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RELATIONAL EXCHANGEABILITY

HARRY CRANE,∗ Rutgers University

WALTER DEMPSEY,∗∗ Harvard University

Abstract

A relationally exchangeable structure is a random combinatorial structure whose
law is invariant with respect to relabeling its relations, as opposed to its elements.
Historically, exchangeable random set partitions have been the best known examples
of relationally exchangeable structures, but the concept now arises more broadly when
modeling interaction data in modern network analysis. Aside from exchangeable random
partitions, instances of relational exchangeability include edge exchangeable random
graphs and hypergraphs, path exchangeable processes, and a range of other network-like
structures. We motivate the general theory of relational exchangeability, with special
emphasis on the alternative perspective it provides and its benefits in certain applied
probability problems. We then prove a de Finetti-type structure theorem for the general
class of relationally exchangeable structures.
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1. Introduction

The traditional theory of exchangeability concerns families of random variables whose
distribution is invariant with respect to symmetries of a well-defined index set. This includes
the classical study of exchangeable sequences (Xi)i∈I , which satisfy (Xσ (i))i∈I

D= (Xi)i∈I for all

bijections σ : I → I, with ‘
D=’ indicating equality in distribution. The concept naturally extends

to two-dimensional arrays (Xij)i,j∈I and arbitrary d-dimensional arrays (Xi1···id )i1,...,id∈I , for
which exchangeability implies that

(Xσ (i1)···σ (id))i1,...,id∈I
D= (Xi1···id )i1,...,id∈I for all permutations σ : I → I.

An exception to this setup arises in the study of exchangeable random partitions, which
were initially studied by Kingman [21] as models for classification of species in ecology,
and have since proven useful throughout population genetics [17] and statistical applications
for clustering [24]; see [11] for a recent survey. In this case, exchangeability is defined as
symmetry with respect to relabeling of an equivalence relation.
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Relational exchangeability 193

As we discuss in further detail below, Kingman’s theory of exchangeable partitions arises
naturally in certain genetic and ecological contexts, in which a random sample of units
are partitioned according to their membership in otherwise unlabeled categories. Here we
expand upon Kingman’s initial treatment by describing a general class of random structures
whose distributions are exchangeable with respect to relabeling of their relations. The theory
of relational exchangeability presented here is thus a refinement of Kingman’s theory of
exchangeable partitions and the theory of edge exchangeable random networks. Before
characterizing this class of structures, we first discuss several motivating examples.

1.1. Exchangeable partitions

Consider a random sequence X = (X1, . . . , Xn) taking values in an at most countable set S.
For concreteness, we may regard S as a set of species, so that X records the species for a random
sample of animals from a certain population. From X , we define an equivalence relation ‘∼X ’
on [n] := {1, . . . , n} by

i ∼X j if and only if Xi = Xj. (1.1)

We write �(X ) = {B1, B2, . . .} to denote the set partition whose blocks B1, B2, . . . are the
equivalence classes induced by ‘∼X ’. We sometimes write ‘∼�’ in place of ‘∼X ’ when
convenient.

Suppose now that X = (X1, . . . , Xn) is exchangeable, meaning that

(Xσ (1), . . . , Xσ (n))
D= (X1, . . . , Xn)

for all permutations σ : [n] → [n]. Then exchangeability of X induces exchangeability on
the equivalence relation � :=�(X ) as defined in (1.1) in the sense that �σ

D=� for all
permutations σ : [n] → [n], with �σ defined by

i ∼�σ j if and only if σ−1(i) ∼� σ
−1( j).

A key difference between exchangeable sequences and exchangeable partitions is that the
equivalence classes in a set partition are unlabeled. As there are no definitive characteristics of
the elements independent of how they relate to each other through the equivalence relation, the
exchangeability condition is thus a distributional invariance of the associated relation instead of
a distributional invariance with respect to the relabeling of the unobserved labels (i.e. species).

1.2. More general structures

The above theory of exchangeable random partitions can be refined to a wider class of
structures that arise in modern data science and network analysis applications. Consider, for
example, a uniform random sampling of emails from a database, e.g. the Enron email dataset
[22]. If emails are sampled sequentially from the database then the resulting data structure
takes the form of a sequence of binary relations among individuals in a population, i.e. the
sequence of sender–receiver pairs corresponding to a given email exchange, as in Figure 1,
below.

Whereas email correspondences are binary (i.e. a communication between caller and
receiver), other common network structures may not be. Common examples of generic
interaction networks include the network of actor collaborations formed by sampling from
the Internet Movie Database (IMDb) or the network of scientific coauthorships obtained by
sampling articles from arXiv. These examples give rise to edge-labeled hypergraphs, as shown
in Figures 5 and 6, below.
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194 H. CRANE AND W. DEMPSEY

Still other examples arise, as in the path-labeled networks of Figure 7, below, which
might represent the network structure obtained by sampling paths in the Internet. Such path
sampling mechanisms were critical to the early studies of Internet topology; see, e.g. [1] for
some discussion of traceroute sampling and its impact on network analysis. We discuss these
examples in further detail in Section 3.

The above examples are special cases of what we call relational structures. These structures
are relational by virtue of their being observed by sampling a relation (e.g. species, phone call,
movie collaboration, coauthorship, path between routers, etc.). The theory emerging is thus
different from more traditional theories of exchangeability, for which the natural sampling
unit, and thus the invariance, is defined with respect to relabeling of the underlying population.

As we observe beginning in Section 2, exchangeable relational data structures exhibit differ-
ent probabilistic behaviors than more traditional exchangeable array data. A key difference lies
in the assumed observation mechanism: whereas a random sequence (X1, . . . , Xn) represents
individual measurements taken on a sample of n distinct individuals, a random partition of
[n], as in (1.1), represents a composite binary relation on [n]. The difference is subtle, as
can be seen through the different theories for exchangeable random sequences (de Finetti’s
theorem) and exchangeable random partitions (Kingman’s theorem). We begin in Section 2
with a discussion of edge exchangeable random networks, the simplest nontrivial extension
of Kingman’s theory. We focus specifically on the distinction between the vertex- and edge-
centric perspectives of network data, and why the latter is most appropriate for modeling
networks constructed from sampled interactions, as in the Enron dataset. In Section 3, we
extend this perspective to multiway interactions, such as networks constructed by observing
scientific collaborations and paths in the Internet. In Section 4, we generalize these special
cases into a framework for relationally labeled structures and prove our main theorem,
which characterizes the probabilistic structure of relationally exchangeable structures uniquely
in terms of a class of interaction propensity processes. By specializing our theory to the
case of exchangeable equivalence relations, we recover Kingman’s paintbox correspondence.
However, the argument needed to obtain our general representation requires a careful handling
of elements called ‘blips’, which correspond to the ‘dust’ in the special case of Kingman’s
theorem. We make concluding remarks in Section 5.

2. Edge-centric view of network structures

Consider sampling uniformly at random from a database of telephone calls exchanged
among individuals in a countable set S. The sampling procedure results in an (S × S)-valued
sequence X = (X1, . . . , Xn), where each Xi is an ordered pair (ci, ri) representing the caller ci

and receiver ri. Such a call sequence can be represented by a vertex-edge labeled network in a
straightforward way. For example, the sequence of ordered pairs given by

X1 = (a, b), X2 = (c, a), X3 = (d, e), X4 = (a, c) (2.1)

can be represented by a network-like object as shown in Figure 1(a).
Assuming that the sequence X is exchangeable induces a related exchangeability property

on the induced vertex-edge labeled structure. By exchangeability of X , the model assigns equal
probability to any two structures that are isomorphic up to relabeling edges, as in Figure 1(a)
and (b). If we further assume that X = (X1, X2, . . . ) is countably infinite, then the one-to-one
correspondence between the sequence X and its vertex-edge labeled network representation
implies that the class of models for such data is determined by de Finetti’s theorem for
exchangeable sequences.
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FIGURE 1: (a) Representation of the sequence of ordered pairs in (2.1). (b) Representation of the
sequence of ordered pairs in S = {a, b, c, d, e} with X′

1 = (c, a), X′
2 = (d, e), X′

3 = (a, c), and X′
4 = (a, b).

The object in (b) can be obtained from that in (a) by reordering (X1, X2, X3, X4) as (X2, X3, X4, X1). In
both (a) and (b), the edges are labeled according to where they appear in the sequence.
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FIGURE 2: (a) Edge-labeled network induced by disregarding vertex labels in Figure 1(a). (b) Edge-
labeled graph induced by disregarding vertex labels in Figure 1(b). The graphs in (a) and (b) have equal

probability under an edge exchangeable model.

But in much the same way that the species ‘names’ are disregarded when representing the
classification of animals by a partition whose (unlabeled) blocks represent the class of animals
of a given species, the essential structure of the call sequence is determined by the network
structure obtained by disregarding the vertex ‘names’ in Figure 1. A key observation, which
guides our development of the general theory below, is that exchangeability of the structure in
Figure 1 is induced by the invariance of X with respect to relabeling its indices. In the vertex-
edge labeled network representation, the indices labeling X correspond to the edge labels,
thus giving rise to the concept of edge exchangeable random graphs, whose distributions are
invariant with respect to arbitrary relabeling of their edges, as shown in Figure 2.

The principle of edge exchangeability was described in [13] and [14] as an alternative to
the more conventional property of vertex exchangeability exhibited by graphon models, e.g.
[6], [8], and [19]. A similar nonparametric Bayesian treatment of edge exchangeability was
described in [9] and [10]. Edge exchangeability has a number of statistical and practical
implications, which improve upon known drawbacks of vertex exchangeable models. For
example, although real-world networks are widely believed to be sparse, it is well known
that vertex exchangeable models are appropriate only for modeling networks that are ‘dense’.
Edge exchangeable models, on the other hand, are able to handle sparsity in a natural and
computationally tractable way. (See [14, Sections 4–6] for an illustration of the computation
aspects of edge exchangeable models, in particular the instantiation of the Hollywood model
in [14, Section 4].) Here we build upon these observations toward a more general theory
of structures behaving in an analogous way to exchangeable random partitions and edge
exchangeable random graphs.

To appreciate the new perspective offered by the theory of edge and relationally exchange-
able networks presented here, it is important to clarify how the edge-centric perspective arises
naturally out of our motivating example of phone call sampling. In the vertex-edge labeled
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FIGURE 3: (a) Vertex-labeled network induced by disregarding edge labels in either Figure 1(a) or (b).
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FIGURE 4: Three vertex-edge labeled networks with the same induced edge structure, as shown in the
edge-labeled network on the right.

structure in Figure 1, it may seem natural to consider the vertex labels a, b, c, d, and e as
arbitrary ‘names’ chosen from S. Since the names are arbitrary, a standard line of reasoning
may lead to the conclusion that the specific names do not matter, and thus that the model
should be invariant under arbitrary reassignment of vertex names, as illustrated in Figure 3.
But it is important to bear in mind that vertex exchangeability assumes not only distributional
invariance with respect to relabeling of the sampled vertices, but also invariance with respect
to relabeling of both sampled and unsampled vertices, thus implying that the observed vertices
are representative of the population of all vertices (sampled and unsampled). In our running
example, this is simply not the case, as uniform random sampling of telephone calls makes the
observed vertices a size-biased sample according to their relative frequency of appearance in
the database.

We conclude this section with a formal definition of the edge-labeled graphs shown in
Figure 4, which serves as a precursor of our general framework of relational exchangeability
below. Just as we disregarded the species names in passing from X to its induced equivalence
relation ‘∼X ’ in (1.1), we may also disregard the vertex labels in Figure 1 to obtain an
edge-labeled graph, as shown in Figure 4. The edge-labeled graph is defined formally as the
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equivalence class X∼= of all sequences X ′ that yield the same structure as X after removing
vertex labels:

X∼= := {X ′ : [n] → S × S | ρ X ′ = X for some bijection ρ : S → S}. (2.2)

Here we overload notation by allowing the bijection ρ : S → S to act on S × S by (c, r) �→
(ρ(c), ρ(r)), so that ρ X ′ := ρ ◦ X ′ : [n] → S × S is well defined by composition of functions.
Exchangeability of X immediately implies edge exchangeability of the edge-labeled graph
associated to X∼=.

Though the definition in (2.2) may appear foreboding at first, we stress that it is merely
the extension of (1.1) to sequences of ordered pairs. In particular, if we let X : [n] → S be a
sequence of species labels, as in the discussion preceding (1.1), then the analog to (2.2) is

X∼= = {X ′ : [n] → S | (ρ(X′
i))i∈S = (Xi)i∈S for some bijection ρ : S → S},

which is exactly equivalent to the relation ‘∼X ’ defined in (1.1). We explain this notation
further in our technical treatment given in Section 4. But first we present additional examples
to illustrate the breadth of the framework presented here.

3. Multiway interaction networks: extending the edge-centric perspective

In the previous section we discussed data structures constructed from sampled phone calls
involving exactly two individuals, a caller and receiver. But many real-world networks are
constructed from interactions involving two or more constituent elements. For example, let S
represent a set of scientists, and let X = (X1, . . . , Xn) record names of coauthors on a collection
of n scientific journal articles sampled uniformly from a database, such as arXiv. Then each Xi

is a finite subset {si,1, . . . , si,ki} ⊂ S and the data sequence X1, . . . , Xn gives rise to a vertex-
hyperedge labeled structure.

Suppose that we observe the following sequence of ordered pairs obtained by the above
procedure with n = 4:

X1 = {a, b, c}, X2 = {a, c}, X3 = {b, d, e}, X4 = {a, d, f , g}. (3.1)

As with the example from the previous section, the vertex labels serve only to distinguish
among the observed elements. Once the relations of all observed vertices are recorded, through
the induced network structure, these vertex labels can be disregarded. So while the data
is observed in the form of a sequence, the essential structure can be represented by the
hypergraph-labeled structure on the right-hand side of Figure 5.

The assumption that articles were observed by uniform sampling again makes X an
exchangeable sequence, which in turn induces exchangeability on the associated hyperedge-
labeled network constructed by disregarding vertex labels in the induced network structure in a
manner analogous to the construction of edge-labeled graphs from the equivalence class (2.2).
See Figure 6 for an illustration.

3.1. Examples of relational structures

Here we briefly describe additional relational structures that commonly arise in modern
statistical applications and share the same essential structure as the above two examples. Each
example points toward the basic structure of relationally exchangeable networks given in the
next section. The α-structures of Section 4 unify these various structures into a single formal
mathematical framework for studying relationally exchangeable structures.
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FIGURE 5: (a) Network representation of the sequence in (3.1). Note that the ‘triangle’ with vertices
a, b, and c is labeled 1, the ‘line’ with ends a and c is labeled 2, the ‘triangle’ with vertices b, d, and
e is labeled 3, and the ‘rectangle’ with vertices a, d, f , and g is labeled 4. (b) Network representation
of the sequence X1 = (b, c, e), X2 = (b, e), X3 = (c, f , g), X4 = (b, f , h, k). (c) Edge-labeled hypergraph

induced by removing vertex labels from the networks in both (a) and (b).
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FIGURE 6: Two edge-labeled hypergraphs equivalent up to reordering of their edge labels. The graphs in
(a) and (b) have equal probability under a hyperedge exchangeable model.

We start with a similar example to the previous scientific collaboration network. Let S
represent a set of individuals, and let X = (X1, . . . , Xn) record names of senders and recipient
lists of n emails sampled uniformly from an email database. Each Xi is an ordered pair
(si, (ri1, . . . , riki)) consisting of a single element of S (the sender) and a vector of elements of S
of some finite, arbitrary length (the recipients). In an email network, we could further classify
the recipients as ‘direct recipients’ (i.e. listed in the ‘to’ field of the email), or recipients who
were in the ‘cc’ or ‘bcc’ field of the email. This additional classification adds structure to the
data. Our more general treatment of α-structures is helpful to represent this structure.

For another example, let S be a set of Internet Protocol (IP) addresses and let each entry of
X = (X1, . . . , Xn) correspond to the path traversed by a message sent between two IP addresses
over the Internet. Each Xi corresponds to a path (si, ai,1, . . . , ai,ki , ti) from source si to target
ti by passing through the intermediate nodes ai,1, . . . , ai,ki , altogether indicating that the path
from s to ai,1 to ai,2 and so on until passing from si,k1 to ti. If X was obtained, for example, by
uniform random sampling of source-target pairs (si, ti) and then by applying an algorithm, such
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FIGURE 7: Both (a) and (b) correspond to structures induced by taking the equivalence class over paths
between vertices. In this illustration, all paths have the same source vertex and each path is labeled by a
line type, so that the structure in (b) can be obtained by re-typing the paths from (a) (i.e. type 2 to 4, 3 to

2, and 4 to 3).

as traceroute, to obtain a path between si and ti, then the sequence of paths X is exchangeable
and, therefore, so is the induced path-labeled structure shown in Figure 7. Note in Figure 7 that
each path is labeled by a distinct line type, thus preserving the structure of the data in the same
manner that is was observed. The more conventional approach to representing network data as
a graph loses information about the dependency of the network on the path structure.

Another example in the realm of networks is to take each Xi to be an r-step ego network,
obtained, e.g. by snowball sampling a neighborhood of size r from a randomly chosen
vertex. The relationally labeled structure is constructed by piecing together the neighborhoods
obtained from the r-neighborhoods of n randomly chosen ‘egos’ in this population. We omit
the details of this example and instead move on to our general treatment.

Myriad other data structures arise according to a similar recipe as those above: let S be a
set of elements, and let R be a set of relations on the elements in S; sample an exchangeable
sequence X taking values in R; construct a structure from X (as in Figures 1 and 5) and obtain
the corresponding relationally labeled structure by removing the vertex labels (as in Figures
4, 6, and 7). The resulting structure is exchangeable with respect to relabeling of its relations,
a property which we call relational exchangeability. We now define this notion formally and
prove a generic structure theorem for infinite relationally exchangeable structures. The formal
statement is given in Theorem 4.1. Our formal definition of relational structures and proof
of the associated structural theorem offer a rigorous probabilistic foundation for statistical
modeling of relational structures.

4. Relational exchangeability

Let (S, S) be any Borel space. A countably infinite sequence of S-valued random variables
X = (X1, X2, . . . ) is exchangeable if Xσ D= X for every permutation σ : N →N, where Xσ :=
(Xσ (1), Xσ (2), . . . ) is the reordering of X according to σ . By de Finetti’s theorem [16], the
distribution of every such countably infinite sequence can be expressed as a mixture of
independent, identically distributed (i.i.d.) sequences. In particular, with P(S) denoting the
space of probability measures on (S, S), there is a unique probability measure φ on P(S) such
that the distribution of X can be expressed as

P( X ∈ ·) =
∫
P(S)

ν∞( · )φ(dν), (4.1)
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where ν∞ denotes the infinite product measure induced by ν on S∞. We call the measure φ in
(4.1) the de Finetti measure of X .

De Finetti’s theorem figures into our treatment of relationally exchangeable structures,
which we now define. Note that all of the previous examples, and many more that could arise
in practice, involve relational structures as they are defined in the coming section. Example 4.1
provides a concrete illustration.

4.1. Relational structures

Let α= {R1, R2, . . .} be a countable collection of relation symbols, and let α : N →N ∪{0}
be a signature such that α ( j) = 0 implies that α (k) = 0 for all k ≥ j. An α-structure with
domain A is a collection A= (A; RA

1 , RA
2 , . . .), where A is a set and each RA

j ⊆ Aα ( j) is a

relation of arity α ( j) on A. We adopt the convention that A0 :=∅, so that RA
j =∅ whenever

α( j) = 0. When discussing these structures below, we may sometimes leave the domain
implicit, writing A= (RA

1 , RA
2 , . . . ) if no confusion will result.

Remark 4.1. Although the α-structures defined above seem to be nonstandard in the probabil-
ity literature, they are a standard object in the mathematical field of model theory, e.g. [18], and
they provide a useful setting in which to study general exchangeable structures, as we do here.
For example, the framework of α-structures has proven a powerful technique in very recent
studies of exchangeable structures in theoretical and applied probability theory [2], [4], [3],
[12], [15]. In our treatment below, we leverage this theory to study a general class of structures
that arise naturally in applied probability and statistics.

Note that the domain A is for a particular α-structure. In the remainder of the text, the
population of constituent elements take labels in Z. Therefore, every α-structure has domain A
that is a finite subset of Z. An α-structure pertaining to a caller–receiver pair, for example,
will have domain A of cardinality two; that is, A is the set of labels used to indicate the two
individuals involved in the phone call. Of course, the actual elements of Z used to identify the
particular caller and receiver are immaterial. For a set of α-structures, we are simply interested
in the relations, not the identities of the constituent elements. Therefore, we will investigate
the equivalence class of sets of α-structures with the same inherent relational structure.

We write dom A := A for the domain of A and FINα for the set of all α-structures A
with finite dom A⊂Z = {. . . ,−1, 0, 1, . . .} such that

∑∞
j=1 |RA

j |<∞, where |S| denotes the
cardinality of a set S. Writing dom A⊂f Z to denote that dom A is a finite subset of Z, we have

FINα :=
{
A= (A; RA

1 , RA
2 , . . . ) : dom A⊂f Z and

∞∑
j=1

|RA
j |<∞

}
.

The condition
∑

j≥1 |RA
j |<∞ implies that to every A ∈ FINα there is an rA :=

max{k ≥ 1: RA
k �=∅}<∞, making it convenient to sometimes express A ∈ FINα as

(dom A; RA
1 , . . . , RA

rA ) by omitting the infinite sequence of empty relations after rA. We note
that the set FINα is countable.

For any A∗ ⊇ A and any injection ρ : A∗ → A′, there is an induced action on
A= (A; RA

1 , RA
2 , . . . ) by A �→ ρ(A) = (ρ(A); Rρ(A)

1 , Rρ(A)
2 , . . . ), with dom ρ(A) = ρ(A) :=

{ρ(a) : a ∈ A}, and

(ρ(a1), . . . , ρ(aα ( j))) ∈ Rρ(A)
j if and only if (a1, . . . , aα ( j)) ∈ RA

j (4.2)

for each j = 1, 2, . . ..
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For n ≥ 1 and any subset of finite α-structures R⊆ FINα for which each A ∈R has
dom A⊂f Z, we consider the set R∼=

[n] of equivalence classes of R-valued sequences x : [n] →
R obtained as follows. Any x : [n] →R determines a relationally labeled structure by
removing the labels of the elements contained in each of the x (i) while maintaining the
integrity of the overall structure induced by x. Formally, we define the relationally labeled
structure induced by x as the equivalence class

x∼= := {x′ : [n] →R | ρ x′ = x for some bijection ρ : Z →Z}, (4.3)

where ρ x : [n] →R is defined by (ρ x)(i) = ρ(x (i)) as in (4.2). We write R∼=
[n] as the set of all

x∼= constructed from some x : [n] →R in this way.

Remark 4.2. (Notation.) Below we reserve lowercase letters x, y, . . . for generic (nonrandom)
objects and uppercase letters X, Y, . . . for random objects. We use bold letters x, y, . . . for
generic (nonrandom) functions x : [n] →R and X, Y, . . . for random functions X : [n] →R.

Example 4.1. In this example, we demonstrate how the modern data structures introduced in
Section 1 fit into the framework of α-structures. For this, we write A= (A; RA

1 , RA
2 , . . . ) as an

α-structure with dom A= A and α varying according to the context.

(a) For α (1) = 1 and α (k) = 0 for k ≥ 2, each α-structure A is determined by a subset RA
1 ⊆

A. If we then choose R⊆ FINα to consist of all singleton subsets of Z, so that each RA
1

has the form {i}, i ∈Z, then the equivalence class of x : [n] →R in (4.3) corresponds to
the equivalence relation induced by x as in (1.1).

(b) For α (1) = 2 and α (k) = 0 for k ≥ 2, each α-structure A with dom A= A corresponds
to a binary relation RA

1 ⊆ A2. Taking R⊆ FINα to consist of all structures with RA
1 =

{(i, j)} for i �= j corresponds to sampling from the phone call database in Section 1: each
sampled Xk = {(i, j)} corresponds to a caller–receiver pair (i, j). The equivalence class
x∼= gives an edge-labeled (directed) graph as in Figure 2. (To get an undirected graph,
we would take each RA

1 to consist of symmetric pairs {(i, j), (j, i)}.)
(c) Taking α( j) = j for all j ≥ 1 means that any α-structure is determined by a collection

RA
j ⊆ Aj of subsets of j-tuples for every j ≥ 1. If we take R⊂ FINα to consist of only

those α-structures of the form RA
k = {(aσ (1), aσ (2), . . . , aσ (k)) : permutations σ : [k] →

[k]} for some k ≥ 1 and RA
j =∅ for all j �= k, then the elements A ∈R can be used to

represent the set of coauthors in a sample of articles.

(b) A small alteration of the previous α-structure can be used to represent the sender–
receiver pair list in a sample of emails. Take α(1) = 1 and α(j + 1) = j for all j ≥ 2.
Then take R⊂ FINα to consist of only those α-structures of the form RA

1 = {(a1)}
and RA

k+1 = {(aσ (1), aσ (2), . . . , aσ (k)) : permutations σ : [k] → [k]} for some k ≥ 2 and

RA
j =∅ for all j �= k ≥ 2.

(e) Also for α( j) = j for all j ≥ 1, if we take R⊂ FINα to consist of only those α-structures
of the form RA

k = {(a1, a2, . . . , ak)} for some k ≥ 1 and RA
j =∅ for all j �= k, then each

A ∈R corresponds to a path from a1 to ak, as discussed at the end of Section 1.

Note that the above formalism applies to structures with multiple relations, e.g. a graph with
a distinguished community of vertices would have α(1) = 2 (for the binary relation of edges),
α(2) = 1 (for the distinguished subset of vertices), and α(k) = 0 for k ≥ 3.
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Example 4.1 demonstrates that α-structures are well-defined mathematical objects which
compactly represent a wide range of relational structures prevalent in modern statistical
settings. Examples of α-structures include graphs, hypergraphs, partitions, unary relations,
and much more general structures. Our main theorem, Theorem 4.1, establishes a generic
construction for infinitely exchangeable sequences of relational structures. This theorem will
provide a necessary probabilistic foundation for research into statistical modeling of modern
relational datasets.

4.2. Relational exchangeability

Our discussion below considers the case of random structures labeled by the countable
set N, which are those structures constructed just as in (4.3) but for a countable sequence
x : N →R. It is important to note the difference between the index set N and the domain of
the structures in R, which we take to be Z. The domain labeling is ‘quotiented out’ in (4.3),
while the indexing N remains, serving as the ‘edge labels’ in the associated interpretation as
an edge-labeled graph in Figure 2.

We write R∼=
N

to denote the set of such structures and we equip R∼=
N

with the Borel σ -field
associated to its product-discrete topology induced by the following metric. For any x∼= ∈R∼=

N

and n ≥ 1, we define the restriction Rn x∼= of x∼= to R∼=
[n] as the structure obtained by taking any

x′ ∈ x∼= (i.e. x′ : N →R for which there exists ρ such that ρ x′ = x), restricting its domain to
[n] by x′|[n] : [n] →R, i �→ x′ (i), and putting Rn x∼= := (x′|[n] )∼= as in (4.3). It is clear from the

definition of R∼=
N

that this is well defined and does not depend on the specific choice of x′ ∈ x∼=.
We then define the metric on R∼=

N
by

d( x∼=, x′∼= ) := 1

1 + sup{n ≥ 1: Rn x∼= = Rn x′∼=} , x∼=, x′∼= ∈R∼=
N
,

with the convention that 1/∞ = 0, under which R∼=
N

is compact.
For any permutation σ : N →N, we define the relabeling of x∼= ∈R∼=

N
by σ as the structure

xσ∼= obtained by first choosing any x′ ∈ x∼= and putting xσ∼= := ( x′ ◦σ )∼=, where x′ ◦σ : N →R
is defined by the usual composition of functions, ( x′ ◦σ )(i) := x′ (σ (i)). It is once again clear
that this does not depend on the specific choice of representative x′ ∈ x∼= since the actions of
ρ : N →N and σ : N →N commute for all x′, i.e. ρ( x′ ◦σ ) = (ρ x′ ) ◦ σ .

Definition 4.1. (Relational exchangeability.) A random structure X∼= ∈R∼=
N

is relationally

exchangeable if Xσ∼=
D= X∼= for all permutations σ : N →N.

4.3. Representation theorem

Our main theorem establishes a generic construction for infinite relationally exchange-
able structures X∼= in R∼=

N
. The construction proceeds by sampling a sequence X1, X2, . . .

conditionally i.i.d. in a related space R� and then modifying these observations to obtain a

new sequence X† := (X†
1, X†

2, . . . ). We then construct the equivalence class X†∼= based on the

sequence X†
1, X†

2, . . . as in (4.3). Since stating the theorem formally requires some new ideas
and notation, we give the construction and key ideas of the proof prior to stating the result in
Theorem 4.1.

As above, let α : N →N ∪{0}, and let R⊆ FINα be a set of α-structures such that
α ( j) = 0 implies that α (k) = 0 for all k ≥ j and each A ∈R has dom A⊂f Z. Since R is

https://doi.org/10.1017/jpr.2019.13 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.13


Relational exchangeability 203

at most countable, we may fix an ordering R= {Sn}n≥1 of its elements. Given any A=
(dom A; RA

1 , RA
2 , . . . ) ∈ FINα and any [0, 1]-valued sequence (Ti)i∈Z , we define TA :≡ T ◦A

as the α-structure TA with dom (TA) := {Ti : i ∈ dom A} and relations RTA
j given by

(Ta1 , . . . , Taα( j) ) ∈ RTA
j if and only if (a1, . . . , aα( j)) ∈ RA

j (4.4)

for each j = 1, 2, . . .. We then define

S[0,1] :=
⋃
n≥1

{TSn : T = (Ti)i∈Z ∈ [0, 1]Z}

as the set of α-structures obtained by associating [0, 1]-valued labels to the elements of R.
More generally, if (	i)i∈domA is a collection of subsets 	i ⊆ [0, 1], then we define 	A by

	A := {TA : Ti ∈	i for each i ∈ dom A}.
We equip S[0,1] with the σ -field on S[0,1] generated by all sets of the form	A with A ∈R and
	= (	i)i∈domA a collection of Borel subsets of [0, 1].

From any x∼= ∈R∼=
N

and any sequence ξ = (ξi)i∈Z of i.i.d. Uniform [0, 1] random variables,
we write ξ x∼= to denote a random S[0,1]-valued sequence (Zi)i≥1 obtained by first taking
any representative x′ ∈ x∼= and then putting Zi = ξ x′ (i) for each i ≥ 1, with ξ x′ (i) defined
as in (4.4). Since x∼= is fixed in this example, each ξ x′ (i) corresponds to an assignment
of Uniform[0, 1] random labels to the elements in the domain of x′ (i). Since ξi �= ξj with
probability 1 for all i �= j, it is immediate that the distribution of ξ x∼= does not depend on the
manner in which representative x′ is chosen.

Now, for any infinite relationally exchangeable structure X∼= ∈R∼=
N

and a sequence ξ of
Uniform[0, 1] random variables independent of X∼=, ξ X∼= = (Zi)i≥1 defines a random sequence
obtained by putting Zi = ξ x′ (i) for a representative x′ ∈ x∼= on the event X∼= = x∼=. By
exchangeability of X∼=, the sequence Z = (Zi)i≥1 obtained in this way is also exchangeable and
de Finetti’s theorem implies that Z is distributed as an i.i.d. sequence from a random measure
ν on S[0,1], as described in (4.1).

Given ν, we define the propensity of u ∈ [0, 1] in Z by

ν�(u) := ν({A ∈ S[0,1] : u ∈ dom A}), (4.5)

which equals the conditional probability of the event {u ∈ dom Zj} given ν for each j ≥ 1. It is
clear that, with probability 1, each u ∈ [0, 1] appears in either 0, 1, or infinitely many of the
relations (Zi)i≥1. First, if ν�(u)> 0 then the strong law of large numbers implies that u occurs
in infinitely many of the relations Zi with proportion ν�(u). If ν�(u) = 0 and u ∈ Zi for some i,
then the probability that u occurs in Zj is ν�(u) = 0 independently for each j �= i and, therefore,
u appears only once in Z with probability 1.

Clearly, the set U = {u : ν�(u)> 0} is at most countable since | dom (Zi)|<∞ for each
i = 1, 2, . . .. We can, therefore, order the elements of U as u1, u2, . . . such that ν�(uj) ≥
ν�(uj+1) for j ≥ 1, breaking ties ν�(v) = ν�(w) as follows. For each A ∈R, we define

ν�(u; A) := ν({TA : T = (Ti)i∈Z ∈ [0, 1]Z such that u ∈ dom (TA)}), u ∈ [0, 1],

to be the measure assigned to the subset of S[0,1] whose structure is consistent with A and
which contains u in its domain. Assuming that ν�(v) = ν�(w), we assign the smaller label to

https://doi.org/10.1017/jpr.2019.13 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.13


204 H. CRANE AND W. DEMPSEY

v if there is some k ≥ 1 such that ν�(v; Sj) = ν�(w; Sj) for all j< k and ν�(v; Sk)> ν�(w; Sk).
If ν�(v; Sj) = ν�(w; Sj) for all j ≥ 1 then we label v and w in increasing order, i.e. if we are
to assign labels j and j + 1 to v and w and if v<w, then we shall put uj = v and uj+1 = w;
otherwise, we put uj = w and uj+1 = v. The ordering U = (uj)j≥1 is thus uniquely determined
by ν and the fixed ordering of R chosen at the outset.

Now given U , for any A ∈ S[0,1], we define A� (suppressing the dependence on ν) by
replacing each occurrence of uj ∈ U by j and replacing each occurrence of v′ /∈ U in A by
a unique nonpositive integer z(v′) = 0,−1,−2, . . . so that, for v′, v′′ /∈ U and both in dom A
with v′ ≤ v′′, we have z(v′) ≤ z(v′′) and the z(v′) are chosen to be the largest possible nonpositive
integers that satisfy this condition. (For example, if v1 < v2 < v3 are the only elements in
dom A that are not in U , we assign z(v3) = 0, z(v2) = −1, and z(v1) = −2.)

Every A ∈ S[0,1] thus corresponds to a unique such A� and we define R� as the set of all
structures A� obtained in this way. Note that, since R is at most countable, so is R�. Also,
although we have constructed R� using U (and therefore ν), the set R� depends only on R,
justifying the term R-simplex in our definition of FR in (4.6) below.

The elements of R� are thus α-structures A� with dom A� ⊆Z. We define the R-simplex
FR by

FR :=
{
{( fB)B∈R� : fB ≥ 0 and

∑
B∈R�

fB = 1

}
, (4.6)

on which we equip the metric

dFR ( f , f ′) :=
∑
B∈R�

|fB − f ′
B|, f , f ′ ∈FR,

and the associated Borel σ -field.
Any f ∈FR determines a unique probability measure εf on R∼=

N
by first drawing X =

(X1, X2, . . . ) i.i.d. from
P(Xi =B | f ) = fB, B ∈R�, (4.7)

and then constructing X† = (X†
1, X†

2, . . . ) from X as follows. We initialize by putting m0 = 0.
For each n ≥ 1, given mn−1, we replace the nonpositive elements in dom Xn according to the
following rule.

(i) If dom Xn has no nonpositive elements then put mn = mn−1 and X†
n := Xn.

(ii) If dom Xn has nonpositive elements 0, . . . ,−k for k ≥ 0 then define X†
n by replacing

each occurrence of −i for 0 ≤ i ≤ k in Xn by mn−1 − i, then putting mn = mn−1 − k − 1
and keeping positive elements unchanged. See Example 4.2 below for an illustration.

Note the distinction between the use of nonpositive elements in the constructions of Xi and

X†
i , respectively. The nonpositive elements of each Xi ∈R� serve to denote the nonrecurring

particles that appear only within this particular relation. The nonpositive elements of X†
i , on the

other hand, serve to denote the nonrecurring particles across all relations in the sequence X†.

We define εf to be the distribution of X†∼= constructed by applying (4.3) to the sequence X†.
From ν, we define f ν = ( f νB)B∈R� ∈FR by

f νB := ν({A ∈ S[0,1] : A� =B}), B ∈R�. (4.8)
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This choice of f ν = ( f νB)B∈R� is uniquely determined by ν and the fixed ordering of R.
Conversely, given f = ( fB)B∈R� ∈FR, we construct a measure νf on S[0,1] to be the distri-
bution of ξY from (4.4) for Y drawn from distribution (4.7) and ξ = (ξi)i∈Z i.i.d. Uniform[0, 1]
independent of Y . Proposition 4.1 proves that the above procedure does not alter the random,
relationally labeled structure.

Proposition 4.1. Let X∼= be relationally exchangeable, and let θ = (θi)i∈Z be i.i.d.
Uniform[0, 1] independent of X∼=. Then (((θ X∼= )�)†)∼= = X∼= a.s., where (θ X∼= )� denotes the
application of � : S[0,1] →R� to each component of the sequence θ X∼=.

Proof. Let θ = (θi)i∈Z be i.i.d. Uniform [0, 1] independent of X∼=. Each event X∼= = x∼=
gives rise to a probability measure ν on S[0,1] through the de Finetti measure of θ x∼=; see
(4.1). Let U = (ui)i≥1 be the ordered subset of [0, 1] corresponding to the atoms of ν� as in
(4.5). Since θ is i.i.d. Uniform[0, 1], we have

P{θi �= θj for all i �= j} = 1,

which implies that distinct i, j ∈Z are labeled distinctly in θ x∼= with probability 1. In
particular, the nonpositive labels in (θ x∼= )� account for all those elements that appear in only
one entry of the sequence θ x∼=. It follows that ((θ x∼= )�)† ∈ x∼= with probability 1 and, thus,
(((θ x∼= )�)†)∼= = x∼= with probability 1 for all possible outcomes X∼= = x∼=. �
Example 4.2. To illustrate the above procedure, let R consist of the singleton sets ({i}),
i ≥ 1, just as in Example 4.1(a), written as {1}, {2}, . . . for simplicity. Let U = (ui)i≥1 be a
countable subset of [0, 1]. From R= {{1}, {2}, . . .}, we obtain R� = {{0}, {1}, . . .} since, for
any sequence T = (Ti)i∈Z and any {i}, i ≥ 1, the transformed relation T{i} ≡ {Ti} has either
Ti ∈ U or Ti �∈ U . If Ti = uk ∈ U then {Ti}� = {k} for k ≥ 1; and if Ti = v �∈ U then {Ti}� = ({0}).

Given ( f{0}, f{1}, . . . ) ∈FR, we generate a sequence X1, X2, . . . of singleton sets i.i.d.

as in (4.7), from which we obtain X†
1, X†

2, . . . by reassigning occurrences of 0 to the
greatest negative integer that has not yet appeared in the sequence. For example, if
the sequence begins {4}, {0}, {2}, {0}, {2}, {2}, {0}, . . ., then we reassign labels to obtain
{4}, {0}, {2}, {−1}, {2}, {2}, {−2}, . . .. Delabeling according to (4.3) (or equivalently (1.1))
yields the equivalence classes {1}, {2}, {3, 5, 6}, {4}, {7}.

For another example, let R consist of ordered pairs {(i, j)}, 1 ≤ i �= j<∞, so that we are in
the phone call example of Section 1. Let U = (ui)i≥1 be a countable subset of [0, 1]. Then

R� = {{(i, 0)} : i ≥ 1} ∪ {{(0, i)} : i ≥ 1} ∪ {{(0,−1)}, {(− 1, 0)}} ∪R,
since any T = (Ti)i∈Z and any {(i, j)} ∈R is transformed by T{(i, j)} = {(Ti, Tj)}, which may
have Ti = ui′ ∈ U and Tj = uj′ ∈ U in which case {(Ti, Tj)}� = {(i′, j′)}. If Ti = ui′ ∈ U and
Tj �∈ U , then {(Ti, Tj)}� = {(i′, 0)}. If Ti �∈ U and Tj = uj′ then {(Ti, Tj)}� = {(0, j′)}. If Ti, Tj �∈ U
then {(Ti, Tj)}� will equal {(0,−1)} or {(− 1, 0)} depending on whether Tj < Ti or Ti < Tj,
respectively.

The above construction gives the following representation theorem.

Theorem 4.1. Let α be a signature, R⊆ FINα , and fix an ordering R= (Sn)n≥1. Let X∼= be a
relationally exchangeable random structure in R∼=

N
. Then there exists a probability measure φ

on FR such that X∼= ∼ εφ , where

εφ( · ) =
∫
FR

εf ( · )φ(df ).
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A canonical version of the measure φ in Theorem 4.1 can be constructed as in (4.8), and
this is the measure we construct in the following proof.

Proof of Theorem 4.1. We proceed by constructing φ as in (4.8) and showing that Y†∼= ∼ εφ

satisfies Y†∼=
D= X∼=.

To see this, we first let ψ be the de Finetti measure on P(S[0,1]) (i.e. the space of probability
measures on S[0,1]) associated to ξ X∼= for ξ = (ξi)i∈Z i.i.d. Uniform[0, 1] independent of
X∼=. In particular, the distribution of ξ X∼= is conditionally i.i.d. from ν ∼ψ . The measure

ψ determines a measure φ on FR through (4.8). We need to show that Y†∼= ∼ εφ satisfies

Y†∼=
D= X∼=.

Given f ∼ φ, we construct Y = (Y1, Y2, . . . ) as conditionally i.i.d. from the distribution in
(4.7) and Y† as in (i) and (ii) above. Let U = (ui)i≥1 be the atoms of θ Y† for θ = (θi)i∈Z
i.i.d. Uniform[0, 1] independent of Y†, let ζ = (ζk)k≤0 be i.i.d. Uniform[0, 1] independent of
everything else, and define ξf = (ξi)i∈Z by

ξi =
{

ui, i ≥ 1,
ζi, otherwise.

First note that the conditional distribution of ξf Y† given f is the same as the conditional law

of θ Y† given νf , since the ξi for i ≥ 1 were constructed from the atoms of θ Y†∼=. Writing
D(X | Y) to denote the conditional distribution of X given Y , we thus have

D(ξf Y†∼= | f ) =D(θ Y† | νf ), (4.9)

D(ξf Y†∼= | f ) =D(θ X∼= | νf ), (4.10)

where (4.10) follows from the construction of φ from the de Finetti measure ψ of ξ X∼=. From
(4.9) and (4.10), it follows that

D((((ξf Y†∼= )�)†)∼= | f ) =D((((θ Y† )�)†)∼= | νf ),

D((((ξf Y†∼= )�)†)∼= | f ) =D((((θ X∼= )�)†)∼= | νf ),

and, thus,
D((((θ Y† )�)†)∼= | νf ) =D((((θ X∼= )�)†)∼= | νf ).

By Proposition 4.1, we have (((θ Y†∼= )�)†)∼= = Y†∼= a.s. and (((θ X∼= )�)†)∼= = X∼=, implying that

Y†∼=
D= X∼=, as desired. �

4.4. Special cases

As discussed in Example 4.2, the case in which R corresponds to the singleton sets {i} for
i ≥ 1 gives FR equal to the ranked simplex

�↓ :=
{

( f0, f1, . . . ) : f1 ≥ f2 ≥ · · · ≥ 0, f0 ≥ 0,
∑
i≥0

fi = 1

}
.

To see this, note that S[0,1] is the set of singleton elements of [0, 1], i.e.

S[0,1] := {{u} : u ∈ [0, 1]}.
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An exchangeable sequence X = (X1, X2, . . . ) in S[0,1] gives rise to a random countable subset
U ⊂ [0, 1] of elements that appear infinitely often among the Xi and its complement [0, 1] \ U
consisting of all elements appearing at most once among the Xi. In the construction of X† from
X described above, any occurrence Xi = {u} for u /∈ U gives rise to X�i = {0}, explaining why
the definition of FR in (4.6) corresponds to the simplex of elements ( fi)i≥0.

Following Example 4.1(b), the case of edge exchangeable random (directed) graphs
corresponds to R⊂ FINα with α (1) = 2 and α (k) = 0 for k ≥ 2, with each A ∈R having
RA

1 = {(i, j)}, i �= j. In this case, S[0,1] corresponds to all pairs (u, v) for u, v ∈ [0, 1]. An
exchangeable sequence X in S[0,1] determines a random subset U ⊂ [0, 1]. Now, in each Xi

there can be 0, 1, or 2 elements v /∈ U . Occurrences of such elements are replaced by 0 and −1,
as explained in Example 4.2.

In general, we call the occurrences of any u /∈ U in the sequence X blips. These elements
are merely a ‘blip’ in the overall sequence X—they occur only for an instant and then never
again. Our labeling convention in defining R� is that the nonpositive labels correspond to the
blips. Theorem 4.1 describes how blips arise in general relationally exchangeable structures.

5. Concluding

Though relational structures are commonplace in modern statistics, the theory of relational
exchangeability presented here stands apart from most other studies of exchangeable structures
by de Finetti [16], Aldous [5], Hoover [19], Kallenberg [20], and others [3], [7], [15]. The most
relevant prior work is Kingman’s on exchangeable random set partitions [21], which can be
reinterpreted as relationally exchangeable structures in the sense described above.

Recent work in the statistical analysis of network data underscores the significance of
relationally labeled structures in applications, as many data structures which are typically
represented graphically, such as social networks and networks detailing email correspondence
and professional collaborations, arise from a process by which interactions or relations
accumulate within a population of otherwise indistinguishable individuals. The work in [14]
focused on the case of edge exchangeable random graphs, but the additional examples in
Sections 1–3 involving repeated path sampling and snowball sampling are also highly relevant
in network applications.

Our main representation theorem serves two immediate statistical purposes. First, the
representation characterizes a general class of nonparametric statistical models of potential
interest in the aforementioned applications. Second, it establishes that vertices arrive in size-
biased random order in relationally exchangeable structures, explaining why the common
assumption of exchangeable vertex labeling, as presented in graphon models [23], is not
tenable in many applications. We reserve discussion of these practical implications for other
work; see [13] and [14].
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