T λ,−0 , the first time that the surplus is observed to be negative,
and using the strong Markov property and spatial homogeneity, we first have

Pu(ρ
λ
a,b = ∞)

= Pu(T
λ,−
0 = ∞)+

∫ ∞

0
Pu(−XT λ,−0

∈ dx, T λ,−0 < ∞)P−x(τ+
a < b)Pa(ρ

λ
a,b = ∞)

= Pu(T
λ,−
0 = ∞)+ Pa(ρ

λ
a,b = ∞)

∫ ∞

0
Pu(−XT λ,−0

∈ dx, T λ,−0 < ∞)P(τ+
x+a < b).

(4.2)

By letting u = a and solving for Pa(ρ
λ
a,b = ∞), we obtain

Pa(ρ
λ
a,b = ∞) = Pa(T

λ,−
0 = ∞)

1 − ∫ ∞
0 Pa(−XT λ,−0

∈ dx, T λ,−0 < ∞)P(τ+
x+a < b)

. (4.3)
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Substituting the above expression of Pa(ρ
λ
a,b = ∞) back into (4.2), and also using (3.7), yields

Pu(ρ
λ
a,b = ∞)

= Pu(T
λ,−
0 = ∞)+

Pa(T
λ,−
0 = ∞)

∫ ∞
0 Pu(−XT λ,−0

∈ dx, T λ,−0 < ∞)P(τ+
x+a < b)

1 − ∫ ∞
0 Pu(−XT λ,−0

∈ dx, T λ,−0 < ∞)P(τ+
x+a < b)

= ψ ′(0+)	λ
λ
Z(u,	λ)

+
ψ ′(0+)(	λ/λ)Z(a,	λ)

∫ ∞
0 Pu(−XT λ,−0

∈ dx, T λ,−0 < ∞)P(τ+
x+a < b)

1 − ∫ ∞
0 Pa(−XT λ,−0

∈ dx, T λ,−0 < ∞)P(τ+
x+a < b)

. (4.4)

From (4.4), we need to find an explicit expression only for the term

∫ ∞

0
Pu(−XT λ,−0

∈ dx, T λ,−0 < ∞)P(τ+
x+a < b)

in terms of the scale function and the law of X. First, from (3.2), it is easy to see that

∫ ∞

0
e−θb

P(τ+
x+a < b) db = 1

θ
E[e−θτ+

x+a ] = 1

θ
e−	θ (x+a). (4.5)

Taking the Laplace transform of
∫ ∞

0 Pu(−XT λ,−0
∈ dx, T λ,−0 < ∞)P(τ+

x+a < b) with respect
to b, and using (3.5), (3.6), (4.5), and Tonelli’s theorem, for θ > 0, we obtain

∫ ∞

0
e−θb

∫ ∞

0
Pu(−XT λ,−0

∈ dx, T λ,−0 < ∞)P(τ+
x+a < b) db

=
∫ ∞

0
Eu[1{−X

T
λ,−
0

∈ dx, T λ,−0 <∞}]
1

θ
e−	θ (x+a)

= 1

θ
e−	θaEu[e

	θX
T
λ,−
0 1{T λ,−0 <∞}]

= 1

θ
e−	θa λ

λ− θ

[
Z(u,	θ)− Z(u,	λ)

θ	λ

λ	θ

]

= λe−	θa

λ− θ

[∫ ∞

0
e−	θyW(u+ y) dy − Z(u,	λ)	λ

λ	θ

]
. (4.6)

Since 	θ > 0 for θ > 0, by (3.4) and integration by parts, we have

∫ ∞

0
e−	θyW(u+ y) dy

= − 1

	θ
lim
y↑∞[e−	θyW(u+ y)] + 1

	θ
W(u)+ 1

	θ

∫ ∞

0
e−	θyW ′(u+ y) dy

= 1

	θ
W(u)+ 1

	θ

∫ ∞

0
e−	θyW ′(u+ y) dy.
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Substituting the last equation into (4.6) yields∫ ∞

0
e−θb

∫ ∞

0
Pu(−XT λ,−0

∈ dx, T λ,−0 < ∞)P(τ+
x+a < b) db

= λ

θ − λ

[
−e−	θa

	θ
W(u)−

∫ ∞

0

e−	θ (a+y)

	θ
W ′(u+ y) dy + Z(u,	λ)	λe−	θa

λ	θ

]
.

(4.7)

Next we will apply the inverse Laplace transform to (4.7). Note that

λ

θ − λ
=

∫ ∞

0
e−θbλeλb db, θ > λ. (4.8)

By (3.8), (3.10), and (4.8), we conclude that∫ ∞

0
Pu(−XT λ,−0

∈ dx, T λ,−0 < ∞)P(τ+
x+a < b) =

∫ b

0
λeλ(b−s)gu,a,λ(s) ds, (4.9)

where

gu,a,λ(s) = −
∫ ∞

a

z

s
P(Xs ∈ dz)W(u)−

∫ ∞

a

[W(u+ z− a)−W(u)]z
s
P(Xs ∈ dz)

+ Z(u,	λ)	λ

λ

∫ ∞

a

z

s
P(Xs ∈ dz)

=
∫ ∞

a

[
Z(u,	λ)	λ

λ
−W(u+ z− a)

]
z

s
P(Xs ∈ dz).

We complete the proof by substituting (4.9) into (4.4). �
Remark 4.1. Similar to Loeffen et al. [28], the closed-form expression of the ruin probability
in Theorem 4.1 is in terms of the scale functions and the law of Xs for some fixed time s > 0.
Unfortunately, the scale functions and the law of X possess explicit expressions for only a few
cases, such as Brownian motion, the Cramér–Lundberg model with exponential claims, and
the stable process with index 3

2 . In other words, for these examples, the ruin probability in
Theorem 4.1 can also be expressed explicitly using the formulas of the scale functions and law
of X. In Section 5 numerical examples of the ruin probability are provided for the Brownian
motion model and the Cramér–Lundberg model with exponential jumps, respectively.

Remark 4.2. We point out that the proof of Theorem 4.1 can indeed be mimicked to obtain the
Laplace transform of time of ruin ρλa,b. Denote es an independent exponential random variable
with mean 1/s. By the memoryless property of an exponential random variable, we have

Pu(ρ
λ
a,b > es) = Pu(T

λ,−
0 > es)+

∫ ∞

0
Pu(−XT λ,−0

∈ dx, T λ,−0 < es)P−x(es < τ+
a ∧ b)

+
∫ ∞

0
Pu(−XT λ,−0

∈ dx, T λ,−0 < es)P−x(τ+
a < b ∧ es)Pa(ρλa,b > es),

where

Pu(−XT λ,−0
∈ dx, T λ,−0 < es) = Eu[e−sT λ,−0 1{−X

T
λ,−
0

∈ dx, T λ,−0 <∞}],

P−x(es < τ+
a ∧ b) = 1 − E[e−sτ+

x+a 1{τ+
x+a<b}] − e−sb

P(τ+
x+a > b),

P−x(τ+
a < b ∧ es) = E[e−sτ+

x+a 1{τ+
x+a<b}].
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Back substitution together with simple algebra yields

Eu[e−sρλa,b 1{ρλa,b<∞}] = 1 − Pu(ρ
λ
a,b > es) = I (b)+ Ea[e−sρλa,b 1{ρλa,b<∞}]J (b),

where

I (b) = e−sb
∫ ∞

0
Eu[e−sT λ,−0 1{−X

T
λ,−
0

∈ dx, T λ,−0 <∞}]P(τ+
x+a > b),

J (b) =
∫ ∞

0
Eu[e−sT λ,−0 1{−X

T
λ,−
0

∈ dx, T λ,−0 <∞}]E[e−sτ+
a+x 1{τ+

x+a<b}].

An explicit expression for I (b) and J (b) can be obtained in a similar fashion as in the proof
in Theorem 4.1. Since the Laplace transform result is much longer, to focus on illustrating the
temporal approach, we choose to present only the ruin probability.

In order to take limits a ↓ 0 and λ ↑ ∞ later, in the following corollary we rewrite the ruin
probability in Theorem 4.1 more explicitly.

Corollary 4.1. For u, a ≥ 0 and λ, b > 0,

Pu(ρ
λ
a,b < ∞) = 1 − ψ ′(0+)	λ

∫ ∞

0
e−	λyW(u+ y) dy − Pa(ρ

λ
a,b = ∞)

×
∫ b

0
λeλ(b−s)gu,a,λ(s) ds, (4.10)

where

Pa(ρ
λ
a,b = ∞) = ψ ′(0+)

[∫ ∞
0

∫ a
0 λe−λsW(z)(z/(s + b))P(Xs+b ∈ dz) ds∫ ∞

0 W(a + y)	λe−	λy dy

+
∫ ∞

0

∫ ∞

a

λe−λs z

s + b
P(Xs+b ∈ dz) ds

]−1

(4.11)

and∫ b

0
λeλ(b−s)gu,a,λ(s) ds =

∫ ∞

0

∫ ∞

a

λe−λs
[
W(u+ z− a)−

∫ ∞

0
	λe−	λyW(u+ y) dy

]

× z

s + b
P(Xs+b ∈ dz) ds. (4.12)

Proof. First, it is easy to see that (4.10) follows immediately from (4.2), (4.9), and (3.5).
Next we prove (4.12). From (4.1), (3.5), integration by parts, and (3.4), it follows that

∫ b

0
λeλ(b−s)gu,a,λ(s) ds

= λeλb
∫ b

0
e−λs

∫ ∞

a

[
	λ

λ
Z(u,	λ)−W(u+ z− a)

]
z

s
P(Xs ∈ dz) ds

= λeλb
∫ b

0

∫ ∞

a

e−λs
[
	λ

∫ ∞

0
e−	λyW(u+ y) dy −W(u+ z− a)

]
z

s
P(Xs ∈ dz) ds
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= λeλb
∫ b

0

∫ ∞

a

e−λs
[
W(u)−W(u+ z− a)+

∫ ∞

0
e−	λyW ′(u+ y) dy

]

× z

s
P(Xs ∈ dz) ds. (4.13)

On the other hand, by (3.8) and (3.10), we know that

∫ ∞

0

∫ ∞

a

e−λs
[
W(u+ z− a)−W(u)−

∫ ∞

0
e−	λyW ′(u+ y) dy

]
z

s
P(Xs ∈ dz) ds

=
∫ ∞

0

e−	λ(a+y)

	λ
W ′(u+ y) dy − e−	λa

	λ

∫ ∞

0
e−	λyW ′(u+ y) dy

= 0. (4.14)

By (4.13) and (4.14), we deduce

∫ b

0
λeλ(b−s)gu,a,λ(s) ds

= λeλb
∫ ∞

b

∫ ∞

a

e−λs
[
W(u+ z− a)−W(u)−

∫ ∞

0
e−	λyW ′(u+ y) dy

]

× z

s
P(Xs ∈ dz) ds

=
∫ ∞

0

∫ ∞

a

λe−λs
[
W(u+ z− a)−W(u)−

∫ ∞

0
e−	λyW ′(u+ y) dy

]

× z

s + b
P(Xs+b ∈ dz) ds

=
∫ ∞

0

∫ ∞

a

λe−λs
[
W(u+ z− a)−

∫ ∞

0
	λe−	λyW(u+ y) dy

]

× z

s + b
P(Xs+b ∈ dz) ds,

where the last step is due to integration by parts and (3.4). This proves (4.12).
It is only left to show (4.11). Substituting (3.5), (3.7), and (4.9) into (4.3) yields

Pa(ρ
λ
a,b = ∞) = ψ ′(0+)(	λ/λ)Z(u,	λ)

1 − ∫ b
0 λeλ(b−s)ga,a,λ(s) ds

= ψ ′(0+) ∫ ∞
0 	λe−	λyW(a + y) dy

1 − ∫ b
0 λeλ(b−s)ga,a,λ(s) ds

.

Further, by (4.12), it follows that

Pa(ρ
λ
a,b = ∞) = ψ ′(0+)

∫ ∞

0
	λe−	λyW(a + y) dy

×
[

1 −
∫ ∞

0

∫ ∞

a

λe−λs
[
W(z)−

∫ ∞

0
	λe−	λyW(a + y) dy

]

× z

s + b
P(Xs+b ∈ dz) ds

]−1

. (4.15)
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On the other hand, (3.9) implies that∫ ∞

0
λe−λs

∫ ∞

0
W(z)

z

s + b
P(Xs+b ∈ dz) ds =

∫ ∞

0
λe−λs ds = 1. (4.16)

Thus, substituting (4.16) into (4.15) yields

1

ψ ′(0+)Pa(ρ
λ
a,b = ∞) =

[
1 − ∫ ∞

0

∫ ∞
a
λe−λsW(z)(z/(s + b))P(Xs+b ∈ dz) ds∫ ∞

0 	λe−	λyW(a + y) dy

+
∫ ∞

0

∫ ∞

a

λe−λs z

s + b
P(Xs+b ∈ dz) ds

]−1

=
[∫ ∞

0

∫ a
0 λe−λsW(z)(z/(s + b))P(Xs+b ∈ dz) ds∫ ∞

0 	λe−	λyW(a + y) dy

+
∫ ∞

0

∫ ∞

a

λe−λs z

s + b
P(Xs+b ∈ dz) ds

]−1

,

which proves (4.11). This completes the proof. �
By Corollary 4.1, in the next proposition we show that, when a ↓ 0 and λ ↑ ∞, the ruin

probability under the hybrid observation scheme Pu(ρ
λ
a,b < ∞) reduces to the formula of the

Parisian ruin probability obtained by Loeffen et al. [28]. The proof of the following proposition
mainly utilizes the initial value theorem (IVT) of the Laplace transform; see, e.g. Theorem 3.8.1
of [18], and a more general proof can be found in Theorem 2.2.10 of [29].

Proposition 4.1. For u ≥ 0 and b > 0,

lim
λ↑∞ lim

a↓0
Pu(ρ

λ
a,b < ∞) = lim

a↓0
lim
λ↑∞ Pu(ρ

λ
a,b < ∞) = 1 − ψ ′(0+)

∫ ∞
0 W(u+ z)zP(Xb ∈ dz)∫ ∞

0 zP(Xb ∈ dz)
.

Proof. We first evaluate limλ↑∞ lima↓0 Pu(ρ
λ
a,b < ∞). It follows from (4.11), (4.12), and

the IVT that

lim
λ↑∞ lim

a↓0
Pa(ρ

λ
a,b = ∞) = lim

λ↑∞
ψ ′(0+)∫ ∞

0 λe−λs ∫ ∞
0 (z/(s + b))P(Xs+b ∈ dz) ds

= ψ ′(0+)∫ ∞
0 (z/b)P(Xb ∈ dz)

(4.17)

and

lim
λ↑∞ lim

a↓0

∫ b

0
λeλ(b−s)gu,a,λ(s) ds

= lim
λ↑∞

∫ ∞

0
λe−λs

∫ ∞

0

[
W(u+ z)−

∫ ∞

0
	λe−	λyW(u+ y) dy

]

× z

s + b
P(Xs+b ∈ dz) ds

=
∫ ∞

0

(
W(u+ z)− lim

	λ↑∞

∫ ∞

0
	λe−	λyW(u+ y) dy

)
z

b
P(Xb ∈ dz)

=
∫ ∞

0
[W(u+ z)−W(u)] z

b
P(Xb ∈ dz), (4.18)
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where the last step is due to the fact that	λ ↑ ∞ as λ ↑ ∞. Substituting (4.17) and (4.18) into
(4.10), and using the IVT again, we obtain

lim
λ↑∞ lim

a↓0
Pu(ρ

λ
a,b < ∞) = 1 − ψ ′(0+) lim

	λ↑∞	λ
∫ ∞

0
e−	λyW(u+ y) dy

− ψ ′(0+) ∫ ∞
0 [W(u+ z)−W(u)](z/b)P(Xb ∈ dz)∫ ∞

0 (z/b)P(Xb ∈ dz)

= 1 − ψ ′(0+)
∫ ∞

0 W(u+ z)zP(Xb ∈ dz)∫ ∞
0 zP(Xb ∈ dz)

. (4.19)

Next we evaluate lima↓0 limλ↑∞ Pu(ρ
λ
a,b < ∞). Applying the IVT to (4.11), for a > 0, we

have

lim
λ↑∞ Pa(ρ

λ
a,b = ∞) = ψ ′(0+)

[∫ a
0 W(z)(z/b)P(Xb ∈ dz)

W(a)
+

∫ ∞

a

z

b
P(Xb ∈ dz) ds

]−1

= ψ ′(0+)
[

1 − ∫ ∞
a
W(z)(z/b)P(Xb ∈ dz)

W(a)
+

∫ ∞

a

z

b
P(Xb ∈ dz) ds

]−1

,

where the last step is due to (3.9). By Lemma 3.1 of [21] and Equation (14) of [28], we know
that

lim
a↓0

1 − ∫ ∞
a
W(z)(z/b)P(Xb ∈ dz)

W(a)
= 0,

which holds regardless of whether X has bounded variation or unbounded variation sample
paths. Thus, it follows that

lim
a↓0

lim
λ↑∞ Pa(ρ

λ
a,b = ∞) = ψ ′(0+)∫ ∞

0 (z/b)P(Xb ∈ dz) ds
.

On the other hand, applying the IVT to (4.12) yields

lim
a↓0

lim
λ↑∞

∫ b

0
λeλ(b−s)gu,a,λ(s) ds

= lim
a↓0

lim
λ↑∞

∫ ∞

0
λe−λs

∫ ∞

a

[
W(u+ z− a)−

∫ ∞

0
	λe−	λyW(u+ y) dy

]

× z

s + b
P(Xs+b ∈ dz) ds

= lim
a↓0

∫ ∞

a

[W(u+ z− a)−W(u)] z
b

P(Xb ∈ dz) ds

=
∫ ∞

0
[W(u+ z)−W(u)] z

b
P(Xb ∈ dz) ds.

By the same steps as in (4.19), we complete the proof. �

5. Numerical examples

In this section we will provide some numerical examples for the Parisian ruin probability
under the hybrid observation scheme. We will study the Brownian motion model and the
Cramér–Lundberg model with exponential claims because their scale functions and the law
of X possess explicit expressions. For simplicity, we assume that a = 0 in this section.
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5.1. Brownian motion model

Let Xt = μt + σBt , where μ, σ > 0 and {Bt }t≥0 is a standard Brownian motion. Then we
have ψ(θ) = μθ + 1

2σ
2θ2 and	λ = (−μ+ √

μ2 + 2σ 2λ)/σ 2. The scale functions are given
by

W(x) = 1

μ
(1 − e−2μσ−2x) and Z(x, θ) = 1

μ
ψ(θ)

(
1

θ
− e−2μσ−2x

θ + 2μσ−2

)
for θ > 	.

From (4.1), it follows that

gu,0,λ(s) = 1

μs
e−2μσ−2u

[∫ ∞

0
e−2μσ−2zzP(Xs ∈ dz)− 	λ

	λ + 2μσ−2

∫ ∞

0
zP(Xs ∈ dz)

]
.

Since P(Xs ∈ dz) = (1/
√

2πσ 2s)e−(z−μs)2/2σ 2s , we have

∫ ∞

0
zP(Xs ∈ dz) = σ

√
s√

2π
e−μ2s/2σ 2 + μsN (μσ−1√s),∫ ∞

0
e−2μσ−2zzP(Xs ∈ dz) =

∫ ∞

0
zP(Xs ∈ dz)− μs,

where N (·) is the cumulative distribution function of a standard normal random variable. Thus,

gu,0,λ(s) = 1

μs
e−2μσ−2u

[
2μσ−2

	λ + 2μσ−2

(
σ
√
s√

2π
e−μ2s/2σ 2 + μsN (μσ−1√s)

)
− μs

]
.

By Theorem 4.1,

Pu(ρ
λ
0,b < ∞) = 	λe−2μσ−2u

	λ + 2μσ−2 − 2μσ−2

	λ + 2μσ−2

∫ b
0 λeλ(b−s)gu,0,λ(s) ds

1 − ∫ b
0 λeλ(b−s)g0,0,λ(s) ds

.

In Tables 1 and 2 we present the results for the effect of model parameters on the ruin
probability of the Brownian motion model. In Table 1, we fix μ = 1, σ = √

10, and b = 2. It
is seen that the ruin probability increases in λ as the surplus process is observed more frequently,
thereby increasing the likelihood of detecting a negative surplus. In Table 2, we fix μ = 1,
σ = √

10, and λ = 1. It is seen that the ruin probability decreases in b because a negative
surplus is more likely to be recovered given a longer grace period.

Table 1: Effect of λ on the ruin probability.

u λ = 0.5 λ = 1 λ = 2 λ = 4 λ = ∞
1 1.8639 × 10−1 2.1541 × 10−1 2.3596 × 10−1 2.4905 × 10−1 2.6546 × 10−1

5 8.3750 × 10−2 9.6789 × 10−2 1.0602 × 10−1 1.1191 × 10−1 1.1928 × 10−1

10 3.0810 × 10−2 3.5607 × 10−2 3.9003 × 10−2 4.1168 × 10−2 4.3881 × 10−2

20 4.1697 × 10−3 4.8188 × 10−3 5.2785 × 10−3 5.5715 × 10−3 5.9386 × 10−3

30 5.6430 × 10−4 6.5216 × 10−4 7.1437 × 10−4 7.5402 × 10−4 8.0371 × 10−4

https://doi.org/10.1017/jpr.2018.18 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.18


A temporal approach to the Parisian risk model 315

Table 2: Effect of b on the ruin probability.

u b = 3 b = 4 b = 5 b = 6 b = 7

1 1.7086 × 10−1 1.3977 × 10−1 1.1668 × 10−1 9.8831 × 10−2 8.4657 × 10−2

5 7.6770 × 10−2 6.2802 × 10−2 5.2426 × 10−2 4.4408 × 10−2 3.8039 × 10−2

10 2.8242 × 10−2 2.3104 × 10−2 1.9286 × 10−2 1.6337 × 10−2 1.3994 × 10−2

20 3.8222 × 10−3 3.1267 × 10−3 2.6101 × 10−3 2.2109 × 10−3 1.8939 × 10−3

30 5.1727 × 10−4 4.2316 × 10−4 3.5324 × 10−4 2.9922 × 10−4 2.5631 × 10−4

5.2. Cramér–Lundberg model with exponential claims

Let Xt = ct − ∑Nt
i=1Ci , where {Nt }t≥0 is a Poisson process with rate η, and Ci are i.i.d.

exponential random variables with mean 1/α, which are independent of the Poisson process.
Then

ψ(θ) = cθ − η + ηα

θ + α
and 	λ =

√
(η + λ− cα)2 + 4cλα + η + λ− cα

2c
.

Assume that c > ηα−1 such that ψ ′(0+) = c − ηα−1 > 0. Further, the scale functions are
given by

W(x) = 1 − (η/cα)e(ηc
−1−α)x

c − ηα−1 and Z(x, θ) = ψ(θ)

c − ηα−1

[
1

θ
− η

cα

e(η/c−α)x

θ + α − ηc−1

]
.

From (4.1),

gu,0,λ(s) = η

c(cα − η)s
e(ηc

−1−α)u
[∫ ∞

0
e(ηc

−1−α)zzP(Xs ∈ dz)

− 	λ

	λ + α − ηc−1

∫ ∞

0
zP(Xs ∈ dz)

]
.

Note that

P(Xs ∈ dz) = e−ηr
[
δ0(dz)+ e−αz

∞∑
m=0

(αηr)m+1

m! (m+ 1)!z
m dz

]
,

where δ0(dz) is the Dirac mass at 0. After some calculation, we arrive at∫ ∞

0
zP(Xs ∈ dz) = e−ηs

[
cs +

∞∑
m=0

(ηs)m+1

m! (m+ 1)!
(
cs�(m+ 1, αcs)− 1

α
�(m+ 2, αcs)

)]
,

η

cα

∫ ∞

0
e(ηc

−1−α)zzP(Xs ∈ dz) =
∫ ∞

0
zP(Xs ∈ dz)−

(
c − η

α

)
s,

where �(n, x) := ∫ x
0 e−t tn−1 dt for n ∈ N, x ≥ 0 is the incomplete gamma function.

By Theorem 4.1,

Pu(ρ
λ
a,b < ∞)

= η

cα
e(ηc

−1−α)u 	λ

	λ + α − ηc−1 − α − ηc−1

	λ + α − ηc−1

∫ b
0 λeλ(b−s)gu,a,λ(s) ds

1 − ∫ b
0 λeλ(b−s)ga,a,λ(s) ds

.
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Table 3: Effect of λ on the ruin probability.

u λ = 0.5 λ = 1 λ = 2 λ = 4 λ = ∞
1 2.0507 × 10−1 2.3546 × 10−1 2.5681 × 10−1 2.7035 × 10−1 2.8723 × 10−1

5 1.0529 × 10−1 1.2089 × 10−1 1.3185 × 10−1 1.3880 × 10−1 1.4747 × 10−1

10 4.5757 × 10−2 5.2539 × 10−2 5.7303 × 10−2 6.0323 × 10−2 6.4090 × 10−2

20 8.6424 × 10−3 9.9232 × 10−3 1.0823 × 10−2 1.1396 × 10−2 1.2105 × 10−2

30 1.6323 × 10−3 1.8743 × 10−3 2.0442 × 10−3 2.1520 × 10−3 2.2864 × 10−3

Table 4: Effect of b on the ruin probability.

u b = 3 b = 4 b = 5 b = 6 b = 7

1 1.8900 × 10−1 1.5620 × 10−1 1.3159 × 10−1 1.1241 × 10−1 9.7054 × 10−2

5 9.7035 × 10−2 8.0194 × 10−2 6.7561 × 10−2 5.7713 × 10−2 4.9829 × 10−2

10 4.2171 × 10−2 3.4852 × 10−2 2.9362 × 10−2 2.5082 × 10−2 2.1656 × 10−2

20 7.9651 × 10−3 6.5827 × 10−3 5.5457 × 10−3 4.7374 × 10−3 4.0902 × 10−3

30 1.5044 × 10−3 1.2433 × 10−3 1.0475 × 10−3 8.9478 × 10−4 7.7255 × 10−4

In Tables 3 and 4 we present the results for the effect of model parameters on the ruin
probability of the Cramér–Lundberg model with exponential jumps. In Table 3, we fix c = 6,
η = 5, α = 1, and b = 2. In Table 4, we fix c = 6, η = 5, α = 1, and λ = 1. Similar to the
Brownian motion model, it is seen that the ruin probability increases in λ and decreases in b.
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