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Abstract

In this work, we proposed an adaptive beamformer based on a novel heuristic optimization
algorithm. The novel optimization technique inspired from Fibonacci sequence principle,
designated as Fibonacci branch search (FBS), used new tree’s branches fundamental structure
and interactive searching rules to obtain the global optimal solution in the search space. The
branch structure of FBS is selected using two types of multidimensional points on the basis of
shortening fraction formed by Fibonacci sequence; in this mode, interactive global and local
searching rules are implemented alternately to obtain the optimal solutions, avoiding stagnat-
ing in local optimum. The proposed FBS is also used here to construct an adaptive beamform-
ing (ABF) technique as a real-time implementation to achieve near-optimal performance for
its simplicity and high convergence rate, then, the performance of the FBS is compared with
the five typical heuristic optimization algorithms. Simulation results demonstrate the super-
iority of the proposed FBS approach in locating the optimal solution with higher precision
and reveal further improvement in the ABF performance.

Introduction

As a versatile approach, adaptive beamforming (ABF) has received considerable attentions
over the past several decades and became a fundamental technique for numerous applications
including radio astronomy, applied acoustic, cognitive communications, and medical imaging
[1–3]. ABF possesses the potential to optimize the radiation pattern in real-time, which
obtained a larger output signal-to-interference-plus-noise ratio (SINR) by steering the main
lobe of radiation toward a desired signal while placing respective nulls toward several interfer-
ence signals [4].

Classic ABF techniques used to extract the respective array excitation weights are based on
two main criteria: minimum mean square error (MMSE) and maximum signal-to-noise ratio
(MSINR) [5, 6]. Representative ABF algorithm is the minimum variance distortionless
response (MVDR) on the basis of MSINR criterion. Although this method is capable of sup-
pressing the interference and improving system reliability, weights computed by MVDR are
not able to form the deep nulls toward the interference source in various interference scenarios
on account of the characteristics of this technique. Conventional methods to solve this prob-
lem are very time consuming and are unmanageable in ABF application. Another criterion for
computing the array weights is to minimize the MMSE, one of the most widely used
MMSE-based adaptive algorithms is least mean square approach, this method needs a training
sequence of signal of interest to adjust the complex weights adaptively and minimize the dif-
ference between the array output for forming the optimum array pattern [7, 8]. However, it
exhibits a high probability of tracking into local optimal solution, which may not be applicable
for ABF in harsh environments. Consequently, the inherent shortcomings of the derivative-
based ABF methods have compelled and motivated many researchers to explore meta-
heuristics (MH) and evolutionary methods for overcoming these types of difficulties [9].

The main advantage of the evolutionary heuristics algorithms over the classical derived
approaches is their ability to search the global optimum of the objective functions without
using the derivatives of the objective functions. In addition, MH optimization algorithms
have no requirements for extra iterative derivations or computationally extensive routines of
ABF with objective functions. According to the above, an enormous amount of evolutionary
algorithms has been dedicated to applying several optimization approaches for ABF problems
in the past decades. Many literatures have shown that these algorithms are capable of finding
global or strong local optima of non-linear multimodal functions with multidimensional solu-
tions [10, 11]; therefore, weights of the beamformer extracted by the optimization techniques
according to the fitness function defined by specific criterion can be used to place a maximum
beam and null in an array pattern in specified locations. Compared to other evolutionary
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algorithms, the PSO is much easier to implement and outperform
better; thus, many examples have been successfully demonstrated
and validated the design flexibility of PSO in the framework of
ABF arrays [12–14].

Although the MH-based ABF algorithm requires relatively
lower mathematical complexity than derivative-based or iterative-
based ABF methods, there still exist the weaknesses and limita-
tions in the application of ABF. Some optimization algorithms
are highly dependent on starting points in the case of a large
number of solution variables, yet the weights of ABF are regularly
associated with a large number of array elements, and the excita-
tion of array elements is complex, i.e. having both amplitude and
phase, hence the ABF solution space cannot be very small, in that
case, the conventional evolutionary algorithm is not really applic-
able to ABF. Besides, the classic optimization methods are prone
to get trapped in local minima and not reach the global optimum
[15] when solving complex multimodal optimization problems of
array weight extraction, resulting in a suboptimum beamforming
performance. In addition, most of MH algorithms are population-
based optimization techniques which require long execution times
to converge, specifically when solving large-scale complex ABF
engineering problems [16, 17], and the complexity implementing
the algorithms would also result in huge cost and hardware
resources.

In consideration of the above-mentioned studies, we propose a
novel interactive-based random iterative search strategy, called
Fibonacci branch search (FBS) in this paper to deal with compli-
cated optimization problems of ABF. The concept of the proposed
FBS is defined from two aspects: The first one is the generation
principle of Fibonacci branch architecture. The establishment of
branch structure in FBS is built up on the optimization process
of the searching points, and the shortening fraction is designed
based on Fibonacci sequence for the generation of a set of opti-
mization elements that consist of two types of searching points.
The optimization endpoints search for the optimal solution
according to the growth path mode of the branch. The second
standpoint of the FBS concept is the construction of the inter-
action iteration that applies rules for the computation of the opti-
mization elements. The iterative rules are composed of global
searching and local optimization, which are the two phases neces-
sary to update the optimization elements. Global tentative points
and local searching points are formulated in the phase of two
interaction processes, and the points with the best fitness con-
verge toward the global optimum in searching space. At the
same time, computer memory can be fully used to record the
optimizing process during the interaction optimization course.
Global randomness is one of the important characteristics of
FBS, and this mechanism is implemented on those points that
do not readily fall into the local optimum and are not able to
find a better solution.

The novelty of this paper lies in the fact that we design the
Fibonacci branch optimization structure and propose the novel glo-
bal searching and local optimizing interaction iterative technique.
In addition, the FBS algorithm proposed here has been applied
to antenna array beamforming in several cases and in comparison
with other evolutionary optimization-based techniques on several
test functions and the robust ABF. To the best of our knowledge,
the proposed novel FBS optimization algorithm has been applied
for the first time in antenna array beamforming problems.

The reminder of this paper is organized as follows: ABF sys-
tem model of ULA is described in section “ABF system model of

ULA and problem statement”. Section “Proposed FBS algo-
rithm” presents the proposed FBS optimization algorithm.
Later, section “FBS-based beamformer design and implementa-
tion of ABF with the proposed FBS” introduces the robust ABF
based on FBS. The validation of the proposed FBS via bench-
mark functions and the simulation results are reported in sec-
tion “Simulation results”. Section “Conclusions” gives the
conclusion.

ABF system model of ULA and problem statement

Consider a uniform linear antenna array of M omni-directional
array elements employed in ABF receiver, one desired signal
and Q uncorrelated interferences which impinge on the array at
kth snapshot can be expressed by [18]

x(k) = s(k)a(ud)+
∑Q
i=1

ii(k)a(ui)+ n(k), (1)

where s(k) and ii(k) are the desired GNSS signal and the ith inter-
ference, n(k) denotes the complex vector of sensor noise. a(ud)
and a(ui) represent M × 1 steering vectors of s(k) and ii(k) as
given by

a(ud) = [1, e−j2p(dc/l)cosud , . . . , e−j2p(dc/l)(M−1)cosud ]T

a(ui) = [1, e−j2p(dc/l)cosui , . . . , e−j2p(dc/l)(M−1)cosui ]T ,
(2)

where ud and ui denote the direction of the desired signal and the
ith interference, dc = l/2 is the inter-element spacing, l is the
wavelength of GNSS carrier, T is the transpose operation.

The array beamformer output can be written as

y(k) = wHx(k), (3)

where w is the complex beamforming weight vector of the
antenna array and H stands for the Hermitian transpose.

The schematic structure of a linear adaptive antenna array pro-
cessor on the front end of the receiver is shown in Fig. 1.

The extracted weight vector is chosen to maximize the output
SINR for improving the performance of the ABF, as is given by

SINR = s2
S|wHa(ud)|2
wHRi+nw

, (4)

where s2
S is the desired signal power, Ri+n is the interference plus-

noise covariance matrix.
The adaptive beamformer studied here is an inherently multi-

objective problem, since multiple sets of agents w with amplitude
and phase to make deep nulls toward the interference place and
steer the radiation beam toward the desired user to achieve the
maximum SINR must be satisfied. On the other hand, all the opti-
mization methods to the designed ABF aim to find the near-
global minimum of a mathematical function fit called fitness
function; therefore, the best weight vector is determined according
to the fitness value obtained from the object function defined
based on SINR. In the following sections, the proposed FBS opti-
mization is applied to adjust the weights, such that the fitness
function requirements are achieved for obtaining the optimum
SINR.
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Proposed FBS algorithm

The standard principle of Fibonacci sequence method

The famous Fibonacci sequence was proposed by Leonardoda
[19], the recurrence formula sequence term is given by [20]

F1 = F2 = 1
Fj = F j−1 + F j−2, j ≥ 3,

{
(5)

where Fj represents the jth general term of the Fibonacci
sequence.

Fibonacci sequence optimization method makes the tentative
optimization points in the defined interval converge to the opti-
mal solution by compressing the search interval proportionally
based on Fibonacci sequence term, it has been perceived as
one of the most effective strategies to solve the one-dimensional
unimodal problem [21]. Let us investigate below that how the
optimization method using Fibonacci sequence works for a uni-
modal continuous function in an interval for a minimization
problem. Suppose a unimodal f (x) function is defined on the
intervals [A, B]. Initially, the technique starts a choice of two
feasible points x1 and x̃1, x1 , x̃1 in the given range for the
first iteration. Then, it is necessary to reduce the initial box
of range to a sufficiently small box region including the min-
imum solution of f (x) (through an iteration process) for the
interval in which the minimum lies can be narrowed down pro-
vided the function values are known at two different points in
the range [22].

Let xp and x̃p denote the new points over the range of [Ap, Bp]
to be chosen for shortening the length of the interval at pth iter-
ation involving optimal point. Hence for each p = 1, 2, . . . , N , N
represents the maximum number of iterations, Fibonacci
algorithm can be executed as:

Step 1 Initialization
Choose [A1, B1] = [A, B] and take p = 1, while p , N do

Step 2 Calculate the iterative points according to the shortening
fraction Fp/Fp+1 formed by Fibonacci sequence

xp = Ap + 1− Fp
Fp+1

( )
(Bp − Ap),

x̃p = Ap +
Fp

Fp+1
(Bp − Ap)

(6)

Step 3 Find the values f (xp) and f (̃xp) using the new points
Step 4 If f (xp) , f (̃xp) then Ap+1 = Ap, Bp+1 = x̃p otherwise

Ap+1 = xp, Bp+1 = Bp.
Step 5 Set p = p+ 1 then go to step 1 determine whether to stop

the iteration

The minimum point of f (x) can be reached through the steps
above for the convergence trend of the tentative points and the
linear convergence quality of the Fibonacci optimization strategy.

The basic structure of the proposed Fibonacci branch

The standard Fibonacci strategy cannot solve the multiple vari-
ables problem efficiently and retain the optimum fitness evalu-
ation of multimodal function reliably. This is in contradiction
to the classic heuristic optimization algorithm. The FBS algo-
rithm, proposed in this paper, is used to overcome these defects
while avoiding losing optimal search trajectories by using the
searching elements with dendritic branch structure and interactive
searching optimization rules.

The basic structure of FBS expanded to the multi-dimensional
space D can be illustrated where XA, XB, and XC are the vectors in
D dimensional Euclidean space. XA and XB represent the end-
points of the search element satisfying the optimization rule,
XC denotes the segmentation points which can be determined
from the searching rule. A certain proportion of the vectors can
be constructed as follows

‖XC − XA‖
‖XB − XA‖ = ‖XB − XC‖

‖XC − XA‖ = Fp
Fp+1

, (7)

where Fp is the pth Fibonacci number.
Consider the multimodal function with multiple variables f(X)

to be minimized in search space, the fitness function value calcu-
lated by the endpoints in the structure should be evaluated as

f(XA) , f(XB). (8)

Then, the coordinate computing formula of segmentation
point XC can be written as

XC = XA + Fp
Fp+1

(XB − XA). (9)

Fibonacci branch search optimization algorithm

The FBS optimization algorithm introduced in this section is based
on a framework that is built around the concept of endpoints
and segmentation points in the basic structure in Figure 2.
Combining with the basic structure, the process of searching for
a global optimum solution which can also be regarded as

Fig. 1. The schematic of a linear antenna array processor.
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establishing a search element in FBS is to be divided into two
stages: local optimization process and global searching process,
which are the corresponding two interactive rules. Let G denote
the point sets of object function to be searching for in the current
processing phase, and set |G|num = Fp, i = 1, 2, . . . , N , | · |num
represents the total number of the set, N is the depth of the
Fibonacci branch. The fitness values of the endpoint XA and
XB are initialized using the interactive optimization rules, then
the segmentation points XC can be obtained from equation (9).
By comparing the fitness values of each point in the structure,
we can get the results such that the best fitness value accordingly
corresponds to the closest optimal solution. To the next optimiza-
tion phase, the optimal point with best fitness value is provided in
the forefront position of the set, and the points corresponding to
the suboptimal fitness are arranged below the optimal point in
order from best to worst. Throughout the operations above, the
points set G can be updated in every optimizing phase growing
the Fibonacci branch and global optimization in search space
simultaneously.

The two interactive searching rules of FBS in the optimization
stage are summarized as follows:

Rule one: Let us consider the endpoints XA and XB in the struc-
ture, and defined by

{XA} = Gp = {Xq|q = [1, FP]} (10)

{XB} = X|X [
∏D
f=1

[Xf
lb, X

f
ub]

⎧⎨⎩
⎫⎬⎭, (11)

where Gp is the search points space set in the pth iteration, Xq are
the points in the set Gp, q is the sequence number that lies in the
interval between 1 and the pth Fibonacci number. XA take all the
points from Gp of the pth iteration. The other endpoints XB take
random points in search space and the number of XB is equal to
FP . D is the dimension of the points, Xf

ub are the upper bound and
lower bound of the search points. Given that ∀X [ {XB}, the
component x of the vector X is a random variable that satisfies
a uniform distribution over the interval [Xlb, Xub], and the prob-
ability distribution of the component can be written as

P(x) = U(Xlb, Xub) = 1
Xub − Xlb

. (12)

Using the given endpoints XA and XB, we can determine the
segmentation points XS1 in the first global search stage by equa-
tion (11).

Rule two: Suppose Xbest is the optimal solution corresponding
to the best fitness value of the search space in the current iteration
containing the endpoints and the segmentation points generated
from rule one, as given by

Xbest = BEST(GP), (13)

where BEST(·) means the best solution of the set at pth iteration.

Then, we set the endpoints XA = Xbest and have that:

f (XA) = min{ f (Xq), q = [1, FP]} (14)

XB = {Xq|Xq [ GP ^ Xq = XA}. (15)

Hence, the segmentation points XS2 in the second local optimiza-
tion stage can be determined based on the endpoints defined by
(14) and (15) using the computing formula of segmentation
points.

From the two interactive searching rules mentioned above,
new points including endpoints XA, XB and segmentation points
XS1, XS2 are generated in the two optimization stages, and the
total number of the points is 3FP . Evaluating the cost functions
in new points determines their fitness, all these points are sorted
from the best to the worst based on their fitness value. The popu-
lation size of the search points is chosen as the Fibonacci serials;
thus, the top best FP+1 sets of these points are to be saved and the
rest corresponding 3FP − FP+1 points need to be dropped. After
this procedure, the sets of the search space in the current pth iter-
ation are renewed from the saved points, e.g. the saved points
form a new set GP+1 in search space for the next iteration.

The two stages of building the Fibonacci branch for the global
optimization in space are shown in Fig. 3.

As can be seen from Fig. 3, the depth of the Fibonacci branch
layer illustrated in the figure is initialized as expected, and the
number of the points in every branch layer is kept to the sequence
of Fibonacci number. The white dashed circle in the figure repre-
sents the search points set of the previous iteration, the black solid
circle denotes the endpoints XA in the current iteration, and the
global random endpoints XB are represent in the gray solid circle.
Figure 3(a) shows the first global searching stage of the global
optimization process, the segmentation points XS1 which are
represented by the solid white line circle are constructed on the
basis of global random points and XA. The second local optimiza-
tion stage is illustrated in Fig. 3(b), with the best fitness points XA

in the search space of the current iteration and the rest endpoints
of XB, the new segmentation points XS2 can be obtained by itera-
tive rules. The fitness values of XA, XB, XS1, and XS2 are to be
evaluated, and the best found FP+1 solutions with optimum object
function evaluations need to be saved.

Figure 4 exposes the flowchart of the general procedures for
the specific implementation of FBS, and the Pseudo-code of the
FBS is shown in Algorithm 1.

Algorithm 1 Pseudo-code of the FBS algorithm
Initialization

1. Determine the maximum iteration number (N ) and the
depth of the Fibonacci branch (R)

Iteration
2. While predefined maximum number of iterations is not

achieved
3. While the termination criterion |G| = FR not satisfied do

searching and optimization phase

Fig. 2. Basic structure of the proposed FBS.
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4. Choose the search points set G in the defined space and set
the initial number of branch layer Fj

5. Calculate the shortening fraction Fj/Fj+1 and generate XB,
XS1 according to rule one

6. Measure the fitness of these points based on the objective
function model and perform the analysis to identify the
optimal points with the best fitness value

7. Take the best points and XB in current points set to generate
XS2 from equation (7) of rule two

8. Save the top Fj+1 points and update the set G to the new
saved points for the next branch layer iteration

9. Set j = j+ 1 and go to the line 3

10. End while
11. Save the optimum solution points of the current iteration

in search set space and go to line 2.
12. End iteration and output the optimal points

The proposed FBS algorithm mentioned above utilizes the inter-
active global searching and local optimization to obtain the global
optimal solution so that it can take advantage of the global ran-
domness and local convergence to get rid of the local minima.
The generated points in each layer of the whole branch depend
on the optimum elements with the best fitness value in the previ-
ous branch layer which can assure the global optimum solution in
search space.

FBS-based beamformer design and implementation of ABF
with the proposed FBS

As explicitly described previously, ABF is an effective technique
used to mitigate interference and improve overall SINR perform-
ance by altering the radiation pattern of an antenna array; how-
ever, typically, the low nulling levels toward multiple
interference sources and non-globally optimal weight vector are
two major drawbacks of the MVDR beamforming technique
[23]. Therefore, the proposed FBS algorithm is applied to the
ABF with ULA in this section for achieving the improved per-
formance of this technique.

ABF model integrated with FBS

The description of the beamforming model has already been
given in section “ABF system model of ULA and problem state-
ment”, each adaptive beamformer in the model aims at calculat-
ing the complex weight vector that satisfies the requirement of
maximizing the output SINR; in this work, the proposed FBS
incorporated into the beamforming model will extract the best
array excitation weights through maximizing the objective func-
tion based on SINR.

Equation (16) indicates how the ABF design problem is setup
for the FBS-based optimization.

XmFi = wm, m = 1, 2 . . . , M, Fi ≤ FR, (16)

where wm is the mth excitation weight of the array element.XmFi is
the Fith search point at the mth dimension of the ith branch layer,
M is the total number of ULA, R is the depth of the branch. The

Fig. 3. The process of building the Fibonacci branch for global optimiza-
tion. (a) The first global searching stage. (b) The second local optimiza-
tion stage.

Fig. 4. Flowchart of Fibonacci branch search optimization method.
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weights are interpreted here as the optimization points of the
Fibonacci branch in the search space. The initial population of
the weights is determined by the layer I with FI search points,
and the weight vectors of entire population generated as the
search points at the first layer can be written in the format as
below:

WMFI =

w11 w12 . . . w1FI
w21 w22 . . . w2FI

..

. ..
. ..

.

wM1 wM2 . . . wMFI

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦, (17)

where WMFI is the weight vectors containing FI agents with M
sensors representing the dimension of the search points, e.g.
every agent will have the M weight elements. FI is the Ith
Fibonacci series chosen as the total number of the points at the
first layer of the Fibonacci branch. Each complex weight of
WMFI in the array element has amplitude and phase. Then, the
proposed new optimization algorithm FBS is deployed to adjust
the current amplitude and phase coefficients of the weight factor
to provide the maximum beam pattern toward desired signals as
well as making the deep nulls toward the undesired ones to
achieve the maximum SINR. Thus, the optimization formulation
process of the ABF problem will try to maximize the fitness func-
tion constructed from the perspective of the SINR accordingly for
the calculation of the complex excitation weight using FBS, and
the fitness function designed in this text can properly be stated
in the following form

Fitness Function(w) = Pd∑Q
i=1 Pi + PN

, (18)

where

Pd = 1
2
E[|wTXd|2] (19)

Pi = 1
2
E[|wTXi|2] (20)

are, respectively, the power of the desired signal and the power
corresponding to the ith interference, PN is the noise power.Xd

and Xi denote the desired signal and interference component of
the received signal in equation (1)

Then, the design objective function (18) can properly be stated
in the following form

Fitness Function(w) = wTRdw

wT
∑Q

i=1 Riw + s2
noisewTw

, (21)

where Ri and Rd are the covariance matrix of the ith interference
and the desired one. The noise variance is calculated from the
value of signal-to-noise ratio (SNR) in dB as follows:

s2
noise = 10−SNR/10. (22)

In addition, an important feature of the beamformer is that it
can form the desired radiation beams, such as the formation of
the low sidelobe beams and the flat-top beams. Thus, the next

step in the design process is to formulate the other objective func-
tion that is to be minimized for the sidelobe reduction problem.
An array consisting of identical and identically oriented elements
has a far-field radiation pattern that can be expressed as the prod-
uct of the element pattern and a factor that is widely referred to as
the array factor. The objective function we defined used the array
factor in such a way that the objective of the optimization is sat-
isfied. The fitness function to be minimized with the optimization
algorithms to introduce the deeper null and reduce the relative
sidelobe level (SLL) is given in

FitnessSLL =
∑
k

|AF(uk)| + 10log10
AF(uMSL)
AF(uML)

( )
, (23)

where uk is the direction of the interference, uMSL is the angle of
the maximum SLL, uML is the angle of mainlobe. AF(u) is the
array factor of the uniform linear array, and can be written as [23]

AF(u) = 1
Q

∑Q
q=1

wqe
−j2pl (q−1)dcos(u−wq), (24)

where Q is the number of array elements, u is the angular region
of interests. wq is the weight at the element q.wq determines the
excitation phase of the qth element.

Consequently, for array design with suppressed SLL and deep
null control simultaneously, both terms of equation (23) are used
in the fitness evaluation. By optimizing the fitness function
defined in this section, the optimal excitation weight correspond-
ing to the minimum level of the interference sources and lowest
SLL but with the desired user gain of the beamformer can be
achieved by the proposed FBS optimization algorithm. Next sec-
tion of the paper provides a brief description of the implementa-
tion steps for extracting the weight using FBS method.

Implementation flowchart of Fibonacci branch search to ABF

In this subsection, in light of the results described in detail previ-
ously, an optimization scheme of ABF problem that combines
with the novel FBS is presented to enhance the maximum power
for target signal and generate deep nulls for interferences with
the lowest sidelobe. The basic idea of the design of such an adaptive
beamformer is to utilize the global searching and local convergence
capability of the novel efficient search algorithm to reduce the local
minimum problem of the solution to weight vector and satisfy the
requirements to the created multi-objective optimization problem
from (21) and (23) for getting the maximum SINR and the min-
imum SLL. The general procedures for the implementation of
the FBS method with application to ABF are presented in Fig. 5,
in which the key steps are briefly described below.

(a) Choose the depth R of Fibonacci branch to determine the
population FR of the top branch layer, and set the maximum
number of iterations of the optimization process.

(b) Initialize the population of the first branch layer Fj and deter-
mine the dimension of the weight vectors acted as search
points in space according to the element number of ULA.
Also, define the amplitude search space of the weight within
[0, 1] and limit the range of weight phase to [−p, p].

(c) Assign the values to the amplitude and phase of the weight
elements inside the search space for constructing the initial
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population of the weight vector set Gw , the weight element in
the vector sets Gw constructed by the amplitude and phase
can be expressed as follows:

w j d = r and [0, 1] · e j·rand[-p,p], (25)

where the generated weight wj d represents the dth dimension of
the jth individual in the population, d [ [1, M(dimension
of the search space)], j [ [1, Fj(population of the vectors)], rand
[ · ] denotes the random value generation in the range.

(d) Take the random amplitude and phase values in search space
for generating the Fj population of the weight vectors wB

which is acted as the global search points.
(e) Set the vector elements of Gw and wB as the endpoints in

equation (9) and compute the first set of weights wS1 accord-
ing to the iterative rule one.

(f) Calculate the fitness in the object function of (21) and (23)
using Gw , wB, and wS1, then give the evaluation to the values
to find the best weight vector wbest with the maximum fitness
value among all the vectors in space.

(g) Generate the second set of weight vectors based on the best
weight vector wbest and the other weights from the weight
space set using equation (9) in iterative rule two.

(h) Select the top Fj+ 1 best weight vectors depending on the max-
imum fitness value in the optimization process and these best
weights are selected to compose the newpopulationof the setGw .

(i) Check the termination criteria Gw = FR. If the termination
criteria not satisfied, then increment j and go to step (d).
Otherwise, stop.

( j) If the maximum number of iterations is not reached, repeat
the algorithm from step (d), or else report the output results
and terminate.

Simulation results

Verification of the proposed FBS

In order to validate and analyze the efficiency and effectiveness of
the proposed FBS, the algorithm is verified from the following
aspects in simulation experiments:

(1) The accessibility to the global optimum of the proposed
search algorithm for multimodal function with numerous

local optima is revealed by the location history of the search
points toward the optimal point.

(2) The convergence of the FBS is proved and discussed by the
presented gradient of the iteration curves which manifested
the convergence rate speed and the average fitness of the cho-
sen benchmark function.

(3) The optimization precision of the solution and other relevant
optimization assessment aspects of the proposed algorithm
are tested on eight representative standard benchmark func-
tions and the results are compared with the typical heuristic
algorithms.

The details of the parameter settings for every heuristic algorithm
used in the experiments are given in Table 1.

All the experimental tests are implemented on Intel (R) Core
(TM) i7-7700 HQ Core Processor at 2.8 GHz and 2.8 GB RAM,
and all the MH algorithms are coded and carried out in Matlab
2017b version under the Windows10 Professional.

The location history of the search points in FBS for Langermann
function
In this section, the global optimization ability of the proposed FBS
is demonstrated by employing the location history of the search
points during optimization process for locating the global opti-
mum solution rather than trapping into local optimization of
the benchmark example, with results compared against metaheur-
istic PSO algorithm. The benchmark function chosen in this sec-
tion is the Langermann function with several known local optimal
points and one global optimum solution point which is taken
from [24, 25] and is summarized in Table 2. As can be found
in Table 2, two typical extreme points existed in the function,
the extreme point 1 shown in the table is the global optimum
solution, and the extreme point 2 is the local suboptimal solution.
The three-dimensional Langermann function and contour plots
are illustrated in Fig. 5.

The performance of the proposed FBS in terms of the move-
ment trajectory of the search points scattering around the best
solutions and converge toward the optimal point in the search
space for Langermann is illustrated in Fig. 6(b). This figure
shows that the FBS model is able to simulate the position history
of search points in three-dimensional and trajectory contour plots
over different iterations. For the verification of the results, we
compare our algorithm to PSO with these same works and pro-
vide the results in Fig. 6(a). The initial position of the search
points in both FBS and PSO is set at the extreme point 2.

Fig. 5. Three-dimensional and contour plots for the
Langermann function. (a) Three-dimensional plots of
Langermann function. (b) Contour plots of Langermann
function.
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As the results exhibited in Fig. 6, the search points tend to
explore the promising regions of the search space and cluster
around the global optima eventually in multimodal Langermann
pattern. From the results depicted in Fig. 6(a), we can know that
as the number of iterations increases, the points of PSO algorithm
gradually cluster around the extreme point 2 and proceed toward
local optima, and almost no particles enter the region near the glo-
bal optimum extreme point 1, reflecting the further evidence that
PSO inherently suffer from local optima entrapment and stagna-
tion in the search space. Under the same conditions, it can be
seen from the trajectories and 3D version of the search points as
shown in Fig. 6(b), although the Langermann function is non-
symmetry and multimodal with different levels of peaks; finding
its global optimum is challenging due to many local minima in
the search space; remarkably, FBS is to be extricated from initial
local optimum at extreme point 2 and jump out of the trapped
solution in a local optimum point assisted by global random
searching; it is evident from the location history of the search
points during the process of converging toward the global optima
that the points grow toward the optimal point from the area of ini-
tialization, tending to scatter around extreme points gradually and
moving toward the best solutions in the search space in both 2D
and 3D spaces over the course of iteration. More than half of the
agents had already approached the global optimum valley after
the first 50 iterations and begun converging on the optimum. As
iteration increases, there are more agents that aggregate at the
extreme points and scatter around the extreme point, especially
attracted intensively at the global optimum target region.
Eventually, the search points found the global optimum and con-
verged toward the global optima. This can be discussed and rea-
soned according to the global randomness concepts introduced
by the endpoints XB, which is generated in rule one of FBS; fur-
thermore, the convergence of FBS is guaranteed by the local
exploitation optimization ability emphasized in the other endpoints
XA of the proposed algorithm. Since the global random points tend

to move from a less fit universe to a more fit universe by global
searching in space, the best universe is saved and moved to the
next iteration. Consequently, these behaviors and abilities will assist
the FBS not to become trapped in local optima and converge
toward the target point quickly in the iterations of optimization.

The above simulations and discussions demonstrate the effect-
iveness of the FBS algorithm in finding the global optimum in the
search space; the convergence performance and the rate of obtain-
ing the global optima of the proposed algorithm by employing a
set of mathematical functions are to be investigated in the next
sections.

Convergence performance of the multimodal function
To confirm the convergence behavior of the proposed algorithm,
in this subsection, we provide the convergence curve objective fit-
ness value of the typical benchmark functions obtained by the
best solutions so far in each iteration. A large set of complex
mathematical benchmark functions to be tested is listed in
Table 3. These functions have many local optima which make
them highly suitable for benchmarking the performance of the
metaheuristic algorithms in terms of optimization and conver-
gence exploration. The illustrated results are compared against
that of PSO, GA, CLPSO, DE, and ABC metaheuristic algorithms
on the same set of multi-dimensional numerical benchmark func-
tions. The properties and the formulas of these functions are pre-
sented below.

Figure 7 presents the convergence characteristics in terms of
the best fitness value of the median run of each algorithm for
the test functions. Comparing the results and the convergence
graphs, among these six algorithms, we observe that the proposed
algorithm has good global search ability and converges fast. FBS
achieved better results on all multimodal groups than the com-
parison algorithms, it surpasses all other algorithms apparently
on functions 1, 2, 5, and 6, and especially significantly improves
the results on functions 1 and 2. The other algorithms show
poor performance on the complex problems since they miss the
global optimum basin to approach the optimal fitness. The
Schwefel’s function is a good example, as it traps all other algo-
rithms in local optima, while the FBS successfully avoids falling
into the deep local optimum which is far from the global opti-
mum. On the complex multimodal functions with randomly dis-
tributed local and global optima, FBS performs the best. It should
also be noted that the FBS algorithm in the graphs exhibited the
superiority regarding the convergence speed over the other five

Table 1. Reference parameters of the algorithms briefly used in this study

Particle Swarm Optimization (PSO) Genetic Algorithm (GA) Comprehensive Learning PSO (CLPSO)

Population size Np = 20 Population size Np = 20 Learning probability 0.05–0.5

Cognitive ratio c1 = 2 Mutation probability Pm = 0.05 Population size Nc = 20

Social coefficient C2 = 2 Cross probability Pc = 0.7 Cognitive ratio c1 = 2

Inertia weight 0.4–0.9 Rate of chromosome elite Pe = 0.2 Social coefficient C2 = 2

Inertia weight 0.4–0.9

Differential Evolution (DE) Artificial Bee Colony (ABC) Fibonacci Branch search (FBS)

Population size Np = 20 Colony size Cs = 20 Nested branch depth 2

Scaling factor F = 0.6 Onlooker bees percentage Lp = 50% Total branch depth 6

Crossover rate CR = 0.8 Scout bees Sb = 1 Search space [Min, Max]

Table 2. Langermann benchmark function

Extreme point Extreme point 1 Extreme point 1

Evaluation in
[29]

Global optimum solution Local suboptimal
solution

Langermann
function

fL(2.003, 1.006) = −5.1612 fL(7, 9) = −3
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algorithms, it converges to a global optimum solution with less
fitness evaluations and terminates after no more than 5000 itera-
tions on functions 1, 3, and 4, and always converges faster than
others on the remaining functions.

These figures also prove that FBS not only improves the accur-
acy of the approximated optimum initial, but also desirably
enhances the convergence speed over the course of iterations
that make it converge faster than the other algorithms. Global
random property and space region shortening fraction guarantees
a satisfactory convergence speed. Other algorithms could not con-
verge as fast as the FBS, since they have a large potential search

space. The proposed FBS combines global searching method
and local optimization strategy together to yield a balanced per-
formance that achieves better fitness and faster convergence.
Besides, the convergence speed is a crucial parameter of real-time
applications like ABF system; thus, the FBS is highly suitable and
affordable for ABF.

Minimization result of the tested benchmark functions
In this subsection, experiments were conducted on a suite of
multimodal functions illustrated in Table 3 to evaluate six opti-
mization algorithms including the proposed FBS. All the test

Fig. 6. Location history of the search points in three-dimensional and contour plots for the Langermann function over the course of different iterations. (a)
Three-dimensional plots of Langermann function. (b) Contour plots of Langermann function. (a).1 Visualization results in three dimension for tested Langermann.
(a).2 Visualization results in contour plots for tested Langermann. (a) Behavior results of the points location history in PSO. (b).1 Visualization results in three dimen-
sion for tested Langermann. (b).2 Visualization results in contour plots for tested Langermann. (b) Behavior results of the points location history in FBS.
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functions are to be minimized and the relevant information can
be found in [26, 27] for the standard benchmark functions,
respectively. For the selected benchmarking problems F1–F8,
the dimension of these functions is set to 10. Every algorithm
runs 1000 times independently to reduce the statistical error
and achieve reliable results.

The statistical results considering the average value and the
standard deviation function fitness value as well as the success
rate needed to reach the acceptable solution are summarized in

Table 4. For the results shown in Table 4, the mean value is smal-
ler, the performance of the algorithm is better. The standard devi-
ation value is lower, the stability of the algorithm is stronger. As
seen, for most benchmark data sets, the average value and the
standard deviation calculated by the FBS are both smaller than
those for other algorithms, and the proposed algorithm surpasses
all other algorithms on functions 1, 2, 3, 5, 6, and 7, and especially
significantly improves the results on functions 1 and 3. When the
other algorithms find their own best fitness of these functions, the

Table 3. The details of multimodal benchmark functions (D: dimensions)

No. Function Formulation D Search range Global optima

F1 Griewank
∑D
i=1

x2i
4000 −

∏D
i=1

cos xi�
i

√
( )

+ 1 10 [−600, 600] 0

F2 Rastrigin
∑D
i=1

(x2i − 10cos(2pxi)+ 10) 10 [−5.12, 5.12] 0

F3 Michalewicz2 −∑D
i=1

sin(xi)sin
ix2i
p

( )20
10 [0, p] −1.8013

F4 Rosenbrock
∑D
i=1

100(xi+1 − x2i )
2 + (xi − 1)2 10 [−2.048, 2.048] 0

F5 Ackley −20exp −0.2

��������
1
n

∑D
i=1

x2i

√( )
-exp 1

n

∑D
i=1

cos(2pxi)
( )

+ 20+ e 10 [−32, 32] 0

F6 Schwefel 418.9829× D−∑D
i=1

xisin |xi |12
( )

10 [−500, 500] 0

F7 Weierstrass ∑D
i=1

∑kmax

k=0

[akcos(2pbk(xi + 0.5))]

( )
− D

∑kmax

k=0

[ak cos (2pbk(xi × 0.5))]

a = 0.5, b = 3, kmax = 20

10 [−0.5, 0.5] 0

F8 Salomon −cos 2p

������∑D
i
x2i

√( )
+ 0.1

�����������∑D
i
x2i + 1

√
10 [−100, 100] 0

Fig. 7. Convergence behavior of the FBS and other optimization algorithms on 10-D benchmarking functions F1–F8. (a) F1: Griewank; (b) F2: Rastrigin; (c) F3:
Michalewicz2; (d) F4: Rosenbrock; (e) F5: Ackley; (f) F6: Schwefel; (g) F7: Weierstrass; (h) F8: Salomon.
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Table 4. The comparative and statistical results for benchmarking function problems F1–F8

Method

F1.Griewank F2.Rastrigin F3.Michalewicz2 F4.Rosenbrock

Mean Stev SR (%) Mean Stev SR (%) Mean Stev SR (%) Mean Stev SR (%)

ABC 4.73 × 10−3 6.51 × 10−3 52 1.43 × 10−2 4.59 × 10−3 30 −1.6325 × 100 1.56 × 10−3 32 3.67 × 101 1.90 × 100 0

DE 7.38 × 10−6 6.51 × 10−7 100 2.55 × 10−3 7.18 × 10−4 55 −1.7428 × 100 8.36 × 10−7 90 8.37 × 101 3.27 × 10−1 8

GA 6.81 × 10−1 7.49 × 10−2 20 5.29 × 10−1 1.21 × 10−2 11 −1.6715 × 100 4.83 × 10−4 44 9.42 × 101 2.15 × 10−2 0

PSO 5.27 × 10−3 3.45 × 10−3 49 7.61 × 10−3 8.29 × 10−2 38 −1.7002 × 100 3.95 × 10−3 84 2.69 × 100 1.90 × 100 6

FBS 2.54 × 10−9 1.47 × 10−8 100 9.53 × 10−5 2.17 × 10−6 86 −1.8013 × 100 7.48 × 10−6 100 2.98 × 10−2 5.61 × 10−4 29

CLPSO 6.01 × 10−5 4.32 × 10−6 100 6.18 × 10−4 7.18 × 10−3 74 −1.7332 × 100 6.28 × 10−5 90 4.39 × 10−2 4.03 × 10−1 12

Method F5.Ackley F6.Schwefel F7.Weierstrass F8.Salomon

Mean Stev SR (%) Mean Stev SR (%) Mean Stev SR (%) Mean Stev SR (%)

ABC 8.87 × 10−3 2.98 × 10−2 47 3.85 × 10−2 3.53 × 10−3 18 6.13 × 10−5 9.09 × 10−6 100 3.85 × 10−2 1.12 × 10−3 19

DE 9.27 × 10−7 9.69 × 10−7 100 1.53 × 10−3 6.25 × 10−6 68 1.08 × 10−8 4.17 × 10−9 100 6.43 × 10−3 6.82 × 10−4 47

GA 1.46 × 10−2 5.32 × 10−3 29 1.85 × 10−1 3.74 × 10−3 11 4.28 × 10−3 9.64 × 10−6 82 2.67 × 10−2 6.63 × 10−2 29

PSO 6.09 × 10−5 5.49 × 10−4 92 5.87 × 10−3 3.68 × 10−4 66 5.27 × 10−6 3.64 × 10−6 100 5.74 × 10−4 2.63 × 10−3 68

FBS 4.34 × 10−7 5.74 × 10−8 100 2.53 × 10−4 6.25 × 10−6 74 6.77 × 10−9 7.54 × 10−11 100 7.74 × 10−5 9.48 × 10−5 85

CLPSO 5.74 × 10−6 5.84 × 10−8 100 6.53 × 10−3 7.43 × 10−3 59 9.65 × 10−9 8.53 × 10−10 100 6.24 × 10−5 9.48 × 10−4 92
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proposed FBS could still search the better fitness closest to
the optimal value. The CLPSO achieved the similar results as
the FBS on function 7, and they both are much better than the
other variants on this problem. The DE also performs well on
multimodal problems. The DE performed similarly with the
FBS on functions 1, 3, 5, and 7. However, the FBS performs better
on much more complex problems when the other algorithms miss
the global optimum basin.

As a result, in terms of performance in the global search ability
and the optimization stability for benchmarking function, the
proposed FBS outperformed all other heuristics algorithms on
the tested functions. Also, this table illustrates that FBS in com-
parison with others displays the highest percentage and accuracy
of reaching to the acceptable solutions on these test functions. For
the mean reliability of test functions F1, F3, F5, F7, FBS exhibits
the highest reliability of 100% success rate and smallest average
errors. This performance superiority property is due to the
FBS’s interactive updating rule. With the new updating rule and
global randomness, different dimensions may learn from different
exemplars based on the historically optimal search experience,
and the FBS explores a larger search space than the other compar-
isons. Because of this, the FBS performs comparably to or better
than many MH algorithms on most of the multimodal problems
experimented in this section.

The performance of the FBS in ABF model application

To demonstrate the benefits of the FBS optimization with appli-
cation to ABF, in this part of the section, several groups of simu-
lation experiments are conducted using Matlab R2017b. The
performance of the FBS-based ABF was evaluated from the fol-
lowing two simulation metric aspects: the beampattern perform-
ance of the adaptive antenna array and the steady state output
SINR of the beamformer system. A uniform linear array with
the inter-element spacing of half wavelength is considered in
the simulation. The desired signal is in the form of QPSK modu-
lation mode with 0° for incident azimuth angle and the three sin-
gle frequency interfering sources with 10 interference-to-noise
(INR) ratio are assumed to impinge on the antenna array from
the azimuth directions 20, 40◦, and −20◦, respectively. The
desired signal and jammers are all arranged to be coming from
zeniths 45◦. Simulation environment is the additive white
Gaussian noise channel.

The proposed FBS-based beamforming method is compared
with the following four conventional heuristics-based beamform-
ing algorithms: (1) the differential evolution (DE)-based

beamforming method of [27], (2) the particle swarm optimization
(PSO)-based beamforming method of [28], (3) the comprehensive
learning particle swarm optimization (CLPSO)-based beamform-
ing method of [29], (4) the artificial bees colony (ABC)-based
beamforming method of [30], and (5) Genetic Algorithm
(GA)-based beamforming method of [31]. A total of 300 repeti-
tions are implemented and then averaged to obtain each figure
of the results.

Beampattern performance results
In this subsection, the effectiveness and applicability of the pro-
posed FBS-based beamformer are investigated by the power pat-
terns formed by different types of the metaheuristic-based
beamformers. The determined optimized antenna element cur-
rent amplitudes are applied to minimize the peak SLL and to
place nulls in the desired directions based on the MATLAB plat-
form, the optimized results are compared with the above-
mentioned algorithms. Four groups of simulation cases conducted
in terms of various simulation metrics are considered in this
study. The first simulation example is with different number of
interference sources and the second case considers the different
number of array elements. The performance measurement on
the input SNR is studied in the third case. The last case illustrates
the sidelobe reduction and deep nulls executed by the optimiza-
tion algorithms based on fitness function (23).

Simulation case one: input SNR evaluation: We first examine
the beampattern performance synthesized by the FBS and com-
pared to the others given in [28–32] in terms of input SNR in
this case. A uniform linear array with six omni-directional
antenna elements is considered in the simulation. For investigat-
ing the effect of the input SNR with different levels, we consider

Fig. 8. Comparison of the beampattern performance synthesized by the heuristic algorithms with different SNR. (a) SNR = 10 dB; (b) SNR =−10 dB; (c) SNR =−30 dB.

Table 5. Comparison of average nulling level toward interference sources for
different SNR scenarios

Method

Scenario (dB)

SNR = 10 dB SNR =−10 dB SNR =−30 dB

FBS −89.07 −79.29 −61.62

DE −74.28 −62.33 −55.67

CLPSO −78.67 −72.67 −58.20

PSO −70.29 −60.98 −49.25

GA −54.87 −42.72 −31.82

ABC −51.26 −37.66 −28.32
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three sets of input SNR with SNR = −30 dB, SNR = −10, and
SNR = 10 to check the validity of our approach. Figure 8 shows
the behavior of the beampatterns synthesized by the weight vec-
tors determined by the optimization algorithms under different
SNR, and to more clearly illustrate the nulling degrees and nulling
level of each method, the nulling results corresponding to Fig. 8
are shown in Table 5. It can be seen from the figures that the
weight vectors found by FBS could synthesize the inerratic beam-
pattern with deeper nulling (with nulling level exceeding −70 dB)
toward the interference compared to the other algorithms. The
proposed FBS-based adaptive beamformer has suppressed the
jammers in all cases while maintaining the beampattern gain in
the direction of the desired signal. The other algorithms are
able to achieve the interference nulling performance for a higher
SNR level, i.e. SNR = 10, as the level of SNR decreases, the com-
pared beamformers, especially ABC-based beamformer and
GA-based beamformer, suffer from performance degradation of
the corresponding metaheuristic-based beampatterns, and the
nulls do not align precisely with the interference sources. This
indicates that the proposed algorithm is more stable and finds bet-
ter solutions with greater precision in ABF application.

Simulation case two: array element number investigation:
Beampattern performance regarding the number of array ele-
ments has been evaluated in the second case study; adaptive
beamformer arrays that consist, respectively, of 6, 10, and 14
were concerned in the simulation experiments. Input SNR was
fixed −5 dB. The proposed FBS in comparison with the other
metaheuristic algorithms is applied to search for the optimum
element phases and amplitude of the uniform linear array to
achieve target pattern by considering these three cases with differ-
ent element numbers. Optimization results of the beampatterns
are illustrated in Fig. 9. To avoid showing the confusing results
and better distinguish the nulling level, Table 6 illustrates the spe-
cific nulling level in different array elements scenarios. The results
depicted in Fig. 9 show that the proposed FBS achieves better per-
formance than the other algorithms with the same number of
array elements. It means FBS possesses superior performance as
compared to DE, CLPSO, GA, PSO, and ABC because it creates
deeper null toward the interference direction while maintaining
the power at the desired direction. As the number of the elements
increases from 6 to 14, the beampattern formed by the other
methods particularly for the ABC and GA are deteriorating and
almost fail to work in steady state, that is, the performance dispar-
ity between proposed algorithm and the compared algorithms is

expected to increase further with higher number of array ele-
ments, this is due to the increase of the number of elements
results in the increase of searching dimension of the solution,
which inherently increases the difficulty of the optimization prob-
lem, and the global search optimization ability of the FBS
algorithm is more suitable for the multi-dimensional solution of
the large array elements to improve the beampattern performance.

Simulation case three: interference sources number assessment:
In order to fully verify the beampattern performance,
different types of multiple interference scenarios were simulated
to validate the proposed approach for ABF applications in this
case. A uniform linear array of 12 omni-directional antenna ele-
ments was adopted in this subsection. All scenarios have one
desired signal at us = 0◦ while the number of interference
changes in each one. The first two target interferences source
is assumed to be impinging on the array from −20 and
40◦, and the four received interferences that impinge at
ui = {20◦, 40◦, − 20◦, 30◦} are considered in the second scenario,
finally, the third scenario concerns six interferences with incident
angle ui = {20◦, 40◦, − 20◦, 30◦, 65◦, − 70◦}. In each scenario,
the FBS and other optimization algorithms are applied to find
the optimal excitation vectors, respectively, that produce a main
lobe toward us and nulls toward ui. The graphs shown in
Fig. 10 represent the optimized beampattern for all the scenarios
studied here. All the radiation pattern results presented in Fig. 10
show that FBS-based beamformer is a robust technique capable of
improving the radiation characteristics with better performance

Fig. 9. Comparison of the beampattern performance synthesized by the heuristic algorithms with a different number of array elements. (a) Six elements; (b) 10
elements; (c) 14 elements.

Table 6. Comparison of average nulling level toward interference sources for
different array elements scenarios

Method

Scenario

Six elements
(dB)

Ten elements
(dB)

Fourteen
elements (dB)

FBS −69.07 −83.29 −93.62

DE −64.28 −72.33 −85.67

CLPSO −61.67 −66.24 −78.20

PSO −52.29 −60.98 −69.25

GA −44.87 −52.72 −61.82

ABC −41.26 −47.66 −58.32
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than the conventional optimized beamformer whatever the num-
ber of interference signals is. The FBS-based beamformer exhibits
more prominent behavior regarding the steering ability increasing
the nulling levels in Fig. 10(c), i.e. the superiority of FBS in scen-
ario 3 is more apparent than the other two cases. When the num-
ber of interference sources increases, it is more difficult for the
other optimization algorithms to enhance the null level in the
interference direction. Therefore, these results demonstrate that
the superior exploratory and exploitive properties of FBS applied

to ABF have resulted in better beam-steering and interference
mitigation performances in all three cases, especially for the mul-
tiple interference sources.

Simulation case four: evaluation of the SLL of the beampattern:
The proposed FBS and other selected comparison algorithms in
the last case determine the weight of each array element for
achieving the lower sidelobe. The receiving linear antenna arrays
composed of 12, 14, and 16 monochromatic isotropic radiating
elements considered for reference in different simulation

Fig. 10. Comparison of the beampattern performance synthesized by the heuristic algorithms with a different number of interferences. (a) Two interferences; (b)
four interferences; (c) six interferences.

Fig. 11. Beampattern with reduced sidelobe produced by the proposed FBS and other comparison optimization algorithms for a different number of array ele-
ments at diverse interference angles. (a) Twelve elements with prescribed null at 47°, −66°; (b) 14 elements with prescribed null at 50°, −35°; (c) 16 elements
with prescribed null at 68°, 56°.

Fig. 12. SINR performance versus SNR of the heuristic algorithms with varied array elements. (a) Six elements; (b) 10 elements; (c) 14 elements.
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scenarios. Suppose four interferences from respective different
angles impinge on the ULA, each scenario has one desired signal
at us = 0◦. The INR of all the simulation scenarios is fixed at 30
dB. Figure 11 displays the graphical beampattern comparison of
the optimized array factor with reduced SLL. It can be seen
from Fig. 11 that the symmetry of array factors makes the array
radiation pattern more regular than the conventional beamfor-
mers, and the proposed FBS provides a better reduction in SLL
as compared to arrays optimized using other algorithms; also, it
is observed from the figure that null depth in the interference dir-
ection synthesized by FBS is superior to the others. The following
Table 7 and Table 8 show the specific values of the maximum SLL
of each algorithm for the ULA. The simulation results in the table
confirm the superiority of the proposed FBS via specific max-
imum SLL and reduction degrees. The maximum SLL obtained
using the FBS with 12, 14, 16 elements is −43.68, −45.62,
−48.29 dB, respectively, and the improvement of sidelobe reduc-
tion level by FBS, compared to ABC which performs worst
among comparisons in each case, is 26.96, 26.36, and 25.18 dB.
It should be also noted even for relatively good performance of
the DE and the CLPSO, the maximum SLL obtained using FBS
is better than their results, and the evidence for FBS superiority,
which are 12.19, 9.35, and 8.61 dB SLL improvement compared
to DE which possesses the suboptimal performance in different
cases. Thus, FBS demonstrates a better exploitative ability than
other compared algorithms in ABF model.

Output SINR performance results
This section will illustrate different scenarios for system output
SINR using FBS and other optimization algorithms for searching
for suitable weight vectors feed to fulfill required SINR perform-
ance. Numerical simulations to investigate the SINR perform-
ance of the proposed algorithms in terms of the useful metric
are carried out. The first two cases are studied with a different
number of the array elements and interferences. The rest case
concerns the different INR of input interference in front of a
ULA system. The SINR performance of all the tested algorithms
in the results of the figures is measured by the increasing input
SNR value for various simulation conditions, and the SNR is
assumed to be changed from −25 to 5 dB (centered at −10 dB)
in 5 dB steps. All cases have one user at 00, while the number
of interferences and elements and input INR changes in each
scenario.

Simulation case one: four interference with 20 dB INR consid-
ered varied elements: The first case is two interference signals at

20 and 40° with 5 dB INR. The linear arrays are considered to
be composed, respectively, of 6, 10, and 14 elements. The results
of the output SINR are illustrated in Fig. 12. From the graphs, it
can be noticed that the proposed algorithm outperforms the
others for all the array element scenarios and is able to achieve
near-optimal performance over the entire range of the input
SNR values; CLPSO yields suboptimal higher values of SINR
but FBS yields optimal SINR values consistently in all cases.
Moreover, we can also observe that the performance difference
in reaching optimum weight vectors between the FBS and other
algorithms is increasing for the array element increment in each

Fig. 13. SINR performance versus SNR of the heuristic algorithms with different INR. (a) INR = 5 dB; (b) INR = 20 dB; (c) INR = 35 dB.

Table 7. Maximum sidelobe level achieved by using FBS, DE, CLPSO, PSO, ABC,
GA for different number of array elements

Algorithms

Elements number (dB)

12 14 16

FBS −43.68 −45.62 −48.29

DE −35.02 −36.27 −39.68

CLPSO −31.49 −32.04 −34.52

PSO −27.64 −29.04 −30.19

GA −24.78 −26.81 −28.62

ABC −16.72 −19.26 −23.11

Table 8. Comparison of average nulling level toward interference sources for
different numbers of interference scenarios

Method

Scenario

Two
interference

(dB)

Four
interference

(dB)
Six interference

(dB)

FBS −86.02 −69.95 −61.37

DE −68.45 −51.67 −43.29

CLPSO −63.73 −49.65 −39.04

PSO −49.91 −32.73 −29.93

GA −42.46 −29.40 −23.37

ABC −41.75 −27.81 −24.03
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algorithm, this is consistent with previous results in section
“Simulation case two: array element number investigation”
owing to the increasing search dimension of the weight vectors
solution in array element. With a view to the above fact, the global
search capability of the proposed FBS algorithm could achieve the
improvement of the output SINR more so than the compared
metaheuristic-based beamformer in the adaptive beamformer
system.

Simulation case two: four interference with different INR
impinge on six-element array: A ULA consisting of six monochro-
matic isotropic elements receiving four interferences with differ-
ent INR from respective 200, 400, 650, and −700 is considered
in this scenario. Three groups of INRs of the interference set as
5, 20, 35 dB are established in different simulation scenarios.
Figure 13 displays the SINR performance of these techniques ver-
sus the SNR under different power levels of interference sources
by using the proposed and the compared optimization algo-
rithms. From the results depicted in Fig. 13 we can know that,
in general, the optimization algorithms are all able to achieve
near-satisfactory SINR performance in the situation of INR = 5
dB, which means the lowest power process of the interference sig-
nal. The proposed algorithm achieved improved the performance
in SINR than the other algorithms in all the simulations even
under the most severe interference process when the value of
INR is 30 dB. With the increasing of INR for the interference,
the SINR performance of all the algorithms are degraded, and
the proposed algorithms have evident advantages over these algo-
rithms; therefore, note that the proposed algorithm can perform
more robust results and suitable precisions in ABF for high inter-
ference power levels.

Simulation case three: different number of interferences with
fixed INR received by six-element array: To prove the robustness
of the proposed beamformer in this project, the simulations in
this case were conducted to validate the effect of the interference
quantity to the SINR performance, the beamformer is equipped
with six array elements and the INR was fixed to 10 dB for the
received interference signals, Table 9 illustrates the different num-
ber of interferences and the corresponding incident angle values
of the above-mentioned interferences. The SINR performance of
the proposed FBS and other optimization algorithms for different
numbers of interference signals is shown in Fig. 14. As can be
seen from Fig. 14, when there is one interference at the receiver,
all the optimization algorithms can achieve the close-to-optimal
SINR performance by considering the requirement for maximiz-
ing SINR, FBS demonstrates the best improvement, followed by
DE. ABC shows the lowest value of SINR. As the number of inter-
ference increases from one to six, the superior performance
advantage of the FBS becomes more evident. The increase in
the number of interference sources increases the difficulty of the
optimization problem. Failure of ABC, GA, and PSO to achieve
sufficiently high SINR clearly illustrates their limitations; there-
fore, the proposed FBS is more versatile and robust than the
other optimization methods in ABF application.

Conclusions

In this paper, we presented a novel global optimization heuristic
algorithm, called FBS, which is based on the use of the
Fibonacci number series, to achieve the improved performance
of the ABF. The interactive global and local searching rule was

Table 9. Different number of interferences for three scenarios

Scenario one Scenario two Scenario three

Interference Incident angle Interference Incident angle Interference Incident angle

1 40 1 40 1 40

2 −20

2 −20 3 −45

4 −30

3 −45 5 35

6 60

Fig. 14. SINR performance versus SNR of the heuristic algorithms with a different number of interferences. (a) One interference; (b) three interferences; (c) six
interferences.
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proposed to reduce the probability of falling into the local optima
problem, and the global randomness characteristic and space
region shortening fraction of this technique guarantee the conver-
gence velocity in the global optimization process. Numerical
multimodal benchmarking functions were employed to validate
the effectiveness of these global optimization algorithms, and
we found that generally FBS achieves a better convergence rate,
precision, and stability compared to the others. In addition, we
devise the specific implementation architecture based on FBS
for adaptive beamformer; the amplitudes and phases of the weight
vector acting as the solution were acquired in the search space by
the FBS, and the beamforming results synthesized by the vectors
were compared with conventional metaheuristic-based beam-
forming algorithms. The simulation experiments of section
“Conclusions” demonstrate that the proposed beamforming
method outperformed the compared methods significantly
regarding the power beampattern and the output SINR for differ-
ent scenarios. Consequently, the proposed FBS is a valuable tool
for multi-objective optimization and well suited for ABF design
problems, and it seems to be a quite promising smart antenna
using beamforming technology. In the future work, the FBS will
be explored to apply on a more complicated time-varying situ-
ation in ABF field.
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