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SUMMARY

In this paper we present the SMAR CAD-robotics
system (Systeme de Modélisation et d’Animation de
Robots), which we developed at the University of
Poitiers. This system allows its user to deal with a great
number of robotics problems through the use of a
graphic simulator. We will discuss the different parts
which form the SMAR system. This includes the
following:

—The modeler which allows the user to build a database,
describing the robot and its environment. The database
generated by the system is composed of the geometric
description of the objects and the kinematics description
of the environment.

—The simulator and the coordinates reverser, which
simulate the robot’s movements.

—The collision detection algorithms used to verify task
accomplishment.

—A calculation algorithm in order to find optimal
placement, which determines the relative position
robot/task, allowing the robot to efficiently execute the
assigned task.

—The collision free-path planning algorithm allowing
the system to generate trajectories in a cluttered
environment.

An example dealing with a complex robotized cell will
also be presented in order to demonstrate the capabilities
of the system.

KEYWORDS: CAD-Robotics systems; Collision detection;
Optimal placement; Trajectories planning.

1. INTRODUCTION

The use of robots in industrial manufacturing systems has
greatly increased. Because of the increased use of this
tool, a great number of problems have surfaced.

These different problems can be effectively treated or
possibly resolved by the use of CAD-Robotics systems.
These systems offer powerful graphic capabilities,
allowing for simple resolutions for problems like, robot
selection, robot placement in its work station, and
off-line programming of tasks.

Several robot simulation and programming systems
have been developed. These systems can be classed into
two categories: First, there are the commercial systems
designed to effectively resolve most problems related to
industrial robot utilization. These may include commer-
cial systems such as: ROBCAD, SILMA, Unigraph-
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Place, ACT,.... The second category concerns the
systems developed in university research labs that are
used as a support for validating more advanced robotics
algorithms."” Some of the algorithms originating from
university research are used on industrial-type systems.

In this paper we will describe the CAD-Robotics
system (SMAR) that we have developed in our research
laboratory. Our aim is to make available a tool which
supports and validates algorithms developed in the
domain of CAD-Robotics. This tool is also used for
educational robotics training. Many SMAR algorithms
are used for industrial robotics applications.

In the sections that follow, we will describe the
different parts of SMAR (CAD-Robotics system).
Firstly, we will present a modeler which allows the user
to build the database describing the robotics cell.
Secondly, we will present the simulator. It has a
movement manager module, a system for updating the
database, as well as the capability to inverse coordinates,
allowing the user to specify movements using Cartesian
coordinates (task coordinates). The two systems that
allow for collision detection are presented in section 4.
We will briefly describe the first method based on an
algorithm similar to those used in Boolean operations. It
permits collision detection between both convex and
non-convex solids. We will also present the second
method based on a fast algorithm for distance calculation
between convex objects. We will present an algorithm
that calculates the optimal placement of robots in section
5. The suggested approach determines the relative
position between the robot and the task in order to
minimize an objective function integrating multiple
criterion. This algorithm allows the treatment of different
problems such as: robot assessibility to the task, and
improving robot performances during the execution of
the task. It is worth noting that this is one of our system’s
unique characteristics, since to our knowledge the
approach we propose is not available in any other
CAD-Robotics system. In section 6, we will present the
method for collision-free path planning, which we have
developed and introduced in the system. It is similar to
local methods, but its formulation makes its possible to
avoid dead-lock phenomenons which are caused by
convergence towards local minimums, encountered in
classical local approaches. Finally, in the last section, we
will present the modeling of a welding cell for metal
framed sections, and the simulation of welding tasks.
This complex cell, with 38 degrees of freedom, is a well
adapted example which allows us to validate the whole of
SMAR modules in a real case simulation.
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The system is developed on SILICONGRAPHICS and
uses OSF Motif and Open Inventor Libraries. It is
important to mention that all the system’s modules have
a user-friendly interface based on the use of menus and
3D graphic representation. It offers the grahic capability
of most of the CAD systems.

2. MODELER

The purpose of the CAD-Robotics modeler is to enable
the user to create a database necessary to describe the
robot and its environment. This database is next used by
the simulator to reproduce the behavior of the cell.
Therefore, the modeler must allow the user to define the
overall data that the simulator algorithm requires. Two
types of descriptions are used in the SMAR system to
define a cell in the database. The first allows the user to
define the geometry of the cell’s different objects. The
second description is used to define the links between
these different environment objects.

2.1 Geometric modeling
Geometric modelization defines an approximation of the
entire environment bodies. In SMAR we have used a
polyhedral approximation like most of the CAD solids
modelers.>” To modelize an enrironment the SMAR
system has different methods for defining objects: by
primitives, swept volumes, or Boolean operations.
—Modelization by primitives allows one to define an
object from a set of the standard forms available in the
system, such as: cube, cylinder, etc..... (Figure 1).
—The swept volume method defines an object by a
Cartesian product of a facet and a given trajectory
(Figure 1).
—Modelization using Boolean operations or CSG
(Constructive Solid Geometry), allows one to define a
complex object by a set of Boolean operations
(U, M, —) applied on simple or complex shapes.
Note that the first two methods are fairly easy to
implement; however, Boolean operations are difficult to
implement and demand an intensive computational load.
Figure 1 shows the system’s different modeling
possibilities, as well as an environment model.

2.2. Links modeling

The second description available in the database of the
SMAR system describes the links between the cell’s
objects. In the SMAR system, the cell is described as a
branched chain composed of different links. In order to

Swept volume

Volume obtained by
boolean operations

Fig. 1. SMAR modeling capabilities.

Model of cell
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define this chain, three different links are used: rigid type
links, temporary type links and joint type links.

The rigid type links do not allow any movement. They
are used to define objects of the same link. The
temporary type links are used to momentarily connect
two objects. For example, to carry out grasp and place
procedures. Finally, joint type links allow movement
between two links. In this case the user introduces the
joint axis, the joint type (prismatic or revolute), as well
as the following parameters: joint, velocity and
acceleration limits.

3. SIMULATOR

The simulator of the SMAR system uses the database
generated by the modeler to simulate the user’s requests
(tasks) on a graphics screen. In order to do this, the
simulator is equipped with a set of routines that assure
the following: automatic updating of the database, cell
animation, an algorithm to solve inverse kinematics
problems for tasks coordinates control, called the
reverser, trajectory management and a certain number of
post-processors for robot off-line programming.

3.1. Movement management

In the database, the state of the cell is described as a set
of configuration vectors ¢, which represent the
configurations of different articulated chains of the cell.
These vectors are introduced either by the user, in the
case of direct control, or obtained by the reverser, for
Cartesian coordinates control (task coordinates control).

3.1.1. Movements in direct control. In this control
mode, the user introduces a configuration vector
corresponding to the targeted configuration. The
simulator automatically generates the trajectory of the
manipulator using the algorithm’s control codes. Two
types of velocity profiles are available, they correspond
to the constant acceleration movements whose con-
straints are found by using the following:

dv
—| =T 1
=T M

or to the constant ““Jerk” which has the same constraints
and the following:

&y
dr?

=c 3)

where v is the joint velocity, remember that this data is
acquired at the time of modelization. These two types of
velocity profiles are described in Figure 2. The trajectory
travel time can be introduced by the wuser or
automatically calculated by the simulator. In the
automatic mode, the trajectory is calculated in such a
way that the travel time is minimal and the axes are
synchronized.

v; and v; denote respectively the initial and the final
velocity. The trajectories calculated in this way are
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Fig. 2. Velocity profiles.

represented on a graphics screen. Of course, the number
of images displayed for the intermediate positions
depends on the computer’s capabilities. For each position
the system generates the transformation matrix 7p,
describing the location of each object j, relative to the
absolute reference in order to update the database. The
matrix Ty, is given by:

Roy

000 @

ILOJ]

TOJ:[ 1

where Rp; and Py, are respectively the matrices of
rotation and the translation of the object. When your
working with an object of a kinematic chain, 7Ty, is
obtained by:

J
To, = 1_[ Ty, 5)
i=l
where the object i —1 denotes the father of the object i
in the hierarchy.

3.1.2. Movements in Cartesian coordinates. In this mode
the movement is specified by Cartesian coordinates (task
coordinates). The targeted pose is given by the position
and orientation of end effector, in which there are three
Cartesian coordinates of the end effector and the
orientation of the end effector specified by “Euler
angles” or “Roll-pitch-Yaw angles”.

This data, as well as the structure of the robot are used
by the coordinates reverser to calculate the configuration
of the robot. Next, the movement between the starting
position and the final position is generated in the same
way as that of the direct control mode (cf. 3.1.1).

In SMAR we have installed an explicit coordinates

/.
/.
CJ Class 1 Class 2

fype RRR L— I fype PRR

r= B

ri

>
Class 3 I
type RRP -—
Closs 4
- type PPP

Fig. 3. Regional structures processed by the reverser.
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reverser (closed-formed inverse solutions). It treats most
existing robot structures. The architectures that the
system accepts are the robots with six degrees of
freedom, composed of a wrist having concurrent axes
and a non-redundant arm (regional structure) with three
degrees of freedom. The different arm classes that the
system processes are represented in Figure 3. The
advantage of the reverser algorithm is to give all possible
configurations for a given end-effector pose as shown in
Figure 4.

3.2. Task management and off-line programming

Two post-processors were developed for loading the
tasks in the robot’s control devices. These post-
processors correspond to the two robots available in our
research labs (an industrial robot TH8, ACMA-Renault
and an educational robot ERICC, Barras-Provence). For
task programming, the user has, along with the graphic
abilities and simulation functions, task editing functions
and collision detection available in order to check
accessibility (cf. section 4). Task loading on the two
controls is done by using serial ports.

4. COLLISION DETECTION

During movement simulation, two algorithms are used to
detect collisions between the objects of the environment.
The first is based on the calculation of intersection and it
deals with convex as well as non-convex objects. The
second is based on distance calculation, and it only deals
with convex objects.

4.1. General algorithm for collision detection

In principle, this algorithm uses an approach similar to
that of the Boolean operations algorithm. Its purpose is
to check the intersection of any two objects. In order to
do this it calculates the intersections between the facets
of each object. The process is stopped when an
intersection exists between the two facets. Therefore to
reduce the calculation time, each object is described not
only by a polyhedral description, but also by an
encompassing sphere and a parallelepiped. So, the
collision test is first of all, applied to the encompassing
primitives before considering the polyhedral description.
The same principle is applied to the levels of the facets at

l_—

—

||F=— =

type RPP
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Fig. 4. Eight inverse solutions of 6R robot.

the time of the intersection calculation between an object
and a facet. The algorithm considers first of all, the
intersection between the facet and the primitives (sphere,
parallelepiped) encompassing the object.

This description method makes it possible to avoid
useless calculation and as a result reduces the time spent
in the calculation process. As we have shown above, this
algorithm works with all types of objects, but it does not
measure the proximity of objects which is made possible
by using distance calculation algorithm.

4.2. Distance algorithm
We will now describe the distance calculation algorithm
in the section which follows:

Let us state the problem of distance computation. Let
O, and O, be two convex polyhedrons defined
respectively by k; and k, half-spaces. We can designate
an object O; as the collection of points x which satisfy the
following:

<x’ nij>5di/' ]:1) 23)kl7 lzl) 2» (6)

Where ( ) designates an inner product, x is any point in
Euclidean three-space, n; is a unit vector normal to plane
J, and d;; is the perpendicular distance from plane j to the
reference origin. We obtain:

0;= ](51 {x | (x, ”ij> = di/'} (7)

So, the distance calculation problem can be stated as the
following minimization problem: Find x; in O, and x, in
O, such that:

f(x1, x2) = [lxy _Xz||2/2 8

is minimal (|| || representing the Euclidean norm)
subject to the linear constraints:

gi,-(xi) =(x;, nlj,'> - dij =0 (9)
In order to solve the above problem (minimal distance
calculation), the computational scheme used is based on

a direct approach to minimizing the distance function
which produces a succession of optimal search directions
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along the boundary of the objects. This algorithm
combines the gradient projection method'® and an
additional optimal search direction when the gradient
projection method leads to a zigzagging phenomenon.

4.2.1. Iterative scheme. Let us define briefly the iterative
scheme of the method to obtain the minimal distance
between two convex polyhedrons, (for more details
concerning this section refer to reference 11).

For the iteration k£ + 1 the points x; .., on each convex
set O; are found by using:

Xikr1 =Xk T BiSik (10)

where x;, are the starting points for the (k +1)-th
iteration, 3; are the step lengths and S, are the search
directions. In the general method of Rosen, the search
directions are obtained by the following equations:

Si,k = _Pi,kvﬁ/ ||Pi,kvfi||

_ (11)
Pi,k =1- Ni,k(Ni,TkNi,k) 1Ni7:k

where N, is the matrix whose columns are given by the
gradients of the active constraints at g;(x;,) =0 and Vf; is
the gradient of the objective function at x;,. The matrix
P, is called the projection matrix.

However, for the problem that interests us, we do not
have to compute this projection matrix because P;; is
given simply by considering the geometrical properties of
a polyhedron (see section 4.2.4). These search directions
are obtained by projecting the gradient of the objective
function (equation 8) onto the active constraints at x;
(i.e. gy(xix) = 0).

The iterative process is stopped when the Kuhn-
Tucker Conditions (KTC), are satisfied for both objects.
Consequently, the search directions are null vectors. This
means that the closest points (minimal distance) between
the two convex polyhedrons have been reached. The
minimum found will be global because the problem is
convex. The KTC are given on each object by:

m;

j=1

7]0 =Xok — X1,k (12)

and —Vfj=-
0X1
of
—Vh=—"""—=x1— X2k
0X5 i

where m; is the number of active constraints (i.e.
constraints for which g;(x;,)=0) and Vf, Vg; are
respectively the gradients of f and g;.

Geometrically, the KTC mean that the gradient lies
within the region defined by the normals, as shown in
Figure 5.

So, we have to check the KTC for each object
according to the following relations:

ny

—Vfl=x2,k—x1,k=2 aljnlj Wlth a1j20 (13)
j=1
my

—szle,k—xz,k: 2 azl‘nzj Wlth aZ]ZO (14)

j=1
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Fig. 5. Kuhn-Tucker conditions at a global minimum.

As previously stated, the search direction is a null
vector when the KTC are satisfied. However, when the
computation of the minimum distance between two
solids is carried out, the KTC are frequently satisfied on
only one object.'? On this object, the method gives a zero
vector as search direction, which leads to a zigzagging
phenomenon as shown in Figure 6. For these critical
situations, in order to avoid the zigzagging phenomenon,
it is necessary to compute a new search direction on the
object, where the KTC are satisfied, which should be
different from the zero vector.

Let O, be the object satisfying the KTC, we have
shown'! that the optimal search direction S,, on O is
given by the projection of §;, on the gradients of the
active constraints at the point x, ; (S;; being the non-null
search direction vector on object O).

4.2.2. Search directions and KTC evaluation. In order to
define the search directions, three cases must be
distinguished according to the location of the points on
the object O, If x;, lies on a plane (one active
constraint), the search direction S;, is obtained by
projecting the gradient on a plane (Figure 7). Let n,; be
the plane normal, S;, is given by:

Si,k = _Vfi - <_Vﬁ, nij>nij (15)
If S, =0, then the KTC are satisfied which means that
the gradient Vf; is parallel to n,;.

A similar approach is used to check and evaluate the
KTC and to obtain the search directions, when the point
x; lies on an edge or on a vertex (for more details please
refer to reference 11).

4.2.3. Step length. As previously stated, the process is
stopped if the K7TC are satisfied for both objects. If this is

Fig. 6. Illustration of zigzagging in two dimensions.
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not the case, using x,,, X, and the search directions
(Si% S2x) determined in the last section, then we
compute the step lengths (B4, B,) in such a way that
(X1x+1, X22+1) gives the minimal distance between the
two following segments (Sg;, Sg»):

Sg1=[*10 X16 + B1uS1il

Sg> = [*24 X2 + B2uS2i]

(16)

where B;, is the limit value of B; for which the segment
lies in the solid O,.

4.2.4. Initial points. Finally, in order to start the
iterative process, a pair of starting points (x4, x,,) must
be given. In general, the algorithm uses the centroid of
each object as a starting pair. Then, x;; and x,; are
obtained, as shown in Figure 8, by computing the
intersection between the segment [xq, x,,] and each
object.

When computing the distance for small discrete step
movements of objects, the starting points considered are
those obtained in the previous step. However, the
starting points must be transformed as the objects move
in space. In this case the algorithm needs only one or two
iterations for the convergence.

In general, the number of iterations required for the
convergence is in the range of 2 to 5. The results of
numerical experiments'' show the practical efficiency of
the proposed algorithm which is linear in the total
number of half-spaces which define the boundary of the
solids.

5. OPTIMAL PLACEMENT

The optimal placement algorith of the SMAR system
deals with the following problem: It finds the relative
position robot/task, for any given robot and its

2

Fig. 7. Search direction with one active constraint.
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Fig. 8. Starting points.

environment, in order to complete the assigned task. The
SMAR system uses an optimization approach in order to
resolve placement problems. The task considered is
defined by a set of positions and orientations of the
end-effector referred to an absolute coordinate system
> o. Let X ¢ be the coordinates system attached to the
manipulator base. The placement problem can be stated
as follows:

Find the position and orientation of the robot base
defined by X ¢ which minimizes an objective function f
under a task constraint.

Figure 9 describes the coordinate systems and as well
as the different task points Si. In order to complete the
formulation we have to define the problem’s constraints
and the objective function.

5.1. Problem constraints

In general, the constraints limit the evolution of the
Design Vector, which is defined in this case by the
position and orientation of the robot’s reference X c. In
our approach the design vector is defined by the position
of X ¢/> o in the Cartesian coordinates. It is written as
Toxs Toy and r,, and the orientation of X ¢/X o given by
the pitch, roll and yaw angles written as A, u and v.

A distinction is made between the explicit constraints
and the implicit constraints. The explicit constraints are
directly applied to the components of the design vector
and are expressed by (equation 17), while the implicit
constraints are applied to variables that depend implicitly

Fig. 9. Task and coordinate systems > o and X c.
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on the design vector.

/\15)\5/\” roxlsroxsroxu
31 = 1% = Mo rayl = oy = ray“ (17)
V1 =v= Vu r()zl = Toz = rnzu

where the subscripts / and u denote respectively lower
and upper bounds, which can be determined from the
available space at the workstation. These constraints
introduce some primary boundaries, however they do not
guarantee the avoidance of interference between the
manipulator and obstacles nor joint limits.

We must consider then the two sets of implicit
constraints in order to avoid interference and the joint
limits by using:

h=1,2,...,n,
(dpr)i = dpyy i=1,2,...,m (18)
k=1,2,...,n

where (d;); is the shortest distance between the i —th
object of the environment and the k —th link of the
manipulator for the i — th task point, with the number of
objects in the environment being defined as n,. The
distance (d,.); for any task point is bounded by a
minimum admissible value d,;; The computation of the
distance (dj.); is carried out using the algorithm
described in section 4.2. The parameters m and n are
respectively the number of task points and the number of
joint variables of the manipulator.

The manipulator joint constraints can be expressed as:

k=1,2,...,n
i=1,2,...,m

A, = Qi =, (19)
where the g, is the kK — th component of the joint vector
q; of the manipulator’s configuration corresponding to
the i —th path point, and the subscripts / and u denote
respectively lower and upper bounds.

5.2. Objective functions
In the SMAR system many functions can be used in the
placement problem. Some of these functions consider
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only one criterion to be optimized and others integrate
multiple criterion.

5.2.1. Travel time. As an objective function, one can use
the travel time of the trajectory defined by the points S;.
In this case the optimization process calculates the
placement that leads to the minimal trajectory travel
time, respecting the problem constraints.

Travel time is obtained using one of the two velocity
profiles defined in section (3.1.1.).

5.2.2. Joint limit avoidance. This function, defined by
Equation 20 determines the robot’s placement, allowing
the robot to execute the task with the configurations that
keep the joint of robots as far as possible from their
limits. The objective of the optimization process is to
minimize the following function, proposed by Pamanes."

b=k+k, (20)

where k is the mean, and k; the standard deviation of
the m X n values of the ratio k; defined by:

e[
v Aqimax

i=1...,m

eay

i=1,...,n
where:

Ag;: is the deviation of the i — th joint variable, with
respect to the center of its permissible range, at the j — th
task point,

Ag; max: 1s the maximum deviation permissible of the
i — th joint variable.

This criterion, here termed “‘joint limits avoidance”,
can be used to measure the ease of a manipulator to
access to a certain task.

5.2.3. Multi-criterion function. With the SMAR system
it is also possible to determine the placement that
minimizes many performance criterion at the same time.
In this situation we assign a criterion to each task point
S;. In this approach we have used certain performance
criterion available in the literature such as:

*The condition number of the Jacobean transpose
matrix J7 of the manipulator which is given by:

CA)= Tl (22)

where || || denotes any norm. This index is used in order
to minimize the error propagation from input torques or
velocities to output forces or velocities.

*The manipulability measure introduced by
Yokhikawa'* is quantified by the index w:
w = Vdet (JJ") (23)

The manipulability is a measure of the ease to arbitrarily
change the position and orientation of the end effector.
Thus, its maximization would be appreciated in task
zones where relatively large deviations in the prescribed
motion of the end effector are likely.

* The compatibility index introduced by Chiu" allows
one to optimize the magnitude and accuracy of force and
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velocity of the manipulator on preferred displacement
direction u. The compatibility index is based on the
transmission ratios of force a and of velocity B8 in the
considered direction. These ratios are given by:

o =[u”(JI"u] "

B — [uT(]JT)flu]fl/Z

(24)

where u is a unit vector in the direction of interest. If the
magnitude of force or velocity is considered, « and S
must be maximized. If the accuracy of force or velocity is
considered, then &' or 87! must be maximized.

In the multi-criterion approach we choose p points
(p =m), from the m points defining the task, to which
kinematic criteria are assigned, and we express as k; the
index of the kinematic criterion assigned to some point
S;. The objective of the optimization is to locate the
manipulator in such a way that the p indices k; are kept
as great as possible. However, since generally the orders
of values of these indices are different, they can’t be
compared effectively in an optimization process. We may
avoid this difficulty by introducing the following
normalized index C;:

C; =k;/kf (25)

where the normalization factor kj* is the maximum value
that can be reached by k;. Thus, C; is bounded as follows:

0=¢C=1

Next in order to complete the formulation, we may
define a small typical element of the set of p indices C;
as:

Cc=C-Co (26)

where C and Co are respectively the mean and the
standard deviation of the set. It is evident that the
optimal set, i.e. the one with all its elements as great as
possible, must have a C maximum. Next, if the
optimization problem is to be solved as one of
minimization, we can define the objective function as:

f=Co-C (27)

5.3. Optimization algorithm

The minimization of the objective functions (cf. sections
5.2.1, 5.2.2 and 5.2.3) subject to constraints (cf. section
5.1) can be carried out using some classical methods of
non-linear programming. We have applied the Box
method,'® which does not require the derivatives of the
objective function in order to solve the placement
problem.

The same approach is applied when computing the
normalization factors k;* (cf. section 5.2.3). In fact, the
normalization factor k;* is the maximum value which can
be obtained by k; This maximum is determined by
solving an optimization problem.

The optimal placement algorithm has been applied to
solve several problems such as: robot accessibility to the
task, improving robot performance during the execution
of the task and robotized cell design. In all cases the
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results obtained lead to the improvement of the objective
functions. For more details concerning this section please
refer to”'*'7 where several examples are included that
show the results obtained with this method.

6. PLANNING TRAJECTORIES WITHOUT
COLLISION

Planning trajectories means finding trajectory without
collision that brings the manipulator from an initial
configuration to the final configuration ¢, In this
paragraph we will present a local method introduced in
SMAR that we propose for the planning of trajectories
that avoid collision with obstacles in a workspace.'®

6.1. Classic method

Classically, the local methods are based on an iterative
procedure where the variation of the configuration vector
is found by using the following formula:

q; = qi—1 T Ag; (28)

where Ag; is the variation of the configuration vector at
the iteration i. It is calculated by using the potential field
method" or according to the constraints method.”® With
the constraints method, the movement Ag is the one that
minimizes the following function:

. q —4dr
) o Hg)=r—~+
3 1t(@) — 1(q)|> with g —qrll (29)
(q)=q—q;
under constraints
. d—d
d=—-¢——dt for d<d, (30)

di - dS
where:

* g and g, are respectively the current configuration
vector and the final configuration vector,

* ¢ represents a coefficient in order to adapt the
convergence,

e d is the distance between two convex solids,

* d; is the influence distance from which a constraint
becomes active,

* d, is the security distance that must be respected,

* d is the time derivative of the distance which defines
the anti-collision constraint. It is shown that this
variation can be calculated in relation to the configura-
tion parameter variation by using d = (J'n | dq), J being
the Jacobean matrix calculated at the point of minimum
distance, n is the segment that connects these points
and | means the inner product.

If no constraints are activate then the trajectory is a
straight line in the configuration space.

6.2. Proposed method

The problem with the methods mentioned above is in
converging towards a local minimum due to the fact that
in the vicinity of local minimums there are the same
geometrical active constraints between two iterations (cf.
distance calculation). Our method is designed to avoid
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these constraints (local minimum) through an analysis of
the local geometry of the environment.

In order to avoid this local minimum, it would be
sufficient to determine a movement that would tend to
change from one set of constraints to another set.
According to this idea, we will define the movement Ag
as the following:

e if d >d; none of the constraints are active and the
trajectory is a straight line. In this case, the displacement
is given by:

AQ = q~4r (31)
max;— . naa 19 = gzl

e if d <d;, such will be the case when one or several
constraints are active. The displacement is obtained by
using two displacements dq,,, and dq;,., according to
the following relation:

N
AQ = (akdqk,+ (1 — a*)dglk..) (32)
k=1

with

e N as the number of active constraints,

* dqf, is the displacement calculated according to
Equation 31,

e dqf. is the displacement that allows us to change
from one set of constraints to another,

k
d J dds is a weighing coefficient of the two
calculated displacements in relation to the distance d* for
the constraint k. If the distance d* is close to the security
distance, we give priority to the movement which allows
us to change the constraint, whereas if d* is close to the
distance of influence, we give priority to the movement
which would bring us closer to the final configuration.

dql,.. is obtained by using an inverse differential
model by: dql=J'(JJ) - VE In order to change
active constraints, we must define the movement V; that
will allow us to move towards another geometrical
constraint (face, edge, vertex). Considering Figure 10,
the local methods are classically in a blocked state. The
minimum distance between the objects O; and O, is
obtained at points x; and x, of planes Fj; and F,. This
brings about the result that the constraint remains active
on planes F; and F,. What this means is that the
minimal distance which makes the constraint active is
always obtained for two points belonging to facets F,
and F,,. It is this situation which leads to the blocked
condition mentioned above. To avoid this problem, a
displacement that leads to the modification of a series of
constraints must be defined. Consequently, in order to
find the displacement according to those points which
give the minimal distance, they must be placed on those
facets other than F, and F,. This is achieved by
calculating distances between x, and the different
adjacent facets F5,, Fs,, Fy,, Fs;, on the obstacle. For each
facet, there is a direction of displacement that is defined
by 171, 172, 173, 174 which allows us to change the
constraints on the obstacle. To switch the constraints on
the object O; we must move along the direction ‘7,
This direction is obtained by projecting —V, on the facet
F,. There are m displacement possibilities in order to

-ak:
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Fig. 10. Second displacement choice.
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Fig. 11. Example for Commercy Cy2006 manipulator.
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avoid the obstacle. We chose among these possibilities
the one that permits switching rapidly from one set of
constraints to another: this displacement is established
along the following direction: min,=1,...,m | ‘71«|| +
||17,»||. In the example shown in Figure 10, the method
allows us to obtain a variation of the configuration vector
such that the displacements along V; lead to the
possibility of avoiding the obstacle from the top. These
methods have been briefly treated here, however, there
are several particular cases which need to be further
developed in our study. More explanations will be
provided in reference 18. Thus, this obtained displace-
ment AQ gives direction along which the robot must
move in order to avoid the dead-lock situation. However,
in order to avoid collisions, this displacement is used as a
sub-goal to be reached in the optimization method under
anti-collision constraints.

6.3. Example

This example (Figure 11) deals with a case where the
classic local methods do not provide a solution. The
manipulator must move an object of large dimension in a
cluttered environment. The algorithm allows us to
determine the trajectory from the initial configuration
g ={- - -} towards the final configuration g, ={- - -} in 124
iterations. The execution time necessary to determine the
solution for this example using SILICONGRAPHICS is
70s. It corresponds to a nearly-exact real-time solution
for these work stations.

7. EXAMPLE

Our application deals with the modelization of a
robotized welding cell in a metal framed construction, as
well as the simulation of the movements of the different
welding tasks.

Taking the complexity of the cell and of the tasks into
account, most of the functions available on the SMAR
system have been used. In fact, the cell is composed of
different kinematic chains which need the multi-robot
management possibilities of the system. Therefore, this
study is an interesting example in order to validate, in
concrete terms, all the functions of the system. On the
other hand, as shown in Figure 12, the environment is

Fig. 12. Complex robotized welding cell.
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heavily cluttered, and this calls for collision detection and
path planning tools, to ensure reasonable functioning
time.

The cell studied must weld metal framed sections. It is
made up of a manipulator of the sections needed to be
soldered, and a welding suspended robot. The man-
ipulator accomplishes all the transfers of framed sections,
from their waiting position to the welding post, and vice
versa. It has two transfer trolleys, and four gripping
devices. The trolleys move in a gutter. They carry the
metal sections between the loading-unloading zone and
the welding zone of the cell. The gripping devices are
part of the welding posts.

They move over the gutter to take a welding position.
A procedure that checks the section bending and the
reaction in the devices determines this position.
Depending on the workpiece characteristics, two to four
devices are useful to hold it during the welding. In order
to respect welding process constraints, each device
contains a wheel which has a u-shaped whole pointing
downward in order to execute vertical section loading.
The dimensions of the metal workpieces vary greatly. So,
to maintain each type of section in each wheel, they are
equipped with a centering device. Here, there are two
rotating arms that ensure correct positioning of the metal
framed section so that these remain stable in their
movements.

The welding robot is placed on a two axis gantry which
is make of a suspended rail. It can move over the welding
areas to access all the assigned tasks. The second gantry
axis and the wheel rotation are used in order to ensure
proper task positioning, so that the robot may perform
the tasks in the best conditions.

The tasks (except the transfer, placing, and gripping
problems) consist of welding elements on workpieces.
These elements are located on the extremity, and along
the section. The welding trajectories, called beads, are
shown in Figure 13.

The system simulates the complete cycle of the
realization of a metal framed section. Chronologically, it
simulates the loading of the workpiece on the trolleys,
the transfer of the trolleys to the welding posts, and the
vertical transfer of the workpiece in the wheels. Then,
when the section is loaded, an automatic placement
calculation using the algorithm of section 5, determines
the three robot placement variables (both the gantry
axis, and the wheel orientation), taking collision
constraints between the robot and its environment into
account. A result is shown in Figure 14. The robot task

Welding
trajectories T R
R S
-..‘. ..‘: Ly
T
b

Fig. 13. Welding trajectories.
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Fig. 14. Welding solutions.

has several beads. Therefore, being careful about the
cluttered robot’s environment during the welding, we
apply the path planning method, described in the
previous section, to connect two successive joints.

The application that we just presented allows us to
validate all the functions of the SMAR software. It also
allows us to show its adapting capacities, in managing a
38 degrees of freedom robotized cell which contains 250
geometric objects. The simulation on workstation
SILICONGRAPHICS has shown interesting functioning
time, which is near real time simulation.

8. CONCLUSION

We have presented the possibilities of the SMAR
CAD-robotics system. Although SMAR is not an
industrial type system, it has enough functions to allow
the user to deal with the problems encountered with
robots usage, by the means of simulation. This system
has a modeler, which describes the robot and its
environment. This description is made up of the
geometry and the kinematics definition of the environ-
ment. In order to define the geometry, the SMAR system
modeler has primitives (cube, cylinders) for simpler
objects, and Boolean operations for complex objects.
The simulator provides task animation and task
simulation. It’s composed of the following:

—a reverser allowing for control in task coordinates and
for us to find all of the compatible configurations with a
position and orientation of the effector (multiple
kinematic inverse solutions),

—a module for cycle time calculation.

To verify task accessibility without collision, the
system has two internal algorithms. The first is based on
an intersection calculation between objects, which allows
collision detection between convex and non convex
objects. The second one, is based on distance calculation
between convex objects, allowing collision detection and
the measurement of the objects proximity.

We have also presented in this study algorithms
efficient in detecting collision, in calculating optimal
placement as well as in establishing automatic creation of
trajectories without collision. These different algorithms
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have shown their efficiency, especially throughout our
study of a complex welded cell in metal framed
construction, presented in the section 7.

The SMAR system is installed on different computers:
wVAX, SUN SPARC 2, IBM-PC and
SILICONGRAPHICS. The most complex version is
installed on SILICONGRAPHICS. A user-friently
interface in C language has been developed using Xlib,
and also GL-Inventor.
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