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Theory and lattice-Boltzmann simulations are used to examine the effects of fluid
inertia, at small Reynolds numbers, on flows in simple cubic, face-centred cubic and
random arrays of spheres. The drag force on the spheres, and hence the permeability
of the arrays, is determined at small but finite Reynolds numbers, at solid volume
fractions up to the close-packed limits of the arrays. For small solid volume fraction,
the simulations are compared to theory, showing that the first inertial contribution
to the drag force, when scaled with the Stokes drag force on a single sphere in
an unbounded fluid, is proportional to the square of the Reynolds number. The
simulations show that this scaling persists at solid volume fractions up to the close-
packed limits of the arrays, and that the first inertial contribution to the drag
force relative to the Stokes-flow drag force decreases with increasing solid volume
fraction. The temporal evolution of the spatially averaged velocity and the drag
force is examined when the fluid is accelerated from rest by a constant average
pressure gradient toward a steady Stokes flow. Theory for the short- and long-time
behaviour is in good agreement with simulations, showing that the unsteady force
is dominated by quasi-steady drag and added-mass forces. The short- and long-time
added-mass coefficients are obtained from potential-flow and quasi-steady viscous-
flow approximations, respectively.

1. Introduction
There exists a large body of theoretical and experimental studies of Stokes flows in

porous media, i.e. flows for which the Reynolds number is assumed to be identically
zero. However, in many industrial applications, high fluid velocities are required to
achieve adequate rates of heat and mass transfer. Consequently, Reynolds numbers
from practically zero up to O(104) are encountered in practice (Perry & Green 1984).
Typical industrial applications include packed-bed reactors, absorption columns and
filters.

To bridge the gap between the existing knowledge of steady Stokes flows in porous
media and the moderate-Reynolds-number flows addressed in the accompanying
paper (Hill, Koch & Ladd 2001), we consider two types of flows that depend on the
effects of fluid inertia at small Reynolds numbers. In one, the transient development
of flows whose Reynolds numbers are practically zero is considered, and in the
other, steady flows with small but finite Reynolds numbers are examined. The lattice-
Boltzmann method is used to compute the fluid velocity and the drag force on the
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spheres in both ordered and random arrays, and the simulation results are compared
to theoretical predictions for small Reynolds numbers and solid volume fractions.

The monodisperse arrays of spheres considered in this work have a solid volume
fraction c = n(4/3)πa3, where n is the sphere number density and a is the sphere
radius. The Reynolds number is Re = |〈u〉|a/ν, where 〈u〉 is the spatially averaged
velocity and ν is the fluid kinematic viscosity. Under steady-state conditions, the
average pressure gradient driving the flow is balanced by the force density exerted
by the spheres on the fluid, and hence 〈∇p〉 = n〈f〉, where 〈f〉 is the average drag
force on the spheres. It is appropriate to non-dimensionalize the drag force with the
magnitude of the Stokes-flow drag force on a single sphere in an unbounded fluid.
Consequently, the non-dimensional drag force is defined as F = |〈f〉|/(6πµa|〈u〉|),
where µ is the fluid dynamic viscosity. For Stokes flows, F depends only on the sphere
configuration and the solid volume fraction, whereas at finite Reynolds numbers it
also depends on the Reynolds number and, for ordered arrays, the direction of the
average pressure gradient relative to the axes of the arrays.

Our motivation for examining fixed beds of spheres with solid volume fractions
considerably less than the close-packed limit comes from possible applications of the
results to sedimenting suspensions. Koch (1990) argued that the velocity of the solids
in large-Stokes-number gas–solid suspensions changes slowly relative to the viscous
diffusion of momentum in the fluid, and hence the fluid velocity is similar to that
in fixed beds. The Stokes number, which characterizes the ratio of particle inertia
forces to viscous drag forces, is St = Uaρs/µ, where U is the average velocity of the
particles relative to the fluid and ρs is the solid density. In addition to predicting the
sedimentation velocity, Koch & Sangani (1999) showed that the Stokes-flow drag force
on the spheres in fixed random arrays can be used to examine the stability of gas-
fluidized beds, and hence the results of this work will contribute toward understanding
how fluid inertia affects the stability of finite-Reynolds-number suspensions.

Numerical simulations have helped to elucidate the effects of fluid inertia on flows
in two-dimensional porous media (Rojas & Koplik 1998; Andrade et al. 1997; Ghad-
dar 1995; Edwards et al. 1990; Eidsath et al. 1983). Koch & Ladd (1997) used theory
and lattice-Boltzmann simulations to show how the drag force on the cylinders in
square and random arrays depends on the Reynolds number, solid volume fraction
and, for ordered arrays, the direction of the flow relative to the axis of the arrays.
Simulations were performed at Reynolds numbers up to and exceeding the transition
to unsteady flow.

Mei & Auriault (1991), using the methods of homogenization and multiple scales,
predicted that the first inertial contribution to the Stokes-flow drag force (per unit
volume) should increase with the cube of the average fluid velocity, i.e. that the inertial
contribution to F should be proportional to Re2, but their theory was sufficiently
general so as not to predict the dependence of the drag force on the solid volume
fraction for any specific geometry, although this could, in principle, be obtained by
solving the averaged equations resulting from their theory. It is interesting to note
that this scaling has not yet been corroborated experimentally, presumably because
the range of Reynolds numbers where it occurs is very small. Furthermore, as noted
by Mei & Auriault, the inertial contribution to the drag force is small relative to the
Stokes-flow drag force, and hence it would be difficult to measure.

Some experimental verification of the Re2 dependence of the inertial contribution
to F may be obtained from the experiments of Fand et al. (1987), who measured
the permeability of a cylindrical packed bed of approximately monodisperse glass
spheres. The solid volume fraction was 0.643, the radius of the cylinder was 40a,
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Effects of fluid inertia on flows in arrays of spheres 215

and Reynolds numbers up to approximately 200 were achieved. Their results sug-
gest that F = 151 when Re < 1, and F = 145 + 4.70Re when 2.5 < Re < 40. How-
ever, if we assume that there is a transition from Re2 to Re scaling, and we re-
quire the F and ∂F/∂Re to be continuous there, then these results suggest that
F = 151 + 0.92Re2 when Re < 2.6. This shows that the first inertial contribution to
F , being less than 2% of the Stokes-flow drag force, is indeed very small and, hence,
difficult to measure. The simulations performed in this work provide an excellent
means of determining the range of Reynolds numbers where Re2 scaling occurs, and
how this range depends on the solid volume fraction. Note that the linear depen-
dence of F on Re, which occurs at larger Reynolds numbers, is addressed in the
accompanying paper (Hill et al. 2001).

Cheng & Papenicolaou (1997) recently proposed a theory for the first inertial
contribution to the drag force on the spheres in dilute simple cubic arrays. In the limit
of the Reynolds number based on the sphere separation, ReL = ReL/a = 4πRe/(3c)1/3,
vanishing, their tabulated results suggest that F = 1.77c1/3 + 0.333Re. This is approxi-
mately the same as the O(c1/3) theory of Hasimoto (1959) for Stokes flows in dilute
simple cubic arrays of spheres, but with an inertial correction proportional to the
Reynolds number. This scaling contradicts the theory of Mei & Auriault (1991) and
the theory and simulations of Koch & Ladd (1997), which show that the first inertial
contribution to F should be proportional to Re2.

By expanding the velocity and the pressure as power series in the Reynolds number,
Koch & Ladd (1997) showed that the O(Re) contribution to F must vanish, because
the O(Re) contributions to the velocity and the pressure must be odd and even
functions of position, respectively. They showed that the O(Re2) contributions to the
velocity and the pressure must be even and odd functions of position, respectively, and
hence that the first inertial contribution to F must be O(Re2). While these arguments
also apply to cubic arrays of spheres, quantitative results were derived specifically for
two-dimensional arrays of aligned cylinders.

Therefore, in § 6.1, we develop a theory for the first inertial contribution to F ,
for dilute simple cubic arrays of spheres, which has the expected dependence on
the Reynolds number. The fundamental periodic solution of the Oseen equations
is matched to the solution of the Stokes equations for flow past a single sphere in
an unbounded fluid. Quantitative comparisons of the theory and lattice-Boltzmann
simulations are made, for the predicted dependence of the drag force on the solid
volume fraction and the flow direction relative to the axes of the arrays.

For dilute random arrays of spheres, Kaneda (1986) calculated the first inertial
contribution to the drag force by including the Oseen approximation of the inertial
term in the Brinkman equations (Brinkman 1947). The asymptotic limits of his theory
are

F ∼ 1 + (3/
√

2)c1/2 + (
√

2/40)c−1/2Re2 (Re� c1/2 � 1) (1)

and

F ∼ 1 + (3/8)Re+ (27/4)cRe−1 (c1/2 � Re� 1). (2)

Note that Kaneda’s theory is extremely difficult to verify experimentally, because
the solid volume fraction and the Reynolds number are both required to be small.
Therefore, in § 6.3, we use lattice-Boltzmann simulations to determine the range of
solid volume fractions where Kaneda’s theory (1) is accurate. The simulations also
extend the theory to give the coefficient of the O(Re2) inertial contribution to F at
solid volume fractions up to the close-packed limit.

The effects of fluid inertia, at zero Reynolds number, are also examined by com-
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paring theory and simulations for the transient in which the fluid is accelerated from
rest toward a steady Stokes flow. Theoretical and computational methods typically
used for calculating Stokes flows in porous media – boundary-integral and multipole
methods, for example – are usually limited to steady flows. The lattice-Boltzmann
method, however, requires that a steady-state be obtained by computing the temporal
evolution of the fluid velocity. The fluid is typically accelerated from rest by applying
a constant body force or average pressure gradient. In such cases, inertial effects are
important – even when the Reynolds number is practically zero.

In § 5, we develop a theory for the short- and long-time temporal evolution of the
spatially averaged velocity and drag force on the spheres in fixed arrays. The concepts
of added mass and quasi-steady drag are used to predict the long-time evolution of
the drag force from knowledge of the steady-state drag force and velocity variance,
both of which are obtained for ordered and random arrays of spheres at solid volume
fractions up to their close-packed limits.

Before presenting the results, the lattice-Boltzmann method and our simulation
methodology are outlined in §§ 2 and 3, respectively. Lattice-Boltzmann simulations
are first compared to existing theory and computations for steady Stokes flows in
ordered and random arrays of spheres. The Stokes flow drag force and conditionally
averaged velocity are presented in § 4. The effects of fluid inertia for unsteady zero-
Reynolds-number flows are examined in § 5, followed by steady flows with small but
finite Reynolds numbers in § 6. Within each section, results for ordered arrays are
followed by those for random arrays. A summary follows in § 7.

2. The lattice-Boltzmann method
The lattice-Boltzmann method used in this work is discussed in detail by Ladd

(1994a, b), and hence only a brief description is given here. Numerous applications of
it, including references to its development from lattice-gas automata, can be found in
the review by Chen & Dollen (1998) and in the book by Rothman & Zaleski (1997).

Solutions of the incompressible Navier–Stokes equations are obtained from the
moments of a discretized fluid–particle velocity distribution function. There are 18
fluid–particle population densities at each node of a cubic lattice that extends through-
out the computational domain. The population densities correspond to velocities in
the directions to the 6 nearest and 12 next-nearest neighbouring lattice nodes. At
each time step, the population densities are updated by performing collision and
streaming steps, which relax the fluid–particle velocity distribution function toward
equilibrium, and in doing so reproduce the incompressible Navier–Stokes equations
on macroscopic length and time scales. The pressure and velocity are obtained from
the zeroth and first moments of the fluid–particle velocity distribution function and
the equation of state relating the density to the pressure. Compressibility errors are
of the order of the Mach number squared, which can be kept small while increasing
the Reynolds number by either decreasing the fluid viscosity or increasing the ratio
of the sphere radius to the lattice-node spacing.

Boundary nodes, which represent the surface of the spheres, are placed halfway
along the links between the lattice nodes that intersect the sphere surfaces. To ensure
that the fluid velocity is zero at the sphere surfaces, the fluid–particle population
densities are propagated in the opposite direction from which they approach the
boundary nodes. The hydrodynamic drag force on the spheres is calculated by
summing the impulses exerted on the spheres by the fluid particles. As a result
of the cubic lattice, the spheres are not exactly spherical, and therefore an effective
hydrodynamic radius must be defined. This is obtained by finding the small correction
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to the nominal sphere radii of j + 0.5 lattice units (j = 0, 1, 2, . . .) required for the
Stokes-flow drag force on the spheres in dilute simple cubic arrays to agree with the
theories of Hasimoto (1959) and Sangani & Acrivos (1982). With the fluid kinematic
viscosity equal to 0.01, and for spheres with their centres at lattice nodes, the effective
hydrodynamic radii of spheres with nominal radii of 0.5, 1.5 and 2.5 lattice units are
0.734, 1.88 and 2.86 lattice units, respectively. The effective hydrodynamic radii of
larger spheres are j + 0.8 lattice units (j = 3, 4, 5, . . .). While this approach is entirely
satisfactory for the computations in this work, since the particles are fixed with their
centres at lattice nodes, a more sophisticated treatment of the boundary conditions,
which removes the restriction for the boundary nodes to be halfway between lattice
nodes, is given by Verberg & Ladd (2000).

3. Simulation methodology
The porous media considered in this work are fixed periodic arrays of impermeable

spheres with solid volume fractions

c = n(4/3)πa3 = ns(4/3)π(a/L)3, (3)

where n is the sphere number density, a is the sphere radius, and ns is the number
of spheres enclosed in a typically cubic computational domain whose volume is L3.
For simple cubic and face-centred cubic arrays of spheres, ns = 1 and 4, respectively.
For random arrays of spheres, ns must be sufficiently large to minimize artifacts and
statistical fluctuations coming from the finite size of the computational domain. In
practice, ns is chosen to be large enough to avoid periodic artifacts, and statistical
uncertainty is reduced by ensemble averaging the results from nc random sphere
configurations.

The pressure and fluid velocity are governed by the incompressible Navier–Stokes
equations, with the no-slip boundary condition at the sphere surfaces and peri-
odic boundary conditions at the bounds of the computational domain. The lattice-
Boltzmann method described in the previous section is used to calculate the fluid
velocity and the forces on the spheres. The fluid is typically accelerated from rest by
a constant body force, which is equivalent to applying a constant average pressure
gradient to the fluid.

The assumption of a uniform body force, or linear pressure gradient, is valid locally
in a bulk porous medium in situations where the gradient of the ensemble-averaged
velocity is much smaller than |〈u〉|/a. In general, this condition will be satisfied at
distances further than an O(1) number of particle diameters from bounding walls.

The Reynolds number is defined as

Re = |〈u〉|a/ν, (4)

where ν is the fluid kinematic viscosity and 〈u〉 is the spatially averaged velocity,
which includes the volume occupied by the spheres. Note that the average velocity in
the space occupied by the fluid is 〈u〉/(1− c), and that 〈u〉 is equivalent to the velocity
measured in an experiment by dividing the volumetric flow rate of the fluid by the
cross-sectional area of the packed bed.

At finite Reynolds numbers, the average velocity is not necessarily in the same
direction as the average pressure gradient. In this work, flows are considered for
which the applied body force is directed at an angle θp from the x-axis in the (x, y)-
plane. For simple cubic and face-centred cubic arrays of spheres, the average velocity
lies in the (x, y)-plane, but at an angle θu = arctan (〈uy〉/〈ux〉) from the x-axis.
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The non-dimensional drag force is defined as

F = |〈f〉|/(6πµa|〈u〉|), (5)

where 〈f〉 is the average drag force on the spheres. The denominator on the right-hand
side of (5) is the Stokes drag force on a single sphere in an unbounded fluid. There-
fore, positive deviations of F from unity indicate the contribution of hydrodynamic
interactions (finite solid volume fraction) and fluid inertia (finite Reynolds number)
to the magnitude of the average drag force.

At steady state, the average drag force multiplied by the sphere number density is
equal to the applied average pressure gradient. From (3) and (5), it follows that the
magnitude of the average pressure gradient is

|〈∇p〉| = 9cµF |〈u〉|/(2a2). (6)

The random sphere configurations used to calculate ensemble averages were gener-
ated using a Monte-Carlo (MC) method, whereby ns spheres are initially placed with
their centres at randomly chosen lattice sites throughout the computational domain
(initialization). The sphere radius, and hence the solid volume fraction, is increased
by a prescribed increment after sequentially displacing each of the spheres one lattice
unit in randomly chosen directions (swelling), provided that each displacement does
not result in spheres overlapping. When the required sphere radius is achieved, the
random displacements are continued, but without increasing the sphere radius, until
a hard-sphere distribution is achieved (equilibration). For the relatively small numbers
of spheres used in the configurations, typically 16–64 in this work, this approach is
reliable at solid volume fractions up to approximately 0.5.

At larger solid volume fractions, the distribution of the angle between the vectors
separating each sphere from its two nearest neighbours suggested that some random
sphere configurations generated using the MC method had become ordered. Therefore,
at the largest solid volume fractions, sphere configurations generated using the method
of Zinchenko (1994) were used. Zinchenko’s method generates sphere configurations
for which the solid volume fraction is as close as possible to the close-packed limit
of random arrays of spheres, approximately 0.64. This is achieved by computing the
evolution of the positions of the spheres in a continuous network, while increasing the
sphere radius and, hence, the solid volume fraction. The positions of the spheres are
constrained by the requirement that each remains in contact with three neighbours.
Depending on the number of spheres in the computational domain, solid volume
fractions in the approximate range 0.58–0.63 could be obtained. To achieve smaller
solid volume fractions, the sphere radius was first decreased and then MC equilibration
steps were applied so that, if it was unhindered by its neighbours, each sphere would
diffuse a distance comparable to the average sphere separation. This procedure
was intended to randomize the configurations without allowing time for possible
crystallization.

In this work, the ensemble average of a quantity α is calculated from

〈α〉 =
1

nc

nc∑
i=1

αi, (7)

and the uncertainty in the estimated mean, which is referred to as the standard error,
is calculated from

∆α =
√

var(α)/(nc − 1), (8)

where var(α) = 〈(α− 〈α〉)2〉 is the variance of α calculated assuming nc degrees of
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freedom. Note that the factor (nc − 1) in the denominator on the right-hand side
of (8) corrects for the fact that there are actually nc − 1 degrees of freedom, since
the mean is used to calculate the variance (Bevington & Robinson 1992). This is
important only when the number of random configurations used to calculate the
ensemble average of α is small, which is typically the case.

Occasionally, as few as one or two random configurations were used to compute
ensemble averages, particularly for computations requiring a large sphere radius
and a large number of spheres in the computational domain. The statistical error
calculated from such a small number of random configurations cannot be guaranteed
to be sufficiently small. However, if the spheres in each random configuration are
independent of one another, the standard error calculated from (8) is expected to be
inversely proportional to (nsnc)

1/2, and hence the statistical variation coming from the
small number of random configurations is expected to be small when ns is large.

Very rarely, an outlying observation that was ostensibly far from the mean was
discarded. With a relatively small number of random configurations, these outliers
give an unfair weighting to the estimated mean and variance. Chauvenet’s criterion
was applied, which allows an outlier to be discarded if, assuming Gaussian statistics
apply, the probability of an observation being further from the mean than the outlier
in question multiplied by the number of random configurations is less than 0.5
(Bevington & Robinson 1992).

4. Steady flows with zero Reynolds number
In this section, steady Stokes flows in ordered and random arrays of spheres are

examined. These results provide an excellent means of testing the accuracy of the
lattice-Boltzmann method over a wide range of solid volume fractions and grid
resolutions, since they can be compared to the existing theoretical and computational
results in the literature. Consequently, they establish the minimum computational
requirements – sphere radius and number of spheres in the random configurations, for
example – for the subsequent simulations of finite-Reynolds-number flows presented
in this and the accompanying paper (Hill et al. 2001).

4.1. The drag force for ordered arrays

From the linearity of the Stokes equations and symmetry considerations, the Stokes-
flow drag force on the spheres in cubic arrays is independent of the direction of the
average velocity, and hence the drag force only needs to be calculated for a single
direction of the average pressure gradient. From the fundamental periodic solution
of the Stokes equations, Hasimoto (1959) calculated the drag force on the spheres
in dilute simple cubic, body-centred cubic and face-centred cubic arrays. For simple
cubic arrays, the non-dimensional drag force is given by

F−1 = 1− 1.7601c1/3 + c− 1.5593c2 + O(c8/3). (9)

The O(c1/3) correction to the drag force on a single sphere in an unbounded fluid
comes from a point-force approximation of the spheres, whereas the higher-order
terms come from expanding the fundamental solution, in a series of multipoles, to
satisfy the no-slip boundary condition at sphere surfaces.

Also using multipole expansions, Sangani & Acrivos (1982) extended Hasimoto’s
solutions to much larger solid volume fractions. The results of their calculations are
given in the form of a series expansion in the solid volume fraction, the coefficients
of which are given in table 1 of their paper. Using a boundary-integral method,
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Figure 1. The non-dimensional Stokes-flow drag force on the spheres in simple cubic arrays as
a function of the solid volume fraction. The symbols are from lattice-Boltzmann simulations with
a = 0.734 (◦), 1.88 (�), 3.8 (�), 7.8 (4), 15.8 (/), 16.8 (5) and 33.8 (.) lattice units; +, the
boundary-integral computations of Zick & Homsy (1982), the dotted line is the O(c2) theory (9)
of Hasimoto (1959), and the solid line is the theory of Sangani & Acrivos (1982). The dashed line
interpolates the results of Zick and Homsy.

Zick & Homsy (1982) calculated the drag force on the spheres in ordered arrays at
solid volume fractions up to their respective close-packed limits. The error in their
computations for close-packed face-centred cubic arrays was estimated to be less
than 2%, and hence their results are used in this work as the benchmark with which
to compare the results of our lattice-Boltzmann simulations at largest solid volume
fractions.

Figure 1 compares the non-dimensional drag force on the spheres in simple cubic
arrays calculated from lattice-Boltzmann simulations with the theories of Hasimoto,
and Sangani & Acrivos, and with the computations of Zick & Homsy. The effective
hydrodynamic radii of the spheres used for these simulations are in the range 0.734–
32.8 lattice units, depending on the solid volume fraction. Although it cannot be seen
in this figure, the point-force representation of the spheres accurately predicts F at
solid volume fractions up to approximately 0.02. The simulations and theory are in
excellent agreement at small solid volume fractions, which is to be expected, since the
effective hydrodynamic radii of the spheres were calculated using the theory at very
small solid volume fractions (see § 2). However, the lattice-Boltzmann simulations are
in good agreement with the computations of Zick & Homsy at solid volume fractions
up to the close-packed limit, which for simple cubic arrays of spheres is π/6 ≈ 0.524.
This comparison demonstrates that the effective hydrodynamic radius obtained from
simulations with relatively small nominal radii and small solid volume fractions
can be extrapolated to large nominal sphere radii and large solid volume fractions.
Consequently, relatively small sphere radii can be used to accurately calculate the
Stokes-flow drag force at solid volume fractions much larger than those used to
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Figure 2. The non-dimensional Stokes-flow drag force on the spheres in face-centred cubic arrays
as a function of the solid volume fraction. The open symbols are from our lattice-Boltzmann
simulations with a = 7.8 (◦), 8.8 (�), 10.8 (�), 16.8 (4), 19.8 (/), 20.8 (5) and 31.8 (.) lattice
units, and the filled symbols are from the lattice-Boltzmann simulations of Maier et al. (1998) with
a = 11.5 (•), 45.5 (�) and 181 (�) lattice units; +, the boundary-integral computations of Zick
& Homsy (1982), the solid line is the theory of Sangani & Acrivos (1982), and the dashed line
interpolates the results of Zick & Homsy.

calculate the effective hydrodynamic radii. For example, an effective hydrodynamic
radius of only 1.88 lattice units can be used to accurately calculate F at solid volume
fractions up to approximately 0.2.

The number of lattice nodes in the gaps between the spheres decreases with increas-
ing solid volume fraction, and hence larger sphere radii are required to accurately
resolve flows at large solid volume fractions. Minimizing the sphere radius is very
useful computationally, because the time required for the velocity to reach steady state
is proportional to a2, and the number of lattice nodes is proportional to a3. It follows
that, with a fixed solid volume fraction, the computational cost of the simulations is
proportional to a5. Note that the temporal evolution of these simulations is examined
quantitatively in § 5.

Figure 2 compares the non-dimensional Stokes-flow drag force on the spheres
in face-centred cubic arrays, calculated from lattice-Boltzmann simulations, with the
theory of Sangani & Acrivos and the computations of Zick & Homsy. Also shown are
the results of lattice-Boltzmann simulations by Maier et al. (1998). At the largest solid
volume fractions, these results provide a more rigorous test of the ability of the lattice-
Boltzmann method to resolve velocity gradients close to the spheres, since the volume
fraction of close-packed face-centred cubic arrays of spheres is π/(3

√
2) ≈ 0.740,

which is considerably larger than the close-packed solid volume fraction of random
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Figure 3. (a) The non-dimensional Stokes-flow drag force on the spheres in random arrays
as a function of the solid volume fraction: ◦, lattice-Boltzmann simulations whose parameters
and statistical errors are listed in table 1; +, the multipole simulations of Ladd (1990); �, a
lattice-Boltzmann simulation of Stokes flow in a cylindrical packed bed of spheres by Maier et al.
(1998); ×, the experiments of Fand et al. (1987). The solid line is the O(c1/2) theory of Brinkman
1947, the dotted line is Brinkman’s theory with corrections up to O(c) (10) (Kim & Russel 1985),
and the dashed line is the Carman correlation (11) (Carman 1937). (b) As (a) but with the axes
scaled to detail the limit of vanishing solid volume fraction.

arrays of spheres, approximately 0.64. As for simple cubic arrays of spheres, moderate
sphere radii can be used to accurately calculate the drag force at the largest solid
volume fractions.

4.2. The drag force for random arrays

Brinkman (1947) calculated the average drag force on the spheres in dilute random
arrays by considering a single sphere in an unbounded effective medium whose per-
meability is determined self-consistently. By including the hydrodynamic interactions
between pairs of finite-sized spheres in the effective medium, O(c ln c) and O(c) cor-
rections to Brinkman’s O(c1/2) theory have been obtained (Childress 1972; Howells
1974; Hinch 1977). The closed-form expression given by Kim & Russel (1985) is

F = 1 + (3/
√

2)c1/2 + (135/64)c ln c+ 16.456c+ O(c3/2). (10)

At larger solid volume fractions, the Carman correlation (Carman 1937), which can
be expressed in the form

F = 10c/(1− c)3, (11)

gives the average drag force on the spheres in randomly packed beds at solid volume
fractions up to the close-packed limit.

Multipole simulations by Ladd (1990), at solid volume fractions up to 0.45, confirm
the accuracy of theories for dilute arrays, and show that the Carman correlation
can be extrapolated to solid volume fractions considerably smaller than the close-
packed limit. More recently, Maier et at. (1998) used a lattice-Boltzmann method to
simulate Stokes flows in cylindrical packed beds of spheres with much larger solid
volume fractions of approximately 0.57. Despite the structure imposed by the walls
of the container on the radial distribution of the solid volume fraction, the average
Stokes-flow drag force was found to be close to that given by (11).
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c a L ns nc F ∆F/F

1.04×10−3 0.734 40 40 20 1.089 0.05
1.04×10−3 0.734 80 320 2 1.068 0.03

2.02×10−3 0.734 32 40 20 1.122 0.006
2.02×10−3 0.734 64 320 10 1.109 0.004

4.79×10−3 0.734 24 40 20 1.196 0.009
4.79×10−3 0.734 48 320 10 1.175 0.003
4.79×10−3 0.734 96 2560 2 1.170 0.004

9.66×10−3 0.734 19 40 20 1.289 0.01
9.66×10−3 0.734 38 320 10 1.271 0.003
9.66×10−3 0.734 76 2560 2 1.266 0.007

2.41×10−2 0.734 14 40 10 1.546 0.01
2.41×10−2 0.734 28 320 10 1.529 0.004

4.98×10−2 0.734 11 40 20 2.027 0.02
4.98×10−2 0.734 22 320 10 1.965 0.005
4.98×10−2 0.734 44 2560 2 1.947 8×10−5

9.60×10−2 6.8 76 32 2 2.87 0.004

0.192 8.8 62 16 4 4.98 0.03

0.201 8.8 61 16 5 5.74 0.03

0.290 8.8 54 16 5 9.35 0.03

0.413 8.8 48 16 5 21.5 0.03

0.474 16.8 136 60 1 33.7 —

0.500 16.8 86 16 5 42.0 0.04

0.536 19.8 99 16 1 48.1 —

0.555 17.8 88 16 2 63.1 0.03

0.568 16.8 128 60 1 73.2 —

0.596 20.8 156 60 1 84.6 —

0.633 20.8 124 32 5 129 0.007

0.641 20.8 98 16 2 141 0.06

Table 1. Parameters used for lattice-Boltzmann simulations of Stokes flows in random arrays of
spheres. The average non-dimensional drag force on the spheres is plotted as a function of the solid
volume fraction in figure 3. ∆F is the standard error in the mean of F .

Figure 3 shows the non-dimensional drag force on the spheres in random arrays
at solid volume fractions up to the close-packed limit. Figure 3(b) shows the same
data as in (a), but with the axes scaled to detail the limit of vanishing solid volume
fraction. The sphere radii and the number of spheres used for each of the simulations
are listed in table 1. In many cases, reasonable statistical accuracy could be achieved
with as few as 16 spheres in the computational domain, and by ensemble averaging
the results from only five random configurations. The standard errors in F , which are
typically much less than 5% of the mean, are also listed in table 1.

Our lattice-Boltzmann simulations and the multipole simulations of Ladd both
depart from the O(c) theory at a solid volume fraction of approximately 0.2, showing
that interactions among more than two spheres in an effective medium become import-
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ant at larger solid volume fractions. The Carman correlation is in good agreement
with the simulations at solid volume fractions down to approximately 0.3, and, hence,
in this range of solid volume fractions, a reasonable ‘picture’ of the flow is one in
which the fluid flows through the tortuous paths in the spaces between the spheres,
rather than as a continuous fluid disturbed by widely separated spheres.

4.3. Finite-size effects for dilute random arrays

There is a small contribution to the drag force on the spheres in dilute random
arrays that diminishes with the number of spheres in the computational domain. A
similar effect was observed by Ladd (1990) in the results of his multipole simulations,
suggesting that this is an artifact coming from the finite size of the computational
domain.

As shown in table 1, simulations with solid volume fractions less than 0.05 were
performed with 40, 320 and 2560 spheres in the computational domain, and hence
exactly the same solid volume fraction was maintained while the length of the
cubic computational domain was precisely doubled. Despite the statistical errors, F
consistently decreases with increasing ns. Note that Durlofsky & Brady (1987) found
that the constant offset between the conditionally averaged velocity disturbance
obtained from their Stokesian dynamics simulations and the solution of Brinkman’s
equations decayed as n−1

s at a solid volume fraction of 0.01.
For very small solid volume fractions, the small contribution to the non-dimensional

drag force coming from the interactions of the spheres with their periodic images can
be shown to be (Hill 2001)

F = 1 + (3/
√

2)c1/2 + 0.667n−1
s , (12)

suggesting that the periodic artifact is independent of the solid volume fraction when
c and n−1

s are sufficiently small, and, as suggested by Durlofsky & Brady, is inversely
proportional to the number of spheres in the computational domain. Equation (12)
was obtained by solving the Brinkman equations with point forces at the vertices of
a simple cubic lattice embedded in an unbounded Brinkman medium.

To compare (12) with simulations, equations of the form F = k1 + k2n
−1
s were

fitted to plots of F versus n−1
s obtained from the simulations with solid volume

fractions less than 0.05. As expected from the theory, k1 = ∂F/∂(n−1
s ) did not depend

in a systematic way on the solid volume fraction. The average value of ∂F/∂(n−1
s )

from the simulations was 0.83, with a standard error of 0.06. When considering the
relatively large statistical variations in F relative to the variations that come from
changes in ns, the theory and simulations are in reasonable agreement.

4.4. The conditionally averaged velocity for random arrays

Brinkman’s theory (Brinkman 1947) gives a simple theoretical description of Stokes
flows in dilute random arrays of spheres that quantifies the hydrodynamic interactions
among the spheres and gives a closed-form expression for the conditionally averaged
velocity (Howells 1974). In this section, the conditionally averaged velocity disturbance
obtained from lattice-Boltzmann simulations is compared to that given by Brinkman’s
equations. This serves to verify the accuracy of the velocity field obtained from the
lattice-Boltzmann simulations. Note that Brinkman’s theory for the average drag force
on the spheres in dilute random arrays is accurate only up to O(c1/2). Nevertheless,
it is interesting to observe how the conditionally averaged velocity behaves at larger
solid volume fractions when the permeability obtained from the simulations is used
to calculate the conditionally averaged velocity from Brinkman’s equations.
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Figure 4. The x- (longitudinal) component of the conditionally averaged velocity disturbance as
a function of distance from the centre of the test sphere. The symbols are from lattice-Boltzmann
simulations of Stokes flows: ◦, � distance in the x- and y- (transverse) directions, respectively. The
lines are from the solution of Brinkman’s equations (Howells 1974) with the permeability obtained
from the simulations. (a) (c, a, ns, nc) = (1.04× 10−3, 0.734, 40, 20); (b) (0.305, 4.8, 64, 10); (c) (0.305,
4.8, 64, 20).

Figure 4(a) shows the variation of the x- (longitudinal) component of the con-
ditionally averaged velocity disturbance as a function of the distance along the x-
and y- (transverse) directions from the centre of the test sphere. The symbols identify
simulation results, and the lines are from Brinkman’s theory. At this very small solid
volume fraction, the theory and simulations are in good agreement, even at distances
very close to the spheres where the velocity gradients are least resolved. Note that only
40 spheres were used in the computational domain, and hence the small difference
between the simulations and the theory at large distances from the test sphere is due
to the finite size of the computational domain, as was also observed by Durlofsky &
Brady (1987).
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At larger solid volume fractions, the theory deviates substantially from the simu-
lations. Figures 4(a) and 4(b) show conditionally averaged velocity disturbances for
Stokes flow and a finite-Reynolds-number flow, respectively, both with a solid volume
fraction of 0.305. The most obvious qualitative difference between the theory and
simulations occurs in the transverse direction, where, close to the spheres, the velocity
is much faster than predicted by the theory. This is also the case in the longitudinal
direction, but the velocity does not exceed the average. The faster velocity close to
the spheres comes from the excluded volume within two sphere radii of their centres.
The variations in the velocity disturbance with radial position come from the finite
size of the computational domain and the non-uniform pair probability that gives a
non-uniform permeability. However, at the furthest distance from the test sphere –
halfway between the test sphere and its periodic image – the conditionally averaged
velocity is within 5% of the average velocity.

As shown in figure 4(c), the effect of fluid inertia at a Reynolds number of
approximately 9 is to break the symmetry of the Stokes flow about the plane passing
through the centre of the test sphere and whose unit normal is parallel to the x-axis.
The broken symmetry results in faster moving fluid close to the spheres on their
upstream side and slower moving fluid close to the spheres on their downstream side.
The slightly larger variations in the velocity disturbance relative to Stokes flow shows
that more fluid flows through regions where the permeability is relatively high. Such
regions occur very close to the spheres – in the excluded volume region – and at
distances far from the spheres where the conditionally averaged velocity has local
maxima.

5. Unsteady flows with zero Reynolds number
In this section, the evolution of the average velocity and drag force on the spheres

in fixed arrays is examined when the fluid is accelerated from rest, by a constant
body force, toward a steady-Stokes-flow. Theoretical and computational predictions
of the steady-Stokes-flow velocity variance are used to compute the long-time added
mass coefficient and, hence, the long-time relaxation of the average fluid velocity to
its steady-state value.

An equation for the temporal evolution of the average velocity can be obtained by
equating the time rate of change of the average fluid momentum to the forces exerted
on the fluid by the average pressure gradient and the spheres. Using (5) to express the
force on the spheres in terms of a time-dependent non-dimensional force, F , and the
average pressure gradient in terms of the steady-state non-dimensional drag force,
F∞, gives

ρd|〈u〉|/dt = n6πµa(F∞|〈u〉|∞ − F |〈u〉|). (13)

The time-dependent force on each sphere can be expressed in the form (Sangani,
Zhang & Prosperetti 1991)

f = F6πµa〈u〉 = (1 + Ca/2)ρ(4/3)πa3d〈u〉/dt+ F∞6πµa〈u〉+ fh, (14)

where Ca is the added-mass coefficient and fh is the Basset history force. The factor of
(1 +Ca/2) in the first term on the right-hand side of (14) comes from the acceleration
of the fluid relative to the spheres, which contributes the factor Ca/2, and from the
acceleration of the fluid relative to a fixed frame of reference, which contributes
the factor of one. The latter comes from the constant pressure gradient required
to accelerate the fluid (Batchelor 1967). At short and long times, the Basset history
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force, which comes from the transient diffusion of vorticity throughout the fluid,
can be neglected, since in these limits the force on the spheres is dominated by the
contributions from the quasi-steady drag and added-mass forces.

Substituting (14) into (13) and neglecting the Basset history force gives

|〈u〉| = |〈u〉|∞[1− exp (−t/τ)], (15)

where

τν/a2 = 2/(9cF∞) + (2 + Ca)/(9F∞). (16)

Hence, provided that the Basset history force can be neglected, the average velocity
relaxes exponentially toward steady state with a relaxation time constant τ. The first
term on the right-hand side of (16) is simply the time that it would take to accelerate
the fluid from rest to the steady-state velocity in the absence of the spheres. The
second term is the non-trivial contribution to the relaxation time constant that comes
from the transient development of the flow.

The time-dependent non-dimensional force can be obtained by substituting (15)
into (14), which gives

F/F∞ = 1 +
c(1 + Ca/2) exp (−t/τ)

[1 + c(1 + Ca/2)][1− exp (−t/τ)] , (17)

where Ca has yet to be determined.

At short times, the flow outside a boundary layer at the sphere surfaces is inviscid
and irrotational, and hence the velocity is similar to that for rapidly oscillating flow.
Sangani et al. (1991) calculated the added-mass coefficient of the spheres in ordered
and random suspensions subjected to a small-amplitude oscillatory flow. They showed
that the added-mass coefficient does not depend very much on the relative density of
the solid and fluid phases, and hence their results for neutrally buoyant particles with
a no-slip boundary condition at their surfaces gives a reasonable approximation for
fixed spheres. Their theoretical result for simple cubic arrays is

Ca = (1 + 2c)/(1− c) + O(c10/3), (18)

which is in good agreement with their computations over a wide range of solid volume
fractions. Furthermore, the added-mass coefficient does not depend very much on the
sphere configuration, and hence (18) is a reasonable approximation for random arrays
of spheres.

At long times, the flow is viscous and quasi-steady, and the added-mass coefficient
can be calculated by equating the time rate of change of the kinetic energy of the
fluid, in a frame of reference moving with the average velocity, to the sum of the rate
of work done by the drag force on the spheres and the rate of viscous dissipation.
Note that the assumption of quasi-steady flow allows the slowly evolving velocity
variance to be expressed in terms of the steady-state velocity variance, and hence

〈u′ · u′〉/|〈u〉|2 = 〈u′ · u′〉∞/|〈u〉|2∞, (19)

where u′ = u − 〈u〉. If it is assumed that the rate of viscous dissipation is to leading
order equal to the rate of work done by the quasi-steady drag force, then there
remains in the energy conservation equation

(ρ/2)d〈u′ · u′〉/dt = ρc(1 + Ca/2)〈u〉 · d〈u〉/dt, (20)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

59
48

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005948


228 R. J. Hill, D. L. Koch and A. J. C. Ladd

4

3

2

1

0 0.2 0.4 0.6 0.8

(a)

c2/3

〈u
′·

u
′〉/

|〈u
〉|2

6

4

2

0 0.2 0.4 0.6 0.8 1.0

(b)

c1/ 2

〈u
′·

u
′〉/

|〈u
〉|2

Figure 5. (a) The velocity variance for steady Stokes flows in simple cubic arrays of spheres as a
function of the solid volume fraction. The symbols are from lattice-Boltzmann simulations and the
line is the O(c2/3) theory (25). (b) As (a) for steady Stokes flows in random arrays of spheres but
the symbols are from lattice-Boltzmann simulations, and the line is the O(c1/2) theory (30).

which together with (19) gives

Ca/2 =
〈u′ · u′〉∞
c|〈u〉|2∞ − 1. (21)

For dilute simple cubic arrays of spheres, the steady-state velocity disturbance can be
calculated from the fundamental periodic solution of the Stokes equations (Hasimoto
1959). The velocity disturbance is

u′ =
∑
k 6=0

û′ exp (−2πik · x), (22)

where

û′ = −f · (I − kk/k
2)

(2πk)2
(23)

are the Fourier coefficients of the velocity disturbance, and k is the dimensionless
wavenumber vector. The velocity is non-dimensionalized with the magnitude of the
average velocity, |〈u〉|, distance with the sphere separation, L, and the drag force with
µ|〈u〉|L.

The steady-state velocity variance can be calculated from the integral of u′ · u′ over
the volume of a cubic unit-cell. This integral can be simplified to a single sum in
Fourier space,

〈u′ · u′〉 =
∑
k 6=0

û′ · û′. (24)

Evaluating the sum in (24), and using the approximation that F ∼ 1, gives

〈u′ · u′〉/|〈u〉|2 = 0.9669c2/3 + O(c). (25)

Figure 5(a) shows the steady-state velocity variance for simple cubic arrays of spheres
as a function of the solid volume fraction. The theory (25) and the simulations are
in excellent agreement at the very small solid volume fractions where the point-force
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Figure 6. The time series of the non-dimensional drag force on the spheres in simple cubic arrays
when the fluid is accelerated from rest by a constant average pressure gradient toward a steady
Stokes flow. The symbols are from lattice-Boltzmann simulations with (c, a) = 1.06 × 10−4, 0.734)
(◦), (0.0953, 6.8) (�), and (0.514, 32.8) (�), where a is lattice units. The dotted and dashed lines
are the theory (17) for the limits t→ 0 and t→∞, respectively.

representation of the spheres accurately predicts F , i.e. when Hasimoto’s O(c1/3)
theory (9) is accurate.

For dilute random arrays of spheres, the steady-state velocity variance can be calcu-
lated from the conditionally averaged velocity disturbance, which can be approximated
by the fundamental solution of the Brinkman equations,

∇〈p〉1 + 〈u〉1 − ∇2〈u〉1 + δ(x)〈f〉1 = 0 and ∇ · 〈u〉1 = 0, (26)

where the velocity is non-dimensionalized with the magnitude of the average velocity,
|〈u〉|, distance with the Brinkman screening length, `, pressure with µ|〈u〉|/`, and the
drag force with µ|〈u〉|`.

From the Fourier transform of (26), the conditionally averaged velocity disturbance
is

〈u′〉1 =

∫
〈û′〉1 exp (−2πik · x) dk, (27)

where the Fourier coefficients of the velocity disturbance are

〈û′〉1 = −〈f〉1 · (I − kk/k
2)

1 + (2πk)2
, (28)

and k is the dimensionless wavenumber vector.
In the limit of vanishing solid volume fraction, the steady-state velocity variance

can be calculated from the integral of n〈u′〉1 · 〈u′〉1 over all positions of the test sphere
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Figure 7. The contribution of the added-mass and quasi-steady drag forces on the spheres in
simple cubic arrays to the relaxation time constant at long times as a function of the solid volume
fraction: ×, obtained by fitting an exponential function (15) to time series of the average velocity
obtained from simulations; ◦, the circles are the theory (16) with the steady-state velocity variance
and non-dimensional drag force obtained from simulations, and the line is the theory with the
steady-state velocity variance and nondimensional drag force calculated from (25) and the O(c1/3)
theory of Hasimoto (1959) (9), respectively.

(Koch & Brady 1985). This integral can be simplified to a single integral in Fourier
space,

〈u′ · u′〉 = n

∫
〈û′〉1 · 〈û′〉1 dk, (29)

which can be evaluated to give

〈u′ · u′〉/|〈u〉|2 = 3c1/2/(2
√

2) + O(c), (30)

where, as for simple cubic arrays, only the leading-order approximation for F has
been used, since the point-force representation of the test sphere gives the velocity
variance only up to O(c1/2).

Figure 5(b) shows the steady-state velocity variance for random arrays of spheres
as a function of the solid volume fraction. As for simple cubic arrays, the theory
(30) and the simulations are in excellent agreement at the very small solid volume
fractions where the point-force representation of the spheres accurately predicts F ,
i.e. when Brinkman’s O(c1/2) theory (10) is accurate (see figure 4).

Having now determined the steady-state velocity variance for simple cubic and
random arrays of spheres and, hence, the long-time added-mass coefficient, the
relaxation time constant, which depends on c, F∞ and Ca, can be compared to
simulation results. First, the temporal evolution of F given by the theory for short
and long times is compared to the time series obtained from simulations.

Figure 6 compares the theoretical predictions for the short- and long-time evolution
of the non-dimensional drag force on the spheres in simple cubic arrays with time
series obtained from simulations with representative solid volume fractions of 1.06×
10−4, 0.0953 and 0.514. Note that, at a solid volume fraction of 1.06×10−4, the steady-
state velocity variance and non-dimensional drag force were calculated from (25) and
the O(c1/3) theory of Hasimoto (9), respectively, whereas at the larger solid volume
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fractions they were obtained from the simulations. The simulations and theory are in
good agreement at short and long times and over the entire range of solid volume
fractions. This not only confirms the accuracy of the lattice-Boltzmann method for
time-dependent problems, but shows that the Basset history force can be neglected at
short and long times. It also justifies the assumptions of potential flow at short times
and quasi-steady viscous flow at long times.

Figure 7 shows the contribution of the added-mass and quasi-steady forces to the
relaxation time constant at long times as a function of the solid volume fraction.
At very small solid volume fractions, the steady-state velocity variance and non-
dimensional drag force were calculated from (25) and (9), respectively (circles). Also
shown is the theory with the steady-state velocity variance and non-dimensional drag
force obtained from the simulations (line). These are in good agreement with the
relaxation time constant obtained by fitting an exponential function to the time series
from simulations (crosses). Note that, in the limit of vanishing solid volume fraction,
the contribution of the added-mass force to the relaxation time constant is O(c−1/3).
This scaling can be deduced by balancing the O(cCa|〈u〉|d|〈u〉|/dt) rate of work done
by the added-mass force with the O(c2/3d|〈u〉|2/dt) rate at which the kinetic energy of
the fluid increases.

Note that the temporal evolution of the average velocity in random arrays of
spheres can also be accurately predicted by this theory. For example, with (c, a, ns) =
(0.641, 20.8, 16), lattice-Boltzmann simulations give 〈u′ · u′〉 = 5.06|〈u〉|2 and F∞ =
134.6. Therefore, from equations (21) and (16), Ca/2 = 6.89 and τν/a2 = 0.0156,
respectively. The latter is in good agreement with τν/a2 = 0.0155 obtained from
the time series of the average velocity. Figure 8 compares the temporal evolution
of F from the simulations with the theory. The potential-flow approximation breaks
down relatively quickly, because the vorticity generated at the sphere surfaces rapidly
fills the small gaps between the spheres. However, this is also the reason why the
quasi-steady viscous-flow approximation is successful at longer times.

6. Steady flows with small but finite Reynolds numbers
Now that the lattice-Boltzmann method has been validated for steady and unsteady

flows when the Reynolds number is zero, the first effects of fluid inertia on steady
flows in ordered and random arrays may be examined. In this section, theories are
compared to the results of simulations, showing the ranges of the Reynolds number
and solid volume fraction over which they are accurate.

6.1. Theory for dilute ordered arrays

The theory developed here gives the dependence of the drag force on the spheres in
dilute simple cubic arrays on the Reynolds number and the solid volume fraction
when Re � 1. The spheres are represented by point forces, −δ(x)f, acting on the
fluid, and hence the solid volume fraction is required to be small. Simulations are
compared to the theory to show the range of solid volume fractions over which the
point-force representation is accurate.

For convenience, only a single sphere in a unit-cell with periodic boundary condi-
tions needs to be considered. At distances far from the spheres, the Navier–Stokes
equations can be approximated by the Oseen equations,

ReL〈u〉 · ∇u+ ∇p− ∇2u+ δ(x)f = 0 and ∇ · u = 0, (31)

where the velocity is non-dimensionalized with the magnitude of the average velocity,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

59
48

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005948


232 R. J. Hill, D. L. Koch and A. J. C. Ladd
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Figure 8. The time series of the average non-dimensional drag force on the spheres in a close-packed
random array of spheres when the fluid is accelerated from rest, by a constant average pressure
gradient, toward a steady Stokes flow. The symbols are from a lattice-Boltzmann simulation with
(c, a, ns) = (0.641, 20.8, 16), where a is in lattice units. The dotted and dashed lines are the theory (17)
for the limits t → 0 and t → ∞, respectively. The short-time added mass coefficient was obtained
from the theory of Sangani et al. (1991) (18), and the steady-state velocity variance used to calculate
the long-time added-mass coefficient was obtained from the simulation.

|〈u〉|, distance with the sphere separation, L, pressure with µ|〈u〉|/L, and the drag
force with µ|〈u〉|L.

From the discrete Fourier transform of (31), the Fourier coefficients of the fluid
velocity disturbance in this outer region are

û′ = − f · (I − kk/k2)

2πiReL〈u〉 · k + (2πk)2
, (32)

where k is the dimensionless wavenumber vector. The velocity can be conveniently
written in the form

u = 〈u〉+ us + uo, (33)

where from (32)

us = −∑
k 6=0

f · (I − kk/k2)

(2πk)2
exp (−2πik · x) (34)

and

uo =
∑
k 6=0

f · (I − kk/k2)(2πReL〈u〉 · k)2

(2πk)6 + (2π)2(2πReL〈u〉 · k)2
exp (−2πik · x). (35)
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These are the Stokes-flow and inertial (Oseen) disturbances to the average fluid
velocity, respectively.

To match this outer solution to the inner Stokes flow, the terms on the right-hand
side of (33) need to be evaluated only in the limit x → 0. The inertial velocity
disturbance can be obtained by evaluating the sum in (35) directly, since in the limit
x→ 0 it is independent of position.

Note that, in the limits ReL →∞ and x→ 0, the sum in (35) can be approximated
by an integral, which can be evaluated exactly to give

uo = fReL/(16π). (36)

This leads to Oseen’s result for the first inertial contribution to the Stokes-flow drag
force on a single sphere in an unbounded fluid (Batchelor 1967),

F = 1 + (3/8)Re. (37)

In the limit ReL → 0, (35) becomes

uo = Re2
L

∑
k 6=0

f · (I − kk/k2)(〈u〉 · k)2

(2π)4k6
exp (−2πik · x) + O(Re4

L), (38)

which, in the limit x→ 0, becomes

uoi = Re2
L/(2π)4

(
4.75fi − 1.53fj〈u〉i〈u〉j − 1.69δijklfj〈u〉k〈u〉l) , (39)

where summation over repeated indices is implied. Note that δijkl = 1 when i = j =
k = l, otherwise δijkl = 0. When 〈u〉 is directed along the x-axis, (39) simplifies to

uo = 1.53Re2
Lf/(2π)4. (40)

The outer Stokes-flow velocity disturbance was first calculated by Hasimoto 1959. In
the limit x→ 0, it is

us = 8πf · (2.8373(4/3)I − I/x− xx/x3
)

+ O(x−2). (41)

The velocity in the inner region can be approximated by that for Stokes flow past a
finite-sized sphere in an unbounded fluid with a constant velocity 〈u〉∞ far from the
sphere (Batchelor 1967). After non-dimensionalizing the velocity and distance with
|〈u〉| and L, respectively, the velocity in the inner region, as x→∞, is

u = 〈u〉∞ · (I − 3a/(4L)I/x− 3a/(4L)xx/x3
)

+ O(x−2). (42)

Matching the terms in (42) and (39) that decay as x−1, as well as those that are
independent of position, leads to

F = 1 + 1.7601c1/3 + 0.030c−1/3Re2 + O(Re4
L). (43)

Simulations of flows in dilute simple cubic arrays of spheres were performed with
Reynolds numbers such that ReL = O(c−1/3Re)� 1. As expected from the theory, F
increased linearly with Re2, and hence, by plotting F versus Re2, the coefficients F0

and F1 in equations of the form

F = F0 + F1Re
2 (44)

were obtained at various solid volume fractions. From the theory, F1 = 0.030c−1/3,
which, as shown in figure 9, is consistent with the simulations. However, there are
O(1) and O(c1/3) corrections to the theory that can be obtained from the simulations.
These scalings can be deduced by considering reflections of the O(a/L) = O(c1/3)
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Figure 9. The coefficient of the O(Re2) inertial contribution to the non-dimensional drag force on
the spheres in dilute simple cubic arrays. The symbols are from simulations with a = 0.734 (◦) and
1.88 (�) lattice units. The solid line is the O(c−1/3) theory (43) based on the Oseen approximation,
and the dotted line is the theory (45) with the O(1) and O(c1/3) corrections that were obtained from
the simulations.

velocity disturbance produced by each sphere at its nearest neighbours. Fitting an
equation of the form F1 = 0.030c−1/3 + k1 + k2c

1/3 to the simulation results gives
k1 = −0.37 and k2 = 1.8, and hence

F = 1 + 1.7601c1/3 + (0.030c−1/3 − 0.37 + 1.8c1/3)Re2, (45)

which, as shown in figure 9, fits the simulation results at solid volume fractions up to
approximately 10−3.

Figure 10 shows the inertial contribution to the non-dimensional drag force on
the spheres in a simple cubic array with a solid volume fraction of 9.59 × 10−4 as
a function of the angle between the average pressure gradient and the x-axis in the
(x, y)-plane, θp. Note that the O(1) and O(c1/3) corrections to F that were obtained
from the simulations when θp = 0 have been added to the theory for all θp. The
excellent agreement between the simulations and theory shows that the dependence
of the drag force on the direction of the flow is captured entirely at O(c−1/3).

Figure 11 shows the theory (solid line) for all values of ReL when the average
velocity is directed along the x-axis. Also shown are results from simulations with
a solid volume fraction of 9.59 × 10−4 (circles). The large difference between the
simulations and theory when ReL is large comes from the breakdown of the Oseen
approximation, which is accurate for a single sphere in an unbounded fluid only when
Re < 0.005. The dot-dashed line in figure 11 was obtained by subtracting from the
theory the difference between the non-dimensional drag force on a single sphere in
an unbounded fluid given by Oseen’s equation (37) and that given by the empirical
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Figure 10. The coefficient of the O(Re2) inertial contribution to the non-dimensional drag force on
the spheres in a simple cubic array with c = 9.59 × 10−4 as a function of the angle between the
average pressure gradient and the x-axis in the (x, y)-plane. The symbols are from simulations with
a = 0.734 lattice units, and the line is the theory with an inertial velocity disturbance given by (39).
The O(1) and O(c1/3) corrections to the O(c−1/3) theory for θp = 0 have been added to the theory
for all θp.
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e

Figure 11. The first inertial contribution to the non-dimensional drag force on the spheres in dilute
simple cubic arrays, divided by the Reynolds number based on the sphere radius, as a function
of the Reynolds number based on the sphere separation when the average pressure gradient is
directed along the x-axis. The solid line is the theory for all ReL, and the dotted and dashed lines
are the theory for ReL → 0 and ReL → ∞, respectively. ◦, lattice-Boltzmann simulations with
(c, a) = (9.59× 10−4, 0.734), where a is in lattice units, and the dash-dotted line is the theory (solid
line) with a correction for the breakdown of the Oseen approximation at finite Reynolds numbers.
×, the theory of Cheng & Papanicolaou (1997).
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Figure 12. The coefficient of the O(Re2) inertial contribution to the non-dimensional drag force on
the spheres in simple cubic (◦) and face-centred cubic (�) arrays as a function of the solid volume
fraction. The symbols are from lattice-Boltzmann simulations and the solid line is the O(c−1/3)
theory (45) for simple cubic arrays of spheres. The dotted line is the theory with O(1) and O(c1/3)
corrections that were obtained from the simulations.

correlations recommended by Clift, Grace & Weber (1978),

F =

 1 + (3/8)Re (Re 6 0.005)
1 + 0.1315(2Re)0.82−0.05 log (2Re) (0.005 < Re 6 10)
1 + 0.2996Re0.6305 (10 < Re < 130).

(46)

Although this simple correction for finite Reynolds numbers neglects hydrodynamic
interactions, it gives an excellent approximation of the drag force when ReL is
greater than approximately 20. This shows that inertial effects beyond the Oseen
approximation are manifested at length scales much smaller than the O(a/Re) Oseen
distance. Unfortunately, the long time that it takes for the velocity to reach steady
state at such small solid volume fractions makes simulations with smaller solid volume
fractions prohibitively expensive.

Cheng & Papanicolaou (1997), whose theory was discussed briefly in the introduc-
tion, presented the results of their theory as a table of ∆F = (F − 1)/Re as a function
of ReL. Therefore, the ordinate in figure 11 is (F − F0)/Re = ∆F − ∆F0, where ∆F0 is
actually F0/Re, which is given by Hasimoto’s O(c1/3) theory for the Stokes-flow drag
force. In the limit ReL → 0, the ordinate fits an equation of the form k1 + k2/ReL
when ReL < 0.6, which gives an inertial contribution to F that is proportional to Re
instead of Re2. Furthermore, although their results approach the correct asymptote in
the limit ReL →∞, the approach is clearly much more rapid than our theory suggests.

6.2. Computational results for ordered arrays at moderate solid volume fractions

Having confirmed that the first inertial contribution to the non-dimensional drag
force on the spheres in dilute simple cubic arrays is proportional to Re2, this scaling
is now examined at solid volume fractions up to the close-packed limit. The theory of
Mei & Auriault (1991) predicts that this scaling is independent of the solid volume
fraction, provided that the Reynolds number is sufficiently small.
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Figure 12 shows the coefficient of the O(Re2) inertial contribution to the non-
dimensional drag force on the spheres in simple cubic arrays (circles) at solid volume
fractions up to the close-packed limit. The average pressure gradient is directed along
the x-axis. With increasing solid volume fraction, the inertial contribution to the drag
force first decreases, reaching a minimum at a solid volume fraction of approximately
0.1, and then increases as the solid volume fraction approaches the close-packed
limit. Also shown in figure 12 are simulation results for face-centred cubic arrays of
spheres (squares) with solid volume fractions of approximately 0.3 and 0.75. These
show that the first inertial contribution to F does not depend significantly on the
sphere configuration.

Although the inertial contribution to the drag force increases with the solid volume
fraction as the solid volume fraction approaches the close-packed limit, it is not easy
to measure experimentally. The first effects of fluid inertia actually diminish at large
solid volume fractions, because the Stokes-flow drag force, F0, increases much more
rapidly with the solid volume fraction than F1. This was also the case for the arrays
of aligned cylinders examined by Koch & Ladd (1997).

6.3. Random arrays

Kaneda (1986) calculated the first inertial contribution to the drag force on the
spheres in dilute random arrays. The Brinkman screening length plays a similar role
in Kaneda’s theory as the sphere separation does in the theory presented above for
simple cubic arrays. Although the Reynolds number based on the Brinkman screening
length can take any value in Kaneda’s theory, only the limit in which Re` → 0 is
considered here, because simulations with Re` � 1 and Re � 1 are prohibitively
expensive. Note, however, that an estimate of the inertial contribution to the drag
force in the limit Re` → ∞ could be obtained by correcting Kaneda’s theory using
the finite-Reynolds-number drag force on a single sphere in an unbounded fluid, as
demonstrated above for simple cubic arrays of spheres, and by Koch & Ladd (1997)
for random arrays of aligned cylinders.

Simulations of flows in a dilute random array of spheres were performed with
Reynolds number such that Re` � 1. As expected from theory, F increased linearly
with Re2, and hence, by plotting F versus Re2, the coefficients F0 and F1 in equations
of the form (44) were obtained at various solid volume fractions. For dilute arrays,
Kaneda’s theory gives F1 = (

√
2/40)c−1/2, which, as shown in figure 13, is consistent

with the simulations. However, there are O(1) and O(c1/2) corrections to Kaneda’s
theory that can be obtained from the simulations. Fitting an equation of the form
F1 =

√
2/40c−1/2+k1+k2c

1/2 to the simulation results gives k1 = −0.182 and k2 = 1.01,
and hence

F1 = (
√

2/40)c−1/2 − 0.182 + 1.01c1/2, (47)

which, as shown in figure 13, fits the simulation results at solid volume fractions up
to approximately 0.03.

Figure 14 shows F1 at solid volume fractions up to the close-packed limit. Similarly
to simple cubic arrays of spheres, the inertial contribution to the drag force first
decreases with increasing solid volume fraction, reaches a minimum at a solid volume
fraction of approximately 0.1, and then increases rapidly as the solid volume fraction
approaches the close-packed limit. The results shown here with solid volume fractions
greater than approximately 0.1 are from simulations with at least 64 spheres in the
computational domain. The results of simulations with solid volume fractions greater
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Figure 13. The coefficient of the O(Re2) inertial contribution to the average non-dimensional drag
force on the spheres in random arrays as a function of the solid volume fraction. The symbols are
from lattice-Boltzmann simulations, the solid line is the O(c−1/2) theory (1) of Kaneda (1986), and
the dotted line is Kaneda’s theory with O(1) and O(c1/2) corrections that were obtained from the
simulations.

than approximately 0.1 are given to a reasonable approximation by the fit

F1 = 0.110 + 5.10× 10−4 exp (11.6c), (48)

which is shown as the dotted line in figure 14.
Over the range of Reynolds numbers for which the theory for Re� 1 is applicable,

the inertial contribution to F is considerably smaller than the non-dimensional Stokes-
flow drag force, particularly at large solid volume fractions, and hence care must be
taken to ensure that the average velocity obtained from the simulations is sufficiently
close to steady-state. As shown in § 5, the average velocity at small Reynolds numbers
relaxes exponentially at long times. The average velocity used to calculate F was
therefore obtained by fitting an exponentially decaying function to the time series of
|〈u〉| from the simulations. Since the average drag force is known a priori, this gives
a more accurate estimate of F , particularly at small Reynolds numbers.

Figure 14 also shows F1 obtained from the lattice-Boltzmann simulations of Maier
et al. (1998) (packing P1 in their paper) for flow in a cylindrical randomly packed
bed of spheres (square). Despite the order imposed by the walls of the container
on the sphere configuration, their simulations are consistent with ours, showing that
the drag force at small Reynolds numbers is not significantly affected by the sphere
configuration.

Also shown in figure 14 is F1 obtained from the experimental results of Fand et
al. (1987) (cross). As explained in the introduction, to obtain this value we assumed
a transition from Re2 to Re scaling, and required that both F and ∂F/∂Re be
continuous there. With these assumptions, their experimental results suggest that
F1 = 0.92, which is in good agreement with the simulations at the relatively large
solid volume fraction of 0.643.

Similarly to simple cubic arrays, F1/F0 decays monotonically with increasing solid
volume fraction, consistent with the fact that F1 is very difficult to measure at large
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Figure 14. The coefficient of the O(Re2) inertial contribution to the average non-dimensional
drag force on the spheres in random arrays as a function of the solid volume fraction: ◦, our
lattice-Boltzmann simulations, the solid line is the O(c−1/2) theory (1) of Kaneda (1986), �, the
lattice-Boltzmann simulations of Maier et al. (1998) for flow in a cylindrical randomly packed bed
of spheres. ×, the experiments of Fand et al. (1987), and the dotted line is a fit (48) to the results
of our lattice-Boltzmann simulations with c > 0.1.

solid volume fractions. Physically, these results show that because fluid inertia is
manifested at distances furthest from the spheres, the hydrodynamic interactions at
large solid volume fractions are indeed dominated by the effects of viscosity, and
hence the first effects of fluid inertia are most significant at very small solid volume
fractions.

7. Summary
The lattice-Boltzmann method has been used to examine the effects of fluid inertia

on flows in fixed ordered and random arrays of spheres. Steady flows with small
but finite Reynolds numbers were considered, as well as unsteady flows whose
Reynolds number was practically zero. The results bridge the gap between the
extensive literature that exists on Stokes flows in porous media and the moderate-
Reynolds-number flows addressed in the accompanying paper (Hill et al. 2001).

In the case of unsteady flows with zero Reynolds number, the fluid was accelerated
from rest toward a steady Stokes flow. The hydrodynamic force on the spheres
at short and long times was shown to be dominated by quasi-steady drag and
added-mass forces, and hence the Basset history force could be neglected, to a
reasonable approximation. The added-mass coefficient was obtained from a potential-
flow approximation for short times and a quasi-steady viscous-flow approximation for
long times. The temporal evolution of the average velocity and drag force predicted
by this simple theory were in excellent agreement with simulations.

Next, steady flows with small but finite Reynolds numbers were examined. At all
solid volume fractions, the first inertial contribution to the non-dimensional drag force
was found to be proportional to the square of the Reynolds number, as predicted by
the theory of Mei & Auriault. Consequently, when the Reynolds number is sufficiently
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small, the inertial correction to the Stokes flow drag force on the spheres in both
ordered and random arrays increases with the cube of the average velocity.

The theory developed for dilute simple cubic arrays of spheres required matching
the periodic fundamental solution of the Oseen equations to the solution of the Stokes
equations for flow past a single sphere in an unbounded fluid. It accurately captured
the dependence of the drag force on the solid volume fraction and the direction of
the flow relative to the axes of the arrays. Simulations showed that the first inertial
correction to the Stokes-flow drag force is most significant at very small solid volume
fractions, because the Stokes-flow drag force at large solid volume fractions increases
much more rapidly with the solid volume fraction than the inertial correction.

When the Reynolds number based on the sphere separation is large, but the
Reynolds number based on the sphere radius is still small, the first inertial contribution
to the non-dimensional drag force on the spheres is proportional to the Reynolds
number, as expected from Oseen’s theory for a single sphere in an unbounded fluid.
Our theory and simulations show that inertial corrections to the drag force in this
dilute limit may be accounted for, to a reasonable approximation, by neglecting
inertial hydrodynamic interactions beyond the Oseen approximation.

Finally, simulations were found to be in good agreement with Kaneda’s theory for
dilute random arrays of spheres when the Reynolds number based on the Brinkman
screening length is small. The behaviour at large solid volume fractions is qualitatively
the same as for ordered arrays.

This work was funded by the National Science Foundation (NSF) under grant
number CTS-9526149, and the computations were performed using the resources of
the Cornell Theory Center. We would also like to thank Alexander Z. Zinchenko for
providing the close-packed random sphere configurations used in this work.
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