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Sufficiently strong electric fields in plasmas can accelerate charged particles to
relativistic energies. In this paper we describe the dynamics of positrons accelerated
in such electric fields, and calculate the fraction of created positrons that become
runaway accelerated, along with the amount of radiation that they emit. We derive
an analytical formula that shows the relative importance of the different positron
production processes, and show that, above a certain threshold electric field, the
pair production by photons is lower than that by collisions. We furthermore present
analytical and numerical solutions to the positron kinetic equation; these are applied
to calculate the fraction of positrons that become accelerated or thermalized, which
enters into rate equations that describe the evolution of the density of the slow and
fast positron populations. Finally, to indicate operational parameters required for
positron detection during runaway in tokamak discharges, we give expressions for the
parameter dependencies of detected annihilation radiation compared to bremsstrahlung
detected at an angle perpendicular to the direction of runaway acceleration. Using the
full leading-order pair-production cross-section, we demonstrate that previous related
work has overestimated the collisional pair production by at least a factor of four.

Key words: runaway electrons

1. Introduction
The production of positrons has been investigated extensively both theoretically and

experimentally since their first identification (Anderson 1932). Low-energy positrons
are used in many areas of science and technology, ranging from positron emission
tomography (Raichle 1985) and surface science (Hunt et al. 1999) to fundamental
studies of antimatter (Gabrielse et al. 2002; Surko & Greaves 2004). High-energy
positrons can also be routinely produced in particle accelerators and intense laser–solid
interactions (Chen et al. 2009; Sarri 2015). Positrons are present in a wide range
of atmospheric and astrophysical plasmas, e.g. lightning discharges (Dwyer & Uman
2014), solar flares (Murphy et al. 2005), pulsars and black-hole physics (Prantzos
et al. 2011). Also in post-disruption plasmas in large tokamaks, where the energy of
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the runaway electrons is in the tens of MeV range, high-energy positrons should be
present (Helander & Ward 2003; Fülöp & Papp 2012), but they have not yet been
experimentally observed.

Plasmas with strong electric fields are particularly interesting for positron generation,
as particles accelerated by the field often reach energies larger than the pair-production
threshold. For example, the electric field in solar flares is believed to be the result of
magnetic reconnection (Priest & Forbes 2002; Liu & Wang 2009). In thunderstorms
strong electric fields are produced by the charged regions, sometimes lasting tens
of minutes (Tsuchiya et al. 2011). In intense laser–matter interaction, the positrons
experience the sheath field that is set-up by the relativistic electrons leaving the target
(Wilks et al. 2001). In disruptive tokamak plasmas, the resistivity increase due to the
sudden cooling of the plasma leads to a high electric field that is induced to maintain
the plasma current (Helander, Eriksson & Andersson 2002). Regardless of the cause,
the electric field will strongly affect the dynamics of the positrons.

If the electric field exceeds a certain critical field, the accelerating force on the
charged particles overcomes the friction, and they are accelerated to high energies
and run away (Wilson 1925; Dreicer 1959). Existing runaway electrons may create
new (secondary) runaways in close collisions with thermal electrons, and this can
lead to an exponential growth of the runaway population, i.e. an avalanche (Sokolov
1979; Rosenbluth & Putvinski 1997). The runaways are accelerated to energies that
are well above the pair-production threshold (Hollmann et al. 2015; Paz-Soldan et al.
2017) and create positrons in collisions with electrons and ions. The created positrons
are also accelerated by the electric field, in the opposite direction with respect to the
electrons, and if the electric field is sufficiently strong, a substantial fraction of them
will run away (Fülöp & Papp 2012). Eventually they will annihilate, either directly
with electrons or through the formation of positronium (Charlton & Humberston 2001).
Due to their drift motion, for runaway positrons in tokamaks this will typically occur
after they have escaped the plasma and struck the first wall (Liu et al. 2014).

The direct annihilation of an electron–positron pair at rest will result in the creation
of two gamma-ray photons, each of energy 511 keV. Positron annihilation is often
invoked to explain the observed emission features in the vicinity of 500 keV in the
radiation spectrum of gamma-ray bursts, pulsars, solar flares (Murphy et al. 2005),
terrestrial lightning (Briggs et al. 2011) and the galactic centre (Prantzos et al. 2011).
In laboratory plasmas, the bremsstrahlung of the energetic electrons may overwhelm
the annihilation radiation from the positrons, as the positron/electron fraction is usually
low (Fülöp & Papp 2012). However, due to the directionality of the bremsstrahlung
radiation, the isotropic annihilation radiation may still be detectable.

In this paper, we analyse the dynamics of high-energy positrons produced in
collisions between charged particles in a strong electric field, where both electrons
and positrons may run away. We use MadGraph 5 simulations (Alwall et al. 2014)
to obtain the cross-section for pair production in collisions between electrons and
ions, which reveals that the high-energy limit (Landau & Lifshitz 1983) and the
formula given in Gryaznykh (1998) significantly overestimate the cross-section. We
consider the relative importance of pair production by collisions and photons, which
has previously been considered in the context of lightning discharges (Vodopiyanov
et al. 2015). We derive a critical pair-production electric field above which collisional
pair production dominates in avalanching runaway scenarios.

In the case when pair production by photons is negligible, we solve the kinetic
equation for positrons. We derive an analytical expression for the positron distribution
function in the presence of an avalanching runaway-electron population. The analytical
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results for the distribution function and critical electric field are corroborated with
numerical simulations using the kinetic equation solver CODE (Landreman, Stahl
& Fülöp 2014; Stahl et al. 2016) modified to include the positron source and
annihilation terms. Furthermore, we consider the radiation emitted by positrons and
find the parameter dependencies of the annihilation to bremsstrahlung radiation ratio.
This allows determination of the parameter regions where the annihilation radiation
could be detectable in these plasmas.

The structure of the paper is the following. In § 2 we describe the kinetic equation
of the positrons including details of the positron production source term. We present
both analytical and numerical solutions of the kinetic equation, showing excellent
agreement in the relevant limit. Following this, in § 3 we describe rate equations
for runaway positrons, which are useful to predict the parametric dependencies of
the fraction of positrons without extensive kinetic simulations. In § 4 we calculate
the expected annihilation radiation from positrons in tokamak plasmas. Finally we
summarize our conclusions in § 5.

2. Kinetic equation for positrons
In this paper we consider the dynamics of positrons during a relativistic electron

runaway avalanche (Jayakumar, Fleischmann & Zweben 1993). Due to the non-
monotonic dynamical friction acting on a charged test particle in a plasma, in an
electric field larger than a critical value Ec fast electrons may experience a net force
that can rapidly accelerate them to energies in the range of tens of MeV. In a fully
ionized plasma, the critical field is Ec= lnΛnee3/(4πε2

0mec2) (Connor & Hastie 1975),
where lnΛ≈ 14.6+ 0.5 ln(T[eV]/ne[1020 m−3

]) is the Coulomb logarithm (Solodov &
Betti 2008). We neglect a logarithmic energy dependence in lnΛ, and use the value
for relativistic electrons at 1 MeV for simplicity. Here, ne is the electron density,
e the elementary charge, ε0 the vacuum permittivity, me the electron rest mass and
c the speed of light. The background plasma is assumed to be nearly Maxwellian
for all species with the same temperature T . In a neutral gas, ln Λ depends on the
mean excitation energy of the medium instead of the temperature, and corresponds
to lnΛ≈ 11 in air (Gurevich & Zybin 2001). In this case the electron density refers
to the density of bound electrons.

A sufficiently energetic electron can produce new runaway electrons through elastic
large-angle collisions. The result is an exponentially growing number of runaway
electrons, a so-called runaway avalanche. Each e-folding of the number density
takes a time tava = cZ/[4πner2

0c(E/Ec − 1)] where cZ is only weakly dependent on
electric field, and can be approximated by cZ ≈

√
5+ Zeff in a fully ionized plasma

(Rosenbluth & Putvinski 1997), where the effective charge is Zeff =
∑

niZ2
i /
∑

i niZi
with the sum taken over all ion species i. We shall find that several results in the
paper are insensitive to the details of cZ , assuming only that it is independent of
E. As such, more accurate models of the avalanche process can in principle be
implemented by inserting for cZ the value characterizing any particular scenario of
interest.

Since the electrons are ultra-relativistic, they will create positrons which are
predominantly co-moving; these are created either directly in collisions or indirectly
through the hard X-rays emitted in collisions (Heitler 1954), which can produce a
pair in a subsequent interaction. Since the positrons experience an acceleration by
the electric field in the direction opposite to the runaway-electron motion, they will
immediately start decelerating. A fraction of these positrons will slow down to thermal
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speeds where they eventually annihilate, whereas the remainder obtain sufficiently
large momenta perpendicular to the acceleration direction that they become runaway
accelerated along the electric field, moving anti-parallel to the runaway electrons.
Annihilation – which occurs at a rate that decreases with positron energy – does
not have a significant effect on the dynamics of the energetic positrons since the
avalanche rate is typically much faster, which is demonstrated in § 2.2.

Throughout this paper, we shall assume that the plasma is fully ionized. In a
partially ionized plasma or a neutral gas, screening effects due to the bound electrons
would enter into all binary interactions. In the 10 MeV energy range, these are
however largely negligible for the pair-production mechanisms as well as for the
emission of bremsstrahlung, meaning that they are to be calculated using the
full nuclear charge of the target. The screening effects become significant when
p/mec & 137/Z1/3 (Heitler 1954). Elastic Coulomb collisions are to a greater extent
affected by screening effects, where the pitch-angle scattering rates may be reduced
by approximately up to two thirds and energy loss rates by one third (Hesslow et al.
2017) in the energy range of interest, compared to the results obtained treating the
medium as fully ionized. This would modify primarily two important quantities that
affect our results: the avalanche growth rate factor cZ , as well as the critical field
Ec (Hesslow et al. 2018), which can here be assumed to be accurate only up to an
order-of-unity factor in partially ionized plasmas. While the results we present are
strictly valid for a fully ionized plasma, we expect to capture the correct order of
magnitude also in a partially ionized plasma or neutral gas, if the effective charge
and electron densities appearing in the formulas are always evaluated using the fully
ionized values. We denote these by

ntot =
∑

i

Zini, (2.1)

Ztot =
1

ntot

∑
i

niZ2
i , (2.2)

where Zi is the atomic number of species i. Thus, the density is always to be taken
as the total density of free plus bound electrons, and in a single-component gas or
plasma Ztot is the atomic number of the ion species regardless of ionization degree.

The dynamics described above can be most lucidly captured in a two-dimensional
model. The distribution function of positrons with momentum p = mev/

√
1− v2/c2,

where the positron velocity is denoted v, at a time t is denoted fpos(t, p). In a
homogeneous cylindrically symmetric plasma in the presence of an electric field E it
satisfies the kinetic equation

∂fpos

∂t
+ eE

[
ξ
∂

∂p
+

1− ξ 2

p
∂

∂ξ

]
fpos =Cpos + Spos + San, (2.3)

where E = |E|, p = |p|, ξ ≡ cos θ = p · E/pE is the pitch-angle cosine, Cpos is the
positron collision operator, Spos denotes the source term of positrons generated in
collisions between relativistic runaway electrons and field particles of the plasma,
as well as positron production by highly energetic photons, and San denotes the
annihilation term. In a magnetized plasma, the equation is valid for an axisymmetric
positron distribution if E is replaced by the component of the electric field parallel to
the magnetic field, and the pitch angle is instead defined relative to the magnetic field.
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In the limit of small-energy transfers, the elastic positron–electron and positron–ion
differential scattering cross-sections coincide with the electron–electron and electron–
ion cross-sections, respectively (Landau & Lifshitz 1983). Consequently, the positron
collision operator Cpos equals the electron collision operator Ce up to terms small in
the Coulomb logarithm lnΛ. Large-angle collisions, which are primarily important for
avalanche generation when lnΛ is large, can be neglected since the thermal positron
population will always be small in number. The positron distribution therefore satisfies
the same kinetic equation as the electron distribution, except for the electric field
accelerating them in the opposite direction (with these definitions positrons are
accelerated towards ξ = 1, and electrons towards ξ = −1), and the presence of the
terms Spos and San describing their creation and annihilation, respectively.

The number of positrons created with momentum p in time dt has two main
contributions: (i) the collisions between stationary ions of species i with density ni

and the number dnRE of runaways at momentum p1 and speed v1, and (ii) the pair
production of dnγ photons in the field of ions i:

dnpos =
∑

i

[niv1 dσ+ci dnRE dt+ nic dσ+γ i dnγ dt]. (2.4)

Here, dσ+ci is the differential cross-section for producing a positron in a collision
between an electron and a stationary ion, and similarly dσ+γ i for a photon interacting
with stationary ions, and are given in appendix A. We use the Madgraph 5 tool
(Alwall et al. 2014) for obtaining the pair-production cross-sections throughout this
paper. In appendix A, figure 6, we compare the total cross-section as a function
of electron energy with a previously published formula by Gryaznykh (1998). The
latter is shown to be approximately a constant factor of four times as large as the
cross-section that we have obtained.

Using dnRE( p1) = fRE( p1)dp1, where fRE is the distribution function of runaway
electrons, and similarly for the positron distribution fpos(p) = dnpos/dp and photons
φγ (k)= dnγ /dk where k/c is the photon momentum, we find the following form for
the positron source Spos:

Spos ≡

(
∂fpos

∂t

)
pp

=

∑
i

nic
[∫

dp1
v1

c
∂σ+ci

∂p
fRE( p1)+

∫
dk
∂σ+γ i

∂p
φγ (k)

]
. (2.5)

In an avalanching runaway scenario, the photon distribution can be eliminated in
favour of an expression involving only the runaway distribution because of the
relatively slow evolution of the photon energy spectrum. The runaway-electron
population grows exponentially in time on the time scale (Rosenbluth & Putvinski
1997)

tava =
cZ

4πntotr2
0c(E/Ec − 1)

. (2.6)

The photons on the other hand evolve on the Compton-scattering time scale (Heitler
1954)

tCo =
k

πntotr2
0cmec2 ln[2k/(mec2)]

, (2.7)

where the photon energies k = |k| are larger than the pair-production threshold
2mec2, and r0 = e2/(4πε0mec2) ≈ 2.82 × 10−15 m is the classical electron radius.
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Comparing the two time scales shows that the photons do not have time to change
significantly from the distribution in which they are created whenever

k/mec2

ln(2k/mec2)
�

cZ

4(E/Ec − 1)
. (2.8)

Since the right-hand side is typically smaller than unity, this is generally well satisfied
in an avalanching runaway scenario. The photon distribution is then given by

φ(k)= tava

∑
i

ni

∫
dp1 v1

∂σbr,i

∂k
(k, p1)fRE(p1), (2.9)

where dσbr,i is the differential bremsstrahlung cross-section for interactions between
electrons and particle species i.

Since the cross-sections appearing in these formulas depend on target species only
through Z2

i , the target charge squared (Heitler 1954), these may be factored out when
screening effects are neglected, yielding a factor of the effective plasma charge Ztot
when summed over i. We shall therefore suppress the indices i of the cross-sections
by writing

∑
i niσ

+

ci = ntotZtotσ
+

c for collisional pair production, and
∑

i niσbr,i =

ntot(Ztot + 1)σbr (and likewise for σ+γ ) for the photon pair-production cross-sections.
Here we have added the contribution from electron–electron bremsstrahlung in
the approximation that the electron–electron and electron–proton bremsstrahlung
cross-sections are the same, which has satisfactory accuracy since the majority of
interactions occur with negligible momentum transfer to the target particle (Haug
1975). Conversely, for collisional pair production the electron–electron interactions
are negligible, which was verified with MadGraph 5 simulations (Alwall et al. 2014)
which indicated that the e–e cross-section is 10 %–20 % of the e–i cross-section when
the incident electron laboratory-frame energy ranges over 10–20 MeV and Zi = 1.

The positron source can then be written

Spos = Ztotntot

∫
dp1 v1

∂σ+

∂p
fRE( p1), (2.10)

where the effective pair-production cross-section dσ+, accounting for both direct pair
production in collisions as well as by X-rays, is given by

∂σ+

∂p
=
∂σ+c

∂p
+
(Ztot + 1)2

Ztot
tavantotc

∫
dk
∂σ+γ

∂p
(p, k)

∂σbr

∂k
(k, p1). (2.11)

Positrons are created with a significant fraction of the energy of the incident
electron that created them, but with a momentum perpendicular to the direction of
the incident electron of order (Heitler 1954; Landau & Lifshitz 1983) p⊥≈mec. This
means that the differential cross-section for their production is strongly peaked in the
direction of the incident electron; throughout this work we assume that it is delta
distributed in the scattering angles, and write

∂σ+c

∂p
=
δ(cos θ − cos θ1)

2π(mec)2pγ
∂σ+c

∂γ
(p, p1),

∂σ+γ

∂p
=
δ(cos θ − cos θk)

2π(mec)2pγ

∂σ+γ

∂γ
(p, k),

∂σbr

∂k
=
δ(cos θk − cos θ1)

2πk2

∂σbr

∂k
(k, p1),


(2.12)
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FIGURE 1. Critical field Epp above which collisional positron production is the dominant
pair-production mechanism in a uniform plasma, normalized to the avalanche threshold
field Ec, calculated from the two expressions given in (2.23) with cZ =

√
5+ Ztot.

where γ =
√

1+ (p/mec)2 is the Lorentz factor. The angles θ , θ1 and θk are the angles
between the accelerating electric field E (or in a magnetized plasma the magnetic field
B) and p, p1 and k, respectively. With an axisymmetric runaway distribution fRE( p1)=

fRE(p1, cos θ1), we then obtain the approximated positron source term

Spos(γ , cos θ)=
ntotZtotmec2

pγ

∫
∞

γ+2
dγ1 (γ

2
1 − 1)

∂σ

∂γ

+

fRE(γ1, cos θ), (2.13)

where the effective cross-section now takes the form

∂σ+

∂γ
(γ , γ1)=

∂σ+c

∂γ
(γ , γ1)+

(Ztot + 1)2

Ztot
tavantotc

∫ γ1−1

γ+1
dk
∂σ+γ

∂γ
(γ , k)

∂σbr

∂k
(k, γ1), (2.14)

depending only on the simpler integrated cross-sections that are only differential in
the energy of the outgoing particle of interest. In (2.13) it is explicit that positrons
are only generated in the direction of the incident energetic electrons – the electron
distribution is sampled at the same pitch angle as the source. Further details of
the positron source term in the presence of an avalanching electron distribution are
given in appendix A, where we present the differential cross-sections used as well as
illustrate typical shapes of the source term in (2.13).

The annihilation source takes the simpler form

San(p)=−ntotvσan(p)fpos(p), (2.15)

where σan is the cross-section for free positron–electron two-quanta annihilation
against stationary target electrons (Heitler 1954)

σan =
πr2

0

(p/mec)(γ + 1)

[
γ 2
+ 4γ + 1
p/mec

ln
(
γ +

p
mec

)
− γ − 3

]
. (2.16)
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2.1. Relative importance of pair production by collisions and by photons
A peculiar phenomenon occurs when considering pair production in the presence of a
strong electric field, where the number of energetic electrons grows exponentially in
time. Because there is a delay between the emission of photons and their subsequent
pair production, if the electron population has time to grow by a significant amount
during one such photon pair-production time, the direct positron generation in
collisions may contribute with a relatively larger production of pairs. We will now
proceed to derive the threshold electric field above which pair production in collisions
is dominant due to this effect.

In order to evaluate the pair-production source terms we need an expression for the
runaway-electron distribution. In a spatially uniform fully ionized plasma with constant
electric field, when the runaway generation is dominated by the avalanche mechanism
– i.e. by multiplication through large-angle collisions – it is given by (Fülöp et al.
2006)

fRE(p, ξ , t)=
nRE(t)A(p)
2πmecγ0p2

exp
[
−
γ

γ0
− A(p)(1+ ξ)

]
1− e−2A

,

A(p)=
E/Ec + 1
Ztot + 1

γ ,

nRE(t)= nRE(0)et/tava,

γ0 = cZ lnΛ.


(2.17)

Our choice for A differs slightly from that in Fülöp et al. (2006), however agrees in
the limit E�Ec, p�mec and 1+ ξ�1 where the solution is expected to be valid, but
is here generalized to also capture the near-threshold limit E→ Ec (Lehtinen, Bell &
Inan 1999; Hesslow et al. 2018). When pitch-angle averaged, the electron distribution
is given by

FRE(p, t)= 2π

∫ 1

−1
dξ fRE(p, ξ , t)=

nRE(t)
mecγ0

e−γ /γ0, (2.18)

where the average runaway energy is given by γ0mec2
≈ (cZ ln Λ/2) MeV, which is

typically of the order of 10–30 MeV in most scenarios of interest. Runaway-electron
populations with energies in this range have been observed in avalanching scenarios
in tokamaks (Paz-Soldan et al. 2017). In our results we will indicate the dependence
on average runaway energy through the parameters γ0 or cZ .

The total number of pairs created per unit time and volume is obtained by
integrating the positron source function (2.13) over all momenta, yielding

dnpair

dt
= neZtotmec2

∫
∞

3
dγ1 σ

+(γ1)FRE(γ1)≡ nenREZtot〈vσ
+
〉RE, (2.19)

σ+(γ1)=

∫ γ1−2

1

∂σ+

∂γ
(γ , γ1) dγ ,

〈vσ+〉RE =
1

nRE

∫
∞

√
8

dp1 v1σ
+(γ1)FRE(γ1).

 (2.20)
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With the analytic form of (2.18) for the electron distribution, the pair-production rate
defined by the above equations is characterized by the two integrals

〈vσ+c 〉RE =
mec2

nRE

∫
∞

3
dγ1 σ

+

c (γ1)FRE(γ1)≈ α
2r2

0c
γ0 − 6.7

15
,

〈vσγ 〉RE =
mec2

nRE

∫
∞

3
dγ1 FRE(γ1)

∫ γ1−1

2
dk σ+γ (k)

∂σbr

∂k
(k, γ1)≈ α

2r4
0c(2.6γ0 − 14.8),


(2.21)

where σ+γ =
∫ k−1

1 (∂σ+γ /∂γ ) dγ , and the approximate formulas are least-square fits on
the interval of γ0 between 20 and 80, giving a maximum error of 2.5 %. Within an
error of less than 3 %, the second expression differs from the first by a constant factor
40.75r2

0, allowing the total pair-production rate to be written

dnpair

dt
≈ Ztotα

2ner2
0c
γ0 − 6.7

15

(
1+ 40.75

(Ztot + 1)2

Ztot
tavanecr2

0

)
. (2.22)

With tavanecr2
0 = cZ/[4π(E/Ec − 1)], it is clear that there is a threshold field E =

Epp(Ztot) above which the collisional pair production (described by the first term within
the parentheses) will be dominant. When cZ is independent of E, this threshold field
is given by

Epp

Ec
− 1 =

(1+ Ztot)
2

Ztot

cZ

4πr2
0

∫
∞

3
dγ1 e−γ1/γ0

∫ γ1−1

2
dk σ+γ (k)

∂σbr

∂k
(k, γ1)∫

∞

3
dγ1 e−γ1/γ0σ+c (γ1)

≈ 3.25cZ
(1+ Ztot)

2

Ztot
. (2.23)

When Ztot = 1, the threshold field is Epp ≈ 33Ec, but grows rapidly with Ztot. With
an air-like value of Ztot = 14.5, one obtains Epp ≈ 240Ec.

The role of direct pair production in lightning has been investigated by Vodopiyanov
et al. (2015) using comprehensive Monte Carlo simulations of the runaway dynamics
to investigate the degree to which positrons contribute to the relativistic feedback
mechanism (Dwyer 2012). Their numerical study revealed a similar qualitative
dependence on the electric field when comparing the contributions from photon-
produced and directly produced positrons; direct production becomes relatively more
important for larger electric fields. Their study, however, uses the Gryaznykh (1998)
cross-section for pair production as well as a simplified description of the energy
spectrum of newly created positrons, and they find a significantly lower threshold
field than predicted here. Spatial dynamics along the discharge may also play a role
in determining the feedback gain, which prevents a simple direct comparison between
our results.

In the above we assumed an infinitely large homogeneous system. When runaway
acceleration occurs only over a finite distance of length L of constant background
parameters, the threshold field calculated above is valid when L� Lava= ctava, that is,
when the system is significantly longer than one avalanche mean-free path. When this
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is not satisfied, i.e. when L . Lava, a threshold condition for the length of the system
is obtained instead, taking the form

Lpp ≈
Ztot

(1+ Ztot)2

3× 107 m
ne[1020 m−3]

. (2.24)

When Lpp . L. Lava, photon pair production will be the dominant positron-generation
mechanism.

In the remainder of this work, we will focus on scenarios where either E & Epp or
L . Lpp, so that pair production by photons is negligible. This is typical of runaway
scenarios in tokamaks, where L/Lpp� 10−5 due to the small size of the device.

2.2. Distribution function of fast positrons
Equipped with the kinetic equation for positrons in a runaway scenario, we can now
characterize its solutions. When the electric field is sufficiently large for the average
pitch angle to be small, typically well satisfied when A= (E/Ec + 1)γ /(Ztot + 1)& 1,
the distribution function of fast positrons can be readily calculated analytically. The
kinetics are then essentially one-dimensional, with the pitch-angle dynamics playing a
peripheral role in the evolution of the energy spectrum.

We introduce a half-plane pitch-angle-averaged positron distribution function F as

F(p)= 2πp2
×


∫ 1

0
dξ fpos(p, ξ), p > 0∫ 0

−1
dξ fpos(|p|, ξ), p< 0,

(2.25)

where the coordinate p now ranges from −∞ to ∞. This distribution is defined so
that

∫
∞

pc
F dp= nRP equals the total runaway-positron density, with pc a superthermal

threshold in momentum distinguishing thermal positrons from runaways. In the same
way, the thermal number density of positrons is nTP =

∫ pc

−pc
F dp.

In appendix B we solve the positron kinetic equation (2.3) in the limit (p/mec)2� 1
assuming small pitch angles 1− |ξ | � 1. The resulting positron distribution is given
by

F(p)=
Ztot

4π lnΛr2
0

nRE(t)
γ0mec

eργ /γ0

∫
∞

γ

dγ ′
∫
∞

γ ′+2
dγ1

∂σ+

∂γ ′
(γ ′, γ1) exp

(
−
ργ ′ + γ1

γ0

)
(2.26)

for p < 0, which describes the slowing-down distribution of the newly created
positrons, where ρ = (E/Ec − 1)/(E/Ec + 1), and

F(p, t)=
nRP(t)
mecγ0

e−γ /γ0,

nRP(t)= nRP(0)et/tava

 (2.27)

for p> 0, describing the runaway-positron population that is undergoing acceleration
in the electric field. Note that the prefactor, including the runaway-positron density
evaluated at t= 0, is not determined in this derivation, but must instead be calculated
in a more comprehensive kinetic equation accounting for the dynamics near p . mec.

We see that when p > 0, the runaway-positron distribution satisfies F(p) =
(nRP/nRE)FRE(−p). Indeed, for the full positron distribution, since the kinetic equation
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(2.3) is identical to the runaway-electron equation for ξ > 0 where the pair-production
source vanishes, we would expect

fRP(p, ξ , t)≈
nRP(t)
nRE(t)

fRE(p,−ξ, t). (2.28)

The expressions given above are valid for collisional as well as for photon pair
production during runaway scenarios.

We can now accurately evaluate the annihilation rate of runaway positrons, obtaining
in the ultra-relativistic limit,

1
τaR
=

ne

nRP

∫
∞

pc

dp vF(p)σan(p) ≈
1

4 lnΛ(E/Ec − 1)tava

∫
∞

1
dγ

ln 2γ − 1
γ

e−γ /γ0

≈
ln2(γ0/2.42)+ 1.55
8 lnΛ(E/Ec − 1)tava

, (2.29)

the final approximation having an error less than 2 % for γ0 > 20, and where the
annihilation cross-section σan was given in (2.16). We find that typically tava/τaR .
0.1/(E/Ec− 1), showing that annihilation has negligible impact on the avalanche time
scale dynamics except for very close to the threshold field Ec. At that point, however,
most of the created positrons will become thermalized, and only a negligible fraction
will have time to annihilate before reaching thermal energies.

For v� c the annihilation cross-section takes the simple form σan∼πr2
0c/v, so that

the thermal annihilation time τaT for a thermal positron population of temperature T�
511 keV is given simply by

1
τaT
=πner2

0c=
1

4tava

cZ

E/Ec − 1
. (2.30)

In the presence of partially ionized or neutral gases, however, the cold positrons may
annihilate also through the formation of positronium, which has significantly shorter,
sub-µs lifetime. The annihilation time of thermal positrons is then rather set by the
positronium formation rate, which is of the order of niva2

0, with a0 the Bohr radius
(Charlton & Humberston 2001).

2.3. Numerical distribution function
The positron Fokker–Planck equation, equation (2.3), can be solved as an initial value
problem to give the evolution of the positron distribution function in the presence of
an accelerating electric field. By adding the source and annihilation terms to the CODE
(Landreman et al. 2014; Stahl et al. 2016) numerical kinetic solver, we calculate the
distribution function for various electric fields and effective ion charges. CODE uses a
continuum-spectral discretization scheme and has been used extensively to calculate
runaway-electron distributions including partial screening effects (Hesslow et al.
2017), synchrotron radiation (Hirvijoki et al. 2015; Stahl et al. 2015), bremsstrahlung
(Embréus, Stahl & Fülöp 2016) and close collisions (Embréus, Stahl & Fülöp 2018).

Figure 2 illustrates the angle-averaged positron distribution for two cases: (i)
with E = 2Ec and Ztot = 10, and (ii) E = 10Ec and Ztot = 1. The analytic solution,
equations (2.26) and (2.27), is nearly indistinguishable from the numerical solution
for p < 0 for both cases, and for p > 0 in case (ii) with the higher electric field
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FIGURE 2. Pitch-angle-averaged distribution functions F after 10 avalanche times tava,
with an initial runaway-electron density nRE,0 = 1010 m−3, ne = 5 × 1019 m−3 and T =
100 eV. Runaway electrons in red and positrons in black and blue. Dashed lines denote
the theoretical predictions of (2.26) and (2.27); in the (ii) E= 10Ec, Ztot = 1 case it fully
overlaps with the numerical solution.

(shown in blue). The analytic solution fails to fully capture the low energy behaviour
in case (i) with low electric field and high plasma charge (black), where pitch-angle
dynamics becomes important. The accuracy of the analytic solution at high electric
field further motivates the neglect of annihilation in the dynamics of fast positrons.
The sharp peaks at p = 0 in the numerical positron energy spectra contain the
thermalized positron populations, which we do not consider the detailed dynamics of
here.

3. Rate equations for runaway positrons
From the kinetic description of § 2 we can find a reduced set of fluid equations

which govern the evolution of the number densities of runaway positrons as well
as thermal positrons. We introduce the runaway-positron density nRP and thermal
positron density nTP in the same way as in the previous section. These then satisfy
the equations

∂nRP

∂t
= ZtotnenREκ(E, Ztot)〈vσ

+

c 〉RE − nRP/τaR (3.1)

∂nTP

∂t
= ZtotnenREη(E, Ztot)〈vσ

+

c 〉RE − nTP/τaT (3.2)

∂nRE

∂t
= nREΓava(E, Ztot), (3.3)

where κ denotes the fraction of created positrons that are accelerated as runaways,
η the fraction that is thermalized and Γava = 1/tava is the avalanche growth rate of
runaway electrons.

Kinetic simulations must be used to determine the runaway fraction κ and
thermalization fraction η (note that they will not sum to unity, since the population
of fast newly born positrons with ξ < 0 also grows in time). Results from numerical
simulations for a variety of electric fields and plasma charges are shown in figure 3,

https://doi.org/10.1017/S0022377818001010 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818001010


Dynamics of positrons during relativistic electron runaway 13

(a) (b)

FIGURE 3. (a) Positron runaway fraction κ defined by (3.1), for various electric-field
strengths and plasma effective charge Ztot. (b) Positron thermalization fraction η defined
by (3.2), for various electric-field strengths and plasma effective charge Ztot.

obtained for constant electric fields and plasma charge. These are applicable to
scenarios where E and Ztot vary slowly in time compared to the avalanche time.
When E � Ec, the runaway fraction is near unity, but decreases exponentially in
magnitude when the electric field approaches the threshold value Ec. As only a small
fraction of positrons are annihilated before slowing down (or entering the runaway
region) (Heitler 1954), the effect of annihilation on the positron runaway-generation
dynamics can be ignored, and we can assume that positrons are only annihilated after
being either thermalized or runaway accelerated.

In the presence of a constant electric field, background density and charge, the rate
equations have a simple analytic solution given by (after a short transient phase on
the scale of tava)

nRE(t)= n0 exp(Γavat),

nRP(t)= nRE(t)
Ztotκne〈vσ

+

c 〉

Γava + τ
−1
aR

,

nTP(t)= nRE(t)
Ztotηne〈vσ

+

c 〉

Γava + τ
−1
aT

.


(3.4)

Note that the positron populations grow in time despite annihilation; this occurs due
to the ever-increasing amplitude of the positron source, since the runaway electrons
are avalanching.

When the electric field is significantly above threshold one finds that Γava � τ−1
aR

meaning that annihilation is negligible, so that

nRP

nRE
≈
κ(E, Ztot)

E/Ec − 1
Ztot〈vσ

+

c 〉

4πcr2
0/cZ
≈ α2cZZtot

κ(E, Ztot)

E/Ec − 1
γ0 − 6.7

60π
, (3.5)

where again γ0 = cZ ln Λ. The electric-field dependence is fully captured in the
factor κ/(E/Ec − 1), which takes its maximal value ≈ 0.2 near E≈ 2Ec, only weakly
dependent on the charge Ztot. With lnΛ= 15, we then find that the maximal ratio of
runaway positrons to electrons is nRP/nRE . 8.5 · 10−7ZtotcZ(cZ − 0.45), which for a
low-Z plasma with Ztot = 1 is approximately 4× 10−6, and for a high-Z plasma with
Ztot = 20 of the order of 4× 10−4. This means that the runaway-positron synchrotron
and hard X-ray (HXR) emission may be challenging to distinguish from the radiation
emitted by the runaway electrons in a tokamak, since even a small fraction of reflected
or scattered radiation from electrons or noise from other sources could drown out the
positron signal.
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4. Radiation from positrons in tokamak plasmas

In the previous section we found that runaway positrons are less numerous than the
runaway electrons by a factor smaller than approximately 10−4. This causes a direct
measurement of runaway positrons in a laboratory plasma to be challenging, and an
appealing option is instead to detect the annihilation radiation of the positrons that
have slowed down, which is distinctly peaked around photon energies of 511 keV.
The annihilation radiation from slow positrons is emitted approximately isotropically,
whereas runaway electrons emit radiation primarily along their direction of motion,
which when the electric field is large is along the electric field, or along the magnetic
field in a magnetized plasma. This means that when measuring perpendicularly to the
direction of runaway acceleration, even though the positrons are much fewer, their
annihilation radiation may be detected through the X-ray background of runaway
electrons for which only a small fraction is emitted at a π/2 angle and near1 511 keV.
Furthermore, coincidence measurement techniques can be employed to carry out
measurements in poor signal-to-noise ratio cases (Guanying et al. 2017).

We can make the heuristic discussion above stricter by the following arguments.
The number density of bremsstrahlung photons emitted per unit solid angle, time and
photon energy is given by

∂nHXR

∂t∂Ω∂k
= neZtot

∫
γ>k+1

v
∂σbr

∂k∂Ω
fRE( p) dp. (4.1)

This can be compared to the number density of annihilation photons emitted per unit
time and solid angle due to the thermal positrons nTP annihilating against the cold
background,

∂nan

∂t∂Ω
=

nTP

4πτaT
≈ Ztot

nREneη〈vσ
+

c 〉RE

4π
, (4.2)

where we have assumed the thermal positron-annihilation rate to be much larger than
the avalanche growth rate, ΓavaτaT� 1.

The annihilation radiation will have a line profile in photon energy with a
characteristic width comparable to the background temperature. We consider the case
where the profile is not resolved in the measurement, and the full line is captured in
one channel. In this case, since the hard X-rays have a broad spectrum, we find it
useful to characterize the visibility of the annihilation line with the parameter

1k=
∂nan/∂t∂Ω

∂nHXR/∂t∂Ω∂k
, (4.3)

which (when 1k � k) can be interpreted as the photon-energy interval 1k around
k = mec2 within which the total HXR emission equals the annihilation photon flux.
From a detection point of view, 1k would approximate the energy resolution required
for the annihilation peak to appear with twice the amplitude of the continuous X-ray
background. The finite line width of the annihilation peak would need to be accounted
for when the plasma temperature satisfies T &1k.

In figure 4 we show 1k for detection at a π/2 angle relative to the direction of
runaway acceleration, using the analytic runaway distribution of (2.17). We observe

1More precisely, the ratio of perpendicular to tangential bremsstrahlung emission is given by approximately
3/(8γ 4) at k= 511 keV.
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FIGURE 4. The photon-energy resolution parameter 1k = (∂nan/∂t∂Ω)/(∂nHXR/∂t∂Ω∂k)
for perpendicular detection of annihilation radiation from thermalized positrons and hard
X-rays from runaway electrons.

a relatively weak dependence on electric field where the main trend is approximately
captured, within approximately 25 %, by

1k≈
7 keV
√

Ztot + 1
. (4.4)

This means that in order for the annihilation peak to be clearly distinguishable from
the X-ray background due to runaway electrons, an energy resolution better than or
comparable to (7/

√
Ztot + 1) keV is desirable. The contrast of X-rays to annihilation

radiation, quantified through 1k, is largely insensitive to other parameters of the
scenario, since the cross-sections for the two processes scale in the same way with
the background parameters. Commercial high purity germanium (HPGe) radiation
detectors are available with energy resolutions near 1 keV. Therefore, our calculations
indicate that sufficient signal-to-noise ratios can be achieved in the presence of most
magnetic-fusion relevant plasma compositions.

There are two main competing effects which are sensitive to E and Ztot that
determine the observed behaviour in 1k. When E increases, the thermalization
fraction η of positrons rapidly decreases, as illustrated in figure 3(b), which
reduces the amount of 511 keV annihilation radiation. At the same time the
runaway-electron population becomes more anisotropic, which sharply reduces the
amount of bremsstrahlung emitted at a perpendicular angle. In the parameter range
shown in the figure, these effects are found to approximately cancel, leaving only a
weak E dependence. On the other hand, an increase in charge Ztot causes the electron
population to become more isotropic, increasing the amount of bremsstrahlung emitted
at a perpendicular angle, however, it also increases the average runaway-electron
energy which increases the number of positrons created per electron. The former
effect is significantly stronger, which causes a net 1/

√
Ztot + 1 dependence.

Finally we note that, in the post-disruption runaway plateau where the runaway
current slowly dissipates on the inductive time scale of the device, the analytical
avalanche runaway distribution that we have used here is not valid, as it tends
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to significantly overestimate the average energy of the distribution. Due to its
experimental accessibility, we consider this scenario separately for a singly ionized
argon-dominated plasma (Pautasso et al. 2016). For the runaway electron distribution
we use the self-consistent slowing-down distribution of Hesslow et al. (2018) obtained
from a numerical solution of the kinetic equation with an inductive electric field
and accurate modelling of screening effects on collisions, at a plasma temperature
T = 10 eV. Using such a numerical distribution function in evaluating the rate of pair
production 〈vσ+c 〉RE and the bremsstrahlung photon flux yields 1k= 0.31 keV, which
is approximately 20 % of the value predicted by the rule-of-thumb given in (4.4)
evaluated with Ztot = 18. One may therefore expect that during the runaway plateau
following a disruption, the positron radiation is overwhelmed by X-rays more easily
than during the transient avalanche phase.

As well as being distinguishable from the runaway X-rays, it is required that the
total number of annihilation photons reaching a detector is sufficiently large. While
this is highly sensitive to the details of the set-up, we can provide a rough estimate in
the following way. The total number of annihilation photons per unit time reaching a
detector with area Adet placed a distance R from the plasma detecting emission within
an opening angle 1θ , is given approximately by

∂Nan

∂t
≈ 1θ

A
R

Adet
∂nan

∂t∂Ω
≈1θAdetAZtot

nREneη〈vσ
+

c 〉RE

4πR

≈ 1θAdet
AnREec

e
Ztot

ner2
0

4π1372R
η
γ0 − 6.7

15

≈ (1.4× 106 s−1)n20IRE[100 kA]1θ
Adet[dm2

]

R[m]
Ztot(γ0 − 6.7)η. (4.5)

Here, the cross-sectional area A of the plasma is assumed to be completely within the
detector field-of-view. Then, discharges with higher plasma charge, background density
and runaway current are seen to yield higher total annihilation photon fluxes. Note
that a strong decrease in total photon flux is found when the electric field increases
above the threshold value Ec, due to the change in the thermalization fraction η. As
an example, inserting values typical of a disruption in a medium-sized tokamak with
R=1.5 m, Ztot=10, ntot=1020 m−3, IRE=400 kA, E=2Ec, Adet=1 dm2, 1θ =0.5 rad
and with ln Λ = 15, one obtains a detected 511 keV annihilation photon count of
∂Nan/∂t≈ 7× 108 s−1.

In poor signal-to-noise ratio cases coincidence measurements can be employed,
where only positrons annihilated between two detectors are counted. This can be
approximately accounted for in the previous formula by using an opening angle
1θ =

√
Adet/R if two identical detectors are placed on either side of the plasma,

which reduces the number of counts by another factor 0.1
√

Adet[dm]/R[m].

5. Conclusions

Fast electrons can produce electron–positron pairs, primarily via either a two-step
process based on the emission of a bremsstrahlung photon and a subsequent
photon–particle interaction, or the direct process where pairs are produced in collisions
between fast electrons and nuclei. Using MadGraph 5 (Alwall et al. 2014) to calculate
the differential cross-section for collisional pair production, it is shown that the
cross-section given by Gryaznykh (1998), used in previous studies of runaway-positron
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generation, overestimates the pair production approximately by a constant factor of
four. A comparison of the cross-sections is presented in appendix A.

We show that collisional pair production is dominant when the electric field exceeds
a certain threshold value, which is given in (2.23) and illustrated in figure 1. This
has recently been investigated in the context of lightning discharges (Vodopiyanov
et al. 2015), using the Gryaznykh (1998) cross-section for pair production. Our results,
applied to an air-like plasma, show an elevated threshold. The collisional process is,
however, always dominant when the fast electrons are confined to a region in space
which is smaller than the photon mean-free path, e.g. in magnetic-fusion plasmas.

In strong electric fields electrons and positrons are accelerated and may run away.
The kinetic equations for electrons and positrons are similar, except for the opposite
directions of acceleration in an electric field, and the source and annihilation terms
present in the positron kinetic equation. We show that when the electric field is
sufficiently large the positron distribution function can be calculated analytically, with
explicit solutions given in (2.26) and (2.27). The analytical solution shows remarkable
agreement with numerical solutions of the kinetic equation in the relevant limit (high
electric field and moderate charge number), as illustrated in figure 2.

Since the characteristic initial energy of the newly born positrons is large, a fluid
description for the positron population can be used. Kinetic simulations are then
only needed to determine the fraction of created positrons that are thermalized or
runaway accelerated as a function of the background parameters. The evolution of the
number density of thermal and runaway positrons can then be calculated from simple
rate equations, given in (3.1)–(3.3). These equations admit analytical solutions in the
presence of a constant electric field, and can be used to determine the ratio of the
runaway-positron and -electron populations. The runaway and thermalized positron
fractions determined from numerical kinetic simulations are given for a variety of
electric fields and charge numbers in figure 3.

Finally we calculate the radiation emitted by a runaway-positron population, and
evaluate the annihilation to HXR ratio of photon fluxes emitted at a perpendicular
angle to the system. Our model implies that in tokamaks, the positron population
produced during electron runaway may plausibly be measured using the isotropic
annihilation radiation that the thermalized positrons emit. Sufficient signal-to-noise
is obtainable with a single gamma-ray detector having a photon-energy resolution
of 1k . 1 keV at the distinct annihilation peak at 511 keV. If the energy-resolution
requirement is not met, the annihilation peak may not be distinguishable from the
background X-ray emission of the runaway electrons, and two detectors set-up for a
coincidence measurement would need to be employed.
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Appendix A. Positron source term

The differential cross-sections appearing in (2.14) are given in the Born approxima-
tion by (Heitler 1954)
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(A 2)

and 1/α = 4πε0h̄c/e2
≈ 137 denotes the inverse fine-structure constant. In the

expression for ∂σ+γ /∂γ , energy conservation constrains γ− = k − γ where p− =√
γ 2
−
− 1 denotes the momentum of the electron created in the pair, whereas in the

expression for ∂σbr/∂k one has γ = γ1− k and p=
√
γ 2 − 1 is the momentum of the

outgoing positron. Here, momenta are expressed in units of mec and k is the photon
energy in units of mec2.

The cross-section ∂σ+c /∂γ for pair production in collisions by electrons and ions
is evaluated in the Born approximation by the MadGraph 5 tool (Alwall et al. 2014),
where 1 300 000 events were generated for each incident electron energy γ1, for
which 140 values between 3.13 and 587 were sampled (corresponding to a range
from 1.6 MeV to 300 MeV). In figure 5 we compare ∂σ+c /∂γ as calculated by
MadGraph 5 with the corresponding differential cross-section evaluated in the main
logarithmic approximation neglecting contributions of order 1/ ln γ1 (Landau &
Lifshitz 1983),

∂σ+c,LL

∂γ
=

56α2r2
0

9π

ln γ
γ

ln
γ1

γ
. (A 3)

We observe that the shape of the Landau–Lifshitz cross-section dσ+c,LL is qualitatively
similar to the MadGraph 5 results, although the values deviate significantly from the
more accurate calculation. At moderate-to-low electron energies, the Landau–Lifshitz
formula also significantly overestimates the average positron energy. The disagreement
between the Landau–Lifshitz formula and the corresponding Born approximation result
is expected, since the logarithmic approximation is only valid at significantly higher
energies than those relevant to runaway scenarios.
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FIGURE 5. Differential cross-section for pair production in collisions, by MadGraph 5
(solid black line, employed for results in this paper) and for comparison the Landau–
Lifshitz formula (dashed red). γ1 and γ are the incident electron and outgoing positron
Lorentz factors, respectively. The Landau–Lifshitz formula has been multiplied by 1/30,
1/5 and 1/3 in the three subplots, respectively, in order to illustrate better the shapes of
the curves. The MadGraph 5 results are significantly overestimated by the approximate
formula.

FIGURE 6. Total cross-sections σ+c by MadGraph 5 (solid, black), the Landau–Lifshitz
formula (dashed, red) and the Gryaznykh formula (dotted, blue) as function of the incident
electron Lorentz factor γ1. The Landau–Lifshitz and Gryaznykh formulas have been
rescaled for better visibility; they both significantly overestimate the positron production
compared to the full MadGraph 5 computation in the energy range of interest for electron
runaway.

In figure 6 we compare the total pair-production cross-section σ+c between
MadGraph 5, the Landau–Lifshitz formula as well as with the formula given by
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Gryaznykh (1998),

σ+c,Gr = (5.11µb) ln3 γ1 + 3.6
6.6

, (A 4)

that has been employed in previous runaway-positron studies. Although Gryaznykh’s
formula is a numerical fit to the full Born approximation result, it appears that the
prefactor is too large by a factor of 4.

It is furthermore insightful to consider the energy spectrum of created positrons by
integrating the positron source Spos of (2.13) over angles,

Spos(p)= p2
∫

Spos( p) dΩp = Sc(p)+ Sγ (p), (A 5)

where we have split the source into the contribution Sc from collisional pair production
and Sγ from pair production via X-rays. These are defined so that

∫
Spos dp is the total

rate at which positrons are produced, and are given explicitly by

Sc = neZtotv

∫
∞

γ+2
dγ1

∂σ+c

∂γ
FRE(γ1), (A 6)

Sγ = n2
eZtottavavc

∫
∞

γ+2
dγ1

∫ γ1−1

γ+1
dk
∂σ+γ

∂γ

∂σbr

∂k
FRE(γ1). (A 7)

Figure 7 shows Sc and Sγ for two different systems, characterized by γ0≡ cZ lnΛ= 20
and γ0= 50. It illustrates the dependence on the positron momentum p of the two pair-
production mechanisms, when averaged over the electron (and photon) distribution. It
is clear that the two main pair-production channels due to runaway electrons – in
collisions and via X-rays – produce very similar positron-energy spectra.

We find that the average positron energy is not particularly sensitive to the average
electron energy γ0: by evaluating 〈γ 〉=

∫
∞

0 γ S dp/
∫
∞

0 S dp, we obtain 〈γ 〉c≈ 8 and 11
when γ0= 20 and 50, respectively, for the collision term Sc. For the X-ray term Sγ we
find 〈γ 〉γ ≈ 9 and 13 for the corresponding cases. Energies of newly created positrons
during runaway are therefore typically always in the 5 MeV range on average.

Appendix B. Derivation of positron distribution function
We here present the derivation of the positron distributions (2.26) and (2.27)

in the high-energy, small pitch-angle limit. The positron distribution varies over
energies much larger than the rest energy, and thus satisfies the ultra-relativistic,
one-dimensional kinetic equation

∂F(p, t)
∂t

+ eEc

(
E
Ec
− sgn(p)

)
∂F(p, t)
∂p

= necZtot

∫
∞

γ+2
dγ1

∂σ

∂γ

+

(γ , γ1)FRE(p1, t),

(B 1)
where p1 = sgn(p)

√
γ 2

1 − 1. Here we have ignored the effect of annihilation on
the evolution of the distribution, since this process occurs on a significantly longer
time scale than the acceleration time in a strong electric field, and neglected the
weak logarithmic energy dependence in the collisional friction force, taken to be
constantly of magnitude eEc=mec/τc with τ−1

c = 4π lnΛner2
0c, opposing the direction

of motion. We furthermore neglect radiation losses through synchrotron emission and
bremsstrahlung; for high Z and low E, this assumption may be violated in the far
tail of the energy distribution.
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FIGURE 7. Positron source terms Sc (red), due to collisional pair production, and Sγ
(black), due to pair production via X-ray emission, normalized to unity production rate,
evaluated at different values of the average runaway energy γ0 = cZ lnΛ. (solid, γ0 = 20;
dashed γ0 = 50).

Since the electron population – which drives the generation of positrons through
the pair-production source term – grows exponentially in time we expect the
positron kinetic equation to have a quasi-steady-state solution of the form F(p, t)=
et/tavaF(p, 0), growing at the same rate as the energetic electrons. For p < 0, the
positron distribution then satisfies the first-order linear ordinary differential equation[

E/Ec − 1
γ0

−

(
E
Ec
+ 1
)
∂

∂γ

]
F =

Ztot

4π lnΛr2
0

nRE

γ0mec

∫
∞

γ

dγ1
∂σ+

∂γ
e−γ1/γ0, (B 2)

where γ0 = cZ ln Λ is the average runaway-electron energy. Imposing the boundary
condition F(−∞, t) = 0, thus constraining the solutions to a finite total positron
number, it is solved by

F =
Ztot

4π lnΛr2
0

nRE

γ0mec
eργ /γ0 ×

∫
∞

γ

dγ ′
∫
∞

γ ′+2
dγ1

[
∂σ+

∂γ ′
(γ ′, γ1) exp

{
−
ργ ′ + γ1

γ0

}]
,

(B 3)
where ρ = (E/Ec − 1)/(E/Ec + 1).

Conversely, for p > 0, the pair-production source vanishes, and the positron
distribution satisfies the same equation as the high-energy runaway electrons except
for the opposite charge,

∂F
∂t
+ eEc

(
E
Ec
− 1
)
∂F
∂p
= 0, (B 4)

which is solved by

F(p, t)=F
(

0, t−
p

e(E− Ec)

)
. (B 5)

Using as boundary condition at p = 0 that the positron population grows in time in
the same way as the p< 0 population:

F(0+, t)
F(0+, 0)

=
F(0−, t)
F(0−, 0)

= et/tava, (B 6)
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which then immediately yields

F(p, t)=
nRP(0)
mecγ0

et/tavae−γ /γ0 . (B 7)
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